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Geometry and edge effects on the energy levels of graphene quantum rings: A comparison between
tight-binding and simplified Dirac models
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We present a systematic study of the energy spectra of graphene quantum rings having different geometries and
edge types in the presence of a perpendicular magnetic field. Results are obtained within the tight-binding (TB)
and Dirac models and we discuss which features of the former can be recovered by using the approximations
imposed by the latter. Energy levels of graphene quantum rings obtained by diagonalizing the TB Hamiltonian are
demonstrated to be strongly dependent on the rings geometry and the microscopical structure of the edges. This
makes it difficult to recover those spectra by the existing theories that are based on the continuum (Dirac) model.
Nevertheless, our results show that both approaches (i.e., TB and Dirac model) may provide similar results, but
only for very specific combinations of ring geometry and edge types. The results obtained by a simplified model
describing an infinitely thin circular Dirac ring show good agreement with those obtained for hexagonal and
rhombus armchair graphene rings within the TB model. Moreover, we show that the energy levels of a circular
quantum ring with an infinite mass boundary condition obtained within the Dirac model agree with those for a
ring defined by a ring-shaped staggered potential obtained within the TB model.
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I. INTRODUCTION

Graphene, a two-dimensional lattice of carbon atoms [1],
has been a subject of great interest during the past few years.
This interest is not only due to its possible future technological
applications, but also because it provides the possibility to
probe interesting phenomena predicted by quantum field
theories. Several of the exotic properties originate from the
fact that low energy electrons in graphene obey the zero mass
Dirac equation (for a review see, e.g., Ref. [2]).

Previous works have demonstrated interesting features
coming from ringlike and dotlike confinement in graphene
[3-9]. Theoretical studies have predicted Aharonov-Bohm
(AB) oscillations in both the conductance [10] and the
energy spectrum [11] of graphene quantum rings. In fact, AB
conductance oscillations were observed in recent experiments
on several circular rings fabricated in few-layer graphene [12].
Luo et al. [13] demonstrated theoretically that the energy
spectrum of armchair quantum rings exhibits signatures of
an effective time-reversal symmetry breaking, where a gap
around zero energy, which can be removed by applying an
external magnetic field, is observed.

From the point of view of the continuum model, where
electrons are described as massless Dirac fermions, several
models have been suggested for studying the confined states of
graphene quantum rings. For instance, Recher et al. [14] have
used the Dirac model to show that the combined effects of a
ring-shaped mass-related potential and an external magnetic
field can be used to break the valley degeneracy in graphene.
A similar effect was also found by Wurm et al. [15], where
it was theoretically demonstrated that the splitting of the
valley degeneracy by a magnetic field in such a system can
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also be observed in the transport properties of rings that
are weakly coupled to leads. The analytical solution for the
graphene ring proposed in Ref. [14] was used latter by Abergel
etal.[16] to study the interplay between valley polarization and
electron-electron interactions on some measurable quantities
in such a structure, where they observe, e.g., extra steps in the
persistent current as a function of an external magnetic field.
A recent paper [17] proposed a simplified model for obtaining
energy levels in graphene quantum rings, based on an idea
widely used for semiconductor quantum rings [18], where the
radial component of the momentum of the confined particle is
assumed to be zero, so that the effective Hamiltonian of the
system depends only on the angular coordinate. This model has
been recently used, e.g., for the study of wave packet revivals
in monolayer and bilayer graphene rings [19].

Notice that the continuum model for graphene is developed
by considering a periodic honeycomb lattice of carbon atoms
of infinite size and by analyzing only the low energy sector
of the corresponding tight-binding Hamiltonian. However,
the experimentally obtained graphene quantum rings reported
in the literature are normally fabricated by cutting out the
graphene flake into a finite size ring-shaped structure. In order
to take the finite size effects into account within the Dirac
theory, the above mentioned previous papers have usually
considered either infinite mass boundary conditions, or a
“frozen” radial motion of the particles. But it is questionable
that these conditions are really sufficient in order to describe
a real graphene ring sample. If so, what are the limits of
such approximations? Answering these questions is the main
purpose of this paper, where we use the tight-binding model
(TBM) to calculate the energy spectrum of graphene quantum
rings with different geometries and different types of edges.
We then discuss the main qualitative features of the obtained
spectra in terms of the continuum (Dirac) approximation,
making a comparison between the results obtained by such
an approximation and those obtained by the TBM. Our results
from tight-binding calculations show that the energy spectra
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of these systems strongly depend on the detailed structure of
the edges, which makes it difficult to find analytical solutions
for the energy states in these systems within the continuum
model. Circular rings cut out of a graphene sheet exhibit mixed
armchair and zigzag edges, and the latter leads to strongly
confined edge states, which significantly affects its energy
spectrum. The AB oscillations in the energy spectra for other
geometries of quantum rings, where one can obtain uniform
edge type, exhibit geometry-specific n-fold energy subbands,
and in some cases the qualitative features of the spectrum, are
shown to depend even on the alignment between inner and
outer edges of the ring. Even so, we demonstrate that under
specific conditions one can still use the proposed simplified
model [17] to obtain analytically the main qualitative features
of the energy spectra of armchair rings, or use the analytical
solution proposed in Ref. [14] to observe some features
exhibited by the energy spectrum obtained by the tight-binding
model for a mass-related ring confinement, as we will discuss
in further detail in the following sections.

The present paper is organized as follows. In Sec. II we
briefly present an outline of the TBM and the investigated
graphene rings. An approximate analytical solution is obtained
for a simplified model within the Dirac approach in Sec. III.
Our numerical results from TBM and the analytical ones from
the simplified Dirac model are shown in Sec. IV. A summary
and concluding remarks are reported in Sec. V.

