
University of Antwerp
Faculty of Sciences

Department of Computer Science

Towards an Energy-efficient, Responsive and
Reliable Industrial Internet of Things

Glenn Daneels

Submitted in fulfillment of the
requirements for the degree of

Doctor in Science: Computer Science
Academic year 2020-2021

University of Antwerp
Faculty of Sciences

Department of Computer Science

Doctoral committee

Chairman
Prof. Dr. Chris Blondia (UAntwerpen, Belgium)
Supervisors
Prof. Dr. Jeroen Famaey (UAntwerpen, Belgium)
Prof. Dr. Steven Latré (UAntwerpen, Belgium)
Other members
Dr. Carmen Delgado (i2CAT Foundation, Spain)
Prof. Dr. Herbert Peremans (UAntwerpen, Belgium)
Prof. Dr. Sofie Pollin (KULeuven, Belgium)
Prof. Dr. Xavier Vilajosana (Universitat Oberta de Catalunya, Spain)

University of Antwerp
Faculty of Sciences

Department of Computer Science
Sint-Pietersvliet 7, B-2000 Antwerp, Belgium

Submitted in fulfillment of the
requirements for the degree of

Doctor in Science: Computer Science
Academic year 2020-2021

Samenvatting

Het internet der dingen (IoT) paradigma is een verschuiving naar een wereld
waarin alle dingen geconnecteerd zijn met het Internet. Terwijl het IoT een
impact heeft op elk aspect van onze samenleving, wordt het specifiek heel
efficiënt toegepast bij de verdere revolutie van de automatisatie en controle van
traditionele fabricage en industriële processen in de huidige vierde industriële
revolutie. De introductie van het IoT in de industrie leidt dikwijls tot de term het
industriële internet der dingen (IIoT). Om te voldoen aan de hoge eisen van IIoT
applicaties, werden industriële sensoren en actuatoren initieel allemaal bedraad
verbonden met elkaar. Terwijl het duidelijk is dat bedrade communicatie heel
betrouwbaar is, is het ook eerder duur en kan het onpraktisch zijn voor moeilijk
te bereiken plaatsen en mobiele machines. Daardoor werd de transitie naar
draadloze communicatie onvermijdbaar. Opdat deze transitie echter succesvol
zou zijn, moest draadloze communicatie quasi dezelfde betrouwbaarheid als
bedrade communicatie kunnen aantonen.

Dus om machines en industriële processen te automatiseren, is uiterst be-
trouwbare draadloze communicatie nodig in uitdagende omgevingen waar het
signaal ernstig kan verstoord worden door de externe storingen (van verschil-
lende aanwezige draadloze technologieën) en vernietigende multipad effecten
(door de vele metalen objecten). Daarbovenop is het belangrijk dat zo een draad-
loos toestel lange tijd operatief kan blijven zonder dat de batterij vervangen moet
worden omdat deze toestellen zich dikwijls op een moeilijk te bereiken plaats
bevinden. Dat betekent dat tegelijkertijd de communicatie heel betrouwbaar
moet zijn en er heel weinig energie mag verbruikt worden. Een relatief recente
technologie, genaamd IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH),
heeft bewezen aan deze eisen te kunnen voldoen. Het combineert frequentie
diversiteit met strikte tijdssynchronisatie en slaagt erin om een betrouwbaarheid
van meer dan 99.999% te behalen, terwijl het weinig energie verbruikt. Daarom
wordt TSCH tegenwoordig gebruikt als de Medium Access Control (MAC) laag
van de meer en meer populair wordende 6TiSCH netwerk architectuur, die
industriële netwerken integreert in de traditionele IPv6 internetarchitectuur.

In dit doctoraatsboek bestudeer ik deze TSCH MAC laag en hoe deze verder

ii

kan verbeterd worden zodat deze nog meer succesvol kan gebruikt worden
in industriële netwerken. Meer specifiek focus ik op 3 onderzoeksvragen met
betrekking tot het energieverbruik, de wachttijd en de betrouwbaardheid van
TSCH netwerken. Eerst onderzoek ik hoe het energieverbruik van TSCH kan
gekarakteriseerd worden. Daarvoor stel ik een accuraat energiemodel op, zowel
van toepassing in de sub-GHz en 2.4 GHz frequentie band, gebruikmakend van
hedendaagse IIoT hardwaretoestellen. Dit model laat toe toekomstig TSCH on-
derzoek te toetsen aan de IIoT eisen in termen van laag energievebruik. Hierna
verlegt deze thesis de focus naar het minimaliseren van de wachttijd voor het
afleveren van periodieke observatiedata, typisch voor IIoT netwerken. Ik stel een
nieuwe gedistribueerde TSCH slot allocatiestrategie voor, genaamd Recurrent
Low-Latency Scheduling Function (ReSF). Deze strategie alloceert de draadloze
middelen op een intelligente wijze zodat de wachttijd geminimaliseerd wordt en
tegelijkertijd wordt het periodieke karakter van de data in acht genomen zodat
het energieverbruik zo laag mogelijk kan worden gehouden. Ten slotte mik ik in
dit boek op het nog verder verbeteren van de betrouwbaarheid van de draadloze
communicatie in een industrieel TSCH netwerk, door het simultaan toelaten
van verschillende fysieke lagen in éénzelfde netwerk. Terwijl TSCH inherent
een hoge betrouwbaarheid biedt door het toepassen van frequentie diversiteit,
wordt het momenteel altijd gelimiteerd door de gekozen onderliggende fysieke
laag. Om zo’n meerdere fysieke lagen in hetzelfde netwerk te combineren en
een toestel toe te laten om de fysieke laag aan te passen aan de propagatiekarak-
teristieken van zijn draadloze link, stel ik de slot bonding techniek voor. De slot
bonding aanpak verbetert het aantal datapakketten dat alle toestellen in het
netwerk kunnen afleveren doordat het de gealloceerde draadloze middelen op
een efficiënte wijze aanpast aan de karakteristieken van de gekozen fysieke laag.
Daarbij wordt er ook een heuristiek voorgesteld die TSCH toestellen toelaat
om een goede datalink te selecteren in een netwerk dat meerdere fysieke lagen
tegelijkertijd ondersteunt.

Samengevat is het doel van deze doctoraatsthesis het opzetten van een
energie-efficiënt, responsief en betrouwbaar TSCH netwerk dat geschikt is voor
het gebruik in een IIoT omgeving.

Abstract

The Internet of Things (IoT) paradigm is the shift towards a world where all
things are connected to the Internet. While nowadays IoT has an impact on every
aspect of society, it is being applied particularly efficiently to further revolutionize
the automation and control of traditional manufacturing and industrial processes
in the current ongoing fourth industrial revolution. This introduction of IoT in
industry often leads to the term Industrial Internet of Things (IIoT). To fulfill
the high-end requirements of IIoT applications, interconnecting all sensing
and actuating devices was initially typically done through wiring. While the
reliability advantage of wiring is obvious, it is costly and can be impractical
in hard to reach locations or mobile machinery. Therefore, the transition to
wireless communication seemed unavoidable and is becoming more and more
ubiquitous. However, for this transition to be successful, wireless communication
should show wire-like reliability.

Thus to automate machinery and industrial processes, highly reliable wire-
less communication is required in harsh environments that suffer from external
interference (from different wireless technologies) and multi-path fading effects
(due to metal infrastructure) that may easily disrupt the wireless signal. Addi-
tionally, to avoid having to frequently replace batteries in inconvenient places,
the wireless devices should be able to run on limited battery capacity for years.
Therefore, while required to be highly reliable, they should also exhibit (ultra)
low-power operations. A relatively recent wireless technique that has proven
to be successful in fulfilling these requirement, is IEEE 802.15.4e Time-Slotted
Channel Hopping (TSCH), that combines frequency diversity with strict time-
synchronization, achieving wired-like reliability of more than 99.999% while
having ultra-low power consumption. As such, TSCH is used as the Medium Ac-
cess Control (MAC) layer for the increasingly popular 6TiSCH network stack that
enables the integration of industrial networks in the traditional IPv6 Internet
architecture.

In this PhD thesis, I study the TSCH MAC layer and how it can be further im-
proved to deploy it successfully in industrial networks. More specifically, I focus
on 3 research questions related to the energy consumption, latency and reliabil-

ii

ity of TSCH networks. First, I investigate how the TSCH power consumption can
be precisely characterized. Therefore, an accurate TSCH energy consumption
model has been defined, for both the sub-GHz and 2.4 GHz frequency bands,
using state-of-the-art IIoT hardware. This allows future research efforts to think
about new TSCH solutions that satisfy the low-power operation requirement of
IIoT. Second, I aim at minimizing the communication delay of recurrent monitor-
ing data that is typical for IIoT applications. I propose a new distributed TSCH
scheduling approach, called the Recurrent Low-Latency Scheduling Function, that
intelligently allocates schedule resources to minimize the latency and takes into
account the recurrent pattern of the traffic to maintain the low-power operation.
Finally, I aim at further improving the industrial network’s overall reliability
by introducing multiple physical (PHY) layers simultaneously in a single TSCH
network. While TSCH inherently introduces frequency diversity to enhance its
reliability, currently it is limited by the characteristics of the chosen PHY layer.
To facilitate the use of multiple PHYs within a single TSCH network and allow
each device to adapt its PHY layer to the link’s propagation characteristics, I
present a method called slot bonding. The slot bonding approach improves the
network’s number of delivered packets by adapting the allocated resources to
each PHY’s requirements in an efficient manner. Additionally, a heuristic is also
proposed that helps a device in making an appropriate parent and PHY selection
in multi-PHY TSCH networks.

In summary, this PhD thesis targets an energy-efficient, responsive and
reliable TSCH network, thereby contributing to a wireless network deployment
that is ready for the IIoT.

Acknowledgements

A PhD is not completed individually, it is definitely a team effort.
My special thanks goes out to Jeroen Famaey. I could not have conduct the

research and written this thesis without his mentorship. His continuous support,
helpful advice and intelligent feedback shaped me as a researcher. It is quite
remarkable how Jeroen, as a supervisor, always sees the bigger picture, while
at the same time he is always available to help you out, even with the smallest
detail. Throughout the years I saw not only myself evolve (under the guidance
of Jeroen), but also Jeroen himself (and his haircut): he deserves absolute credit
for being a boss without being a boss and building a solid, research-oriented
team of excellent researchers and friends. Thank you, Jeroen.

I would also like to express my gratitude to Steven Latré. I vividly remember
how excited I was when Steven hired me to become his first PhD student in
Antwerp, more than six years ago. In that first period of my PhD, Steven
introduced me to the world of research and proofed to be a kind, intelligent
and motivated supervisor. It is quite incredible what Steven has achieved with
this group, and I have always been proud to be a part of that from the start.
For those of you who were not there in the beginning, a fitting example of this
metamorphosis: while now you are enjoying your delicious free fruit at your
own coffee bar Café René while playing some Ms. Pac-man, back then we were
sipping coffee in a dark, chilly server room (that fitted max. 6 people) above
the library at Middelheim.

I also have to thank Carmen Delgado. Carmen joined our team at a later
stage in my PhD, but her continuous help, intelligence, kindness and answers to
my many questions, lifted this PhD definitely to a higher level. I am also grateful
to Chris Blondia, one of the founding fathers of our group, who introduced me
to the wonderful world of telecommunications when I was still a student at the
university. Later during my PhD, he was also of invaluable help cracking the
more theoretical puzzles that had to be solved.

In addition to Jeroen, Steven, Carmen and Chris, my sincere thanks also

iv

goes to the people that complete my doctoral committee: Herbert Peremans,
Sofie Pollin and Xavier Vilajosana. Thank you for willing to read this thesis book
thoroughly and providing me with insightful comments that have made it more
rigorous and complete.

I also have to especially thank Esteban Municio: we spent many years in the
same office, while enjoying the only air conditioner available, contributing to
each other’s research and working closely together on the same topic and projects.
Not only Esteban’s Spanish accent (that always reminded me of holidays), but
also his intelligence, hard labor, friendliness and relaxed state of being, made
this PhD so much easier, more fun and interesting. I am also grateful to Bart
Spinnewyn, who contributed to the research in this PhD, and also offered me
lots of interesting and entertaining discussions during a lot of coffee breaks.
Additionally, I would also like to thank Bruno Van de Velde who - as a student -
made a very valuable contribution to this thesis.

I made unforgettable memories while working with an incredible team of
talented, friendly and generous colleagues. I enjoyed every moment of taking
too many breaks, having endless discussions, drinking too much coffee, cleaning
out Middelheim’s coffee machine, playing ping pong, learning about other
cultures, drinking beer and eating MEGA mix-max plates at BierCentral, etc.
I am proud that I can call many of you my friends now. Listing everyone is
probably as though as completing this PhD, but I will try, thanks: Le, Miguel,
Serena, Pedro, Niels, Ensar, Sean, Filip, Patrick, Jakob, Tom, Ruben, Jeremy,
Carlos, Ashish, Adnan, Raja, Nelson, Paola, Johan, Daniel, Kathleen, Bart B.,
Bart L., Bart S., Farouk, Pierre, Henrique, Yorick, Daniel, Jan, Sean, Przemyslaw,
Maarten, Dragan, Glenn, Christophe, Lynn, Hanne, Anne and Céline. I also have
to thank many IDLab people of Ghent University with who I had many fruitful
collaborations, thanks Steven, Mathias, Pieter, Gilles, Robbe, Dries, Jan, Jeroen
and Eli.

Of course, I also have to thank my friends and family. Indirectly, they con-
tributed a huge part (that can not be underestimated) to this thesis. Thank you
for your love, patience, encouragement and the absolutely necessary distraction.

Hanne, als één persoon mede-auteur moet zijn van dit boek, dan ben jij
dat. Bedankt voor jouw onvoorwaardelijke liefde en opofferingen (ik besef, het
waren er veel), die mij toegelaten hebben dit boek te vormen tot wat het is.
Daarnaast tonen jij en Renée mij dagelijks wat écht belangrijk is in het leven, ik
hou van jullie.

Aan mijn lieve ouders, Bea en Raoul. Zonder jullie liefde, motivatie, geduld
en alle mogelijke kansen die jullie mij altijd gaven, had dit boek nooit tot stand
gekomen. Daarom, dit boek behoort jullie toe. Ik hou van jullie, bedankt voor
alles.

April 2021, Antwerp
Glenn Daneels

"... ba babaa bababaaa ..."

My 1.5-year-old daughter Renée, not caring at all about this PhD.

And rightfully so.

Table of Contents

Samenvatting i

Abstract i

Acknowledgements iii

List of Acronyms xvii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 3
1.3 Research Contributions . 4
1.4 Outline . 5
1.5 Publications . 6

1.5.1 A1: Publications in international indexed journals 6
1.5.2 Publications (to be) submitted in international journals

indexed by the Web of Science 7
1.5.3 Conference proceedings indexed by the Web of Science . 8
1.5.4 Other international conference proceedings 8

2 6TiSCH: Wireless Industrial Networks 9
2.1 Context . 9
2.2 TSCH . 10

2.2.1 PHY Layers . 13
2.3 6TiSCH . 13

2.3.1 Overview . 13
2.3.2 6top Protocol . 16
2.3.3 Scheduling Functions . 16
2.3.4 RPL . 20
2.3.5 6TiSCH Implementations & Hardware 21
2.3.6 6TiSCH Simulation . 22

viii

3 TSCH Energy Modeling 25
3.1 Introduction . 25
3.2 Background and Related Work . 26

3.2.1 OpenMote Hardware . 26
3.2.2 OpenWSN . 27
3.2.3 TSCH Energy Modeling . 27

3.3 TSCH Energy Model . 28
3.3.1 TSCH Time Slots . 28
3.3.2 TSCH Energy Consumption Model 32
3.3.3 Different Hardware Support 33

3.4 Measurements . 33
3.4.1 Methodology . 33
3.4.2 Time Slot State Durations 35
3.4.3 Device State Current Consumption 37

3.5 Evaluation . 39
3.5.1 Slot Charge Consumption 39
3.5.2 Slotframe Charge Consumption 40
3.5.3 Energy Model Comparison 43
3.5.4 Frequency Band Consumption Comparison 46

3.6 Conclusion . 50

4 Recurrent Low-Latency TSCH Scheduling 53
4.1 Introduction . 53
4.2 Background and Related Work . 54

4.2.1 6P . 54
4.2.2 Related Scheduling Approaches 55

4.3 Recurrent Low-Latency Scheduling 56
4.3.1 Motivation . 56
4.3.2 Problem formulation . 57

4.4 Recurrent Low-Latency Scheduling Function 61
4.4.1 General Overview . 62
4.4.2 Example . 63
4.4.3 Scheduling Function Description 64
4.4.4 Anticipating Packet Loss . 66
4.4.5 Preventing Schedule Collisions 67
4.4.6 Queue Housekeeping using eLLSF 69
4.4.7 6P Integration . 71

4.5 Improved ReSF . 71
4.5.1 Fast Collision Solving . 72
4.5.2 Improved Collision Avoidance 74
4.5.3 Supporting Sporadic Traffic 75

4.6 Evaluation . 75
4.6.1 Original ReSF Evaluation . 75
4.6.2 Improved ReSF Evaluation 83

4.7 Conclusion . 89

ix

5 Analysing Slot Bonding for Adaptive Physical Layers in TSCH 91
5.1 Introduction . 91
5.2 Related Work . 93
5.3 TSCH Slot and Channel Bonding . 94
5.4 Problem Formulation . 97

5.4.1 Delivered Packets Calculation 97
5.4.2 Radio On Time Calculation 102
5.4.3 TSCH Slot Bonding Problem Formulation 103

5.5 A Heuristic Approach . 105
5.5.1 Genetic Algorithm . 105
5.5.2 Feasibility Heuristic . 110
5.5.3 Time Complexity Analysis 111

5.6 Evaluation . 112
5.6.1 Experiment Methodology & Setup 112
5.6.2 GA Validation . 115
5.6.3 Slot Bonding Scalability . 117
5.6.4 Adaptive PHYs . 119
5.6.5 Allocation Analysis . 119

5.7 Conclusion . 122

6 Parent and PHY Selection in TSCH Slot Bonding Networks 123
6.1 Introduction . 123
6.2 Related Work . 124
6.3 Heuristic Parent and PHY Selection 125

6.3.1 RPL Parent Selection . 126
6.3.2 Motivation . 126
6.3.3 Heuristic . 127
6.3.4 RPL Integration . 129

6.4 Slot Bonding Implementation . 131
6.4.1 Platform . 131
6.4.2 PHYs . 131
6.4.3 Timing Values . 132

6.5 Evaluation . 133
6.5.1 Experiment Methodology & Setup 133
6.5.2 Simulator Results . 137
6.5.3 Testbed Results . 138

6.6 Conclusion . 142

7 Conclusion 143
7.1 Summary and Contributions . 143
7.2 Future Work . 145

Appendices 147

x

A TSCH Energy Modeling Results 149
A.1 Introduction . 149
A.2 Time Slot States . 149
A.3 Time Slot State Durations . 150
A.4 Slot Measurements and Model Comparison 150

List of Figures

1.1 A (sub-)set of important metrics for Industrial Internet of Things
(IIoT) networks, in this case a building automation and power-
system protection network. Exact metric trade-offs depend on
the industrial context and the applications running on the network. 2

1.2 Schematic overview of the structure of this dissertation. 5

2.1 Watteyne et al. showed the effects of multi-path fading on the
packet delivery ratio (PDR). The figure illustrates that the PDR
can heavily fluctuate (from PDR 0 to 1) when only the position
of the transmitter changed. Additionally, the authors showed
that moving away from PDRs < 0.05 can be done by physically
moving the transmitter or changing the operating frequency. . . 10

2.2 Example of a Time-Slotted Channel Hopping (TSCH) network,
showing the schedules of node X (top) and node Z (bottom). . . 12

2.3 The stack proposed by the IPv6 over the TSCH mode of IEEE 802.15.4e
(6TiSCH) Working Group (WG). 14

2.4 A 2-step 6top Protocol (6P) transaction. 17
2.5 Two 6TiSCH-compliant IIoT devices, supporting the sub-GHz and

2.4 GHz frequency bands. 22

3.1 States in TxDataRxAck (transmitter) and RxDataTxAck (re-
ceiver) time slots, together with the CPU and radio activity in the
TxDataRxAck time slot. 29

3.2 Setup used to measure state durations with a connection from
the PB9 pin on the Gecko board (bottom) and to the PD2 pin on
the OpenUSB (top). 34

3.3 Energy consumption measurement setups: for the 2.4 GHz mea-
surements, only the OpenMote-CC2538 was used, while for the
868 GHz measurements, the power analyzer was connected to
the OpenUSB to which the OpenMote-CC2538 was attached. . . 36

3.4 Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the
CC2538 radio. 41

xii

3.5 Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the
CC1200 radio. 42

3.6 Topology used while comparing the charge consumption during
a slotframe. 42

3.7 The proposed packet size aware model compared with the Vila-
josana et al. model which linearly scales the charge drawn based
on the packet size, for the TxData, TxDataRxAck and RxData
time slots. 44

