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LINEAR RECURSIVE SEQUENCES AND Spec(Z) OVER F1

LIEVEN LE BRUYN

Abstract. We propose to define F1-algebras as integral bi-rings with the co-

ring structure being the descent data from Z to F1. The coordinate bi-ring of

Spec(Z)/F1 is then the co-ring of integral linear recursive sequences equipped
with the Hadamard product.

We associate a noncommutative moduli space to this setting, show that it

is defined over F1, and has motive
∏
n≥0

s−n
2π

.

Analogous to Borger’s approach via λ-rings [1], we propose in this note F1-
algebras to be integral bi-rings and view the co-ring structure as the descent data
from Z to F1. This is motivated by the fact that the forgetful functor from inte-
gral bi-rings to rings has a right adjoint and hence defines an essential geometric
morphism between the corresponding toposes.

Accepting this proposal, we will prove in section 2 that the coordinate bi-ring of
Spec(Z)/F1 is the co-ring of integral linear recursive sequences, equipped with the
Hadamard product, as studied by Larson and Taft in [13].

Over the complex numbers, linear recursive sequences correspond to equivalence
classes of canonical linear control systems. Hence one might view them as a non-
commutative moduli space, as in [15]

(M/F1)(C) = tnsyscn.
This suggests to look at the larger moduli space of completely controllable and/or
completely observable control systems as

(M/F1)(C) = tn(sysccn ∪ sys
co
n ).

We will show in section 3 that this moduli space can be embedded in Grass2(∞)
and has exactly one complex cell in every possible dimension. Moreover, there is
an intriguing involution on this space.

In section 4 we will show that each of the component moduli spaces sysccn ∪syscon
is defined over F1 in the sense of N. Kurokawa [12]. That is, we have to show that
the formula for their number of points over finite fields Fq is independent of q. In
[22] M. Reineke used the Harder-Narasinham filtration to compute the number of
points over finite fields of moduli spaces of quiver-representations. We therefore
give a quiver-theoretic description of the moduli spaces sysccn and syscon and apply
Reineke’s results to obtain that

(sysccn ∪ sys
co
n )(Fq) = q2n + q2n−1

As a result, the full noncommutative moduli space tn(sysccn ∪ syscon ) will have as
its motive, in the sense of [17] ∏

n≥0

s− n
2π

.
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2 LIEVEN LE BRUYN

This observation might be related to Yuri I. Manin’s interpretation of Deninger’s
Γ-factor at complex arithmetic infinity as the zeta function of (the dual of) infinite
dimensional projective space P∞F1

, see [17] and the recent papers [19, 4.3] and [20,
Intro].

1. Topos theory and F1-geometry

Ever since the seminal paper by Toën and Vaquié [26], topos theoretic ideas have
been used to develop F1-geometry, the most recent addition being the ’arithmetic
site’ discovered by Alain Connes and Katia Consani [3], [4].

Perhaps the most influential of these ideas is due to James Borger [1] who pro-
posed to define the category of commutative F1-algebras to be the category of com-
mutative λ-rings (without additive torsion). The rationale behind this approach
is that Wilkerson [27] proved that such rings have a collection of commuting en-
domorphisms ψp which are lifts of the Frobenius-maps. A surprising fact about
λ-rings, see for example [10], is that the forgetful functor F

commrings

W

��

U

��
λ− commrings

F

OO

not only has a left adjoint (the free λ-ring construction U), but also a right adjoint,
namely the Witt-functor W (see [8] for more details).

Accepting Borger’s proposal one then has an essential geometric morphism (see
for example [16, p. 360]) between the toposes

SpacesZ

v∗

��

v!

��
SpacesF1

v∗

OO

That is, the base-change functor v∗ strips off the λ-ring structure (which hence can
be seen as descent data), the base-forgetting functor v! sends a space to its Witt-
space with natural λ-structure and the Weil-descent functor v∗ sends a space to
its arithmetic jet space with natural λ-structure, see [1, p.7]. In particular, in this
proposal Spec(Z)/F1 is the F1-space corresponding to the λ-ring of Witt vectors
W (Z).

Clearly, one can extend this idea to other categories of (not necessarily commu-
tative) rings for which the forgetful functor has a right adjoint. In this note we
consider the case of bi-rings, resp. commutative and cocommutative bi-rings.