II. TIGHT-BINDING MODEL

Graphene consists of a honeycomb lattice of carbon atoms,
which can be described by the Hamiltonian

Hrp = Z(Gi + My)clei + Z(Tijcjcj + T,»jCiC;), ey
i ()]

where ¢; (cj) annihilates (creates) an electron in site i, with
on-site energy ¢;, and the sum is taken only between the
nearest neighbors sites i and j, with hopping energy t;;.
Due to the Klein tunneling effect in graphene, it is hard to
confine electrons by applying an external potential [20,21].
On the other hand, a staggered site-dependent potential M;,
which is positive (negative) if i belongs to the sublattice A
(B) [22], opens a gap in the energy spectrum of graphene. Due
to this property, such a potential is normally used to simulate
confining structures in graphene, such as quantum dots [23]
and rings [14], within the Dirac model, where it appears as
a mass-related term. Recent papers have suggested a way to
realize such a potential experimentally, namely, by depositing
the graphene lattice over specific substrates [24—26]. The effect
of an external magnetic field can be introduced in the TB model
by including a phase in the hopping parameters according to
the Peierls substitution 7;; — ;5 exp[i% f; A- df], where A
is the vector potential describing the magnetic field [27,28].
In the presence of a perpendicular magnetic field B = BZ,
we conveniently choose the Landau gauge A = (0, Bx,0), so
that the Peierls phase becomes zero in the x direction and
expli 2;’—; <%] in the y direction, where a = 1.42 A is the lattice
parameter of graphene, &y, = h/e is the magnetic quantum
flux, and ® = 3v/3a2B/2 is the magnetic flux through a
carbon hexagon.
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FIG. 1. (Color online) Sketch of (a), (c), and (e) armchair and
(b), (d), and (f) zigzag rings, with hexagonal, triangular, and rhombus
geometries, respectively, as well as (g) and (h) circular rings,
considered in this work. The first six geometries are characterized
by the number of carbon rings Ng (N;) in their outer (inner) edge.
Circular rings are characterized by their width W and average radius
R. (g) Circular ring defined by cutting the graphene lattice. (h)
Circular graphene ring defined by a smooth ring-shaped staggered
potential M;, where the color scale goes from M; = —M, (red)
to M; =+M, (blue), and the M; =0 region inside the ring is
represented in green. The atoms belonging to sublattices A and B
have different colors because of the staggered potential profile.

We write the Hamiltonian (1) in matrix form, diagonalize it
numerically, and obtain the energy spectrum for the different
ring geometries schematically shown in Fig. 1: hexago-
nal, triangular, and rhombus-shaped rings, with armchair
[Figs. 1(a), 1(c), and 1(e)] and zigzag [Figs. 1(b), 1(d), and 1(f)]
edges. We also consider circular rings defined by cutting the
graphene lattice [Fig. 1(g)], or by considering a circular-shaped
staggered potential [Fig. 1(h)]. The edges of such circular rings
exhibit an admixture of zigzag and armchair regions and are not
singly defined. The ring-shaped staggered potential in Fig. 1(h)
is given by

M;(r;) = £Mp[2 + tanh(r;") + tanh(r,)], )

where r;" =(r; — R—W/2)/Sand r; =(—r; + R — W/2)/S,
S is the width of the smooth region and r; = \/)ci2 + yjz is the
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position of the ith site of the lattice. Such a staggered potential
goes smoothly to zero (Mj) inside (outside) the ring region,
avoiding edge-related effects.

Probability density currents within the TB model are
numerically calculated based on the method developed in
Ref. [29], where one defines the probability current j in terms
of the continuity equation and, after some calculations, obtain
the current components in x and y directions for each site,
which is defined by its line (n) and column () position in the
lattice (see Ref. [30]), as

() = £ AV T
—Im[W, V)| Taet1m]
B P R A | 3)
and

V3a

jy(n,m) = T{Im[\yn,mw:+1,mtn+l,m]
_Im[\ljn,m\p;fl,mrnfl,m]}s (4)

where the F sign in j, will be positive (negative) if the (n,m)
site belongs to the sublattice A (B), and 7, ,, is the hopping
parameter which, in the presence of a magnetic field, includes
an additional phase according to the Peierls substitution.

III. CONTINUUM MODEL

The energy spectrum of an infinite graphene sheet in the
absence of external potentials and magnetic field, as obtained
from the TBM Hamiltonian (1), is gapless in six points of
the reciprocal space, from which only two are inequivalent,
labeled as K and K’ [2,31]. In the vicinity of each of Ehese
points, the energy depends linearly on the wave vector k and
the electron behaves as a quasiparticle described by the Dirac
Hamiltonian

Hp = [vpo(p + eA) + VAL + y M(F)o.], 5)

where vp = 37ay/2h is the Fermi velocity, A is the electro-
magnetic vector potential, V(x,y) is an external potential, I is
the identity matrix, and 6; denotes the components of the Pauli
matrices. The eigenstates of the Hamiltonian (5) are the two-
component spinors ¥ = [W4,Wg]T, where W,y are the
envelop functions associated with the electron probabilities
in A(B) sublattices.

The site-dependent staggered potential M; in the TB
Hamiltonian (1) contributes to the Dirac Hamiltonian as
a mass-related potential M(7), which is multiplied by a
factor y =1 (—1) for the K (K') Dirac point in Eq. (5).
Considering the mass as zero (infinity) inside (outside) of
the confinement region yields the infinity-mass boundary
condition W(7)/ WA (F) = iye'?, where 6 is the angle between
the outward unit vector at the boundaries and 7 [i.e., 8 =0
(60 = m) at outer (inner) boundaries of the ring] [32].