3.8 The proposed packet size aware model compared with the Vila-
josana et al. model which linearly scales the charge drawn based
on the packet size, for the RxDataTxAck and TxDataRxNoAck
time slots. 45

3.9 Total charge drawn per node and average hop count for 868 MHz
and 2.4 GHz frequency communication in a random topology as
a function of the number of nodes. 48

3.10 Comparison of charge drawn per cycle per node for 868 MHz and
2.4 GHz frequency communication in a grid topology of 9 nodes
and 25 nodes. 49

3.11 Comparison of the lifetime of a TSCH node, running on two
AA batteries, between 2.4 GHz and 868 MHz communication for
different packet periods in a grid topology of 25 nodes. 50

4.1 Illustration of inefficient resource allocation when not taking into
account the recurrent behavior of sensor traffic. The schedule
shown belongs to node B. 57

4.2 Illustration of the notations used in the Integer Linear Program
(ILP)-formulation. Both nodes A and B generate traffic at time
slots denoted by G. 60

4.3 Recurrent Low-Latency Scheduling Function (ReSF) scheduling
example with two nodes A and B generating traffic. The schedule
represents an aggregation of all individual schedules. The queue
size and how this affects the housekeeping of node B is also shown. 63

4.4 Enhanced Low Latency Scheduling Function (eLLSF) housekeep-
ing on node D that wants to reserve 4 transmission cells to its
parent. 70

4.5 Example of a 6P ADD request format for ReSF reservations (maxi-
mum length of 127 bytes) and an ReSF reservation that includes
the channel offset and the reservation tuple (14 bytes). 72

4.6 Reservation buffer parameter experiment with 100 nodes. 78
4.7 Latency results for static traffic with 25 and 100 nodes. 79
4.8 Charge drawn for 100 nodes. 80
4.9 Number of sent 6P messages, before (i.e., hatched bars) and after

the network convergence. 81

xiii

4.10 Results for dynamic traffic with 25 and 100 nodes, comparing
ReSF to eLLSF, as a function of the probability that the traffic
generation period of each node changes every second. 82

4.11 Collision percentage error of the different heuristics, compared
to the optimal collision approach. 85

4.12 Latency comparison between the exact and heuristic ReSF colli-
sion solving approaches. 86

4.13 Comparison of eLLSF, the original ReSF and new ReSF in a 200
node network with recurrent traffic. 87

4.14 Comparison of eLLSF, the original ReSF, the new ReSF with and
without collision avoidance (CA) in a 200 node network with
recurrent and sporadic traffic. 88

5.1 A TSCH schedule with regular slots of 10 ms length and 200 kHz
bandwidth. For accommodating PHY1 on the link from node X
to the root 3 slots and 2 channels are bonded to a 30 ms slot of
400 kHz wide while physical (PHY) PHY2 used by node Y only
requires 2 10 ms slots bonded together. 96

5.2 Diagram of the Markov chain. 100
5.3 Genetic Algorithm (GA) individual for a topology of n nodes with

3 genes per node. The root is not explicitly represented in the
individual. 107

5.4 Example of successful two-point cross-over operation where the
genetic information of the first 2 nodes is interchanged, resulting
in 2 new individuals with valid topologies. 108

5.5 Example of the mutation operation in which the parent of node
2 is altered. Assuming that the possible parent set of node 2 is
{0, 3, 4}, the new parent can only be node 4, as the current parent
is 0 and node 3 is a descendant of node 2 (which would lead to
a loop). 108

5.6 Flow diagram showing the evaluation process, showing that the
output of the GA is used as a centralised schedule for the 6TiSCH
simulator to analyse the proposed slot bonding technique. 113

5.7 GA and simulation PDR for all experiment iterations for the 10 ms
bonded slots for 120 ms, 200 ms, 280 ms and 360 ms slotframe
lengths in a network with 14 nodes. 117

5.8 PDR comparison for 10 ms bonded slots and 40 ms slots, for
different slotframe lengths. 118

5.9 Modulation and Coding Schemes (MCSs) used in a TSCH network
with a topology size of 14 nodes. 120

6.1 Example of node 3 using the heuristic to select its parent and
PHY. First, the node selects the PHY per parent (with threshold
δ = 0.1) and afterwards the node calculates the x score to select
parent 2. 130

xiv

6.2 Illustration of the slot timings for the 1000 kbps and 50 kbps
(bonded) slots. 133

6.3 The two floors of the hardware testbed with the 13 used nodes
illustrated at their locations. We considered 2 scenarios of 12
nodes: scenario 1 includes the 11 grey nodes and the blue node
while scenario 2 includes the 11 grey nodes and the green node. 134

6.4 Flow diagram illustrating the testbed evaluation process. The
testbed link monitoring information is used as input for the heuris-
tic (with the GA for slot allocations) or the GA, and the outcomes
of those schedulers is loaded on the sensor nodes in the testbed. 136

6.5 The channel allocation for the 50 kbps and 1000 kbps PHYs in
the 863-868 MHz band, as used in the evaluation. The former
uses 3 channels of 200 kHz while the latter uses 2 channels of
1667 kHz. 137

6.6 PDR simulation results for different δ values for different slot-
frame lengths, comparing the heuristic with the GA scheduler.
The x denotes the mean value. 137

6.7 Mean link reliability values for different slotframe lengths, for
different δ values of the heuristic. The x denotes the mean value. 138

6.8 PDR values for different δ values for 261 ms and 423 ms slotframe
lengths, comparing the heuristic with the GA scheduler and the
GA scheduler that can only use the 50 kbps PHY. 140

6.9 Average number of PHY allocations per iteration for the GA sched-
uler and the heuristic with different δ values, for scenario 2. The
error bars in the figures represent the standard deviation. 141

6.10 The PDRs values for the testbed experiments, showing the results
for the heuristic, the GA and the GA that can only use the 50 kbps
PHY. The x denotes the mean value. 141

A.1 Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the
CC2538 radio. 156

A.2 Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the
CC1200 radio. 157

List of Tables

3.1 States in a TxDataRxAck slot. 30
3.2 State durations in the TxDataRxAck time slot with a total length

of 15 ms and s being the packet size in bytes. 37
3.3 Current drawn during different device states. 38
3.4 Measured and calculated charge drawn for each slot type. 40
3.5 Measured and calculated charge drawn during a slotframe. . . . 43
3.6 Parameter configuration in the 6TiSCH simulator. 46
3.7 Calculated charge drawn for each slot type, used in the simulator

experiments. 47

4.1 Input variables. 59
4.2 Auxiliary symbols. 59
4.3 The default experiment parameters. 76
4.4 Comparison of eLLSF and ReSF latency and packet loss values for

a traffic rate mean of 12 packets/min for different network sizes. 80
4.5 The 6TiSCH simulator parameters. 83
4.6 Duration comparison on an OpenMote B board between the exact

collision solving algorithm and the heuristic. 86
4.7 Packet loss and latency for ReSF without, with the old CA and

with the new CA feature in a 200 node network. 87

5.1 MCS2, MCS3 and MCS4 of Orthogonal Frequency Division Mul-
tiplexing (OFDM) option 4 which all require 200 kHz bandwidth. 97

5.2 All used symbols and their respective meaning. 98
5.3 Averaged GA results compared with exhaustive search results,

for different topology sizes and slot lengths. 116
5.4 Feasibility heuristic compared with the exact ILP feasibility model

for a slotframe length of 200 ms and 2000 generations. 116
5.5 GA averaged results for 14 node topologies, for both 10 ms (with

slot bonding) and 40 ms regular slot lengths and different slot-
frame lengths. 119

xvi

5.6 Different metrics tested for two GA runs for respectively 8 and
14 nodes when applying slot bonding with 10 ms, showing the
average values over the results obtained for the 120 ms, 200 ms,
280 ms and 360 ms slotframe lengths. 121

6.1 The used PHYs configurations, together with their configured
time slot length and number of bonded regular slots. 132

6.2 Possible channel allocations for 200 kHz and 1000 kHz channels
in the European sub-GHz frequency band, as listed by Van Leem-
put et al. [34]. 132

A.1 States in a RxDataTxAck slot. 150
A.2 States in a TxData slot. 151
A.3 States in a RxData slot. 151
A.4 States in a RxIdle slot. 151
A.5 States in a Sleep slot. 152
A.6 States in a TxDataRxNoAck slot. 152
A.7 State durations in the RxDataTxAck time slot with a total length

of 15 ms and s being the packet size in bytes. 153
A.8 State durations in the TxData time slot with a total length of

15 ms and s being the packet size in bytes. 153
A.9 State durations in the RxData time slot with a total length of

15 ms and s being the packet size in bytes. 154
A.10 State durations in the RxIdle time slot with a total length of

15 ms. 154
A.11 State durations in the Sleep time slot with a total length of 15 ms.154
A.12 State durations in the TxDataRxNoAck time slot with a total

length of 15 ms and s being the packet size in bytes. 155

List of Acronyms

3GPP 3rd Generation Partnership Project
6LoWPAN IPv6 Over Low-Power Wireless Personal Area Network
6P 6top Protocol
6TiSCH IPv6 Over The TSCH Mode Of IEEE 802.15.4e
6top 6TiSCH Operation Sublayer
ACK Acknowledgement
AGT Acknowledgment Guard Time
ARQ Automatic Repeat ReQuest
ASN Absolute Sequence Number
BER Bit Error Rate
BLE Bluetooth Low Energy
CA Collision Avoidance
CDF Cumulative Distribution Function
CDU Channel Distribution And Usage
COAP Constrained Application Protocol
COJP Constrained Join Protocol
CONAMO Continuous Athlete Monitoring
CRC Cyclic Redundancy Check
CSI Channel State Information
DAO Destination Advertisement Object
DeTAS Decentralized Traffic Aware Scheduling
DIO Destination Oriented Directed Acyclic Graph Informa-

tion Object
DODAG Destination Oriented Directed Acyclic Graph
DSME Deterministic And Synchronous Multichannel Exten-

sion
EB Enhanced Beacon
ELLSF Enhanced Low Latency Scheduling Function
ETX Expected Transmission Count
FEC Forward Error Correction
FSK Frequency Shift Keying
GA Genetic Algorithm
GMPLS Generalised Multiprotocol Label Switching
GND Ground
GUI Graphical User Interface

xviii

HART Highway Addressable Remote Transducer
HTTP Hypertext Transfer Protocol
ICMPv6 Internet Control Message Protocol For IPv6
IE Information Element
IETF Internet Engineering Task Force
IIoT Industrial Internet Of Things
ILP Integer Linear Program
IoT Internet Of Things
IP Internet Protocol
IPv6 Internet Protocol Version 6
ISM Industrial, Scientific And Medical
ITU-R International Telecommunication Union - Radiocom-

munications Sector
IWSAN Industrial Wireless Sensor And Actuator Network
JP Join Proxy
JRC Join Registrar/Coordinator
LCM Least Common Multiple
LLN Low-power Lossy Network
LLSF Low Latency Scheduling Function
LQE Link Quality Estimation
MAC Medium Access Control
MCF Multi Commodity Flow
MCS Modulation And Coding Scheme
MILP Mixed Integer Linear Program
MRHOF Minimum Rank With Hysteresis Objective Function
MSF Minimal Scheduling Function
MTU Maximum Transmission Unit
MuSCLe-IoT Multimodal Sub-Gigahertz Communication And Lo-

calisation For Low-Power IoT Applications
NB-IoT Narrowband-IoT
O-QPSK Offset-Quadrature Phase Shift Keying
OF Objective Function
OF0 Objective Function Zero
OFDM Orthogonal Frequency Division Multiplexing
OH Overhearing
OSCORE Object Security For Constrained RESTful Environ-

ments
OTF On-the-Fly Scheduling Function
PDR Packet Delivery Ratio
PGT Packet Guard Time
PHR PHY Header
PHY Physical
PRR Packet Reception Rate
PSDU Physical Service Data Unit
RAW Reliable And Available Wireless
RE Replication And Elimination
ReSF Recurrent Low-Latency Scheduling Function
RFC Request-for-Comments
RPL Routing Protocol For Low-power And Lossy Network

xix

RSME Root Mean Squared Error
RSSI Received Signal Strength Indicator
RSVP Resource Reservation Protocol
RSVP-TE Resource Reservation Protocol - Traffic Engineering
SCADA Supervisory Control And Data Acquisition
SF Scheduling Function
SF0 Scheduling Function Zero
SF1 Scheduling Function One
SFD Start-of-Frame Delimiter
SFX 6TiSCH Experimental Scheduling Function
SHR Synchronization Header
SoC System-on-a-Chip
SPI Serial Peripheral Interface
SUN Smart Utility Network
SUN-FSK Frequency Shift Keying
SUN-OFDM Orthogonal Frequency Division Multiplexing
SUN-OQPSK Offset-Quadrature Phase Shift Keying
SWO Serial Wire Output
TASA Traffic Aware Scheduling Algorithm
TCP Transport Control Protocol
TDMA Time Division Multiple Access
TSCH Time-Slotted Channel Hopping
TSMP Time Synchronized Mesh Protocol
UDP User Diagram Protocol
VCC Voltage Common Collector
WG Working Group
WSN Wireless Sensor Network
YANS Yet Another Network Simulator

Chapter 1

Introduction

1.1 Context

The Internet of Things (IoT) paradigm is the shift towards a world where all
things are connected to the Internet. Those connected objects can be, among
others, home appliances, vehicles, or industrial machinery, e.g., a fridge, your
car or an industrial valve. However, not only things are being connected as also
living organisms are becoming part of this interconnected ecosystem, e.g., farm
animals, wildlife or humans in a sports or healthcare context. The paradigm
allows for a wide variety of new innovations that should connect, monitor,
analyse and improve our lives and the world around us. As the possibilities
seem endless, the number of devices being connected keeps increasing, with
predictions claiming that in 2025 there will be 8 connected devices per person [1].
Concisely, IoT can be summarized as "people and things to be connected anytime,
anyplace, with anything and anyone, ideally using any path/network and any
service" [2].

While nowadays IoT has an impact on every aspect of society, it is being
applied particularly efficiently to support the current ongoing fourth industrial
revolution, called Industry 4.0. While the first revolution introduced mecha-
nization, the second revolution launched the intensive use of electrical energy
and the third focused on widespread digitization, this fourth revolution’s fo-
cal point is the use of smart machinery combined with IoT communication
technology, allowing to further revolutionize the automation and control of
traditional manufacturing and industrial processes [3]. This introduction of IoT
in industry often leads to the term Industrial Internet of Things (IIoT). Achieving
industrial automation and control typically means the management of thousands
of sensors (e.g, temperature, pressure, position) and actuators (e.g., robotic
arms, remotely controlled switches) that respectively sense the industrial site
and control and execute repetitive and high-precision processes [4]. Examples
of industrial automation, control and monitoring applications include, among

2 CHAPTER 1

����������� !"#$ %!&�'#��������� %!(#$�)# *���

'��#

+��#,��

-.��/�,)0�.�!1���!,0

22!30,#�"!$4

 !"#$5&�&�#106$!�#���!,

22!30,#�"!$4
7�)8

+!"

Figure 1.1: A (sub-)set of important metrics for IIoT networks, in this case
a building automation and power-system protection network. Exact metric
trade-offs depend on the industrial context and the applications running on the
network.

others, automated manufacturing robots, oil and gas automation on offshore
drilling rigs, the localization of stacked tank containers on freight trains and the
monitoring of valve positions.

To fulfill the high-end requirements of industrial automation and process
control, interconnecting all sensing and actuating devices was initially typically
done through wiring. While the reliability advantage of wiring is obvious, it
is rather costly (approx. 20 $/m) and can be impractical in hard to reach
locations or rotating/mobile machinery [5]. Therefore, the transition to wireless
communication seemed unavoidable and is becoming more and more ubiquitous.
However, for this transition to be successful, wireless communication should
show similar wire-like reliability. Achieving this in harsh industrial environments
is a challenge as external interference (from other wireless technologies) and
multi-path fading effects (due to metal infrastructure) may easily disrupt the
wireless signal. Additionally, to avoid having to frequently replace batteries in
inconvenient places, the wireless devices should be able to run on limited battery
capacity for years. Therefore, while fulfilling the strict reliability requirement,
they should also exhibit (ultra) low-power operations.

As the industrial automation and control processes range from, among
others, safety systems and closed loop supervisory systems to open loop systems
and alerting systems, there is a wider variety of performance metrics (than
only reliability and low energy consumption) in which so-called Industrial
Wireless Sensor and Actuator Networks (IWSANs) should score well. Figure 1.1
shows a (sub-)set of important metrics for IIoT networks [5]. These metrics
include deployment and maintenance cost (e.g., what is the cost to replace
a broken device?), coverage (e.g., can the network cover the whole industrial
site?), scalability (e.g., how many devices can be deployed without saturating
the network?), data rate (e.g., will the network be fast enough to transmit all
data?), latency (e.g., what is the maximum delay when receiving monitored data?),

INTRODUCTION 3

power (e.g., how many times does the device need battery replacement?) and
reliability (e.g., will all devices have a stable connection to deliver the data?). Of
course, it is dependent on the IIoT application which metrics are most important.
Additionally, there is a growing need for industrial networks to seamlessly
integrate into the traditional Internet architecture, allowing supervisory control
and data acquisition (SCADA) systems to evolve to cloud-based solutions [4].
Currently, there are a lot of wireless contenders that are all characterised by
their own set of (dis-)advantages for use in an industrial context, such as
Narrowband-IoT (NB-IoT), SigFox, LoRa, WirelessHart, Bluetooth Low Energy
(BLE), IEEE 802.11ah (Wi-Fi HaLow) and IEEE802.15.4e Time-Slotted Channel
Hopping (TSCH) [6,7,8,9,10,11,12].

Among all of these technologies, IEEE 802.15.4e TSCH has become an
increasingly popular wireless solution for IIoT applications. Its combination
of a Time Division Multiple Access (TDMA) approach and frequency diver-
sity has been proven to be highly reliable and capable of low-power opera-
tion [13, 14, 15]. Additionally, this approach has a successful track record in
predecessors such as Time Synchronized Mesh Protocol (TSMP), WirelessHART
and ISA100.11A [8, 14, 16]. TSCH can run on a varied set of physical (PHY)
layers (i.e., the IEEE 802.15.4g amendment introduced several new PHYs), in
both the sub-GHz and 2.4 GHz frequency bands and for different data rates,
allowing reported ranges up to 800 meters (i.e., in non-industrial environments)
and a robust and full coverage of industrial sites [17, 18]. Furthermore, the
Internet Engineering Task Force (IETF) started the IPv6 over the TSCH mode of
IEEE 802.15.4e (6TiSCH) Working Group (WG), acknowledging the necessity
of an industrial network integration in the traditional Internet architecture.
6TiSCH defines a complete Internet Protocol Version 6 (IPv6) compliant stack,
built on top of the IEEE 802.15.4e TSCH Medium Access Control (MAC) layer,
thereby offering a complete solution for IIoT applications.

1.2 Problem Statement

While the time-synchronized nature of TSCH provides low-power operation (i.e.,
by only turning on the radio when nodes have to transmit/receive and sleep
otherwise) and the channel hopping feature enhances the wireless reliability
(i.e., by pseudo-randomly changing frequency channels for every transmission),
a lot of research still has to be carried out to investigate how 6TiSCH networks
can be optimized for IIoT applications. A crucial element is the scheduling of
TSCH resources between nodes, which is implementation-dependent (thus not
standardized). The scheduling approach influences almost all important metrics
such as energy consumption, latency, throughput, scalability and reliability. An
important IIoT challenge for TSCH scheduling is minimizing the communication
delay for (time-critical) industrial processes, while maintaining the device’s
low-power operation [5]. A scheduling approach can also affect the network
reliability by adapting the resources to different link conditions, but it will

4 CHAPTER 1

always be limited by the characteristics of the underlying PHY layer, i.e., the
communication range, bandwidth, data rate, energy consumption and reliability.
As it is shown that the support for multiple PHY layers in such harsh industrial
environments does further improve the reliability, it is a remaining challenge of
introducing these different PHYs in a TSCH network simultaneously [18,19].

To move the research forward on these topics, the research questions of this
thesis are as follows:

1. How do we precisely characterize the TSCH power consumption? An
accurate power consumption model allows researchers to quickly charac-
terize the energy consumption of new network topology formations, new
TSCH scheduling approaches or higher-layer algorithms/applications that
satisfy the low-power operation requirements of IIoT.

2. How do we achieve low-latency communication in a TSCH network?
Minimizing the communication delay while maintaining the TSCH low-
power operation is an important requirement for (time-critical) industrial
automation and control processes.

3. How do we use multiple PHYs in TSCH to increase the reliability?
While TSCH inherently introduces frequency diversity to enhance its
reliability, it is limited by the characteristics of the chosen PHY layer.
The industrial network’s overall reliability could clearly benefit from the
introduction of multiple PHY layers in a single network to adapt the
PHY layer to the link’s propagation characteristics. Additionally, when
multiple PHYs are available, an important, second question rises: How
do we select the most appropriate link and PHY layer to achieve the best
network performance?