With rings we denote the category of not necessarily commutative rings having
no additive torsion and ring-morphisms. That is, a ring A has structural multipli-
cation and unit maps

A⊗Z A
m- A Z u- A
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satisfying the usual commuting diagrams. Dually a co-ring is a Z-module without
additive torsion C equipped with co-multiplication and co-unit maps

C
∆- C ⊗Z C C

ε- Z

satisfying the dual commuting diagrams. Between algebras and coalgebras over a
field there is the usual Kostant duality, see [24, Chp. VI]. We can extend it to the
present setting provided we are careful in defining the dual co-ring.

Definition 1. The dual co-ring Ao of A ∈ rings is the submodule of all f ∈
A∗ = HomZ(A,Z) such that Ker(f) contains a twosided ideal I /A with A/I a free
Z-module of finite rank.

As Ao is the direct limit of all appropriate (A/I)∗, co-multiplication and co-unit
on Ao are induced by dualizing the ring structure on A/I. With this definition
we can copy the proof of [24, Thm. 6.0.5], see [14] for details. That is, for every
A ∈ rings and C ∈ co-rings we have a natural one-to-one correspondence

rings(A,C∗)↔ co-rings(C,Ao)

Hence, for any torsion free Z-module V , the dual of the tensor-algebra on the
dual module TZ(V ∗)o is the cofree co-ring on V ∗∗. That is, for every co-ring C
and additive morphism f : C - V ∗∗ there is a unique co-ring morphism
g : C - T (V ∗)o making the diagram commute

C
g //

f
''

TZ(V ∗)o

π

��
V ∗∗

with π dual to the natural inclusion V ∗ ⊂ - TZ(V ∗). Indeed, the dual map
V ∗ ⊂ - V ∗∗∗ - C∗ gives rise to a ring-morphism TZ(V ∗) - C∗ and hence
by the above duality to a co-ring map C - TZ(V ∗)o.

Define H(V ) to be the union of all sub co-rings E ⊂ - TZ(V ∗)o such that
π(E) ⊂ V , then H(V ) is the free co-ring on V . In case V = A ∈ rings, H(A)
becomes a bi-ring with multiplication and unit determined by the maps (induced
from the universal property)

H(A)⊗Z H(A) //

π⊗π
��

H(A)

π

��
A⊗A

m
// A

H(A)

π

""
Z

==

i
// A

Similarly, defining C(V ) to be the union of all cocommutative co-rings
E ⊂ - TZ(V ∗)o such that π(E) ⊂ V we have that for V = A ∈ commrings

that C(A) is a commutative and cocommutative bi-ring. If U(−) and V (−) are the
corresponding free co-ring constructions we have two triples of adjoint functors.
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Theorem 1. The forgetful functors F below have both a left- and a right-adjoint
as indicated

rings

H

��

U

��
bi-rings

F

OO commrings

C

��

V

��
comm.cocomm.bi-rings

F

OO

giving rise to essential geometric morphisms

NC-SpacesZ

v∗

��

v!

��
NC-SpacesF1

v∗

OO
SpacesZ

v∗

��

v!

��
SpacesF1

v∗

OO

2. The coordinate bi-ring of Spec(Z)/F1

The only commutative ring for which H(A) = C(A) is A = Z. That is,
Spec(Z)/F1 will look the same in the commutative and non-commutative world
of spaces over F1. We will now describe its corresponding coordinate bi-ring.

Clearly, TZ(Z) ' Z[t] with the natural embedding Z ⊂ - TZ(Z) given by the
map a 7→ at. We can identify the full linear dual Z[t]∗ with the module of all infinite
sequences f = (fn)∞n=0 where f(tn) = fn.

An ideal I / Z[t] such that the quotient Z[t]/I is without additive torsion is
generated by a monic polynomial, I = (m(t)) where

m(t) = tr − a1t
r−1 − . . .− ar

A sequence f = (fn)n ∈ Z[t]∗ such that I ⊂ Ker(f) has the property that
f(xkm(t)) = 0 for all k ≥ 0, that is,

fn = a1fn−1 + a2fn−2 + . . .+ arfn−r for all n ≥ r

Sequences f satisfying such a relation for some r > 0 and some ai ∈ Z are called
integral linear recursive sequences.

Conversely, if f is linear recursive and satisfies the above recursion relation,
then f(Z[t]m(t)) = 0, that is, f ∈ Z[t]o. That is, as a module we can identify
H(Z) = C(Z) = Z[t]o with the module of all integral linear recursive sequences.
Observe that the dual map to the inclusion Z ⊂ - Z[t] given by 1 7→ t gives the
projection

π : Z[t]o -- Z f = (fn)∞n=0 7→ f1

The co-ring structure on Z[t]o is determined by the (usual) multiplication on Z[t].
The coalgebra structure of k[t]o was described in [21] and [13] in case k is an
(algebraically closed) field. We will recall the result for Q[t]o.
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Start with a rational linear recursive sequence (fn)n and let t be the largest
integer such that the rows of the symmetric t× t matrix

H(f) =


f0 f1 f2 . . . ft−1

f1 f2 f3 . . . ft
f2 f3 f4 . . . fy+1

...
...