Let us now consider a simplified model of a circular
graphene ring in order to find an approximate analytical
solution for the energy spectrum of graphene quantum rings
that agrees with those obtained within the TBM. In the absence
of an external potential and around the K point (y = 1) [33],

PHYSICAL REVIEW B 89, 075418 (2014)

the Hamiltonian (5) in polar coordinates reads

M _ * —i¢ptrB
Hp = hv hvr l(l'[,+e <1>0)
P i — et M ’
r CDU hUF

(6)

where I1, = ¢'¢ (a% + f%) We assume that the width of the
ring approaches zero and therefore the momentum should be
frozen in the radial direction. From the definition of the radial
momentum operator [34] in cylindrical coordinates

1 d 1
r = ZPr - ¥ - r) = ) 7

pr=2 F+F-p)=--+ g (7
where T is the unitary vector in the radial direction and R is
the ring radius, we obtain d/dr — —1/2R, as p, — 0 and
r — R. Then, the simplified Hamiltonian for the graphene
quantum ring is

7 —ig (d | ;@

M i (% il )

Ho = ei¢(i+i%+i) -M '
[ 2

®)

D~

where ® = 7 R?B is the magnetic flux through the quantum
ring, and the energy is in units of Eg = hvy/R and M =
M/E,.

Notice that the definition of the radial momentum in Eq. (7)
was first used by Aronov and Lyanda-Geller [35] in 1993 for
the study of Schrodinger electrons in a quantum ring with
Rashba spin-orbit interaction [2]. However, they mistakenly
defined the radial momentum as p, = ;—r which leads to ;_r —
0 as the radial momentum approaches zero. Due to this wrong
assumption, they ended up with a non-Hermitian Hamiltonian
for this system. The non-Hermiticity of this Hamiltonian
was eliminated artificially in subsequent papers [36,37] by
assuming an additional term —1/2R in the off-diagonals of
the Hamiltonian. A physical explanation for such a term was
given almost 10 years later in a work by Meijer et al. [18],
where the authors split the Hamiltonian into two parts, one for
the radial confinement and the other for the Rashba interaction,
and used the eigenfunctions of the radial part to show that the
average value of the radial first derivative term in the Rashba
Hamiltonianis (d/dr) = —1/2R. However, this is not the most
general way to explain this term and such an explanation does
not help for the graphene ring Hamiltonian (6), since in this
case we cannot split the Hamiltonian and obtain a separate
radial confinement term. Using Eq. (7), on the other hand, one
obtains the result found by Meijer et al. in a more natural
way, showing that the identity (d/dr) = —1/2R is actually
a consequence of the zero radial momentum. Our derivation
of the graphene ring Hamiltonian in Eqgs. (6)—(8) shows that
if one simply defines the radial momentum properly, the
correct expression for the radial derivatives and, consequently,
an Hermitian Hamiltonian will appear naturally from the
derivation. It is straightforwardly seen that the same happens
in the derivation of the Rashba interaction Hamiltonian for
quantum rings.
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The eigenstates of the Hamiltonian (8) are found as W; =
[Ae'?,  iBje!™tD9]T with eigenenergies

Eex (1422 ) (1422 Liie (o
o @y D, 4 ’

where [ is the angular momentum index.

IV. RESULTS AND DISCUSSION

A. Comparison between tight-binding and Dirac models

First, let us investigate the energy spectrum of graphene
quantum rings, with various shapes and edge types, obtained
by the TBM, focusing on the search for energy spectra that
can be satisfactorily described by the continuum model. With
this purpose, we first demonstrate that for a rhombus-shaped
ring with armchair edges, a strong dependence of the energy
spectrum on the edge alignment is observed in Fig. 2 for Ny =
17, considering N; = 12 [Fig. 2(a)], where the inner and outer
edges are anti-aligned, and N; = 11 [Fig. 2(b)], where the
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FIG. 2. (Color online) Energy levels of armchair rhombus quan-
tum rings, schematically shown in Fig. 1(e), as a function of the
magnetic flux through a single carbon hexagon for two ring widths:
(@) Ng =17, N; = 12 and (b) Ng = 17, N; = 11. As shown in the
insets, the energy spectrum does not have a zero-energy state: States
close to E = O arerather similar to the first states above and below this
energy, which are composed by branches of two oscillating energy
states.
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edges are aligned. In the former case one obtains very regular
oscillations as the magnetic field increases, for a wide range
of energies. High and irregular energy differences between the
excited states are found in the latter (aligned) case, as compared
to the smaller and more regular separations between energies
of the eigenstates of the system with anti-aligned edges. In
both cases, the spectrum exhibits twofold bands of oscillating
energies, separated by anticrossings, even in the higher energy
region, as shown in the insets.