1.3 Research Contributions

The research presented in this thesis focuses on the IEEE 802.15.4e TSCH MAC
mode and the improvement of its suitability for IIoT by answering the research
questions posed in the previous section. Following is a list of contributions:

1. An accurate and extendable energy consumption model for IEEE 802.15.4e
TSCH mode, for both the sub-GHz and 2.4 GHz frequency bands. This
model is accompanied with an elaborate set of TSCH state duration and
energy consumption measurements for state-of-the-art IoT hardware and
firmware (i.e., Chapter 3).

2. A new TSCH distributed scheduling approach, called Recurrent Low-
Latency Scheduling Function (ReSF). This scheduling approach minimizes
the latency of recurrent traffic, such as sensor data with a fixed report-
ing interval, while keeping the energy consumption to a minimum (i.e.,
Chapter 4).

INTRODUCTION 5

CHAPTER 2 TSCH & 6TiSCH CONTEXT

CHAPTER 3 CHAPTER 4

RECURRENT

LOW-LATENCY

SCHEDULING

SUB-GHz & 2.4 GHz

ENERGY MODEL

IMPROVING LOW DELAY

COMMUNICATION IMPROVING RELIABILITY

IMPROVING TSCH

ENERGY MODELLING

CHAPTER 5

SLOT BONDING

FOR MULTIPLE

PHY LAYERS

CHAPTER 6

PARENT AND

PHY LAYER

SELECTION

Figure 1.2: Schematic overview of the structure of this dissertation.

3. A method of facilitating the use of multiple PHYs within a single TSCH
network, called slot bonding. The slot bonding approach allows improving
the network’s number of delivered packets by efficiently adapting the
allocated resources to each PHY’s requirements (i.e., Chapter 5). Ad-
ditionally, a distributed heuristic is provided that allows nodes in a slot
bonding TSCH network with multiple available PHYs to select an appro-
priate parent and PHY to optimize the network’s number of delivered
packets (i.e., Chapter 6).

1.4 Outline

In this section, I present an outline of this PhD thesis that addresses the research
questions and the different contributions. This outline is illustrated in Figure 1.2.
The thesis is structured as follows:

Chapter 2 introduces the IEEE 802.15.4e TSCH MAC mode that provides
high reliability and low-power operation in the IIoT. Afterwards, I present the
IoT stack and specifications built on top of TSCH, defined by the IETF 6TiSCH
WG to bring the Internet Protocol (IP)-ecosystem to constrained devices, filling
in the need of industrial networks being able to seamlessly integrate into the
traditional Internet architecture.

Chapter 3 focuses on the low-power operation requirements for IIoT. The
chapter presents an accurate and extendable energy consumption model for
the IEEE 802.15.4e TSCH mode, for both the sub-GHz and 2.4 GHz frequency
bands. The model is defined for an elaborate set of time slots and states for
variable packet sizes, while using state-of-the-art IoT hardware and firmware.
Additionally, it provides the detailed set of state duration values and state energy

6 CHAPTER 1

consumption measurements. Finally, using simulation the proposed model is
used to gain insights in the end-to-end performance and energy consumption of
TSCH networks in the sub-GHz and 2.4 GHz frequency bands. The work in this
chapter is based on [20].

Chapter 4 takes on the challenge of providing low delay communication in
(industrial) IoT. I take into account the recurrent nature of industrial monitoring
applications and apply this knowledge in a novel TSCH scheduling mechanism,
called ReSF. ReSF is a distributed TSCH scheduling approach that targets low-
latency communication while keeping the energy consumption to a minimum
by only activating energy-demanding resources when necessary. The work in
this chapter is based on [21,22].

Chapter 5 targets the improvement of TSCH reliability in harsh industrial
environments. In traditional TSCH networks all nodes run on one and the same
IEEE 802.15.4 PHY. The performance of these nodes could significantly improve
from different PHYs being available and adapting the PHY of each link to the
local propagation characteristics and the application’s requirements. Therefore,
I present the TSCH slot and channel bonding techniques that facilitate the use
of multiple PHYs with different data rates and bandwidths within a single TSCH
network. I formulate the TSCH slot bonding problem and solve it in a near-
optimal fashion to show the resource-efficiency of the proposed slot bonding
approach and its beneficial effect on the network’s overall packet delivery ratio.
The work in this chapter is based on [23,24].

Chapter 6 transfers the slot bonding approach of Chapter 5 to a real-world
hardware implementation. First, I define a heuristic that can be integrated in
distributed TSCH scheduling approaches and/or a routing objective function
and selects the preferred routing parent and PHY to that parent to optimize the
packet delivery ratio. The heuristic approximates the near-optimal solutions
to the slot bonding problem of Chapter 5. I combine it with the slot bonding
hardware implementation and validate it in an office sensor testbed, showing
the advantages of the multiple PHY layers in a single TSCH network. The work
in this chapter is based on [25].

1.5 Publications

This section lists all publications, published in international journals and pro-
ceedings of international conferences, that directly or indirectly contributed to
this PhD dissertation.

1.5.1 A1: Publications in international journals indexed by
the Web of Science

1. Steven Bohez, Glenn Daneels, Lander Van Herzeele, Niels Van Kets, Sam
Decrock, Mathias De Geyter, Glenn Van Wallendael, Peter Lambert, Bart
Dhoedt, Pieter Simoens, Steven Latré, and Jeroen Famaey (2018). The

INTRODUCTION 7

Crowd as a Cameraman: On-stage Display of Crowdsourced Mobile Video at
Large-scale Events. Multimedia Tools and Applications, 77(1), 597-629.
[Impact Factor: 2.313]

2. Glenn Daneels, Esteban Municio, Bruno Van de Velde, Glenn Ergeerts,
Maarten Weyn, Steven Latré, and Jeroen Famaey (2018). Accurate Energy
Consumption Modeling of IEEE 802.15.4e TSCH using Dual-band OpenMote
Hardware. Sensors, 18(2), 437. [Impact Factor: 3.275]

3. Glenn Daneels, Bart Spinnewyn, Steven Latré, and Jeroen Famaey (2018).
ReSF: Recurrent Low-latency Scheduling in IEEE 802.15.4e TSCH Networks.
Ad Hoc Networks, 69, 100-114. [Impact Factor: 3.643]

4. Esteban Municio, Glenn Daneels, Mališa Vučinić, Steven Latré, Jeroen
Famaey, Yasuyuki Tanaka, Keoma Brun, Kazushi Muraoka, Xavier Vila-
josana, and Thomas Watteyne (2019). Simulating 6TiSCH Networks. Trans-
actions on Emerging Telecommunications Technologies, 30(3), e3494.
[Impact Factor: 1.594]

5. Esteban Municio, Glenn Daneels, Mathias De Brouwer, Femke Ongenae,
Filip De Turck, Bart Braem, Jeroen Famaey, and Steven Latré (2019).
Continuous Athlete Monitoring in Challenging Cycling Environments using
IoT Technologies. IEEE Internet of Things Journal, 6(6), 10875-10887.
[Impact Factor: 9.936]

6. Robbe Elsas, Jeroen Hoebeke, Dries Van Leemput, Adnan Shahid, Glenn
Daneels, Jeroen Famaey, and Eli De Poorter (2020). Intra-Network In-
terference Robustness: An Empirical Evaluation of IEEE 802.15.4-2015
SUN-OFDM. Electronics, 9(10), 1691. [Impact Factor: 2.412]

7. Glenn Daneels, Carmen Delgado, Robbe Elsas, Eli De Poorter, Steven
Latré, Chris Blondia, and Jeroen Famaey (2021). Slot Bonding for Adaptive
Modulations in IEEE 802.15.4e TSCH Networks. IEEE Internet of Things
Journal. [Impact Factor: 9.936]

1.5.2 Publications (to be) submitted in international
journals indexed by the Web of Science

1. Glenn Daneels, Dries Van Leemput, Carmen Delgado, Steven Latré, Eli
De Poorter and Jeroen Famaey. (2021). Parent and PHY Selection in TSCH
Slot Bonding Networks. To be submitted.

2. Serena Santi, Tobia De Koninck, Glenn Daneels, Filip Lemic and Jeroen
Famaey. (2021). Location-Based Vertical Handovers in Wi-Fi Networks with
IEEE 802.11ah . Submitted to IEEE Access. [Impact Factor: 3.745]

8 CHAPTER 1

1.5.3 Conference proceedings indexed by the Web of
Science

1. Glenn Daneels, Jeroen Famaey, Steven Bohez, Pieter Simoens, and Steven
Latré (2015, December). Upstream Content Scheduling in Wi-Fi DenseNets
during Large-scale Events. In 2015 IEEE Globecom Workshops (GC Wkshps)
(pp. 1-7). IEEE.

2. Glenn Daneels, Esteban Municio, Kathleen Spaey, Gilles Vandewiele,
Alexander Dejonghe, Femke Ongenae, Steven Latré, and Jeroen Famaey
(2017, October). Real-time Data Dissemination and Analytics Platform for
Challenging IoT Environments. In 2017 Global Information Infrastructure
and Networking Symposium (GIIS) (pp. 23-30). IEEE.

3. Glenn Daneels, Steven Latré, and Jeroen Famaey. (2019, June). Efficient
Recurrent Low-Latency Scheduling in IEEE 802.15.4e TSCH Networks. In
2019 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom) (pp. 1-6). IEEE.

1.5.4 Other international conference proceedings

1. Mathias De Brouwer, Femke Ongenae, Glenn Daneels, Esteban Municio,
Jeroen Famaey, Steven Latré, and Filip De Turck (2018, April). Personalized
Real-Time Monitoring of Amateur Cyclists on Low-End Devices: Proof-of-
Concept & Performance Evaluation. In Companion Proceedings of the The
Web Conference 2018 (pp. 1833-1840).

2. Glenn Daneels, Carmen Delgado, Steven Latré, and Jeroen Famaey (2020,
June). Towards Slot Bonding for Adaptive MCS in IEEE 802.15.4e TSCH
Networks. In IEEE International Conference on Communications (ICC).
IEEE.

Chapter 2

6TiSCH: Wireless Industrial
Networks

2.1 Context

Introducing wireless connectivity in industry is a challenge. To automate ma-
chinery and industrial processes, highly reliable communication is required.
Therefore, for a long time wired automation solutions were the obvious choice
while tolerating the disadvantages such as high installation costs for wiring and
being unpractical with rotational devices and mobility [4,5]. Additionally, the
harsh industrial environments, filled with metal infrastructure and the presence
of different wireless technologies, make achieving wireless reliability extra diffi-
cult. Moreover, if one would succeed in setting up a reliable wireless connection
and wiring would not be necessary anymore, frequently replacing batteries of
energy-demanding wireless sensors nodes at inconvenient locations would still
be a limiting factor.

The unreliable nature of a wireless signal is often caused by external inter-
ference and/or multi-path fading. External interference is caused by wireless
signals from other present wireless technologies using the same frequency bands
that may interfere with and disrupt the transmitted signal. Multi-path fading
is caused by the reflection, refraction or diffraction of a transmitted signal,
resulting in multiple transmission paths reaching and deteriorating the signal at
the receiver, as illustrated in Figure 2.1. As the impact of external interference
and multi-path fading was found to vary over frequency and time, frequency
diversity techniques such as channel hopping were observed to be successful
in increasing the wireless reliability [26]. Furthermore, efforts in combining
channel hopping with strict time-synchronization (that results in nodes knowing
exactly when to transmit/receive and thereby avoid wasting energy) resulted
in achieving wire-like reliability of more than 99.999% while having ultra-low

10 CHAPTER 2

Figure 2.1: Watteyne et al. showed the effects of multi-path fading on the
packet delivery ratio (PDR) [26]. The figure illustrates that the PDR can heavily
fluctuate (from PDR 0 to 1) when only the position of the transmitter changed.
Additionally, the authors showed that moving away from PDRs < 0.05 can be
done by physically moving the transmitter or changing the operating frequency.

power consumption [13, 14, 15]. As such, in 2007 the widely popular wired
highway addressable remote transducer (HART) industrial automation protocol
got extended with the backwards compatible WirelessHART, incorporating the
principles of time synchronization and frequency diversity [8]. Nowadays, Wire-
lessHART is used worldwide in industrial process automation. In 2012, IEEE
published the IEEE 802.15.4e-2012 amendment to the IEEE 802.15.4 standard,
that defines PHY and MAC layers for low-power wireless networks and intro-
duced the TSCH MAC mode [12]. Reusing the same core ideas of the earlier
introduced TSMP and WirelessHART, TSCH merges a tightly-synchronized time-
slotted schedule with channel hopping and was finally added to the standard in
the 2015 release [8,14,27]. Exactly like its predecessors, the primary goal of
TSCH is to provide wire-like reliability while maintaining low-power operation.

2.2 TSCH

In a TSCH network, each node maintains a matrix-formatted schedule, i.e., the
so-called Channel Distribution and Usage (CDU) matrix, in which the number
of rows equals the number of available physical channels and the number of
columns determines the period of scheduling operation (i.e., this equals the so-
called slotframe size). One element in the schedule is called a cell and denoted
by (t imeO f f set, channelO f f set), with respectively the time offset and the

6TISCH: INDUSTRIAL WIRELESS NETWORKS 11

channel offset in the schedule. As such, each node is time-synchronized, with
time being split up into fixed-duration time slots which are indexed by the time
offset and at every slot a node can use 1 of the available channels which is
calculated based on the channel offset. A default time slot is long enough to
send a packet of 127 bytes and receive an acknowledgement (ACK) (a time slot is
typically 10 ms or 15 ms long). Initially, the Maximum Transmission Unit (MTU)
was set to 127 bytes, but with the introduction of the Smart Utility Network
(SUN) PHYs in the IEEE 802.15.4-2015 standard, the MTU was extended to
2047 bytes [27]. Time slots are grouped in slotframes which are repeated over
time, and whose size is application-dependent [28].

To achieve frequency diversity by channel hopping, the channel offset is
mapped to the physical channel in a pseudo-random fashion by employing the
following calculation:

ch= hopSeq[(ASN + channelO f f set) mod hopSeqLen] (2.1)

where ch represents the physical channel in which the node will transmit or
receive data, hopSeq is a lookup table with all available physical channels,
channelO f f set is the channel offset and hopSeqLen is the size of the look up
table (e.g., 16 channels when using a radio compliant with IEEE 802.15.4 at
2.4 GHz). The Absolute Sequence Number (ASN) defines the absolute time slot
in TSCH, shared by all nodes in the network. It starts at 0 being the first ever
time slot and increments with 1 in every time slot that follows. It is represented
by a 5 byte counter that can support networks for hundreds of years before
wrapping (the exact number of years is dependent on the time slot duration).
Two (synchronized) communicating nodes that respectively transmit and receive
in a negotiated cell, will calculate the same physical channel as they will use
the same ASN and channelO f f set. However, the calculation will result in a
different channel in every slotframe, looping through all available channels
(i.e., to loop over all available channels, the slotframe length should be a prime
number).

The TSCH schedule instructs a node what to do in each slot of a slotframe:
sleep, transmit or listen. When a cell is not scheduled, the node will sleep,
keeping its energy consumption to the absolute minimum. When a cell is
scheduled, it will either transmit or receive. In a transmission cell, a node
transmits the first packet waiting in the queue to the destination and expects
an ACK in the same time slot. If there is no packet in the queue, the node will
go to sleep. In a reception cell a node is listening for an incoming data packet
and answers with an ACK to the transmitter. If no packet was received during a
certain guard time, the node goes to sleep. A cell can also be a transmission and
reception cell at the same time: when there is no data to send, the node will
listen for incoming data. For scheduling a transmission or reception cell, a given
neighbor address denotes the neighbor with which the node communicates.
However, a cell can also be a broadcast cell when the neighbor address equals
the broadcast address. By default, a cell is scheduled as dedicated: it can only

12 CHAPTER 2

Y

Z

X R

Z

Y

R

R

R

R

Z

Y

0

1

...

15

0 1 ... 99 100 0 ... 99 100

C
H

A
N

N
E

L
 O

F
F

S
E

T

TIME SLOT OFFSET

1

404 ...ASN

X X

SLOTFRAME

0

1

...

15

0 1 ... 99 100 0 ... 99 100

C
H

A
N

N
E

L
 O

F
F

S
E

T

1

405 503 504 505 ...506 604 605

SHARED/TX/RX TX RX

SCHEDULE OF NODE X

SCHEDULE OF NODE Z

Figure 2.2: Example of a TSCH network, showing the schedules of node X (top)
and node Z (bottom).

be used by one node for the transmission of packets to another node. However,
the standard also allows a cell to be shared: the cell can be used by more
than one node for transmission. To decrease the probability of collisions, a
retransmission back-off algorithm is applied in shared cells. When a cell is
scheduled as a transmission, reception and shared cell at the same time, the cell
will have slotted-ALOHA behavior. Figure 2.2 shows a simple topology with 4
nodes and the schedules of both nodes X (i.e., top schedule) and Z (i.e., bottom
schedule). All schedules have a shared cell at (0, 0)with slotted-ALOHA behavior
to bootstrap the network, and to broadcast network and routing information.
Node X has 2 dedicated reception cells for nodes Z and Y and 2 transmission
cells towards node R. Node Z has one transmission cell to node X at the same
schedule location where X scheduled the reception cell for node Z.

To maintain the necessary synchronization among the nodes in a TSCH
network, a node has a time source neighbor to which it regularly synchronizes.
There are 2 methods in which a node can synchronize: packet-based and/or
acknowledgement-based synchronization. With the packet-based approach, a
node adjusts the duration of the current time slot whenever it receives a packet
from its time source neighbor by calculating the synchronization error using
the expected reception timestamp and the actual reception timestamp. The
acknowledgement-based approach is similar, but now the node sends a frame to

6TISCH: INDUSTRIAL WIRELESS NETWORKS 13

its time source neighbor which timestamps the reception of that frame. The time
source neighbor then calculates the synchronization error using this timestamp
and reports the error back in the Time Correction Information Element (IE) of
the acknowledgement. Subsequently, the node adjust its current time slot length
based on the reported error. There have been several works that investigated
how to further minimize the clock drift between network nodes [29,30,31].

2.2.1 PHY Layers

While most TSCH deployments run on top of the O-QPSK PHY layer in the
2.4 GHz version of the standard, the IEEE 802.15.4 standard actually has sup-
port for many different PHY layers and operation in both the sub-GHz and
2.4 GHz worldwide Industrial, Scientific and Medical (ISM) frequency bands,
allowing reported ranges up to 800 meters (i.e., in non-industrial environ-
ments) [17]. For example, the IEEE 802.15.4g-2012 amendment (that initially
solely targeted SUN applications) added the Frequency Shift Keying (SUN-FSK),
Offset-Quadrature Phase Shift Keying (SUN-OQPSK) and Orthogonal Frequency
Division Multiplexing (SUN-OFDM) modulation families [27,32]. Consequently,
the current standard addresses a wide variety of applications, ranging from
smart home applications to automation in harsh industrial environments. With
proper adjustments of MAC layer transmission and processing timings, TSCH
networks can run on many of these PHY layers and even on multiple PHY layers
simultaneously, as is researched in Chapters 5 and 6 [18,19,33,34].

2.3 6TiSCH

In the last decade there has been a major effort by the IETF to bring the IP-
ecosystem to constrained devices, filling in the need of industrial networks being
able to seamlessly integrate into the traditional Internet architecture. Various
protocols such as routing, IPv6 adaptation and web transfer protocols were
standardized, dealing with limiting factors of constrained networks such as
payload size, computing capacity and non-trivial topologies while guaranteeing
to be IP-compliant. To integrate these efforts with the industrial performance of
the IEEE 802.15.4 TSCH MAC mode, the IETF also introduced the 6TiSCH WG.
6TiSCH provides a management plane for the underlying IEEE 802.15.4 TSCH
network, by providing solutions for bootstrapping, security and TSCH schedule
management [35]. Additionally, it also proposes a full stack that combines the
IEEE 802.15.4 TSCH link layer, the 6TiSCH adaptations, and other higher layer
IETF solutions for a fully operating IPv6-compliant industrial IoT network.

2.3.1 Overview

The 6TiSCH WG proposes a full stack from the link layer up to the application
layer [35]. In addition, it also provides specifications that specify bootstrapping

14 CHAPTER 2

IEEE 802.15.4e TSCH

6top (with 6P protocol)

6LoWPAN

Scheduling

Functions

IPv6

UDP ICMPv6

RPL6LoWPAN

NB
COAP (OSCORE)

COJP APPLICATIONS

Figure 2.3: The stack proposed by the 6TiSCH WG.

and securely joining a 6TiSCH network and minimal resource scheduling [36,
37,38]. All these specifications are documented in active IETF drafts or Request-
for-Comments (RFC) and many of the proposed concepts are thus still being
improved at the time of writing.