... · · ·
...

ft−1 ft ft+1 . . . f2t−2


are linearly independent. The matrix H(f) is called the Hankel matrix of f and
is by definition invertible with inverse H−1 = (sij)0≤i,j≤t−1. If we define Dif to
be the rational recursive sequence (Dif)n = fn+i, then the coproduct on Q[t]o is
given by

∆(f) =

t−1∑
i,j=0

sij(D
if)⊗ (Djf)

Clearly, if for f ∈ Z[t]o the determinant of the Hankel matrix H(f) is ±1, the same
formula applies to ∆(f). But, in general ∆(f) cannot be diagonalized in terms
of f,Df, . . . with integer coefficients and we have no other option but to describe
the comultiplication on Z[t]o as the inductive limit of the coproducts determined
by taking the full linear duals of the form (Z[t]/(m(t)))∗ where m(t) runs over the
monic integral polynomials and the limit is taken with respect to divisibility of
monic polynomials.

As a consequence we also have to describe the dual ring (Z[t]o)∗ as the inverse
limit

(Z[t]o)∗ = lim
←

Z[t]

(m(t))

with respect to the divisibility relation on monic polynomials. This completion at
all monic polynomials has been studied by Habiro, [7]. The subring which is the
completion at all cyclic polynomials has appeared before in F1-geometry, see for
example [18].

Theorem 2. The coordinate bi-ring of Spec(Z)/F1 is the co-ring of all integral
linear recursive sequences, equipped with the Hadamard product.

Proof. As multiplication and unit on Z[t]o are uniquely determined by the com-
muting diagrams

Z[t]o ⊗Z Z[t]o //

π⊗π
��

Z[t]o

π

��
Z⊗ Z

m
// Z

Z[t]o

π

!!
Z

==

i
// Z

and as π(f) = f1 we deduce that the product on Z[t]o is the Hadamard product,
see [13], given by f.g = (fi.gi)i and that the unit is the sequence (1, 1, 1, . . .). �

The bi-ring Z[t]o has a lot of additional structure. For example, the family of
commuting ring-morphisms {ψn : n ∈ N+} determining the λ-structure on Z[t]
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(that is, ψn(t) = tn) induce via the natural inclusion

Z[t]
ψn

//

ψ̃n
''

Z[t]

��
Z[t]o∗

a commuting family of ring maps ψ̃n. By Kostant duality

rings(Z[t],Z[t]o∗) ' co-rings(Z[t]o,Z[t]o)

this gives a commuting family of co-ring maps on Z[t]o, that is, an action of N×+ on
the co-ring Z[t]o. Further, by the adjointness

bi-rings(Z[t]o,Z[t]o) ' rings(Z[t]o,Z)

the family of projection ring-maps πn : Z[t]o -- Z sending πn((fm)m) 7→ fn,
gives a family of bi-ring endomorphisms on Z[t]o.

3. A noncommutative moduli space

In several proposals to F1-geometry, noncommutative geometric objects seem
to appear quite naturally. In Borger’s proposal [1], one quickly encounters the
Bost-Connes system [2].

In the present proposal, the geometric object associated to Z[t]o will be a non-
commutative moduli space, in the sense of Maxim Kontsevich [11], which consists of
gluing together ordinary moduli spaces into an infinite dimensional variety, which
is then controlled by a noncommutative formally smooth algebra, see [15] for more
details.

Recall from [25, Part VI-VII] that a linear recursive sequence with Hankel matrix
of size n can be realized as the input-output behavior of a canonical (that is,
completely controllable and completely observable) linear dynamical system with
one input, one output and an n dimensional state space. In [15] the corresponding
moduli spaces (with varying n) were shown to form a noncommutative moduli
space in the above sense, even if we allow arbitrary but fixed input- and output-
dimensions.

We will quickly run through the definitions and the proof of [15] in the special
case of interest here, identifying this noncommutative manifold with a specific cell-
subcomplex of Grass2(∞).

A linear control system Σ with one input and one output and n-dimensional
state space is determined by the system of linear differential equations{

dx
dt = Ax+Bu

y = Cx

where u(t) ∈ C is the input (or control) at time t, x(t) ∈ Cn is the state of the
system and y(t) ∈ C is its output.