Figure 3 shows that hexagonal armchair quantum rings also
share the same kind of spectrum as the anti-aligned armchair
rhombus-shaped ring in Fig. 2(a), though in the hexagonal
case the spectrum does not depend on the edges alignment,
but only on the ring width. The spectra exhibit crossings
and anticrossings, which separate them into sixfold energy
bands. A similar spectrum was also obtained in Ref. [38],
but the focus of this previous work was on the inner and
outer edge distribution of the eigenfunctions, so that details
of the spectrum, e.g., its dependence on the ring width and
the persistent current profile of the energy states at nonzero
magnetic field, were not investigated. Notice that changing
the number of carbon hexagons in the inner edge N; and
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FIG. 3. (Color online) Energy levels of armchair hexagonal
quantum rings, schematically shown in Fig. 1(a), as a function of the
magnetic flux through a single carbon hexagon for two ring widths:
(a) Ng =15, N; = 10 and (b) Ng = 15, N; = 3. The spectrum is
symmetric with respect to E = 0.
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keeping Ng fixed, one effectively changes the width of the
ring. Considering a larger ring width, with Ng = 15 and
N; =3, as shown in Fig. 3(b), the energy spectrum is more
strongly affected by the magnetic field, so that the regular
set of crossings and anticrossings in Fig. 3(a) is no longer
observed in this case. Nevertheless, the qualitative features
observed in Fig. 3(a), including the gap around E = 0 for
zero magnetic field, are present for all ring widths. This is
surprising, since in armchair nanoribbons the character of the
system oscillates between metallic and insulating as the width
changes [39]. Although the armchair ring in Fig. 3(a) is made
just by connecting six armchair nanoribbons, the qualitative
features of such ribbons are not directly transferable to the
quantum ring case, which suggests that the ring geometry
and the ribbons connections are playing a major role in these
systems [13].

Notice that the energy spectra obtained by the TBM either in
the case of a rhombus-shaped armchair ring with anti-aligned
edges in Fig. 2(a), or for hexagonal armchair rings, specially
the one with smaller width in Fig. 3(a), resembles the AB
oscillations for ideal quantum rings reported, e.g., in Fig. 3(a)
of Ref. [17]. These structures are then good candidates to
be well described by the simplified Dirac model for quantum
rings, developed in Sec. II of the present paper and in Ref. [17].

Thus, let us investigate the spectra in Figs. 2(a) and 3(a)
with more details. Notice that both spectra exhibit a gap
around £ =0 in the absence of a magnetic field, but the
E = 0 states are found for specific values of the magnetic flux,
which are almost equally spaced in flux. This is reminiscent
of the energy spectrum for Schrodinger electrons confined in
quantum rings under perpendicular magnetic fields [40—42],
where the energy oscillates periodically with the magnetic
flux, due to the Aharonov-Bohm effect. Similar to the AB
effect in semiconductor quantum rings, the energy oscillations
in Fig. 3(a) can also be linked to transitions between states
with clockwise and counterclockwise persistent currents, as
one can observe in the probability density current plots in
Fig. 4. The current for the lowest energy state with decreasing
(increasing) energy as the magnetic field increases, which are
marked by green (brown) ellipses labeled as I (IT) in Fig. 3(a),
are found to be in (counter-)clockwise direction in Fig. 4.

As a matter of fact, assuming a Dirac fermion constrained
to move in a circle that is thread by the same magnetic flux
as the rhombus or the hexagon, i.e., that encloses the same
area as these geometries, as illustrated in Figs. 5(a) and 6(a),
respectively, and performing the analytical calculations for
AB oscillations in the continuum model proposed in Sec. 111,
one obtains almost the same spectra as obtained by the
TBM for the respective structures. This is demonstrated in
Figs. 5(b) and 6(b) for the rhombus-shaped and hexagonal
rings, respectively, where the dashed lines are obtained by
the TBM, whereas the solid lines are for a massless Dirac
fermion in a circle of radius R. By comparing both models,
one observes that (i) the energy gap reaches a maximum
value E = hvp/R at g =ndy (n integer) and (ii) the
system is gapless for g = (n + 1/2)Py. Better agreement
between the models is observed for lower energies and
magnetic fields, where the effects of the curvature of the
energy bands and the finite width of the TBM sample are less
important.
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y (A)

y (A)

FIG. 4. (Color online) Current density profile for an armchair
hexagonal quantum ring corresponding to magnetic flux indicated
by (I) and (II) in Fig. 3(a). The results for the current density are
numerically calculated based on the method discussed in Refs. [29,43]
and reproduced in the present paper.

The main advantage of the simplified analytical model for
these systems is to predict effects and results just by analyzing
the solutions of the model, without effectively solving the TBM
equation, which may require high computational costs. Let us
then consider the case of a ring deposited over a substrate that
provides a constant mass-related potential M = 0.5E. Notice
that this is still not the case proposed in Fig. 1(h), since in the
present case we have a constant mass term M, instead of the
space-dependent potential M;(r;) of Eq. (2). The simplified
model for a M = 0.5E) in a circle of radius R predicts that
such a mass term is responsible for a minimum gap of Ej
in the energy spectrum at @5 = (n + 1/2)®y, as shown by
the solid lines in Figs. 5(c) and 6(c) for the rhombus-shaped
and hexagonal rings, respectively. Such prediction is indeed
confirmed by the results from the TBM (dashed lines) for the
respective site-dependent potentials, which exhibit very good
agreement with the continuum model results.

The simplified continuum model also predicts that, in the
absence of magnetic field, the energy levels converge to M
as the ring radius is enlarged, and diverge as E =~ vph|l 4
1/2|/R for small radii, which can be inferred from Eq. (9).
However, for nonzero magnetic field, the energies are expected
to increase almost linearly with the radius, since Eq. (9) can
be approximated by E = /(a@R)?> + M?, with @ = vpeB/2,
as R — oo in this case. This is illustrated by the solid lines
in Fig. 7, which represent the energy levels, obtained by the
simplified continuum model, as a function of the ring radius,
for a circular ring with a substrate induced potential M =
0.1 eV, considering different values of magnetic flux. The
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FIG. 5. (Color online) (a) Rhombus armchair quantum ring (blue
polygon figure) considered in the TB calculation, with Ngp = 17
and N; = 12, along with the one-dimensional R & 32.3 A ring
(red circle) considered in the simplified model. (b) Energy spectra,
obtained from the simplified (solid lines) and TB (dashed lines)
models, as a function of the magnetic flux threading the red circle
illustrated in (a). Curves with different colors represent different
angular momentum index /. (c) The results from the TB model with a
background mass term M = 0.5E, are also compared to those from
the simplified model in this case.