A complete overview of the stack proposed by 6TiSCH, starting at the link-
layer (more information on possible PHY layers is given in Section 2.2.1), is
shown in Figure 2.3. At the link-layer, it is obvious that the IEEE 802.15.4 TSCH
MAC mode is used to provide the low-operation and wire-like reliability as
discussed in Section 2.2 [27]. The 6TiSCH Operation Sublayer (6top), proposed
by the 6TiSCH WG, sits just above the IEEE 802.15.4 TSCH MAC layer and
contains the 6top Protocol (6P) protocol and one or more Scheduling Functions
(SFs) [39]. The 6P protocol facilitates distributed scheduling in 6TiSCH networks
by enabling neighbor negotiation for reserving TSCH cells, as explained in
further detail in Section 2.3.2. A SF decides when and how to add TSCH cells
to the schedule to answer the application’s requirements. Section 2.3.3 gives
an overview of different types and examples of 6TiSCH scheduling approaches.
The remainder of the 6TiSCH stack proposed is standardized by other IETF
WGs (except for Constrained Join Protocol (COJP), which is also developed by
the 6TiSCH WG), but collaboration with the 6TiSCH WG and the development
of the 6TiSCH specifications has also driven the further improvement of these
standards. On top of the 6top sublayer, the IPv6 over Low-Power Wireless
Personal Area Network (6LoWPAN) layer refers to a set of standards that enable
transporting IPv6 datagrams on top of the constrained MAC layer. The entire
6LoWPAN framework contains specifications for IPv6 and User Diagram Protocol
(UDP) header compression, neighbor discovery and fragmentation enabling IPv6
in the stack [40,41,42,43,44]. The Routing Protocol for Low-power and Lossy

6TISCH: INDUSTRIAL WIRELESS NETWORKS 15

network (RPL) is used as it is a specialized routing protocol for wireless networks
limited by low power consumption and susceptible to packet loss [45,46]. RPL
uses Internet Control Message Protocol for IPv6 (ICMPv6) to encapsulate its
routing control messages [47]. There is no mandatory RPL Objective Function
(OF) specific for 6TiSCH networks, as this is left implementation-specific to
meet the application’s requirements. A more in-depth RPL overview is given in
Section 2.3.4. The transport layer uses the connection-less UDP as opposed to a
connection-oriented approach such as Transport Control Protocol (TCP) [48].
At the application layer, Constrained Application Protocol (COAP) is chosen as
the web transfer protocol. COAP can easily interface with Hypertext Transfer
Protocol (HTTP) to integrate with the Web while it was designed for constrained
environments, maintaining simplicity and very low overhead [49]. COJP is
used to let a new node securely request admission to a 6TiSCH network [37].
Requiring only minimal overhead for joining, COJP is a lightweight protocol over
COAP and Object Security for Constrained RESTful Environments (OSCORE),
which is a method for application-layer protection of COAP [37,50].

In addition to the stack, the 6TiSCH WG also proposes 3 additional specifica-
tions: a minimal 6TiSCH profile, a minimal security framework and the Minimal
Scheduling Function (MSF) [36,37,38]:

• The minimal 6TiSCH profile describes a minimal mode of operation, pro-
viding a baseline set of parameters to configure different key protocols of a
6TiSCH network (such as different TSCH and RPL parameters) [36]. It al-
locates a so-called minimal cell in the TSCH schedule by reserving a shared
cell operating in slotted-ALOHA fashion (as explained in Section 2.2) that
provides bandwidth for network advertisements (i.e., IEEE 802.15.4 En-
hanced Beacons (EBs)) and join traffic, enabling network and security
bootstrapping, as shown in Figure 2.2.

• The minimal security framework describes exactly how a node securely
joins a 6TiSCH network, by providing the COJP protocol [37]. It defines
how a new node, called a pledge, joins a network by exchanging a join
request and join response with a central entity called the Join Registrar/-
Coordinator (JRC). To reach the JRC, the pledge communicates over an
end-to-end secure channel provided by OSCORE with one of its radio
neighbors that already joined the network, called the Join Proxy (JP), and
that serves an application-level relay to the JRC. After successful authen-
tication and authorization, the JRC provides the pledge with link-layer
cryptographic keys and other parameters (e.g., a short address).

• The MSF specification provides a complete joining process (with among
others, scanning for EBs with network information, the installment of
resource cells to the JP, securely joining the network, the selection of the
routing parent and the negotiation of the first transmission cell to/from
that routing parent). In addition, it defines a minimal scheduling approach,
which is considered the default SF of 6TiSCH [38]. To provide all of

16 CHAPTER 2

this, the MSF specification is built upon the previously described 6TiSCH
minimal profile, the 6P protocol and the minimal security framework,
and it is also closely related to the RPL standard [36, 37, 39, 45]. In
Section 2.3.3.4, we explain the MSF cell management for a joining node
and the scheduling approach in more detail.

2.3.2 6top Protocol

6P allows neighboring nodes in a 6TiSCH network to negotiate and subsequently
allocate cells in their TSCH schedule [39]. Together with one or more SFs, 6P is
part of the 6top layer, i.e., a layer just above the IEEE 802.15.4 TSCH MAC layer.
A SF has the task of employing 6P to facilitate the application’s requirements.

6P provides commands to add, delete, relocate, count, list and clear cells
in the schedule of a neighbor, and additionally it allows to signal generic (SF)
commands to other nodes. All such 6P messages are encapsulated within the
IEEE 802.15.4 IE structure, which was defined in the standard for the distribution
of additional MAC information. A complete negotiation between 2 nodes, is
called a 6P transaction. 6P facilitates both 2-step and 3-step transactions. A
2-step transaction to negotiate new cells, as illustrated in Figure 2.4, between
node X and node Y means that node X sends a 6P ADD Request to node Y,
specifying the number of cells it wants and the list with cells out of which node
Y can pick, with a cell being (t imeO f f set, channelO f f set). From the moment
the 6P Request is transmitted to node Y, the suggested cells are locked at node X,
meaning that no other transaction going on at node X can use these cells. When
the ACK of the 6P Request is received, a timer is set to abort the transaction
when the receiver did not respond when the timer expires (i.e., the locked cells
will be freed). Node Y answers with a 6P Response containing the cells that suit
node Y according to its SF. The cells that node Y responded to node X in the
6P Response are locked until the ACK is received at node Y. In contrast, in a
3-step transaction, not node X but node Y would propose cells in its Response
message towards node X. Subsequently, node X would send a confirmation with
acceptable cells.

2.3.3 Scheduling Functions

To fulfill the needs of a network application, a 6TiSCH node needs both the
6P protocol and a SF. While the former facilitates the cell negotiation between
nodes, the latter decides when to add or delete cells in the TSCH schedule and
can try to optimize one or more metrics such as latency and/or energy efficiency.
A node may support different SFs at the same time and each SF is identified
by a SFID. Because of its importance in 6TiSCH networks, there has been a
large research effort to scheduling approaches and over the years, also the
6TiSCH WG is doing efforts to standardize a default approach, i.e., MSF [38].
The different SFs can be subdivided in 3 types: centralized, distributed and

6TISCH: INDUSTRIAL WIRELESS NETWORKS 17

Node X Node Y

6P ADD REQUEST
Type = REQUEST

Code = ADD

SeqNum = 54

NumCells = 2

CellList = [(3, 2), (4, 6), (8, 8)]

6P ADD RESPONSE
Type = RESPONSE

Code = SUCCES

SeqNum = 54

NumCells = 2

CellList = [(4, 6), (8, 8)]

Timeout

ACK

ACK

Cells

Locked

Cells

Locked

Figure 2.4: A 2-step 6P transaction.

autonomous scheduling. However, a SF can also be a combination of these
types, e.g., MSF combines distributed and autonomous scheduling.

2.3.3.1 Centralized Scheduling

A centralized scheduling approach requires a central entity that builds the
schedule for all nodes, based on reported or monitored network information.
They typically have the advantage of being able to build near-optimal, collision-
free schedules that approach the theoretical optimum. However, scalability
limitations and the extra signaling overhead make centralized schedulers less
interesting for dynamic network topologies. A well-known example of a cen-
tralized scheduler is Traffic Aware Scheduling Algorithm (TASA), proposed by
Palattella et al. [51]. It uses matching and coloring procedures to build a TSCH
schedule and assumes full topology and traffic awareness.

2.3.3.2 Distributed Scheduling

In networks with a distributed scheduling approach, nodes maintain their own
schedule. They negotiate new cell allocations with neighbor nodes using the
6P protocol. These networks typically scale better compared to centralised
approaches because there is less signaling overhead. However, less network
information also makes it more complex to build efficient schedules that are
responsive to the traffic’s requirements, while minimizing energy consumption.

One of the earliest distributed scheduling functions was the 6TiSCH Experi-
mental Scheduling Function (SFX) which was standardized by 6TiSCH WG as

18 CHAPTER 2

Scheduling Function Zero (SF0) before, but originally introduced as On-the-Fly
Scheduling Function (OTF) by Palattella et al. [52,53,54]. SFX makes an explicit
difference between allocated and used cells: used cells are the allocated cells
which are actually used to send traffic to that neighbor (which can be a subset
of the allocated cells to that neighbor). Subsequently, SFX dynamically adapts
the amount of allocated cells between two neighbors whenever the number of
used cells changes. The exact event that triggers when to check if the number of
used cells changed, is implementation-specific, but can for example be checked
periodically (i.e., a so-called housekeeping period). Whenever SFX is triggered,
it runs its cell estimation algorithm that calculates the new number of required
cells it would need: it adds the current number of used cells and an extra
number of cells (i.e., the overprovision parameter which is calculated as a
percentage of the current number of cells and serves to account for unexpected
traffic). This total is passed to the allocation algorithm which checks if the
difference between the current number of allocated cells and new total required
cells exceeds the SFX (de-)allocation threshold. If so, SFX randomly deletes
or allocates one or more cells to the neighbor. Based on SF0/SFX, Chang et
al. developed the Low Latency Scheduling Function (LLSF) that uses the same
traffic adaptation algorithm, but daisy-chains cells over the different links up to
the root, rather than picking them randomly [55]. This leads to lower latency for
packets traversing from the source node to the root. The idea of daisy-chaining
cells was integrated in ReSF, the SF proposed in Chapter 4.

Over the years, research on distributed scheduling approaches has spiked [55,
56, 57, 58, 59, 60, 61, 62, 63]. For example, DeTAS is the distributed mode of
the previously mentioned centralised TASA approach [56]. It minimizes buffer
overflows and allows for efficient queue management using a so-called macro-
schedule that contains micro-schedules (with alternating TX and RX cells). Mu-
nicio et al. focus on improving scalability with the DeBras scheduler by utilizing
selective broadcasting to inform other nodes on each other’s schedules [57]. The
Wave SF builds a schedule with so-called waves with non-conflicting transmis-
sions to target minimised delays of data collected at the sink [58]. In Chapter 4,
we discuss more distributed approaches related to low-latency scheduling.

2.3.3.3 Autonomous Scheduling

A recent advancement in TSCH scheduling, is the shift towards autonomous
scheduling. Nodes independently add/delete so-called autonomous cells to/from
their schedule, responding to available information from the routing layer. For
example, when a node chooses a new preferred routing parent, the cell to the
old parent is removed and a cell to the new parent is automatically added. There
is no need for node negotiation (i.e., 6P transactions), thereby avoiding the
disadvantages of extra signaling overhead. The calculated time and channel
offset of an autonomous transmission/receiving cell are based on a hash of an
identifier of the transmitting or receiving node (e.g., MAC address or unique net-
work node ID). S. Duquennoy et al. were the first to propose such an approach,

6TISCH: INDUSTRIAL WIRELESS NETWORKS 19

called Orchestra. It runs scheduling rules that describe how to maintain TSCH
slotframes (for different traffic types) and (autonomous) slots as a function
of the routing topology. S. Kim et al. proposed the ALICE scheduling function
that implements directional link-based autonomous scheduling to minimize
contention/collision issues that were observed with Orchestra scheduling. Esca-
lator is another interesting approach that focuses on minimizing the end-to-end
delay by daisy-chaining time slots up to the sink in an autonomous fashion [64],
in contrast to the distributed LLSF approach. Finally, TESLA is a traffic-aware
elastic slotframe adjustment scheme that aims to minimize energy consumption
while maintaining the network’s high reliability. In contrast to Orchestra and
ALICE, it combines autonomous and distributed approaches to offer a robust,
but still flexible scheduling solution.

2.3.3.4 Minimal Scheduling Function

MSF is considered as the default scheduling approach for 6TiSCH networks
and the successor of the SF0 and SFX SFs [38]. Next to a scheduling approach,
its specification also contains the exact steps to manage resource cells while
bootstrapping the network. Therefore, the specification is heavily dependent on
the minimal security framework specification (as explained in Section 2.3.1) and
RPL. MSF combines an approach of autonomous cells and distributed scheduling.

MSF uses autonomous cells for initial bootstrapping and the transport of join
traffic. A node always keeps an autonomous RX cell installed in the schedule
(after synchronization), while it only installs an autonomous TX cell in the
schedule when it has to send a frame (and removes it afterwards). During the
join process, after receiving EBs advertising the TSCH network, the pledge (i.e.,
the node that wants to join the network) installs an autonomous transmission
(TX) cell to a chosen JP (one of the nodes from which it received EBs). This JP
receives the Join Request in its autonomous reception (RX) cell. The values in
the (time slot offset, channel offset) tuples that represent these autonomous
cells are computed as a hash of the layer 2 address of the receiving node
(using the SAX hash function) [65]. When forwarding the Join Response (with
cryptography keys and other parameters) from the JRC back to the pledge,
the JP also uses an autonomous TX cell to the pledge that receives the Join
Response in its autonomous RX cell. In both cases, the autonomous TX cells
are removed directly after the transmission. Using those cryptography keys,
a node can decrypt incoming routing information messages (i.e., Destination
Oriented Directed Acyclic Graph Information Objects (DIOs), see Section 2.3.4)
and it can choose a preferred routing parent. When the node has chosen a
preferred parent, it installs an autonomous TX cell to this parent to send out
a 6P ADD Request to request 1 negotiated cell to its parent. The autonomous
TX cell is again removed after the transmission of the request. The 6P ADD
Request is received in the autonomous RX cell of the parent. Subsequently, the
communication of the 6P ADD Response also happens in autonomous TX and RX
cells, in opposite direction. At the end of the joining process, the node/pledge

20 CHAPTER 2

sends out its own EBs and routing messages on the minimal cell, has 1 installed
autonomous RX cell and 1 negotiated cell to its preferred parent.

Once a node has joined the network it can add/delete/relocate negotiated
cells (i.e., cells scheduled with 6P) with the selected parent in a distributed
fashion to dynamically support the application traffic. To do so, it monitors
the current usage of the cells it has to its preferred parent by incrementing
numCellElapsed at each elapsed cell and the numCellUsed each time the elapsed
cell was effectively used to send or receive a frame to that parent. When
numCellElapsed equals MAX_NUM_CELLS, MSF checks to see if the number of
used cells numCellUsed is within bounds. MSF issues a 6P ADD or DELETE
Request depending on if more or less resources are needed to adapt to the traffic.
The value of MAX_NUM_CELLS can be changed to adapt to the traffic type of the
network (i.e., smaller values reduce latency for bursty traffic, while larger values
decrease the 6P overhead in case of periodic traffic), but finding a good value,
especially with varying traffic loads, might not always be straightforward [66,67].
MSF also has a relocation procedure for cells of which the PDR is suspiciously
low compared with other cells to that same parent. This can happen when
two disjoint pairs of nodes allocate the same cell in the schedule (i.e., called a
schedule collision in the MSF context) and thereby disrupting each other’s signal.
If this is the case, the node issues a 6P RELOCATION request to its parent to
move the cell to another location in the schedule. This method of relocating
cells has proven effective by Muraoka et al. [68].

2.3.4 RPL

The RPL routing protocol is a distance vector routing protocol that can build
bidirectional routes between a border router and up to possibly thousands of
resource-constrained nodes [45]. To do so, RPL builds a so-called Destination
Oriented Directed Acyclic Graph (DODAG), which is rooted at the border router.
This means that the routing topology is organised in a tree topology in which
each node can have zero or more child(ren), and one or more parent(s). A node
that has no children, is a leaf node, and the node in the tree that does not have
any parents, is the root node of the tree. Each network may have one or more
RPL Instances, with one Instance containing one (or even more) DODAG(s) with
its own root(s). These RPL Instances can be optimized for different application
objectives.

The location of a node in the DODAG is determined by the so-called Rank
value. The node calculates this value itself and disseminates this information,
in DIO messages, which are - like all RPL control messages - encapsulated
in ICMPv6 messages. These DIO messages contain information that allows a
node to discover a RPL Instance, learn its configuration parameters, select a
parent set, and maintain the DODAG. Broadcasting of those DIO messages is
managed by the Trickle algorithm [69]. To calculate its Rank value, the RPL
node applies an Objective Function (OF) that uses one or more routing metrics
to approximate the distance of the node to the DODAG root. The OF also defines

6TISCH: INDUSTRIAL WIRELESS NETWORKS 21

how to select the preferred routing parent(s) of the node, which are used to
propagate data upwards to the root. OFs are implementation-specific, but the
most commonly used ones are Objective Function Zero (OF0) and Minimum
Rank with Hysteresis Objective Function (MRHOF) [46, 70]. The former is
considered the basic OF for an RPL network, while the latter applies hysteresis to
improve Rank stability. While both allow various routing metrics and constraints
(which can be disseminated in DIOs), by default both OFs (suggest to) use
Expected Transmission Count (ETX) metric to compute the Rank [71]. When a
node has selected its routing parent(s), it transmits a Destination Advertisement
Object (DAO) message containing destination information upwards along the
DODAG in order to also support downwards traffic. RPL supports a storing
and a non-storing mode. In the former, every node stores a routing table with
information learnt from received DAOs while in the latter only the root keeps
such a table.

The minimal 6TiSCH profile mandates to use RPL in non-storing mode (while
nodes which are capable should use the storing mode), and as the OF it must
use OF0 combined with the ETX metric [36].

2.3.5 6TiSCH Implementations & Hardware

As the need for IP-compliant IIoT solutions grows, 6TiSCH implementations can
be found in more and more reference platforms for constrained (IoT) devices.
As such, 6TiSCH can be found in at least the following well-known and estab-
lished open-source projects aiming at IoT: OpenWSN, Contiki-NG, RIOT and
TinyOS [72,73,74,75]. As both OpenWSN and Contiki-NG are used during the
research in this thesis, we will shortly highlight them.

The OpenWSN project is a fully standards-based protocol stack based on
the IEEE 802.15.4e TSCH link layer, also featuring the IPv6-enabled IETF up-
per stack (6LoWPAN, RPL, COAP), written in C. OpenWSN is considered the
reference 6TiSCH implementation, closely following the standardization efforts
of the WG [72, 76]. The OpenWSN firmware is often related with the Open-
Mote hardware (as the OpenMote company was a spin-off of the OpenWSN
project), of which the newest OpenMote B board (see Figure 2.5a1) supports the
IEEE 802.15.4g-compliant Atmel AT86RF215 radio chip. The earlier OpenMote-
CC2538 also supports 2.4 GHz and sub-GHz communication by combining the
System-on-a-Chip (SoC) CC2538 (that features the ARM Cortex-M3) and the
CC1200 radio chip, both products of Texas Instruments [76,77]. The OpenMote-
CC2538 device is used for the TSCH energy model in Chapter 3, while the
OpenMote B is used in Chapter 4. In addition, the OpenWSN platform is also
ported to many well-known IoT hardware platforms with among others, the
TelosB, Nordic NRF51822 and the IoT Lab M3 devices [78,79,80].

Contiki is also an open-source, cross-platform operating system, also written

1https://www.industrialshields.com/web/image/product.template/721/
image?unique=3a7b8c9

https://www.industrialshields.com/web/image/product.template/721/image?unique=3a7b8c9
https://www.industrialshields.com/web/image/product.template/721/image?unique=3a7b8c9

22 CHAPTER 2

(a) The OpenMote B. (b) The Zolertia RE-Mote.

Figure 2.5: Two 6TiSCH-compliant IIoT devices, supporting the sub-GHz and
2.4 GHz frequency bands.

in C, aiming at constrained devices, while featuring a full IPv6 stack [73]. While
already started in 2003, nowadays the Contiki operating system still has a large
community in both academia and industry. The Contiki fork Contiki-NG was later
released in 2017, and focuses on dependable (secure and reliable) low-power
communication and standard protocols (for next-generation IoT devices), such as
IPv6/6LoWPAN, 6TiSCH, RPL, and COAP. Thereby it offers a general clean-up
of the original project, together with an updated 6TiSCH with 6P and 6top
support (and other features for constrained IoT devices) [81]. While Contiki-NG
is also able to run on a variety of state-of-the-art constrained IoT hardware, it
is often used on the Zolertia Zoul platform, for example the Zolertia RE-Mote
(see Figure 2.5b)2 [82]. Similar to the OpenMote-CC2538, this board is based
on the Texas Instruments’ CC2538 SoC, combined with the CC1200 radio chip
to support communication in both frequency bands. The Contiki-NG platform
together with the Zolertia Re-Mote devices are used for the TSCH slot bonding
implementation in Chapter 6.

2.3.6 6TiSCH Simulation

Network simulation allows for evaluating new research contributions in a
standard-compliant manner without the practical burden of real-world deploy-
ments, while still being more realistic and accurate than mathematical modelling.
For those reasons, the 6TiSCH simulator was developed [83].