That is, Σ is determined by a triple (A,B,C) where A ∈ Mn(C), B ∈ Cn and
C ∈ Cn∗. Another system Σ′ = (A′, B′, C ′) is said to be equivalent to Σ if there is
a base-change matrix g ∈ GLn(C) such that

A′ = gAg−1 B′ = gB and C ′ = Cg−1
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Σ is said to be completely controllable (resp. completely observable) if and only if
the n× n matrix

c(Σ) =
[
B AB A2B . . . An−1B

]
(resp. o(Σ) =


C
CA
CA2

...
CAn−1

 )

is invertible. These conditions define GLn-open subsets V ccn (resp. V con ) of Vn =
Mn(C)⊕ Cn ⊕ Cn∗ and the corresponding orbit spaces

sysccn = V ccn /GLn and syscon = V con /GLn

are known to be smooth quasi-projective varieties of dimension 2n, see for example
[25, Part IV], and isomorphic to each other sending a system Σ = (A,B,C) to the
transposed system Σt = (At, Ct, Bt).

Σ is said to be canonical if it is both completely controllable and completely
observable, and the corresponding moduli space

syscn = (V ccn ∩ V con )/GLn

classifies canonical systems such that the linear recursive sequences (fi = CAiB)i∈N
are equal, see [25, Part VI-VII]. Conversely, a linear recursive sequence (fi)i∈N with
Hankel matrix of size n is realizable, that is fi = CAiB for all i ∈ N, by a canonical
system Σ in syscn.

In the next section we will show that these moduli spaces can be defined over F1.
For this reason we define a noncommutative moduli space M/F1 and its ’closure’
M/F1 having as its C-points

(M/F1)(C) =
⊔
n

syscn and (M/F1)(C) =
⊔
n

(sysccn ∪ sys
co
n ).

As Z/F1 = Z[t]o, it only takes a leap of faith to envision that (M/F1)(C) might be

related to Spec(Z)/F1 at complex arithmetic infinity.
We will now embed both of these noncommutative moduli spaces into

Grass2(∞). A completely controllable system Σ = (A,B,C) is equivalent to one in
canonical form, and if we assign to a system the n×n+2 matrix MΣ = (B,Cτ , A),
then the matrix corresponding to a system in canonical form is

MΣ =


1 c1 0 . . . 0 a1

0 c2 1 0 a2

...
...

. . .
...

0 cn 0 1 an


which determines a point in Grassn(n+ 2). Under the duality with Grass2(n+ 2)
this matrix corresponds to the 2× (n+ 2) matrix

KΣ =

[
−c1 1 −c2 . . . −cn 0
−a1 0 −a2 . . . −an 1

]
which is a point in the standard open cell of dimension 2n with multi-index {2, n+
2}. Similarly, any equivalence class of completely observable system corresponds
to a point in the standard cell of dimension 2n in Grass2(n + 2) with multi-index
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{1, n+ 2}. The complement of the intersection of these two cells in either of them
is a 2n− 1-dimensional cell.

Theorem 3. For every n we have a cell decomposition of the moduli space sysccn ∪
syscon as C2n t C2n−1 in the Grassmannian Grass2(n+ 2) as[

∗ 1 ∗ . . . ∗ 0
∗ 0 ∗ . . . ∗ 1

]
t
[
1 0 ∗ . . . ∗ 0
0 ∗ ∗ . . . ∗ 1

]
As a consequence, we have a cell decomposition of (M/F1)(C) = tn(sysccn ∪ syscon )
in Grass2(∞) as[

∗ 1 ∗ . . . ∗ 0 0 0 . . .
∗ 0 ∗ . . . ∗ 1 0 0 . . .

]
t
[
1 0 ∗ . . . ∗ 0 0 0 . . .
0 ∗ ∗ . . . ∗ 1 0 0 . . .

]
that is, all matrices of this form, with a tail of zero columns, the last non-zero
column x determining the dimension n = x−2 of the state space of the corresponding
system.

Observe that sending a system Σ = (A,B,C) to its transposed system Σt =
(At, Ct, Bt) induces an involution on this space.

4. Manin’s motivic mystery

In [17], Yuri I. Manin suggested the existence of a category of F1-motives visible
through the q = 1 point count of F1-schemes, and, this prediction was later justified
by Chr. Soulé’s version of F1-geometry, [23].

In his lecture notes on zeta functions and motives [17], Yuri I. Manin defined the
zeta function of PkF1

, the k-dimensional projective space over the hypothetical field
with one element F1, to be

k∏
n=0

s− n
2π

.