results obtained by the TBM for an armchair hexagonal ring
are computed by varying the number of external carbon rings
NEg, but keeping the ring width constant (N; = Ng — 5), we
obtain the dimensions Lr = (3Ng —2)a and L; = (BN; —

PHYSICAL REVIEW B 89, 075418 (2014)

FIG. 6. (Color online) (a) Hexagonal armchair quantum ring
(blue polygon figure) considered in the TB calculation, with Ng = 15
and N; = 10, along with the one-dimensional R ~ 47 A ring (red
circle) considered in the simplified model. (b) Energy spectra,
obtained from the simplified (solid lines) and TB (dashed lines)
models, as a function of the magnetic flux threading the red circle
illustrated in (a). Curves with different colors represent different
angular momentum index /. (c) The results from the TB model with a
background mass term M = 0.5E, are also compared to those from
the simplified model in this case.

1)a and the average radius R = [%(W)z]l/ 2 such that
we can relate to the radius of the simplified model. The TB
results are shown by the dashed lines and exhibit almost perfect
agreement with the analytical results, both qualitatively and
quantitatively. In both models the ground state energy would
converge to E = 0 for large radius if it were not for the gap
opened by a background mass term considered in this case,
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FIG. 7. (Color online) Energy levels of armchair hexagonal
quantum ring, obtained from the simplified (solid line) and TB
(dashed line) models, as function of ring radius R, calculated
assuming an average radius given by R = [%g('LEz;L")z]l/2 and
mass term M = 0.1 eV, for different values of the magnetic flux
@/ P,. Curves with green, red, and blue colors represent angular
momentum index / zero, negative, and positive, respectively. The

spectrum is symmetric with respect to £ = 0.

which keeps electron and hole bands from touching each other
even for larger radii.

It is however important to point out that the comparison
between the models in Figs. 4-7 is performed for narrow
widths of the quantum ring. As previously mentioned, Fig. 3(b)
demonstrates that larger ring width leads to a stronger depen-
dence of the energy spectrum on the magnetic field, which
harms the similarities between the energy spectra obtained by
the TBM and the Dirac model. Indeed, the armchair nature of
the edges helps the electron to stay in the middle of the rings
arms, since this kind of edge type does not allow for edge
states, while the narrow width of the ring leads to the “frozen”
motion in the radial direction, which makes systems with such
narrow width more suitable to be described as an ideal ring in
the simplified Dirac model proposed here.

Finally, let us now discuss how the Dirac model compares
to the TBM for a finite width circular graphene ring. The
difficulty in this case lies in the fact that one must consider
the appropriate boundary conditions in order to properly
describe the zigzag and armchair edges in this structure [44].
For the circular ring cut out from a graphene sheet, as shown in
Fig. 1(g), although the circular symmetry provides an easy way
to study the problem by a one-dimensional (radial) equation,
the boundary conditions are still too complicated for an
analytical treatment of this system, since they are an admixture
of zigzag and armchair edges. The energy spectrum obtained
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FIG. 8. (Color online) Energy levels as a function of the magnetic
flux through a single carbon hexagon for (a) the circular graphene ring
schematically shown in Fig. 1(g), and (b) a quantum ring formed by
a site-dependent potential given by Eq. (2) and schematically shown
in Fig. 1(h), with smoothness S = 10 A and height My =1 eV. In
both cases, the average radius of the ring is R = 80 A and the width
is 60 A. The spectrum is symmetric with respect to £ = 0.
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by the TBM for the circular ring schematically illustrated
in Fig. 1(g) is presented in Fig. 8(a) as a function of the
magnetic flux ®; = 7 R?B threading the average ring radius
R =80 A. Due to the circular symmetry, the energy bands
are twofolded and exhibit AB oscillations as the magnetic flux
increases, which are not perfectly periodic in @ due to the
finite width W = 60 A of the system. The energy spectrum
for a similar system was investigated in Ref. [38], but there
the twofold bands are absent, which is due to the fact that
the system considered in this previous work was not perfectly
symmetric with respect to the y axis, as one can verify by a
rigorous analysis of Fig. 7(b) in this reference. In Fig. 8(b)
we present results for the mass defined circular quantum
ring [11,14,16] sketched in Fig. 1(h), considering a potential
height My = 1 eV and a smooth interface § = 10 /o\, for aring
with the same average radius and width as in Fig. 8(a). The
spectrum in this case exhibits a ~170 meV gap that decreases
as the magnetic field increases, and a degenerate ground
state. The magnetic field lifts the ground state degeneracy and
clear AB oscillations are observed. Surprisingly, none of the
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spectra found for the two circular structures investigated here
within the TBM resembles the one obtained by the simplified
Dirac model of a circular ring. Actually, the results from the
simplified model in the presence of a background mass [see,
e.g., Figs. 5(b) and 6(b)] looks qualitatively closer to the one
observed in Fig. 8(b) for the mass defined ring, but some
evident disparities are clearly observed, such as the strong
dependence of the gap on the magnetic field, and the existence
of two sets of oscillating energies, one that increases and the
other that decreases as the magnetic field increases, which
will be explained further on. In the case of the cut out ring
[Fig. 1(g)], the different edge types play such an important role
that the only evidence of the circular character of the system
on the energy spectrum lies in its weak AB oscillations, and no
resemblance with the simplified model spectrum for circular
rings can be realized in the TBM spectrum for such a system.