The 6TiSCH simulator is a Python-based discrete-event simulator that allows
for rapid prototyping in large-scale networks up to several hundreds of nodes.
The simulator includes a 6TiSCH standard-compliant implementation (in a
behavioral sense) of TSCH, 6P, MSF, COJP, RPL (non-storing mode, OF0),
6LoWPAN Fragmentation and the Minimal 6TiSCH Configuration [36,37,38,39,
45,84]. As such, one can easily test new research contributions including among

2https://zolertia.io/wp-content/uploads/2017/05/re-mote-1-zolertia.
jpg

https://zolertia.io/wp-content/uploads/2017/05/re-mote-1-zolertia.jpg
https://zolertia.io/wp-content/uploads/2017/05/re-mote-1-zolertia.jpg

6TISCH: INDUSTRIAL WIRELESS NETWORKS 23

others network formation, scheduling approaches and routing optimizations in
a full 6TiSCH solution with flexible parameter configuration. Additionally, the
simulator integrates the energy model introduced by Vilajosana et al. which
allows to determine the energy footprint of the evaluated solutions [77]. Other
metrics such as packet delivery ratio and latency are easily retrieved and one
can use the web-based Graphical User Interface (GUI) to monitor the network
topology, the TSCH schedule and a pre-determined set of key metrics in real-time.
Because of its low-complexity and the continuous support of the 6TiSCH WG,
the 6TiSCH simulator was used throughout this thesis as the primary simulation
tool. As the development of the 6TiSCH simulator is an ongoing process, the
simulator implementation state also changed during the different chapters of
this book. Therefore, each chapter refers to the specific simulator version that
was used to conduct the research.

However, there are also other options such as Cooja and OpenSim which are
both emulators, not simulators, of the Contiki(-NG) and OpenWSN platforms
respectively [72,73,85,86]. Being emulators, they run the binary that can also
be flashed on the actual hardware allowing for bit-level accuracy of real-world
implementations (except for the physical conditions). However simultaneously,
it also limits their scalability up to only tens of nodes and the flexibility to
implement new solutions rapidly. Recently, Elsts proposed a new 6TiSCH discrete
event simulator TSCH-Sim that shows to be an order of magnitude faster in
simulating very large networks (e.g., 10 000 nodes) in comparison with the
6TiSCH simulator and Cooja [87]. Other well-known network simulators such
as NS-3 or Omnet++ do not support 6TiSCH [88,89].

Chapter 3

TSCH Energy Modeling

The content of this chapter is partially based on:

• Glenn Daneels, Esteban Municio, Bruno Van de Velde, Glenn Ergeerts,
Maarten Weyn, Steven Latré, and Jeroen Famaey (2018). Accurate
Energy Consumption Modeling of IEEE 802.15.4e TSCH using Dual-band
OpenMote Hardware. Sensors, 18(2), 437. [Impact Factor: 3.275]

3.1 Introduction

Low energy consumption is generally expected of connected devices, while
at the same time being confronted with challenges such as a low expected
manufacturing cost, mobility while being connected and deployment in of-
ten difficult-to-reach (industrial) places. This makes minimizing the energy
consumption, while still fulfilling strict reliability demands, one of the major
challenges of IIoT communications.

To achieve minimal energy consumption while maintaining high reliability,
many research works have been conducted on MAC protocols featuring these
requirements [90]. An important development was the IEEE 802.15.4 MAC
layer and more specifically the IEEE 802.15.4e MAC amendment that proposed
the TSCH mode [12,27]. As already discussed in Section 2.2, TSCH uses channel
hopping to improve reliability while at the same time being energy-efficient,
by using a time-synchronized schedule that tells a node exactly when to send
and receive data and thus avoids wasting energy during contention periods and
idle listening. The deterministic nature of TSCH scheduling allows for precise
modeling of the energy consumption as has been done in the work by Vilajosana
et al. [91]. Such a model allows for a detailed energy analysis of new TSCH
scheduling functions or new protocols on top of the TSCH MAC layer (e.g.,
routing protocols), during simulated or real-world experiments.

26 CHAPTER 3

In this chapter, we propose a novel, more accurate and up-to-date energy
consumption model for the IEEE 802.15.4e TSCH mode. It consists of two
main contributions. First is a new energy consumption model, based on the
work by Vilajosana et al. [91], built from the ground up. It includes a more
up-to-date and elaborate set of time slots and states, while using state-of-the-art
IoT hardware and firmware. Additionally, the model is extended to support
variable packet sizes, a feature absent in the previous work, that allows for a
more accurate energy consumption analysis for all packet sizes. As a second
contribution, new state durations and state energy consumption measurements
are presented for both the sub-GHz (i.e., 868 MHz in Europe) and 2.4 GHz
frequency bands, using state-of-the-art OpenMote hardware [77,92]. Moreover,
we experimentally verify the accuracy of our model by comparing the calculated
values for both the sub-GHz and 2.4 GHz band to the measured values and
compare the model to that of Vilajosana. Finally, the new measurements are
used to analyze the end-to-end performance of a TSCH network using the official
6TiSCH simulator [83].

The remainder of this chapter is structured as follows. In Section 3.2, we give
information about the used OpenMote hardware and OpenWSN firmware and
the related work on energy modeling. Subsequently, Section 3.3 introduces the
model itself. In Section 3.4, the measurement methodology is discussed and the
measurement values are presented. Afterwards, the proposed model is evaluated
in Section 3.5 by analyzing calculated values and measured consumption values
and comparing the model to a state-of-the-art model. That section also shows
the results of the TSCH network simulations to show the energy consumption
effects of 868 MHz and 2.4 GHz communication. Finally, Section 3.6 presents
the conclusions of our work.

3.2 Background and Related Work

While we already introduced the OpenMote hardware and OpenWSN firmware
in Section 2.3.5, in this section we specify the exact version we used for this
research. Afterwards, we compare the work in this chapter to existing energy
consumption models.

3.2.1 OpenMote Hardware

The measurements presented in this chapter are performed using OpenMote, a
modular open-hardware ecosystem designed for the industrial IoT [77]. The
platform was developed at UC Berkeley and is designed to efficiently implement
IoT standards such as 6TiSCH.

The OpenMote-CC2538 is the core of the OpenMote hardware ecosystem. It
is the most important component, and other components (e.g., the OpenBattery)
are considered to be extensions of it. It features a Texas Instruments CC2538

TSCH ENERGY MODELING 27

SoC that consists of a 32-MHz micro-controller with 32 kB of RAM and an IEEE
802.15.4-compliant 2.4 GHz radio.

The OpenUSB version used here has a CC1200 radio chip. Unlike the CC2538,
which has a 2.4 GHz radio, the CC1200 is a radio transceiver that operates in the
900-MHz range, e.g., the 868 MHz band in Europe. This allows for longer-range
communication between the motes. As OpenUSB only holds the CC1200 radio
transceiver, it needs to be connected to the OpenMote-CC2538, which holds the
microprocessor to control it.

3.2.2 OpenWSN

OpenWSN is an open-source project that implements the 6TiSCH architec-
ture [72], as discussed in Chapter 2. The newest update of the OpenWSN
firmware at the time of writing was used when rebuilding and extending the
energy model and is made separately available [93]. The hierarchical design of
the project makes it relatively easy to port the project to new hardware platforms.
Hardware drivers for most common IoT hardware are already available as part
of the OpenWSN project itself.

Next to the firmware, useful software such as the OpenVisualizer is also pro-
vided (and used in this research). Although the main use of the OpenVisualizer
project is to connect the OpenWSN network to the Internet, it also provides the
ability to monitor the network. The tool shows the internal state of all the motes
that are physically connected to the computer running the OpenVisualizer, e.g.,
the neighbor table, scheduling table and packet queue. It also has the ability to
run simulated motes and to debug the communication with Wireshark [94].

3.2.3 TSCH Energy Modeling

As minimizing the energy consumption is one of the major challenges of IoT
networks, a lot of research has already been conducted on this topic. Some of
the research already focused on TSCH energy modeling.

Some works target specific features in TSCH. De Guglielmo et al. proposed
an analytical model of the IEEE 802.15.4e TSCH CSMA-CA algorithm that is used
in shared time slots [95]. The authors also observed that the capture effect has a
significant impact on the performance of the CSMA-CA algorithm. Papadopoulos
et al. investigated the impact of the guard time in TSCH [96]. The authors
decreased the guard time duration when motes were closer to their sink and
concluded that this results in significant savings in energy consumption without
compromising network reliability. While these works only aim at specific TSCH
elements, the proposed work in this chapter provides an energy consumption
model for the whole of the IEEE 802.15.4e TSCH mode. Other works such
as Juc et al. compared the performance of the TSCH and Deterministic and
Synchronous Multichannel Extension (DSME) modes of IEEE 802.15.4e [97].
The authors do not propose a model themselves. They observed that TSCH
mode tends to consume more energy than DSME mode. This is due to the

28 CHAPTER 3

large fixed guard time in TSCH and because DSME can aggregate multiple
acknowledgments and transmit a single group of acknowledgments.

Finally, Vilajosana et al. presented an energy model for TSCH networks,
using the OpenMote and OpenWSN for their experimental validation [91].
The values from the model were compared to measurements on the GINA and
OpenMote-STM32 platforms. This chapter continues the work of Vilajosana et
al., but explores several differences and improvements. As such, we propose a
model with an extra time slot type (i.e., TxDataRxNoAck), provide an extended
and a more up-to-date set of states per time slot and extend the model to support
variable packet sizes. Furthermore, the OpenWSN firmware has been continu-
ously updated, and the current software version has changed substantially since
the version used by Vilajosana et al. in 2013. Finally, by using the OpenMote-
CC2538 and OpenUSB board, this chapter focuses on state-of-the-art hardware.
This allows us to consider the TSCH energy consumption in both the sub-GHz
and 2.4 GHz band. To the best of our knowledge, we are the first to do this.
We also explicitly look at the difference in power consumption between using a
SoC and the case with a separate micro-controller and radio chip. All the steps in
developing the model are explained in detail, allowing it to be used for different
types of hardware by simply changing the measured consumption values.

3.3 TSCH Energy Model

In this section, the proposed TSCH energy model is introduced. First, all types
of time slots are discussed, followed by a more detailed examination of the
states in these time slots. Afterwards, the time slot energy model is presented.
Finally, we explain how the slot model could be adapted for use with different
hardware. The implementation of the proposed model is publicly available1.

3.3.1 TSCH Time Slots

A TSCH schedule can contain different types of time slots, i.e., cell types, to
indicate that a node should transmit, listen or put its radio to sleep. In IEEE
802.15.4e, seven different types of time slots can be identified:

• TxDataRxAck: The mote sends a frame during this time slot and receives
an ACK when the data have been received successfully.

• TxData: The mote sends a frame during this time slot, but does not expect
an ACK (e.g., broadcast or multicast frames such as RPL DIO messages).

• RxDataTxAck: The mote listens and receives a frame in this time slot
and replies with an ACK to indicate that it successfully received the frame.

1https://github.com/imec-idlab/TSCH-energy-model

https://github.com/imec-idlab/TSCH-energy-model

TSCH ENERGY MODELING 29

TRANSMITTER

RECEIVER

TXDATA

PREPARE

TXDATA

OFFSET

TXDATA

READY

TXDATA

DELAY
TXDATA

RXACK

OFFSET

RXACK

PREPARE

RXACK

READY

RXACK

LISTEN
RXACK

TX

PROC
SLEEP

RXDATA TXACK
RX

PROC
SLEEP

RXDATA

LISTEN

RXDATA

READY

RXDATA

PREPARE

RXDATA

OFFSET

TXDATA

OFFSET

TXDATA

PREPARE

TXACK

READY

TXACK

DELAY

CPU

RADIO

TXOFFSET

TXACKDELAY

AGT

PGT

TIME SLOT

TXACKTXACK

Figure 3.1: States in TxDataRxAck (transmitter) and RxDataTxAck (receiver)
time slots, together with the CPU and radio activity in the TxDataRxAck time
slot.

• RxData: The mote listens and receives a frame in this time slot, but no
ACK is sent (e.g., broadcast or multi-cast frames).

• RxIdle: The mote listens, but does not receive a frame in this time slot.

• Sleep: The mote does not transmit or receive during this time slot.

• TxDataRxNoAck: The mote sends a frame and expects an ACK, but no
ACK is received. This could be caused by propagation loss or a collision of
the data frame.

The proposed model divides each time slot into different states. Figure 3.1
illustrates this and presents a general overview of the activity of a transmitter
and receiver during a TxDataRxAck time slot and RxDataTxAck time slot,
respectively. Some of the states seen in Figure 3.1 consist of two parts: one
part where the CPU is active and one part where the CPU is sleeping. These
two parts are considered as separate states in our model. The state of the radio
in our model only changes at moments when the CPU state changes. This is
a simplification as in the real world, the radio state changes slightly before or
after this moment, typically while the CPU is active.

The remainder of this section explains the TxDataRxAck time slot in full
detail. The other slots are modeled similarly, and we limit the discussion to
highlighting the differences with the TxDataRxAck slot.

3.3.1.1 Time Slot TxDataRxAck

The different states of the TxDataRxAck time slot are shown in Figure 3.1, and
Table 3.1 lists the exact CPU and radio states at each moment. As can be seen
in the table, the CPU has two states, i.e., Sleep and Active, while the radio has
five states, i.e., Sleep, Idle, Listen, Transmit (TX) and Receive (RX).

At the beginning of each time slot, the CPU wakes up and performs the tasks
required for any slot. This includes incrementing the ASN and scheduling the
next state depending on the type of the slot. The CPU then sleeps again during
TxDataOffset until the moment the radio is needed.

30 CHAPTER 3

Table 3.1: States in a TxDataRxAck slot.

State CPU State Radio State

TxDataOffsetStart Active Sleep
TxDataOffset Sleep Sleep
TxDataPrepare Active Idle
TxDataReady Sleep Idle

TxDataDelayStart Active Idle
TxDataDelay Sleep TX
TxDataStart Active TX

TxData Sleep TX
RxAckOffsetStart Active Sleep

RxAckOffset Sleep Sleep
RxAckPrepare Active Idle
RxAckReady Sleep Idle

RxAckListenStart Active Idle
RxAckListen Sleep Listen
RxAckStart Active RX

RxAck Sleep RX
TxProc Active Idle
Sleep Sleep Sleep

During TxDataPrepare, the radio wakes up, the channel is set and the
bytes to transmit are loaded into the radio. The duration of this state is variable,
mainly because the time necessary to load the bytes depends on the frame size.
Since this state always starts at the same offset and has a variable duration, there
is some time left between the TxDataPrepare and the actual transmission.
During this TxDataReady state, the radio is in Idle mode, while waiting until
it is time to transmit. To minimize the energy consumption of the mote, the
duration of the TxDataReady state should thus be as short as possible.

The first byte behind the Start-of-Frame Delimiter (SFD) has to be transmitted
exactly TxOffsetms after the start of the time slot. In order to do so, the time
required to switch the radio from Idle to TX mode has to be taken into account.
The duration of the TxDataDelay equals the time between the TX command
being sent to the radio and the moment the SFD has been transmitted.

After the RxAckOffset that follows where the mote sleeps, the state
RxAckPrepare then prepares the radio again by waking it up and setting the
correct channel. Any time less than the maximum duration of RxAckPrepare
is then spent in the RxAckReady state.

The ACK is transmitted TxAckDelayms after the end of the TxData state.
Because the clocks of the transmitting and receiving node may not be perfectly
synchronized, the ACK might arrive slightly earlier or later than expected. The
radio is thus turned on at the start of the RxAckListen instead of just in time

TSCH ENERGY MODELING 31

for the data. If no ACK is received during the Acknowledgment Guard Time
(AGT) period, the mote turns off the radio and considers the transmission failed.
The duration of the AGT is defined as 1000µs in OpenWSN (i.e., the total length
of the time slot is 15 ms). When the clocks between the motes are perfectly
synchronized, the RxAckListen state has a duration of AGT/2 plus the time
to change the radio from Idle mode to RX mode (which is considered to be
instantaneous in OpenWSN).

During the TxProc state, the ACK is read from the radio and the transmission
is considered successful when the ACK is valid. The mote also synchronizes its
clock based on the offset between TxAckDelay and the actual data reception
time, if the ACK came from its parent in the network routing graph. For the
remaining part of the time slot, both the CPU and radio are in Sleep mode.

3.3.1.2 Time Slot RxDataTxAck

This time slot can be considered the opposite of the TxDataRxAck. The
states to handle the data in TxDataRxAck are found in handling the ACK in
RxDataTxAck and vice versa. All states of the RxDataTxAck time slot can be
found in Table A.1 in Appendix A.

The guard time for the data is however larger than the AGT that is used for
ACKs. The Packet Guard Time (PGT) determines how long the radio listens for
the data before the radio is turned off. When no data are received during the
PGT period, we classify the time slot as RxIdle instead of RxDataTxAck. In
OpenWSN, the PGT is defined as 2600µs.

3.3.1.3 Time Slot TxData and RxData

When no ACKs are required (e.g., for broadcasts), only the first half of the time
slot is used. During the TxData and RxData slots, the mote sleeps once the data
have been transmitted or received. The states for both TxData and RxData
are shown in Tables A.2 and A.3 in Appendix A, respectively.

3.3.1.4 Time Slot RxIdle

When the transmitter has no data to send, the slot that could have been a
TxDataRxAck becomes a Sleep slot. However, on the receiver side, a different
type of slot is needed to represent the behavior of the node: the RxIdle slot
occurs when the receiver expects data, but does not receive anything. The states
of RxIdle are shown in Table A.4 in Appendix A. The behavior of RxIdle is
not an error; it simply means that a slot was reserved, but the transmitter did
not have any data to send at that moment.

32 CHAPTER 3

3.3.1.5 Time Slot Sleep

In time slots where no data have to be transmitted or received, the node sleeps
during the whole duration of the slot. The CPU of the node only briefly wakes
up at the start of the slot, e.g., to increment the ASN. The states of the Sleep
time slot are shown in Table A.5 in Appendix A.

3.3.1.6 Time Slot TxDataRxNoAck

There are many error states in OpenWSN. The code would go into an error state
when, for example, the radio remains active too long or when the prepare state
lasts longer than the maximum allowed duration. It is unlikely that the code
would end up in most of these error states unless there is a configuration issue.
However, there is one error state that is likely to occur eventually: a missing
ACK. In the TxDataRxAck slot, data are transmitted and an ACK is received,
but in the slot that we refer to as TxDataRxNoAck, the ACK is expected, but
not received. In this case, the node stays in the RxAckListen state during the
AGT period and does not enter the RxAck state. After the AGT period, the radio
goes to sleep during the TxProc and Sleep state, as can be seen in Table A.6
in Appendix A.

3.3.2 TSCH Energy Consumption Model

Having identified all states per time slot, the model for the charge drawn during
a time slot can be constructed. The resulting charge (in coulombs) drawn from
the battery during a slot, QSlot , is represented by:

QSlot =
∑

State∈Slot

∆tState × IState (3.1)

with ∆tState and IState being the state duration and current drawn in each state,
respectively. The unit of the duration is milliseconds (ms), while the unit of the
current is milliamperes (mA), meaning that the unit of the resulting charge is
microcoulombs (µC). This can be used to calculate the total charge drawn for
each of the slot types discussed in Section 3.3.1.

Subsequently, the model previously proposed by Vilajosana et al. can be
employed to calculate the total charge drawn across a slotframe [91]. This
in turn can be used to compute the lifetime of a mote. That model, however,
has one major shortcoming. It does not consider the actual packet size when
calculating the charge drawn by a slot. Instead, it takes the consumed charge
values for the maximum packet size and scales those linearly based on the actual
packet size:

QNsent
slot =

Nsent

maxPktSize
×QmaxPktSize

slot (3.2)

With Nsent the number of bytes being sent in the packet and maxPktSize
the maximum packet size for which measurements were performed. However,

TSCH ENERGY MODELING 33

this leads to highly inaccurate estimates, especially for small packet sizes, as
the duration of most states with the slot is independent of the packet size. In
contrast, we propose a more accurate estimation of the charge drawn in a
slot QNsent

slot , based on actual measurements with different packet sizes. This is
achieved by expressing the duration of each state that depends on the packet
size, as a linear function of the packet size, rather than a fixed value for the
maximum packet size. This is further explained in Section 3.4.

3.3.3 Different Hardware Support

Since the model has an elaborate set of parameters, adapting the model to
different hardware while maintaining an equal level of accuracy is a burden-
some task. However, at the cost of a slight decrease in accuracy, the model can
easily be simplified in order to apply it to different hardware. For example,
one can set the duration of short states to zero (e.g., TxDataDelayStart and
RxAckOffsetStart) and only update the states that have the most impact on
consumption. Alternatively, the duration can be estimated instead of measured
as most durations will be very similar to the ones presented in this chapter.
Furthermore, the consumption of the CPU and radio does not have to be mea-
sured: these values can be found in the data sheet of the manufacturer. The
resulting model will be slightly less accurate, but no or only a few additional
measurements have to be made to use this model to estimate the charge drawn
by other TSCH hardware.

3.4 Measurements

This section first presents the setup used to measure the duration and energy
consumption of each state of each slot type. Afterwards, the measurements of
the time slot state durations are discussed together with how the duration values
are affected by the packet size. Finally, the consumption of each device state is
presented with a detailed discussion for each of the two evaluated radios.