In [6], Christopher Deninger represented the basic Γ-factor at complex arithmetic
infinity as the infinite determinant of the Frobenius map and a regularized product

ΓC(s)−1 =
(2π)s

Γ(s)
=
∏
n≥0

s+ n

2π
.

Comparing both formulas led Manin to suggest that this Γ-factor might be viewed as
the zeta-function (or motive) of the (dual of) infinite dimensional projective space
over F1, see also his recent papers [19, 4.3] and [20, Intro]. As such, one might

expect this local factor to appear naturally in the zeta-function of Spec(Z)/F1.
There is a close analogy between Manin’s F1-motives and Kurokawa’s zeta func-

tions of schemes over F1, [12]. N. Kurokawa defined an algebraic set X defined over
Z to be of F1-type if there exists a polynomial with integer coefficients

NX(t) =

n∑
k=0

akt
k such that #X(Fq) = NX(q)

for all finite fields Fq. In this case, Kurokawa defines the zeta-function of X over
F1 to be the expression

ζ(s,X/F1) =

n∏
k=0

1

(s− k)ak



LINEAR RECURSIVE SEQUENCES AND Spec(Z) OVER F1 9

see also Soulé [23] and Deitmar [5] for closely related definitions. For example,
for An/F1 (resp. the n-th power of the Tate motive T) and Pn/F1 we have the
following expressions of Kurokawa’s zeta function versus Manin’s F1-motive

ζ(s,An/F1) = 1
s−n Z(T×n, s) = s−n

2π

ζ(s,Pn/F1) =
∏n
k=0

1
s−k Z(PnF1

, s) =
∏n
k=0

s−k
2π

We will now show that each of the components sysccn ∪ sysccn is of F1-type and
compute its zeta-function and F1-motive. As mentioned in the introduction we
will do this by applying M. Reineke’s results [22] on moduli spaces of quiver-
representations. For this reason we will give a quiver-theoretic interpretation of
completely controllable and observable systems.

To a linear control system Σ = (A,B,C) with n-dimensional state space (and
one-dimensional input and output) we associate the representation of the quiver Q

1

B

((
n

C

hh Acc

of dimension vector αn = (1, n). If we take the stability structures θ+ = (−n, 1)
and θ− = (n,−1), then it follows from [15, Lemma 1 & 2] that

• Equivalence classes of canonical systems correspond to isomorphism classes
of simple quiver-representations.
• Equivalence classes of completely controllable systems correspond to iso-

morphism classes of θ+-stable quiver-representations.
• Equivalence classes of completely observable systems correspond to isomor-

phism classes of θ−-stable quiver-representations.

That is, if simpleαn
(Q) denotes the quasi-affine quotient variety of isomorphism

classes of simple αn-dimensional Q-representations, and if moduli
θ±
αn(Q) denote the

quiver moduli spaces of θ±-semistable representations, as introduced and studied
by A. King [9], then we have isomorphisms of varieties

syscn ' simpleαn
(Q), sysccn ' moduliθ+αn

(Q), syscon ' moduliθ−αn
(Q).

In [22] the Harder-Narasinham filtration was used to compute the cohomology of
such quiver moduli spaces (at least when the quiver has no oriented cycles) and the
same methods apply to compute the number of Fq-points of quiver moduli spaces
in general. From [15] we obtain

# syscon (Fq) = # moduli
θ+
αn(Q)(Fq) = q2n

# sysccn (Fq) = # moduli
θ−
αn(Q)(Fq) = q2n

# syscn(Fq) = # simpleαn
(Q)(Fq) = q2n − q2n−1

and therefore syscon ∪ sysccn is of F1-type and we have

# (syscon ∪ sys
cc
n )(Fq) = q2n + q2n−1

giving us their Kurokawa zeta-function and Manin motive over F1.
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Theorem 4. (M/F1)(C) is of F1-type with corresponding F1-motive
∞∏
k=0

s− k
2π
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121-164

[18] Yuri I. Manin, Cyclotomy and analytic geometry over F1. In: Quanta of Maths. Con-

ference in honour of Alain Connes. Clay Math. Proceedings, vol 11 (2010), 385-408,
arXiv:math.AG/0809.2716

[19] Yuri I. Manin, Numbers as functions, arXiv:1312.5160 (2013)

[20] Yuri I. Manin, Local zeta functions and geometries under Spec(Z), arXiv:1407.4969 (2014)
[21] Brian Peterson and Earl J. Taft, The Hopf algebra of recursive sequences, Aequationes Math-

ematicae 20 (1980) 1-17
[22] Markus Reineke, The Harder-Narasinham system in quantum groups and cohomology of

quiver moduli, Invent. Math. 152 (2003) 349-368
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