On the other hand, Recher et al. [14] have shown that when
the ring confinement is provided by a gap opened in its inner
and outer regions due to an infinite mass term, an analytical
solution within the Dirac model can be obtained. This solution
was repeated in subsequent papers [11,16], where it was shown
that the ground state energy oscillates periodically with the
magnetic flux and is degenerate in the absence of a magnetic
field. As the analytical solution was discussed previously in
Refs. [11,14,16], we will not repeat them here, and will restrict
ourselves to the discussion of the obtained results within
this model. Figure 9 shows the energy spectrum, obtained
within the Dirac model, for the mass defined ring in Fig. 1(h),
considering the same parameters as in Fig. 8(b). The results in
this case agree very well with those in Fig. 8(b), which were
obtained within the TBM. Moreover, a better understanding of

FIG. 9. (Color online) Energy spectrum, obtained by the contin-
uum model for K (red solid line) and K’ (blue dashed line), as a
function of the magnetic flux for a graphene quantum ring defined by
an infinite mass boundary, with the same average radius and width
as the ring in Fig. 8(b). The spectrum is symmetric with respect to
E=0.

PHYSICAL REVIEW B 89, 075418 (2014)

the TBM results is now provided by this Dirac model—the
two sets of energy states that increase and decrease with
the magnetic field, which are clearly observed in the TBM
results in Fig. 8(b), are now demonstrated to come from
the contributions of K (red solid line) and K’ (blue dashed
line) branches of the spectrum, and such a lifting of valley
degeneracy may be important for future valleytronic devices.
Hence, the development of a Dirac model that agrees well with
the TBM results in this case now proves its great importance,
as there would be no way to recognize such valley dependence
of the energy branches only within the TBM approach.

B. Geometry, edge types, and r-fold energy bands

Let us now discuss the energy spectra of graphene rings
having different geometries and edge types, which were
found to be noncompatible with the results from the Dirac
models proposed here, but which display interesting simi-
larities among each other and with previous results, besides
exhibiting signatures from the symmetry of the ring, as we
will demonstrate further on.

Figure 10 shows the energy spectra of zigzag hexagonal
rings with Ng = 15 and N; = 10 [Fig. 10(a)] and N; =9
[Fig. 10(b)]. Depending on the ring width, the spectrum can
either exhibit a central sixfold subband around E = 0, as in
Fig. 10(a), or two sixfold subbands separated by a gap around
this energy, as shown in Fig. 10(b). A structural difference
determines the qualitative behavior of the spectrum: The
(former) latter is obtained when the external and internal
zigzag edges of the ring are (anti-)aligned, as illustrated in
the insets. Contrary to the nanoribbon case, for quantum
rings it is the zigzag structure that exhibits an oscillatory
behavior as the width changes. This agrees with the fact that
the electronic properties of zigzag nanoribbons oriented at
120° with respect to one another, exhibit oscillatory behavior
as the width changes, whereas such junctions made with
armchair nanoribbons show no qualitative dependence on the
width [45]. This supports the idea that the energy spectra
of hexagonal graphene rings are strongly dependent on the
electronic properties of their corner junctions.

Such a strong dependence on the edge type, where even
the alignment of the edges play an important role, is hard to
describe by analytical solutions within the continuum model.
Besides, it is clear that both spectra in Fig. 10 cannot be
obtained from our simplified model. Nevertheless, we can
still estimate the period of the energy oscillations observed
in Fig. 10 by ®z = n®y, using a reasonable value of ring
radius, which in the case of Fig. 10 is ~29 A. As the energy
spectrum for the aligned case, shown in Fig. 10(b), exhibits a
gap around £ = 0, one could expect that introducing M # 0
in Eq. (9) would lead to the correct energy spectrum. Although
the low-lying states of this spectrum resembles qualitatively
those in Fig. 6(b) for M = 0.5E), the AB oscillations found
by the simplified model exhibit a 7 -phase shift in comparison
to the results in Fig. 10(b), so that the ground state for &z = 0
in Fig. 6(b) [Fig. 10(b)] is double (non)degenerate.

Notice that the energy spectrum of hexagonal graphene
rings with zigzag edges has been previously investigated in
Ref. [38], but with a different focus. In these previous results,
the sixfold energy bands of this system were already pointed

075418-8



GEOMETRY AND EDGE EFFECTS ON THE ENERGY ...