3.4.1 Methodology

In this section, the necessary adaptations to the OpenWSN firmware, that al-
lowed performing the measurements, are briefly explained. Additionally, the
two measurement setups for both the state duration and energy consumption
measurements are discussed.

3.4.1.1 Firmware Changes

To perform valid measurements, the firmware code that toggles debug pins and
LEDs on the OpenUSB board was disabled. Furthermore, the serial communica-
tion code was also completely disabled because even when the OpenUSB is not

34 CHAPTER 3

Figure 3.2: Setup used to measure state durations with a connection from the
PB9 pin on the Gecko board (bottom) and to the PD2 pin on the OpenUSB (top).

connected to a computer, the code would still try to output data, unnecessarily
increasing power consumption.

In order to prepare the 2.4 GHz driver for the measurements, only small
adaptations had to be made to the original firmware2. The firmware for the
868 MHz driver however required additional implementation effort, as there
were no working drivers for the CC1200 radio chip on the OpenUSB at the
time of writing. Based on a branch of the official OpenWSN repository3, we
implemented a working CC1200 radio driver, which is publicly available4. The
data rate of both the 2.4 GHz and the 868 GHz drivers was set to 250 kbps.

3.4.1.2 State Duration Measurements

All state duration measurements were done using the EFM32GG-STK3700 Giant
Gecko Starter Kit from Silicon Labs [98]. The setup is shown in Figure 3.2. Using
the Gecko board, an OpenUSB pin was connected to pin PB9 of the Gecko board,
enabling the Gecko to measure how long the connected OpenUSB pin was made
low. The OpenMote firmware would then make the connected pin low at the
beginning of the measurement and high at the end of the measurement. The
output was sent over Serial Wire Output (SWO) to the console in the proprietary
software Simplicity Studio on the connected computer, where post-processing of
the duration data was applied [99]. The duration measurements were averaged
in case variability between different measurements was noticed.

2The 2.4 GHz measurements were performed using the repository at this commit: https:
//github.com/openwsn-berkeley/openwsn-fw/commit/5a29808.

3https://github.com/openwsn-berkeley/openwsn-fw/tree/develop_FW-493
4https://github.com/imec-idlab/openwsn-fw

https://github.com/openwsn-berkeley/openwsn-fw/commit/5a29808
https://github.com/openwsn-berkeley/openwsn-fw/commit/5a29808
https://github.com/openwsn-berkeley/openwsn-fw/tree/develop_FW-493
https://github.com/imec-idlab/openwsn-fw

TSCH ENERGY MODELING 35

3.4.1.3 Energy Consumption Measurements

In order to perform the different energy consumption measurements, a setup dif-
ferent from the Gecko setup, described in Section 3.4.1.2, was needed to be used.
As the consumption of the OpenMote hardware happened to exceed 50 mA (i.e.,
the maximum of the Gecko measuring range), we switched to using the Keysight
N6705B DC Power Analyzer [100]. Using the two-wire mode, the Voltage Com-
mon Collector (VCC) and Ground (GND) pins of the OpenMote-CC2538, in the
2.4 GHz measurement setup, and of the OpenUSB with the OpenMote-CC2538
attached, in the 868 MHz measurement setup, were connected to the power
supply output of the N6705B, which was configured to provide an input voltage
of 3.0 V. This is the nominal voltage of two serially-connected AA batteries,
which can be used to power an OpenMote via an OpenUSB or OpenBattery
module. The measurement setups for the 2.4 GHz and 868 MHz measurements
are shown in Figure 3.3. For the 868 MHz measurements, the OpenUSB has to
be attached to the OpenMote-CC2538 because the former only holds a CC1200
radio transceiver and needs the microprocessor on the latter to control it.

For most device states, the consumption was averaged over a period of
500 ms. However, some states (e.g., RX and TX states) only last as long as the
radio takes to send all bytes. For these states, the average was taken over a
period between 3 ms and 4 ms.

3.4.2 Time Slot State Durations

We measured the duration of each state in every time slot where the CPU is active.
The durations in which the CPU is sleeping can then be trivially calculated, using
the active durations and the timing constants found in OpenWSN firmware. The
total length of a time slot was set to 15 ms. The state durations for all time slots
are shown in Table 3.2 and Tables A.7–A.12 (in Appendix A).

States do not always have the exact same duration for a variety of reasons.
There can be multiple code branches (i.e., different execution paths); the packet
size can vary and have an influence; or the duration of an operation can simply be
variable (e.g., waking up the CC1200 chip). Therefore, multiple measurements
were executed to find a single duration that could be associated with the state.

Changing the mode of the CC1200 radio from Sleep to Idle takes between
246µs and 343µs, which causes every state where the radio wakes up to have
a variable duration. To avoid being susceptible to outliers, the wakeup time
was measured over ten thousand times, and an average duration of 273µs was
observed.

For states with multiple code branches, the median value of multiple mea-
surements was chosen. For example, in state TxProc, the execution path is
different when a data packet has no retries left. However, such small variations
of the duration only have a limited impact on the total slot consumption.

The durations of states where packets are loaded to and read from the
radio were measured before and after the radio was accessed. Afterwards, the

36 CHAPTER 3

(a) 2.4 GHz measurement setup.

(b) 868 MHz measurement setup.

Figure 3.3: Energy consumption measurement setups: for the 2.4 GHz mea-
surements, only the OpenMote-CC2538 was used, while for the 868 GHz mea-
surements, the power analyzer was connected to the OpenUSB to which the
OpenMote-CC2538 was attached.

communication with the radio for different packet sizes (from 0 bytes–125 bytes
with steps of 25 bytes) was measured. Linear interpolation was applied on
the measured durations to come up with a formula that fits well to all packet
sizes. The difference in durations in states where data are transferred between
the radio and CPU (e.g., TxDataPrepare and TxProc) is caused by the way
these bytes are transferred: the CC2538 radio is combined with the CPU in one
chip, so data can just be copied in/out of memory while the CC1200 needs to
use the slower Serial Peripheral Interface (SPI) to transfer data to and from
the CPU in the CC2538 chip, resulting in longer durations. The duration of
transmitting and receiving also depends on the packet size. Since the radio

TSCH ENERGY MODELING 37

Table 3.2: State durations in the TxDataRxAck time slot with a total length of
15 ms and s being the packet size in bytes.

State Duration (µs)

CC2538 CC1200

TxDataOffsetStart 105 105
TxDataOffset 1515 1454
TxDataPrepare 60+ (s× 0.875) 738+ (s× 8.152)
TxDataReady 1954− (s× 0.875) 1276− (s× 8.152)

TxDataDelayStart 17 58
TxDataDelay 349 369
TxDataStart 16 16

TxData (3+ s)× 32− 16 (3+ s)× 32− 16
RxAckOffsetStart 32 75

RxAckOffset 3769 3116
RxAckPrepare 38 587
RxAckReady 267 328

RxAckListenStart 17 58
RxAckListen 483 442
RxAckStart 16 15

RxAck 880 881
TxProc 225 619
Sleep 5177− (s× 32) 4783− (s× 32)

has a baud rate of 250 kbps, the time it takes to transmit one bit is 4µs, which
makes the time to transmit a byte 32µs. To calculate the duration, the amount
of transmitted bytes has to be multiplied with 32µs. The PHY header byte and
two-byte Cyclic Redundancy Check (CRC) also have to be included as they are
sent with the packet. To verify that this calculation is valid, the time between
the start-of-frame interrupt and the end-of-frame interrupt was measured: the
average error was only 0.13%.

To model the guard time, we assumed that the clocks are synchronized. Our
model thus assumes that the packet always arrives exactly in the center of the
guard interval.

3.4.3 Device State Current Consumption

The consumption of the OpenMote-CC2538 connected to the OpenUSB was
measured during all possible device states. Since the CPU and radio are the
two components responsible for the majority of the current consumption, these
device states are all combinations between CPU and radio modes. Instead of
measuring the consumption of the CPU and radio separately, we measured the
consumption of the entire device. The result is that any current consumption

38 CHAPTER 3

Table 3.3: Current drawn during different device states.

CPU State Radio State Consumption (mA)

CC2538 CC1200

Active Sleep 13.97 15.06
Active Idle 13.97 17.49
Active Listen 31.14 40.13
Active RX 26.94 50.63
Active TX 31.47 54.26

Sleep (PM_NOACTION) Sleep 10.06 11.42
Sleep (PM_NOACTION) Idle 10.06 13.82
Sleep (PM_NOACTION) Listen 27.18 36.18
Sleep (PM_NOACTION) RX 23.16 46.73
Sleep (PM_NOACTION) TX 27.55 50.24

Sleep (PM2) Sleep 0.00156 0.27
Sleep (PM2) Idle 0.00156 2.64

not related to the CPU or radio (e.g., SPI or timers) are measured as part of the
CPU usage. This allows for a slightly more accurate prediction of the charge
drawn compared to models that ignore these other components.

3.4.3.1 2.4 GHz CC2538 Radio

In Table 3.3, the consumption values of the different device states when using
the CC2538 radio, i.e., the 2.4 GHz radio, are shown. The values for the TX state
were measured when the transmit power of the radio was set to 0 dBm. When
the transmit power was set to 3 dBm, i.e., the current default in OpenWSN, the
consumption values of the TX states are 33.04 mA and 29.01 mA, for the CPU
in Active and Sleep state, respectively.

The CC2538 radio has an identical consumption of 13.97 mA when the radio
is in Sleep or Idle state because the OpenMote-CC2538 consists of both the
CPU and radio, and the radio itself does not have a separate Idle or Sleep state.
Instead, it has a single Off state for which the consumption was used for both
the Sleep and Idle states. Thus, the CC2538 radio has only four states: TX, RX,
Listen and Off.

As expected, the difference in the consumption between an active or a
sleeping CPU is nearly identical for all radio states: the CPU in active mode
consumes on average 3.92 mA more than when being in sleep mode, with a
standard deviation of only 0.07 mA.

When switching the CPU of the CC2538 chip to the deeper sleep mode
PM2 instead of PM_NOACTION5, while the radio was in the Sleep and Idle state

5http://www.ti.com/product/CC2538/datasheet/

http://www.ti.com/product/CC2538/datasheet/

TSCH ENERGY MODELING 39

(which are actually both the Off state in the CC2538 radio), the consumption
dropped to 1.56µA.

3.4.3.2 868 MHz CC1200 Radio

The device state consumption values when using the CC1200 radio, i.e., 868 MHz,
are shown in Table 3.3. The values for the TX state were measured when the
transmit power of the radio was set to 0 dBm. When the transmit power is
set to 14 dBm, i.e., the current default in OpenWSN, the consumption of the
TX states is 91.94 mA for an active CPU and 88.25 mA for a sleeping CPU. The
CC1200 radio Sleep state is the Idle state with the crystal oscillator turned off6.
Consumption is expected to be lower when the Sleep state of the CC1200 chip
is used or when the CC1200 is turned completely off.

As expected, the difference in the consumption between an active or a
sleeping CPU is nearly identical for all radio states: the CPU in active mode
consumes on average 3.81 mA more than when being in sleep mode, with a
standard deviation of only 0.15 mA.

When both the CPU and the radio are put in the Sleep state, the consumption
is still high. This is caused by the high current consumption of the CPU, which
is put in the least possible sleep mode PM_NOACTION. When putting the CPU in
a deeper sleep, i.e., the PM2 power mode, while the CC1200 radio is in Sleep
and Idle state, the consumption dropped to 0.27 mA and 2.64 mA, respectively.

3.5 Evaluation

In this section, the accuracy of the model is verified. First, the charge drawn
per slot type for both radios is calculated and compared to the measured values.
Afterwards, the accuracy of the charge drawn during a slotframe is validated
using a small-scale test network. The developed packet size-aware model is also
compared to the state-of-the-art model of Vilajosana et al. to show the accuracy
improvement when including the packet size in the model. Finally, using the
measured charge consumption values for both frequency bands’ communica-
tion, several TSCH network simulations were conducted to observe the energy
consumption effects in an end-to-end context.

3.5.1 Slot Charge Consumption

Using the duration and consumption of each state, the charge drawn during
each type of slot is calculated using the formula shown in Equation (3.1). To
verify the accuracy of our model, the entire consumption of each type of slot
was also measured separately. Table 3.4 compares the measured and calculated
values for both types of radio. Both radios are configured with a transmit power

6http://www.ti.com/product/CC1200/datasheet/

http://www.ti.com/product/CC1200/datasheet/

40 CHAPTER 3

Table 3.4: Measured and calculated charge drawn for each slot type.

Slot Type
Measured (µC) Calculated (µC)

CC2538 CC1200 CC2538 CC1200

TxDataRxAck 250.35 420.01 250.94 407.81
RxDataTxAck 253.2 432.09 251.32 417.2
TxData 229.8 360.2 230.13 357.12
RxData 235.1 373.55 228.72 362.12
RxIdle 197.4 245.2 196.35 240.98
Sleep 152.4 168.65 151.12 171.51
TxDataRxNoAck 246.95 395.65 246.79 384.94

of 0 dBm and a packet size of 127 bytes, i.e., the maximum packet size when
including the CRC bytes.

As seen in Table 3.4, the difference between the measured and calculated
values is close to negligible. Among the main contributors to these differences
are measurement errors and the variations in guard time duration. In the
measured data, the guard time can be smaller or larger than in the calculated
data, which assumes perfectly synchronized clocks. On average, the difference is
limited to 5.08µC or 1.55% with a standard deviation of 3.3µC and a maximum
difference of 14.89µC, which proves the accuracy of our model.

More specifically, for the CC2538, the average relative difference is 0.75%,
while for the CC1200 chip, the average relative difference is 2.3%. In the case
of the CC1200 chip, the larger relative difference is explained by the fact that a
specific device state (e.g., CPU is active and radio is sleeping) does not always
result in exactly the same current drawn, which we abstracted in Table 3.3.

Figures 3.4 and 3.5 show the current drawn over time according to both
the model and the measurements, for the TxDataRxAck and RxDataTxAck
time slots, when using the CC2538 and CC1200 radio respectively. Figures A.1
and A.2 (in Appendix A) show the current drawn for the remaining time slots
(except for the error time slot TxDataRxNoAck) for both radios. For all time
slots, the measured graphs and their modeled counterpart look very similar.
The peaks on the graphs however do not perfectly match, because the model
simplifies certain states. The radio state may be changed while the CPU is active,
causing the CPU and radio to be active at the same time, while the model might
only consider the radio as active once the CPU goes to sleep. This results in a
peak in the measured time slot where there is no peak in the model.

3.5.2 Slotframe Charge Consumption

When considering the charge consumption in the different time slots, the charge
consumption of a slotframe can be calculated. To further verify the accuracy
of our model, the calculated slotframe charge consumption of a small-scale,

TSCH ENERGY MODELING 41

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

Cu
rre

nt
 (m

A)

(a) TxDataRxAck time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

Cu
rre

nt
 (m

A)

(b) RxDataTxAck time slot.

Figure 3.4: Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the CC2538 radio.

real-world 6TiSCH network is compared with the measured values, for both
868 MHz and 2.4 GHz.

The experiment network topology, depicted in Figure 3.6, used the OpenMote-
CC2538 and the OpenMote-CC2538/OpenUSB board combination as hardware
nodes for 2.4 GHz and the 868 MHz measurements, respectively. The root node
is connected to a computer using OpenVisualizer to monitor the network. The
leaf mote was configured to send a packet of 127 bytes (including CRC) every
two seconds. The slotframe size was 51 time slots. Since there are 51 slots in
a slotframe and every time slot lasts 15 ms, the duration of each slotframe is
765 ms. The first time slot in every slotframe was reserved for management
messages, e.g., EBs, RPL DIOs, RPL DAOs and 6top messages, but these were
not considered. As such, the first time slot in each slotframe is thus considered
to be of type RxIdle.

The slotframe of the leaf mote always consists of one RxIdle slot and at
least 49 Sleep slots. The last slot will either be of the type TxDataRxAck when
there are data to send or another Sleep slot when there are no data. As such,
two slotframe types were considered for the leaf node: a slotframe where no
data were sent and a slotframe where the packet was sent in a TxDataRxAck

42 CHAPTER 3

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

60

70

80

Cu
rre

nt
 (m

A)

(a) TxDataRxAck time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

60

70

80

Cu
rre

nt
 (m

A)

(b) RxDataTxAck time slot.

Figure 3.5: Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the CC1200 radio.

Figure 3.6: Topology used while comparing the charge consumption during a
slotframe.

slot. The charges consumed in each of these two slotframe types are represented
by:

Q lea f _Sleep =QRx Idle + 50×QSleep (3.3)

and:
Q lea f _T x DataRxAck =QRx Idle +QT x DataRxAck + 49×QSleep (3.4)

For the relay node, a slotframe was considered where the packet coming
from the leaf was received in the first slot of the slotframe; subsequently, the
relay forwarded the packet to the root, but no acknowledgment was received,
followed by a successful retransmission. As such, there are RxDataTxAck,

TSCH ENERGY MODELING 43

Table 3.5: Measured and calculated charge drawn during a slotframe.

Mote Type
Measured (µC) Calculated (µC)

CC2538 CC1200 CC2538 CC1200

Leaf (Sleep) 7833.6 8698.05 7752.35 8816.48
Leaf (TxDataRxAck) 7910.1 8942.85 7852.17 9052.78
Relay 8086.05 9348.3 8002.81 9442.96

TxDataRxNoAck and TxDataRxAck slots when a packet was received and
forwarded, while the remaining 48 slots are Sleep slots. The charge drawn
during the slotframe of the relay node is represented by the following formula:

Q rela y =QRx DataT xAck +QT x DataRxNoAck +QT x DataRxAck + 48×QSleep (3.5)

The charge consumption of the root node is not considered as the root
device is typically connected to a computer using OpenVisualizer, serving as a
gateway to the Internet. Therefore, the root typically does not run on batteries.
Additionally, the serial communication between the root and OpenVisualizer
cannot be disabled, making the comparison between the measured consumption
and the proposed model invalid.

We measured the charge consumed over the length of an entire slotframe for
both the leaf and relay node and compared these values to the values calculated
using the proposed model and Equations (3.3)–(3.5). Table 3.5 shows the
results. On average, the error between the calculated and measured values is
lower than 1%. The differences between the CC2538 measured and calculated
consumptions, for the leaf and relay nodes, are limited to 1.3% and 1.03%,
respectively. For the CC1200 radio, the differences are even slightly smaller:
respectively 0.88% and 1.01%. The consumption comparison results again show
that our model is accurate, even when measuring across an entire slot frame.

3.5.3 Energy Model Comparison

In order to indicate the accuracy gain of using the proposed packet size-aware
model over the model introduced by Vilajosana et al., these two models are
compared in Figures 3.7 and 3.8. The two models are compared for packet
sizes going from 58 bytes, which is the minimum 6TiSCH packet size without
additional payload, up to the maximum packet size, i.e., 127 bytes (125 bytes
and 2 CRC bytes). The consumption of both models is compared to the packet
size-aware model using the exact duration measurements for the packet sizes of
75, 100 and 125 bytes. The device state current values of Table 3.3 are used
for this comparison. In the states where the CPU is sleeping and the radio is
sleeping or in Idle mode, the PM2 values were preferred over the PM_NOACTION
values.

44 CHAPTER 3

60 70 80 90 100 110 120
Packet Size (bytes)

0

100

200

300

400

500

Ch
ar

ge
 D

ra
wn

 (
C)

Packet Size Aware Model (CC1200)
Vilajosana et al. (CC1200)
Measured values (CC1200)

Packet Size Aware Model (CC2538)
Vilajosana et al. (CC2538)
Measured values (CC2538)

(a) TxData time slot.

60 70 80 90 100 110 120
Packet Size (bytes)

0

100

200

300

400

500

Ch
ar

ge
 D

ra
wn

 (
C)

Packet Size Aware Model (CC1200)
Vilajosana et al. (CC1200)
Measured values (CC1200)

Packet Size Aware Model (CC2538)
Vilajosana et al. (CC2538)
Measured values (CC2538)

(b) TxDataRxAck time slot.

60 70 80 90 100 110 120
Packet Size (bytes)

0

100

200

300

400

500

Ch
ar

ge
 D

ra
wn

 (
C)

Packet Size Aware Model (CC1200)
Vilajosana et al. (CC1200)
Measured values (CC1200)

Packet Size Aware Model (CC2538)
Vilajosana et al. (CC2538)
Measured values (CC2538)

(c) RxData time slot.

Figure 3.7: The proposed packet size aware model compared with the Vilajosana
et al. model which linearly scales the charge drawn based on the packet size,
for the TxData, TxDataRxAck and RxData time slots.

TSCH ENERGY MODELING 45

60 70 80 90 100 110 120
Packet Size (bytes)

0

100

200

300

400

500
Ch

ar
ge

 D
ra

wn
 (

C)
Packet Size Aware Model (CC1200)
Vilajosana et al. (CC1200)
Measured values (CC1200)

Packet Size Aware Model (CC2538)
Vilajosana et al. (CC2538)
Measured values (CC2538)

(a) RxDataTxAck time slot.

60 70 80 90 100 110 120
Packet Size (bytes)

0

100

200

300

400

500

Ch
ar

ge
 D

ra
wn

 (
C)

Packet Size Aware Model (CC1200)
Vilajosana et al. (CC1200)
Measured values (CC1200)

Packet Size Aware Model (CC2538)
Vilajosana et al. (CC2538)
Measured values (CC2538)

(b) TxDataRxNoAck time slot.

Figure 3.8: The proposed packet size aware model compared with the Vilajosana
et al. model which linearly scales the charge drawn based on the packet size,
for the RxDataTxAck and TxDataRxNoAck time slots.

As can be seen in the graphs, the proposed model accurately represents the
charge consumption for all packet sizes. The model of Vilajosana et al., however,
becomes highly inaccurate especially when the packet size decreases. Looking
at a packet size of 75 bytes, the average relative errors of the Vilajosana et al.
model compared with the packet size-aware model using the exact duration
measurements are 17.01 % and a standard deviation of 4 % (i.e., on average
40.18µC with a standard deviation of 15.34µC) for the CC1200 radio and
16.31 % and a standard deviation of 5.07 % (i.e., on average 18.74µC with
a standard deviation of 8.23µC) for the CC2538 radio. Of course, for the
maximum packet size, both models estimate the consumption correctly.

The reason for this large inaccuracy introduced by the model of Vilajosana et
al. is that their approach linearly scales the entire slot consumption. This is not
the correct approach, as only the states in which data are transmitted over the
radio or copied between the radio and the CPU can be scaled. Since a time slot
consists of many more states than only data processing states, those states should
not be scaled. Because the proposed model differentiates between the state
durations that depend on the packet size and the durations that are independent

46 CHAPTER 3

Table 3.6: Parameter configuration in the 6TiSCH simulator.

Parameter 868 MHz 2.4 GHz

Time slot duration 15 ms
Slotframe size 101 time slots
No. of SHARED cells 1
Inter-node distance 70 m
No. of stable neighbors 1
RPL parent set size 1
Traffic period 5 s
Traffic period variability 0.05
EB period 10 s
EB probability 0.15 s
DIO period 30 s
DIO probability 0.15
OTF threshold 2
OTF housekeeping period 10 s
6top housekeeping False
TX power 0 dBm
No. of channels 1 16
Stable RSSI −83 dBm −78 dBm

of the size, as can be seen in Table 3.2 and Tables A.7–A.12, it accurately models
the slot consumption for different packet sizes.

3.5.4 Frequency Band Consumption Comparison

Using the measured energy consumption values for both 868 MHz and 2.4 GHz,
we conducted several TSCH network simulations to analyze the end-to-end
network performance and energy consumption at these frequency bands.

3.5.4.1 Simulation Setup

To perform the experiments, the 6TiSCH simulator, which was discussed in
Chapter 2, was used. The configuration parameters for the simulation experi-
ments discussed in this chapter, are listed in Table 3.6. To be able to compare
the energy consumption for both 868 MHz and 2.4 GHz, we changed the de-
fault propagation model of the simulator (i.e., the so-called Pister-hack) to the
International Telecommunication Union - Radiocommunications sector (ITU-R)
Rural Macro model, which is applicable to both frequency bands [101]. To have
a realistic low-power energy consumption comparison between 868 MHz and
2.4 GHz, we re-calculated the charge consumption values of Table 3.4, using
the device state consumption values of Table 3.3 and adjusted them to make

TSCH ENERGY MODELING 47

Table 3.7: Calculated charge drawn for each slot type, used in the simulator
experiments.

Slot Type
Calculated (µC)

CC2538 CC1200

TxDataRxAck 106.45 275.61
RxDataTxAck 107.66 286.76
TxData 83.07 210.32
RxData 82.97 219.8
RxIdle 47.54 81.57
Sleep 0.82 0.89
TxDataRxNoAck 100.32 246.98

sure the measured CC2538 PM2 power mode (instead of the PM_NOACTION
mode) and the CC1200 power down Sleep state (instead of the Idle state with
the crystal oscillator turned off) were used. Both states are expected to be used
when running OpenWSN in an energy-efficient manner. However a software
timer issue prevented OpenWSN to use the PM2 power mode7. Additionally,
setting the CC1200 state to the power down Sleep state in our CC1200 driver
implementation actually spiked the consumption instead of decreasing it and
could therefore not be used in the measurements of Table 3.3. Therefore, the
measured CC2538 PM2 power mode consumption value of 1.56µA was used
to replace the PM_NOACTION power mode values in all states where the CPU
was sleeping. This was done by looking at the difference between the cur-
rent consumption of the PM_NOACTION and PM2 mode when the CPU and the
CC2538 radio were sleeping, and applying this difference in all other states
when the CPU was sleeping. When the CPU and CC1200 radio were sleeping,
the Idle state (with the crystal oscillator turned off) consumption value of the
CC1200 chip, i.e., the radio Sleep state, was also replaced by the power down
Sleep state consumption value of the CC1200 datasheet, which is 0.5µA8. The
resulting slot consumption values are listed in Table 3.7. The 6TiSCH simulator
implementation used for these simulation experiments is publicly available9.

3.5.4.2 Simulation Results

In the first TSCH network experiment, the number of nodes in a random topology
varies from 2 to 32 nodes. Figure 3.9 shows the average hop count and the
total charge drawn per node over a period of 300 s. As seen in Figure 3.9a, for
2.4 GHz, the average hop count increases as the number of nodes in the network
increases. For 868 MHz, the hop count stabilizes to one. Communication at
868 MHz is stable over longer ranges than communication at 2.4 GHz, resulting

7https://openwsn.atlassian.net/browse/FW-361
8http://www.ti.com/lit/ds/symlink/cc1200.pdf
9https://github.com/imec-idlab/6tisch-sim-src/tree/energy

https://openwsn.atlassian.net/browse/FW-361
http://www.ti.com/lit/ds/symlink/cc1200.pdf
https://github.com/imec-idlab/6tisch-sim-src/tree/energy

48 CHAPTER 3

0 5 10 15 20 25 30 35

No. of nodes

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

A
v
e
ra

g
e
 n

o
.
o
f

h
o
p
s

2.4 GHz

868 MHz

(a) Average hop count.

0 5 10 15 20 25 30 35

No. of nodes

50

60

70

80

90

100

110

120

C
h
a
rg

e
 d

ra
w

n
 (

m
C

)

2.4 GHz

868 MHz

(b) Total charge drawn per node.

Figure 3.9: Total charge drawn per node and average hop count for 868 MHz
and 2.4 GHz frequency communication in a random topology as a function of
the number of nodes.

in a lower hop count to reach the root node. For the shorter range 2.4 GHz
communication, the increase in consumption is significant when the average
hop count increases. Since there are more nodes that have to relay additional
packets towards the root, the total consumption per node increases. Figure 3.9b
also clearly shows that the total consumption per node is higher for 868 MHz
than for 2.4 GHz as is explained by the absolute slot consumption values in
Table 3.7.

In the second TSCH network experiment, the average charge drawn per node
per slotframe was observed over a period of 300 s. The results are shown in
Figure 3.10 which shows the Cumulative Distribution Function (CDF) for 2 grid
topologies with 9 and 25 nodes, respectively. In the network of 9 nodes, all 8
nodes directly connect to the root node for both 868 MHz and 2.4 GHz. The CDF
in Figure 3.10a shows that almost all of the nodes consume less charge when
using 2.4 GHz compared to when using 868 MHz. The difference in consumption
is explained by the measured slot consumption values shown in Table 3.7, which
indicates that 2.4 GHz consumes less energy than 868 MHz. However, when
looking at nodes between 0.8 and 0.9, we observe that 868 MHz consumes
less. The same effect is observed in the results for 25 nodes: 60% of the nodes
that use 2.4 GHz consume less than the nodes using 868 MHz. These nodes
represent leaf nodes and nodes that do not have to forward many data packets
originating from children in the routing graph. Apart from these nodes, there
are also other intermediate nodes, as indicated by the 2.4 GHz hop count of 2.49
(σ = 1.21) for the grid scenario with 25 nodes, which have to relay many more
packets towards the root and consume more energy. When using 868 MHz, the
average hop count was 1.01 (σ = 0.1), which means that all nodes are directly
connected to the root and thus do not relay other packets. For both the grid
networks of 9 and 25 nodes, the root nodes for 2.4 GHz consume less than those
of 868 GHz, which again can be expected by looking at the consumption values
in Table 3.7.

Looking at the absolute energy consumption values for both 868 MHz and
2.4 GHz, an increased energy consumption for all 868 MHz communication is

TSCH ENERGY MODELING 49

102 103 104

Charge Drawn (µC)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

868 MHz

2.4 GHz

(a) Grid topology of 9 nodes.

102 103 104

Charge Drawn (µC)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

868 MHz

2.4 GHz

(b) Grid topology of 25 nodes.

Figure 3.10: Comparison of charge drawn per cycle per node for 868 MHz and
2.4 GHz frequency communication in a grid topology of 9 nodes and 25 nodes.

expected. However, these simulation results show that due to the longer-range
capabilities of 868 MHz communication, there can be nodes that consume less
energy compared to when using 2.4 GHz communication.

In the third TSCH simulator experiment, we observe the lifetime of all
TSCH nodes in a grid of 25 nodes for different packet periods. Each node is
assumed to be running on two AA batteries, i.e., a battery capacity of 2000 mAh.
Figure 3.11 shows the results. The total number of children are all children
of a node, e.g., the root node will have 24 children. It is clear that in the case
of 2.4 GHz communication, there is much more variability in the number of
children a node has, compared to when using 868 MHz communication. This
is due to the longer range communication of 868 MHz that allows nodes to
directly connect to the root over longer distances. In this 25-node grid topology,
however, it is still possible that a 868 MHz leaf node needs multiple hops to
reach the root: as observed in Figure 3.11, there are some nodes that have one,
two or three children, which indicates that the signal of those children to their
parent was better compared to the signal of their link to the root. With 2.4 GHz
communication that lacks such longer range capability, a packet typically has to
traverse more hops to reach the root. For 2.4 GHz, there is also more variability
in the lifetime of nodes with the same amount of children. For 868 MHz, we do
not observe this effect. This is because the quality of the different links between
the 2.4 GHz nodes differs in every experiment, resulting in a variable number
of transmission cells and retransmissions that are necessary to deliver packets,
which in turn also influences the energy consumption. Most 868 MHz nodes
however are directly connected to the root with good link quality, resulting in
almost no variability.

The results show that for a higher packet frequency, the average number of
days a node lasts decreases, e.g., the average lifetime for 1 packet/s is 204 days
compared to 487 days when having a frequency of 1 packet/h, for 2.4 GHz. The
graph also shows that on average, the lifetime in a 868 MHz network is lower,
because of the higher consumption values shown in Table 3.7. However, the
results in Figure 3.10 showed that this does not necessarily hold for all nodes in
a TSCH network.

50 CHAPTER 3

0 5 10 15 20 25 30
Total number of children

0
100
200
300
400
500
600
700

Li
fe

ti
m

e
 (

d
a
y
s)

(a) 1 packet/s, 2.4 GHz.

0 5 10 15 20 25 30
Total number of children

0
100
200
300
400
500
600
700

Li
fe

ti
m

e
 (

d
a
y
s)

(b) 1 packet/s, 868 GHz.

0 5 10 15 20 25 30
Total number of children

0
100
200
300
400
500
600
700

Li
fe

ti
m

e
 (

d
a
y
s)

(c) 1 packet/min, 2.4 GHz.

0 5 10 15 20 25 30
Total number of children

0
100
200
300
400
500
600
700

Li
fe

ti
m

e
 (

d
a
y
s)

(d) 1 packet/min, 868 MHz.

0 5 10 15 20 25 30
Total number of children

0
100
200
300
400
500
600
700

Li
fe

ti
m

e
 (

d
a
y
s)

(e) 1 packet/h, 2.4 GHz.

0 5 10 15 20 25 30
Total number of children

0
100
200
300
400
500
600
700

Li
fe

ti
m

e
 (

d
a
y
s)

(f) 1 packet/h, 868 MHz.

Figure 3.11: Comparison of the lifetime of a TSCH node, running on two AA
batteries, between 2.4 GHz and 868 MHz communication for different packet
periods in a grid topology of 25 nodes.

3.6 Conclusion

In this chapter, we propose a more accurate energy model for IEEE 802.15.4e
TSCH using dual-band OpenMote hardware. The model differs from previous
work in several ways. First, it includes an elaborate and up-to-date set of time
slots and states and accurately models variable packet sizes. Second, we present
state durations and energy consumption measurements for both the 868 MHz
and 2.4 GHz frequency bands, using the CC1200 and CC2538 radio, respectively.
We have experimentally verified the accuracy of the proposed model by compar-
ing measured values of all time slots to their modeled counterpart. Furthermore,
the energy consumption of a small-scale TSCH network was compared with its
modeled consumption. For both the time slot comparison and the small-scale
network experiment, the average error was less than 3%, including measurement
inaccuracies and variations of the guard time. Using the measured energy slot
consumption for both 868 MHz and 2.4 GHz communication, we also conducted

TSCH ENERGY MODELING 51

several TSCH network simulations to observe the energy consumption effects
for both frequency bands in an end-to-end context. We have also shown that
the proposed model can accurately model all packet sizes, a feature absent in
current TSCH energy consumption models, which only consider the maximum
packet size. These results prove that our model is suitable to accurately predict
the energy consumption of TSCH networks.

Chapter 4

Recurrent Low-Latency TSCH
Scheduling

The content of this chapter is partially based on:

• Glenn Daneels, Bart Spinnewyn, Steven Latré, and Jeroen Famaey
(2018). ReSF: Recurrent Low-latency Scheduling in IEEE 802.15.4e TSCH
Networks. Ad Hoc Networks, 69, 100-114. [Impact Factor: 3.643]

• Glenn Daneels, Steven Latré, and Jeroen Famaey. (2019, June). Efficient
Recurrent Low-Latency Scheduling in IEEE 802.15.4e TSCH Networks. In
2019 IEEE International Black Sea Conference on Communications and
Networking (BlackSeaCom) (pp. 1-6). IEEE.

4.1 Introduction

The attractive characteristics in terms of high-reliability and low-power operation
have made TSCH very popular in IoT and industrial environments. However,
many applications in such environments also require low-latency connectivity.
For example, the remote control of important industrial actuators or continuous
monitoring are time-critical processes that require minimal delay. To achieve
this in TSCH networks while maintaining a reliable and low-power network
operation, intelligent scheduling of the time-synchronized resources is crucial.

In this chapter, we focus on power-constrained sensor networks where each
node periodically sends measurement updates to a sink (i.e., recurrent traffic)
and demands low-latency dissemination of these data. Current state-of-the-art
scheduling functions, such as the LLSF, also focus on low-latency forwarding
of packets but do not anticipate the recurrent behavior. This results in higher

54 CHAPTER 4

latency values, because starting the time-expensive resource allocation process
when the recurrent traffic already arrived is too late to maintain a low packet
delay. We propose the distributed Recurrent Low-Latency Scheduling Function
(ReSF). It explicitly supports recurrent traffic and as far as we know, is the first
TSCH scheduling function that takes this recurrent traffic behavior into account
when scheduling resources. ReSF reserves a minimal-latency path from source
to sink and only activates this reserved path when traffic is expected. This
allows resources to be reused more intelligently, thus improving throughput and
latency. As such, it has only minimal impact on battery life while significantly
decreasing the packet delay.

This chapter presents three contributions. First, we define the problem of
minimal-latency scheduling of recurrent data transmissions in sensor networks
formally, using an Integer Linear Program (ILP). Second, we present ReSF as
well as its collision prevention algorithm and integration with 6TiSCH. ReSF
is a distributed scheduling function that solves the presented recurrent data
transmission scheduling problem in real-time. Lastly, an updated version of ReSF
is provided that improves the original ReSF with collision solving heuristics,
improved collision avoidance and better support for sporadic traffic. Addi-
tionally, we provide extensive simulation results based on the official 6TiSCH
simulator, which we extended with a fully functional 6P implementation. A
comparison is provided with an extended version of LLSF [55], the state-of-
the-art minimal-latency scheduling function for 6TiSCH. We also tested the
computational performance of the different collision solving approaches on the
OpenMote hardware.

The remainder of this chapter is structured as follows. First, we introduce
related scheduling functions in Section 4.2. Subsequently, Section 4.3 introduces
the recurrent minimal-latency scheduling problem and Section 4.4 proposes our
ReSF algorithm to solve the problem in a distributed manner in real-time. In
Section 4.5, different improvements are proposed in the form of an improved
ReSF. The proposed scheduling function and its improved version are evaluated
and compared to state-of-the-art scheduling functions (and in case of the former,
also to the theoretical optimum) in Section 4.6. Finally, Section 4.7 presents
the conclusions of this chapter.

4.2 Background and Related Work

In this section we briefly repeat the necessary information on the 6P protocol
that manages the resources in 6TiSCH and give an overview of related TSCH
scheduling functions.

4.2.1 6P

6P allows neighboring nodes in a 6TiSCH network to add/delete/relocate cells
and is part of the 6top IEEE 802.15.4e sublayer which provides the mechanisms

RECURRENT LOW-LATENCY TSCH SCHEDULING 55

to do distributed scheduling in 6TiSCH [39]. It is the scheduling function that
decides when to add or delete cells, and it uses 6P to effectively execute the
resource allocation. A more detailed explanation can be found in Section 2.3.2.

At the time of conducting the research for this chapter, the 6TiSCH simulator
did not support the 6P protocol and downwards management traffic. As such,
we extended the 6TiSCH simulator and added these features to allow for the
simulation of more realistic cell reservations and removals to both parents and
children.

4.2.2 Related Scheduling Approaches

SF0 was one of the earliest distributed scheduling functions, dynamically adapt-
ing a node’s resources to the traffic demand [53]. It was already introduced
in Section 2.3.3.2 in Chapter 2, explaining the cell allocation and adaption
algorithm. Two major drawbacks of SF0 are (i) that it does not take into account
the recurrent behavior of traffic, meaning that each reserved cell repeats itself
every slotframe and thus wastes resources if packet generation is not equally
frequent and (ii) cells are randomly allocated in a slotframe, risking that packets
can not be forwarded immediately and have to wait an additional slotframe.
These major issues are addressed by ReSF. SF0 is used as a baseline in the
experimental evaluation. Based on SF0, Chang et al. developed an improved
version called LLSF that daisy-chains cells over the different links up to the root,
rather than picking them randomly [55]. While LLSF does not introduce extra
overhead, it also does not anticipate recurrent behavior and thus still leaves
room for improvement. An enhanced version of LLSF, which is discussed in
Section 4.4.6, is also used for comparison in the experimental evaluation.

Another scheduling function Internet-Draft investigated by the 6TiSCH com-
munity, is Scheduling Function One (SF1) [61]. SF1 is and end-to-end dis-
tributed resource scheduler with hop-by-hop reservation, using a distributed
Resource Reservation Protocol (RSVP). It allocates a dedicated path from source
to destination which is called a track. In contrast to ReSF, so-called TrackIDs
are used to filter data packets for certain tracks. In ReSF recurrent cells can
be used by any data packet in the queue. The draft was still in an early stage
when eventually becoming inactive and specific features taking into account
recurrent behavior or algorithms to efficiently allocate cells were not present.
As such, we consider our work complementary to SF1, and it could serve to
inspire standardization. Morell et al. [62] worked out a solution that combines
Resource Reservation Protocol - Traffic Engineering (RSVP-TE) and Generalised
Multiprotocol Label Switching (GMPLS) to manage the schedule and connect
the network nodes using labelled switched paths. However, the authors do not
focus on the recurrent traffic and their numerical evaluation does not take into
account the 6P signaling process. Theoleyre et al. [63] also focus on traffic
isolation by introducing different tracks for different applications and consider
contiguous reserved cells as well as random reserved cells. Their distributed
algorithm calculates the required number of cells based on the amount of for-

56 CHAPTER 4

warded traffic, but it also does not consider the recurrent behavior of sensor
data generation, where the reserved cell may only be needed every so many
slotframes. It thus risks wasting resources because of a repeated reservation
process. A different, but very interesting approach is Escalator, that focuses on
minimizing the end-to-end delay by daisy-chaining time slots up to the sink
in an autonomous fashion [64]. While such an approach results in a robust,
low-overhead schedule, it is less flexible than a distributed approach like ReSF.

In contrast to other scheduling functions (see Chapter 2) and the related
works mentioned here, ReSF specifically focuses on (industrial) IoT applications
with recurrent traffic patterns. The state-of-the-art approaches either reserve
isolated tracks towards the root and/or reserve resources that are continuously
activated. Meanwhile, ReSF tries to guarantee fairness, low-latency and energy-
efficiency by not isolating the low-latency paths and only activates resources
when traffic is expected, maximizing cell reuse and performance.

4.3 Recurrent Low-Latency Scheduling

In this section, we introduce the recurrent low-latency scheduling problem,
which minimizes end-to-end data dissemination latency for devices with recur-
rent data transmissions (e.g., transmission of sensor measurement values after
fixed periods). First, we discuss our motivation to tackle the recurrent low-
latency problem. Second, we formally formulate the problem and the associated
optimal solution as an Integer Linear Program (ILP).