0.10 . T v T v T " T v T v T
=5 .,..wauuuuaae“”“N,“uunn.,“ H
° 2080837 H
%0, o 0y oy
4 (a 2g, 409 oo
d o393, [1]
ao? g LT ao? e,
‘\)u“'n a,;‘a,. @,
s98g H
o0°? L) a0®® 2o, °®
0.05 Loe° LYVON 0 %300 pe0®
0 1.% ‘,;.NS,‘ E LT H
2e00000339°° 90000, 0599° %30q
2202999 99330000030a0009 #29a00000000a228
2000004 200000900000a0 2200000000005,
L] ? b4
7~ ,suw*" “"ee.“,,.anﬂ“' .“"“sinu'“" !
29349, eoad??® %309,, 2audd! TN H
0.00 | Coiszesessiil Bpbed LT Hebg posoalt 5o
3 3
L 330“““ iIS""“““""'°SINi!!""“'°-i“"'“NNH“'“S“'S"“"}
N’ 200a909890088335,,,0a00a000 33020003000008 8300000000 9093
20300 20933030300 29000099000300 09009999990000,
pe< LETTH 33390933 3800333 M
e e, a0l %o, aod® %ay a9
su? LT Q09 °ns“.a° 204,32
-0.05 e, et aeettP00e, RETARATTN
a0, 000" L !ﬁ" %00 gqa0” "
L ° e
402% "%, ot %ea, ae® 25, /N =15
°® ° e %oy 0o? L
I'yd LY e® ° ° E
o adds, PLAAETY
I °e ° 00 % o9
° » @ @ [ ° .
Soaggss® — ses00e®® N =10
H s a
a0u0ac®® 299990000000000° ®%9209a0000009°° 9vag 1
0.10 N 1 . 1 N 1 N 1 . 1 . 1
9 = H ;:
aae
w i1 111 ICITTTER gL LLLLEEEL CLE E-id L L
™ -
-’ aag, “..a’ 2. . gonavettiie, 4090
®ea,  _ge0° %, ae® Segq0°®
= (TH o393, oo¥e,
-0. - LN o » o . -
) 4] ?® Ll a® %9
. ° a B . .
o® o, a® LY a? o
® ®s ®
> .\" I: o
° 2%%a *® » °
% °® ®a o % — ae”
0.03 F - B o s, N =15
=0 ”a o % «® % E
a s % oy ' VE
N °
pt 1N 88 ot
N 0ot toeg, ot N =9
.
eonee® ®%2a000a0 ed %%s00s009 {
1 A 1 A 1 A 1 A L A 1

0.002 0.003 0.004 0.005 0.006 0.007
(@)

.04
0.000 0.001

FIG. 10. (Color online) Energy levels of zigzag hexagonal quan-
tum rings, schematically shown in Fig. 1(b), as a function of the
magnetic flux through a single carbon hexagon for two ring widths:
(a) Ng =15, N; =10 and (b) Ng = 15, N; = 9. In the (former)
latter the inner and outer zigzag edges are (anti-)aligned, as sketched
in the insets.

out. However, information about the details of the energy
spectrum close to the Fermi energy and their dependence on
the edges alignment, as well as the possibility of predicting
the period of AB oscillations by using the Dirac model, were
missing, and are now complemented by the results of the
present paper.

The energy spectra of rhombus-shaped quantum rings with
zigzag edges are shown in Fig. 11 as a function of the
magnetic flux, for the same value of Ny as in Fig. 2 and
with N; = 11 [Fig. 11(a)] and N; =9 [Fig. 11(b)]. In this
case, due to the geometry of the system, it is not possible to
construct zigzag rhombus rings having different kinds of edges
alignment. In this way, the spectra for different ring widths
exhibit the same qualitative behavior, with twofold energy
subbands, just like those previously observed for the armchair
case in Fig. 2. Notice that the states around E = 0, that look
like zero-energy states, are rather composed by three pairs of
oscillating states, with very low energy. As a matter of fact, the
twofold energy bands of this system have been already pointed
out by Bahamon et al. [38], therefore our results complement
the findings of this previous paper by providing details of the
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FIG. 11. (Color online) Energy levels of zigzag rhombus quan-
tum rings, schematically shown in Fig. 1(f), as a function of the
magnetic flux through a single carbon hexagon for two ring widths:
(@) Np =17, N; =11 and (b) N = 17, N; = 9. For both widths,
the energy spectrum does not have a zero-energy state, they are three
pairs of oscillating states as shown in the insets.

0.010

energy spectrum around E = 0, as well as the dependence of
the energy spectrum on the ring width.

Figure 12 shows the energy spectra for triangular zigzag
quantum rings considering two ring sizes: (a) Np = 17, N; =
12 and (b) Ng = 15, N; = 10. Just like the zigzag rhombus
case, the zigzag triangular rings can only be constructed with
aligned edges. The spectra look qualitatively similar to those
observed for the zigzag rhombus-shaped ring in Fig. 11, but
with threefold oscillating energy bands for higher energy
states, instead of the pairs of oscillating states observed in
the rhombus-shaped zigzag case. However, there are two
important differences between these two spectra: (i) The
zigzag triangular rings, in fact, exhibit zero-energy (edge)
states, no matter the length of its sides, whereas zigzag
rhombus-shaped rings do not, as shown by the insets of Fig. 11
and previously explained in the text. (ii) The first energy state
in the zigzag rhombus-shaped ring is always nondegenerate,
whereas this state in the zigzag triangular ring is doubly
degenerate. Results in previous papers [38] demonstrate that
the anticrossings separating the threefold energy bands of
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FIG. 12. (Color online) Energy levels of zigzag triangular quan-
tum rings, schematically shown in Fig. 1(d), as a function of the
magnetic flux through a single carbon hexagon for two ring widths:
(a) Ng =17, N; = 12 and (b) N = 15, N; = 10. For both widths,
the energy spectrum has a zero-energy state.

triangular zigzag quantum rings originate from the coupling
between inner and outer edge states.

The magnetic field dependence of the energy levels of
armchair triangular quantum rings is shown in Fig. 13 for (a)
anti-aligned and (b) aligned edges, where the spectra are also
composed by threefold oscillating energies, as in the zigzag
case. However, the energy levels are shown to be much more
affected by the magnetic field threading the ring in the armchair
case and no significant difference on the edges alignment
was observed. Another difference as compared to the zigzag
triangular rings is the absence of the zero-energy state, which
is expected, since the zero-energy states are normally related
to edge states in zigzag boundaries [46,47]. The spectra also
exhibit a huge gap of AE > 1 eV around E = 0, which
becomes smaller either as the magnetic field increases or as
the ring width becomes larger (i.e., as N; becomes smaller for
a fixed Ng).

It is important to emphasize a clear similarity between
the results obtained in the previous subsection for armchair
hexagonal (rhombus-shaped) rings in Fig. 3 (Fig. 2) and those
obtained for the zigzag case in Fig. 10 (Fig. 11): For any edge
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FIG. 13. (Color online) Energy levels of armchair triangular
quantum rings, schematically shown in Fig. 1(c), as a function of the
magnetic flux through a single carbon hexagon for two ring widths:
(a) Ng =15, N; =10 and (b) Ng = 15, N; = 9. The spectrum is
symmetric with respect to E = 0.

type or alignment, the energy spectra exhibit sixfold (twofold)
energy bands, with AB oscillations with varying magnetic
field. A similar effect is also shared by zigzag and armchair
triangular rings, as shown in Figs. 12 and 13, respectively,
where the energy spectra exhibit threefold bands. These results
strongly suggest that the number of energy states composing
these bands is related to the symmetry groups of rotation Cg,
C,, and C3, for hexagon, rhombus, and triangle, respectively,
which are closely related to the number of sides of the polygon
formed by the ring [38].

V. CONCLUSION

We calculated the energy levels of graphene quantum rings
with several geometries under an applied magnetic field and
observed that the energy spectrum and the AB oscillations for
these systems are strongly dependent on their geometry and
edge structures. For rings with zigzag edges, the TB spectra
for each geometry are qualitatively different, showing six-,
three-, and twofold energy subbands, separated by large gaps,
for hexagonal, triangular, and rhombuslike rings, respectively.
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In the hexagonal case, the alignment between inner and outer
zigzag edges is demonstrated to play an important role in the
formation of the subbands, whereas the triangular and rhombus
rings have only the aligned edge case due to geometric reasons,
presenting similar energy spectra for different sizes. Such
a strong dependence of the energy spectrum on the edge
structure, specially the observed oscillatory behavior of the
spectra with changing ring width, due to the alignment or
anti-alignment of the inner and outer edges, is a feature of
the quantum ring spectra that can hardly be captured by the
continuum models.

The energy spectrum obtained from the TB model for
hexagonal quantum rings with armchair edges exhibits sixfold
subbands separated by narrow gaps, which become larger as
the width of the ring increases. The spectrum does not have
E = 0 states at zero magnetic field, but exhibits such states for
certain values of magnetic flux. Similar features are observed
for a rhombuslike ring with armchair edges (except for the
sixfold subbands which, in this case, are twofold), but only
in the case where the inner and outer edges are anti-aligned.
The main features of these energy spectra can be obtained
by a simplified model, which considers electrons obeying the
Dirac equation for a circular ring with zero width. Despite
the different geometry of the actual rings, with such a simple
circular model one can (i) estimate the energy levels and the
period of AB oscillations or, alternatively, estimate the ring
radius by analyzing its energy spectrum as a function of the
magnetic field, even in the presence of a substrate induced
staggered potential, which appears in the continuum model as
a background mass term. (ii) Predict the alternating direction
of the persistent currents through the ring arms as the magnetic
field increases, observed in the TBM. (iii) Predict the almost
linearly increasing energy states as a function of the ring radius
in the presence of an uniform magnetic field, which is also
confirmed by the TBM results. The approximation is better
suited for rings with smaller widths and for lower energies
and magnetic fields. On the other hand, all the results for
the triangular geometry in the armchair case exhibit threefold
subbands separated by large energy gaps, which cannot be
described by such a simplified model.

We also studied two cases of circular rings within the
TB model: In the first one, where the ring is cut from a
graphene layer, we observe an energy spectrum composed
by pairs of energy states which exhibit AB oscillations as the
magnetic field increases. In the second, where the electrons
are confined in a ringlike structure by an external staggered

PHYSICAL REVIEW B 89, 075418 (2014)

site-dependent potential, the energy spectrum exhibits a gap
around E = 0 and the ground state is doubly degenerate in the
absence of a magnetic field. As the magnetic field increases,
this degeneracy is lifted, the energy gap is reduced, and AB
oscillations are observed in two different branches of energies,
one that increases and the other that decreases with magnetic
field. Surprisingly, the TBM results for both circular cases are
very different from those obtained by the simplified continuum
model for a circular ring, which, in turn, was demonstrated to
perfectly describe hexagonal and rhombuslike armchair rings.
On the other hand, our results demonstrate that the spectrum of
the staggered potential case can be obtained by the continuum
model for a finite width circular ring defined by mass barriers,
where one identifies the different energy branches observed
in the TBM results as coming from different Dirac cones,
demonstrating a magnetic field induced lifting of the valley
degeneracy in these systems. However, the mass boundary
conditions used here and in Refs. [11,14,16] are shown to
describe only the case of a ring defined by a ringlike staggered
potential, so that the complicated energy spectrum of the more
realistic circular ring cut out of a graphene sheet cannot be
described by any of the simplistic boundary conditions or
simplified models analyzed here.

We thus summarize our findings with the following gen-
eral conclusions: (1) rings with a given n-fold symmetry
exhibit n-fold energy subbands; (2) edge alignment in zigzag
hexagonal rings lead to differences in the sixfold subbands
distribution around the Fermi level, whereas for armchair
rhombus-shaped rings, drastic modifications to the energy
spectrum are observed, specially regarding the separation
between the twofold bands; (3) an infinitely thin Dirac ring
describes quite well armchair hexagonal and rhombus-shaped
(with anti-aligned edges) structures, specially for thin ring
widths; and (4) the Dirac model for a ring defined by infinite
mass boundaries does not describe rings cut out of a graphene
flake, but rather those defined by a ring-shaped staggered
potential.
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