4.3.1 Motivation

Periodical traffic patterns are typical for Wireless Sensor Networks (WSNs)
as sensors usually perform measurements at fixed intervals and/or measured
data is accumulated over fixed periods and only then sent to the root. ReSF
was developed to exploit this recurrent behavior by allocating resources only
when traffic is expected. Existing scheduling functions such as SF0 and LLSF
allocate new resources based on historical data: during the so-called periodic
housekeeping periods the scheduling function monitors how many packets arrive
and are generated by the node itself. Afterwards, it calculates the number of
cells it needs to reserve during the next housekeeping period. When reserving
these cells, the exact arrival times of the incoming/generated packets are not
taken into account, which leads to inefficient resource allocation in terms of
latency and power consumption.

A simplified example of such inefficient resource allocation is given in Fig-
ure 4.1. The given schedule (for the simplicity of this example with only one
channel) is the one of the forwarding node B. Node A sends traffic every 8
slotframes to node B, which should forward it as quickly as possible to the root.
During housekeeping at node B, the node decides to reserve a cell to its parent
so the incoming packet can be forwarded. To do so, first a 6P ADD transaction

RECURRENT LOW-LATENCY TSCH SCHEDULING 57

SLOTFRAME N

RX

B

INCOMING

PACKET

6P ADD

REQUEST

6P ADD

RESPONSE

TX

FORWARD

PACKET

6P DELETE

REQUEST

6P DELETE

RESPONSE

TX RX

TX RX

RX TXTX RX

SHARED CELL RX CELL TO CHILD TX CELL TO PARENT HOUSEKEEPING MOMENT

A B R

INCOMING

PACKET

6P ADD

REQUEST

6P ADD

RESPONSE

FORWARD

PACKET

SLOTFRAME N + 3

SLOTFRAME N + 7

SLOTFRAME N + 11

Figure 4.1: Illustration of inefficient resource allocation when not taking into
account the recurrent behavior of sensor traffic. The schedule shown belongs to
node B.

between node B and its parent needs to take place. Meanwhile the latency of
the packet is increasing as it is only in the third slotframe (after 9 time slots) that
a TX cell is available to forward the packet to the root. Node A only generates
traffic periodically every 8 slotframes, so the next 2 TX cells to the root are not
used (and thus radio resources at the receiver are wasted) and even after the
housekeeping a third cell is still reserved because the deletion of the cell is not
yet complete. One should also take into account the power consumption for
sending/receiving these 6P DELETE and 6P RESPONSE messages. When the
next periodical packet of A arrives, the process at node B repeats itself. Taking
into account the recurrent behavior of the traffic of node A, the increased latency
and power consumption introduced by the reservation process can be avoided.
This results in a more efficient scheduling function process, which is exactly the
goal of ReSF.

4.3.2 Problem formulation

In this section we formally approach low-latency end-to-end packet scheduling
in a WSN with recurrent transmissions, as a resource allocation problem. We
formulate the underlying optimization problem as an ILP, consisting of input
variables, decision variables, constraints and an objective function. Algorithms
such as branch and bound can be used to find the optimal solution, by deter-
mining the values of the decision variables that maximize (or minimize) the
objective function, while satisfying the constraints, given the inputs. As such, the
formulation should be considered a resource allocation optimization problem.

58 CHAPTER 4

The ILP formulation assumes any generated packet to be directed towards the
root node. The ILP solution is only used for theoretical comparison purposes
in Section 4.6. Solving an ILP on real hardware nodes would be infeasible
due to its computationally complexity and the need to be solved centrally. The
remainder of this section describes the different aspects of the ILP formulation.

4.3.2.1 Input variables

The WSN comprises a set of nodes N . Packets originate from a set of sources
V ⊂ N , with the root node nR ∈ N as destination. These sources are recurrent,
i.e. they generate a packet at fixed time intervals Sv + k · Tv , k ∈ N0. For each
source v ∈ V : Tv and Sv are its period and offset respectively. Note that the
period Tv may change over time.

The system is analysed when it has reached steady state conditions, i.e., the
number of packets generated per period is constant. The nodes each have only
1 radio, which can either send or receive packets. The combined period of the
sources, referred to as the system period, is then given by

Ts ys = LCM(T0, T1, . . . , T|V |−1), (4.1)

where LCM is a function that calculates the Least Common Multiple (LCM) of
its integer arguments. When the scheduling is also periodic with period Ts ys,
than it suffices to analyse the system during one system period, beginning when
all sources have generated at least one packet. Hence we analyse the system
only for time slots

i ∈ I , I = {Smax + 1, . . . , Smax + Ts ys − 1}, (4.2)

where Smax =max (S0, . . . , S|V−1|). The set of packets generated by source v in
the Ts ys time slots in I is given by

Jv = {1, 2, . . . ,
Ts ys

Tv
}. (4.3)

A complete list and description of the input and auxiliary variables introduced
above can be found in Tables 4.1 and 4.2 respectively. Moreover, Figure 4.2
illustrates the notations graphically. In this example, both nodes A and B generate
traffic: with TA = 6 and TB = 3, therefore they generate a packet every 6 slots
and 3 slots respectively. This results in Ts ys = 6 as this is the least common
multiple of 6 and 3.

4.3.2.2 Decision variables

The decision variables represent the solution of the ILP model. xv,p, j(i) is a
binary variable, and equals 1 if the packet (v, j) is transmitted over edge Pv,p
during time slot i, else it is 0. Tn(i) and Rn(i) are 1 when node n is respectively

RECURRENT LOW-LATENCY TSCH SCHEDULING 59

Table 4.1: Input variables.

Symbol Description

N Set of nodes
nR Root node
V Set of source nodes
Sv Offset of source node v
Tv Period of source v
Pv Edges on the path from v to nR

Pv,p pth edge on the path from v to nR

Table 4.2: Auxiliary symbols.

Symbol Description

Ts ys System period, i.e. LC M(T0, T1, . . . , TV−1)
I Time slots in one system period, i.e., Smax + 1, . . . , Smax + Ts ys − 1
Jv Set of packets generated by source v during one system period

transmitting or receiving during time slot i. Dv,p, j is an integer variable holding
the delay contribution of each packet (v, j). Ov,p, j is a binary variable and a value
of 1 indicates that the delay contribution of the pth path element for packet
(v, j) crosses the edge of the analyzed interval I (Equation 4.2). In this case the
packet arrives only in the next system period, hence Ts ys is added to the arrival
time.

4.3.2.3 Constraints

This section outlines the constraints, which determine the allowed values of the
decision variables, as a function of the inputs.

Multi Commodity Flow (MCF) The net packet flow leaving node n1, corre-
sponding to each packet for source v, depends on whether this node is the
source, destination (root node) or neither to this specific packet. For each node
n1, and for each packet (v, j), the difference between the total number of packets
flowing out and into n1 corresponding to (v, j), during one system period, equals
either 1, −1, or 0, based on the relation of n1 to this packet (source, root, or

60 CHAPTER 4

G A > C C > R

G B > C C > R G B > C C > RB > C C > R GG

G A > C

Tsys = LCM(TA, TB)

NODE A

NODE B

TA = 6

TB = 3SB

SA

DA, P , J
1

DB, P , J
1

DB, P , J
1

PA,1

PB,1

PA,0

PB,0

A,1

B,0 B,1
DB, P , J

2
DB, P , J

2B,0 B,1

B

RC

A

C > R

DA, P , J
A,0 1

Figure 4.2: Illustration of the notations used in the ILP-formulation. Both nodes
A and B generate traffic at time slots denoted by G.

neither).

∀n1 ∈ N , v ∈ V, j ∈ Jv :

∑

i∈I

∑

(n1,n2)∈Pv

xv,(n1,n2), j(i)−
∑

(n3,n1)∈Pv

xv,(n3,n1), j(i)

=

1, if n1 = v
−1, else if n1 = nR

0, else
(4.4)

Transmission and reception A packet is transmitted/received during slot i if
a packet corresponding to any of the sources is transmitted or received during
this time slot:

∀n1 ∈ N , i ∈ I : Tn1
(i) =

∑

v∈V

∑

j∈Jv

∑

(n1,n2)∈Pv

xv,(n1,n2), j(i), (4.5)

and
∀n2 ∈ N , i ∈ I : Rn2

(i) =
∑

v∈V

∑

j∈Jv

∑

n1∈N

xv,(n1,n2), j(i) (4.6)

Single radio A node has only one radio and therefore cannot receive and
transmit at the same time.

∀n ∈ N , i ∈ I : Tn(i) + Rn(i)≤ 1 (4.7)

RECURRENT LOW-LATENCY TSCH SCHEDULING 61

Delay The delay for each packet is the sum of the individual delay contributions
of the edges along the path from the source of the packet towards the root. We
distinguish two types of delay contribution. The delay contribution of the first
edge on the path is the difference between the time slot at which the packet is
first transmitted, and the time slot at which it was generated:

∀v ∈ V, j ∈ Jv , p = Pv,0 : Dv,p, j =

(
∑

i∈I

i · xv,p, j(i) + Ts ys ·Ov,p, j)− (Sv + j · Tv) (4.8)

The delay contribution for the other path elements is the difference between
the time slot at which the packet reaches the target of the element, minus the
time slot at which it had reached its source:

∀v ∈ V, j ∈ Jv , p ∈ Pv \ {Pv,0} : Dv,p, j =

(
∑

i∈I

i · xv,p, j(i) + Ts ys ·Ov,p, j)−
∑

i∈I

i · xv,p−1, j(i), (4.9)

where the Ts ys · Ov,p, j term accounts for packets that do not arrive at the
source and destination of Pv,p during the same system period.

A packet cannot be transmitted by a node during the time slot of its genera-
tion, and it cannot traverse multiple edges during one single time slot. Hence,
the delay contribution of each path element is limited to

1≤ Dv,p, j ≤ Ts ys − 1. (4.10)

4.3.2.4 Objective function

The objective is to minimize the average delay of the
∑

v∈V
Ts ys/Tv packets gener-

ated in a system period:

min
1
|V |
·
∑

v∈V

∑

j∈Jv

∑

p∈Pv

Tv

Ts ys
Dv,p, j (4.11)

4.4 Recurrent Low-Latency Scheduling Function

In the previous section, the underlying resource problem of recurrent schedul-
ing was stated formally and an optimal mathematical solution was provided.
However, such an optimal solution is computationally complex and needs to be
solved centrally as it assumes perfect network knowledge. Therefore, in this
section we propose the new ReSF scheduling function that solves the recurrent
low-latency scheduling problem in real-time and a distributed manner. First, the
goal and features of ReSF are discussed in a general overview of the scheduling
function, which is clarified with an example. Afterwards, detailed information

62 CHAPTER 4

on the scheduling algorithm, packet loss, the schedule collision prevention and
queue housekeeping using Enhanced Low Latency Scheduling Function (eLLSF)
are presented. Finally, the integration of ReSF with the 6P protocol is discussed
in detail.

4.4.1 General Overview

ReSF was designed to minimize the latency of periodic data transmissions while
keeping the reservation overhead, i.e., the number of control messages and the
number of reserved slots, to a minimum. It targets IoT systems where traffic is
sent periodically, following fixed or slowly changing patterns. The 4 main steps
are outlined below:

Scheduling an ReSF reservation ReSF assumes a source node knows its peri-
odic traffic pattern. Using this information, ReSF constructs a so-called recurrent
path that consists of recurrent cells which are cells that are only activated in
slotframes when traffic is expected and are deactivated afterwards. An ReSF
reservation is based on the following tuple: (star t, stop, period). Star t is the
ASN at which the first data packet is generated on the source node, stop is the
ASN at which point no data will be generated anymore and period represents
the periodicity of the data transmission. The tuple is sent from the source node
to the next hop and forwarded to the ReSF destination: at each hop the star t
ASN is incremented to an ASN as closely as possible following the received star t
ASN, resulting in a daisy-chained ReSF path from source to destination. A path
is however not explicitly reserved for one particular packet stream: if a node
makes an ReSF reservation that is forwarded all the way up to the destination
node, the allocated recurrent cells at an intermediate node along that path can
be used by any packet (originating from any node) that is first in the transmis-
sion queue of that intermediate node, guaranteeing fairness and lowest average
latency.

Anticipating packet loss ReSF anticipates packet loss (cf. Section 4.4.4) by
reserving back-up tuples. The number of extra reservations depends on the mea-
sured link quality and allows a node to retransmit multiple times consecutively.

Preventing schedule collisions A schedule collision is caused when multiple
ReSF reservations, located in the same node, want to occupy exactly the same
cell at a particular ASN. While theoretically it is possible to search for reservation
tuples between sender and receiver that do not share overlapping cells, such
a reservation process will take too long and is therefore practically infeasible.
Instead, a node that wants to schedule an ReSF reservation message, searches in a
pool of reservation tuples, for candidate tuples with the lowest number of unique
schedule collisions. The receiver picks the required number of reservations out
of the sent candidate tuples by again relying on the lowest number of schedule

RECURRENT LOW-LATENCY TSCH SCHEDULING 63

SHARED CELL ReSF TX CELL HOUSEKEEPING TX CELL

A

B

C

D

R

ETX = 1

ETX = 1

ETX = 1

ETX = 2

G
B

G
B

B > D B > D

B > D B > D

D > R

D > R

ReSF 6P

ADD (A > C)

ReSF 6P RESP.

(C > A)

ReSF 6P

ADD (C > R)

ReSF 6P RESP.

(R > C)

54 60 66

72 78 84

90 96 102

108 114 120

G
A

A > C

AVG QUEUE SIZE = 0

HOUSEKEEPING NODE B

SLOTFRAME

ASN

6D ADD

(B > D)

6D RESP.

(D > B)

B > D

B > D

6D DELETE

(B > D)

6D RESP.

(D > B)

FAILED TRANSMISSION

G
B

B > D B > D D > R

G
B

B > D B > D D > R

G
B

B > D B > D D > R

G
B

B > D B > D D > R

A > C

G
A

C > R

C > R

AVG QUEUE SIZE = 0

HOUSEKEEPING NODE B

AVG QUEUE SIZE = 0

HOUSEKEEPING NODE B

AVG QUEUE SIZE = 1

HOUSEKEEPING NODE B

Figure 4.3: ReSF scheduling example with two nodes A and B generating traffic.
The schedule represents an aggregation of all individual schedules. The queue
size and how this affects the housekeeping of node B is also shown.

collisions. To efficiently calculate this number of unique schedule collisions, we
propose the algorithm explained in Section 4.4.5.

Queue housekeeping using eLLSF ReSF prevents failing packets from con-
gesting the queue by doing additional periodical housekeeping. This is done
using eLLSF, an enhanced version of the LLSF scheduling function. During this
periodical eLLSF housekeeping, a node reserves (or deletes) extra cells that
repeat until the next housekeeping moment in order to keep the queue as empty
as possible.

4.4.2 Example

As an example, consider Figure 4.3. There are 4 nodes and 1 root R. It is assumed
that nodes A and C are far enough away from nodes B and D, so there is no
internal interference between these two links. Both node A and node B have a
sensor application that periodically generates packets. The traffic destination is
root node R. The shown schedule is an aggregated schedule of all individual
nodes. The housekeeping moments and decisions of node B are also shown.

64 CHAPTER 4

The traffic generation pattern of node B looks like (star t = 31, stop =
600, period = 12), meaning that the first packet starts at ASN 31 and gets
repeated every 12 cells. The ReSF reservations from node B to node D and from
node D to node R are already installed. Because the ETX of the link between
node B and node D is 2, there are two recurrent cells from node B to node D.

The traffic pattern tuple of node A is described by (star t = 80, stop =
790, period = 36). To reserve the ReSF recurrent cells, node A sends its first
ReSF 6P ADD message in the SHARED cell at ASN 60. Node C responds at its first
opportunity in the next SHARED cell at ASN 66. To construct a minimal-latency
path to the root, node C forwards the reservation to node R, to which the root
responds at ASN 78. The ReSF 6P ADD reservation from node A to node C
contains 6 possible reservation tuples, which is the maximum number of tuples
a 6P ADD can contain, and that are picked based on the lowest calculated number
of schedule collisions. Out of these 6 tuples, node C picks the one with the lowest
number of collisions and the closest to the original start ASN, i.e., (star t =
81, stop = 790, period = 36). From node C to node R the ideal reservation
tuple would be (star t = 82, stop = 790, period = 36) as we assume that the
processing of a packet takes less than one cell duration. However, because of
the schedule collision that would happen at ASN 82 (with the transmission from
node D to R), reservation tuple (star t = 83, stop = 790, period = 36) has a
lower number of schedule collisions and is agreed upon.

Now assume that due to external interference, both transmissions from node
B to D at ASN 80 and 81 fail. Because of those failures, the generated data packet
of node B ends up in the queue two slotframes in a row. The next housekeeping
of node B notices that two out of three times there was an extra packet in the
queue at the end of the slotframe. As such, it sends out a reservation at ASN
90 for a housekeeping cell which gets confirmed at ASN 96. Because of this
extra cell the queued packet gets forwarded to node D and after that, during
the third housekeeping round, the node decides that the housekeeping cell can
be deleted.

4.4.3 Scheduling Function Description

The ReSF scheduling function allows nodes to add new recurrent reservations for
new data-generating sensor applications, remove deprecated reservations when
applications stop generating data and update reservations when an application
for example changes the period after which it generates data. To do so, ReSF
assumes a source node knows its periodic traffic pattern, e.g., reported by a
sensing application, and gets cross-layer updates when this pattern changes. In
this section, the different functionalities are described in detail.

4.4.3.1 Scheduling Reservations

We assume that each node periodically generates data for transmission, defined
by a (star t, stop, period) tuple. ReSF uses the procedures in Algorithms 1

RECURRENT LOW-LATENCY TSCH SCHEDULING 65

Algorithm 1 Scheduling an ReSF reservation request.

1: procedure SCHEDULEREQUEST(start, stop, period, id, dest)
2: max_tuples← 6
3: num_tuples← getReqTuples(getNextHop(dest))
4: tuple_pool← getTuplePool(start + 1, stop, period, resv_buffer)
5: tuple_list← list()
6: while size(tuple_list) 6= max_tuples do
7: append(popBestTuple(tuple_pool), tuple_list)
8: sendRequest(tuple_list, num_tuples, id, dest)

Algorithm 2 Receiving an ReSF reservation request.

1: procedure RECEIVEREQUEST(tuple_list, num_tuples, id, dest)
2: ack_tuple_list← list()
3: while size(ack_tuple_list) 6= num_tuples do
4: append(popBestTuple(tuple_list), ack_tuple_list)
5: respond(ack_tuple_list, id)
6: if shouldForward(dest) then
7: new_start← getLatestTuple(ack_tuple_list)
8: scheduleRequest(new_start, stop, period, id, dest)

and 2 to, respectively, send a new reservation and/or respond to a received
reservation request.

The scheduleRequest procedure schedules a new reservation based on
the traffic tuple received from the application layer or the tuple derived from
an incoming ReSF reservation. It looks for max_tuples tuples that equals
6, which is the maximum number of reservations that fit in a 6P ADD mes-
sage, as explained in Section 4.4.7. To determine the number of tuples that
should be reserved to anticipate packet loss, getReqTuples takes into ac-
count the link quality as explained in Section 4.4.4. Using the getTuplePool
procedure, all tuples in the interval [(star t + 1, stop, period), (star t + 1+
reservation_bu f f er, stop, period)] are returned. By starting from star t +1,
ReSF makes sure that a new reservation is reserved after the packet is generated
or received from the previous hop: this way cells are daisy-chained over multi-
ple hops towards the destination. The popBestTuple procedure returns the
reservation tuple with the lowest calculated number of unique schedule collisions
(cf. Section 4.4.5), after checking for collisions with all already activated reser-
vations on that node. Thus, the reservation_buffer value represents the trade-off
between looking for a minimal number of unique schedule collisions and the
risk of introducing more delay by picking a reservation tuple with a large gap
between the time slot at which the packet is generated and the actual time slot
at which the recurrent packet will be sent. In Section 4.6.1.2, we experimentally
determine the best reservation_buffer value. Finally, the ReSF request with the

66 CHAPTER 4

chosen candidate tuples is sent to the next hop.
The receiveRequest procedure is straightforward: when it receives an

ReSF reservation request, it chooses num_tuples tuples from the received
tuple_list, by using the popBestTuple procedure. The receiver acknowl-
edges the sender with this list of num_tuples tuples. If the node is not the final
destination of the ReSF reservation, it prepares to forward a new reservation,
using scheduleRequest.

4.4.3.2 Unscheduling and Updating Reservations

When a sensor application stops generating data, all the reserved ReSF slots
towards the reservation destination node should also be removed to avoid energy
waste. The procedure for removing cells is fairly simple: a node transmits a
delete message to the next hop (towards the destination node), complemented
with the ReSF reservation ID. When the next hop receives this reservation
removal message it will forward a delete message with the same ID to its next
hop which is repeated until the delete message reaches the destination node
and all ReSF reservations with that ID are removed.

Every reservation has a stop value at which the node stops generating data.
When this stop ASN is reached, the reservation gets removed and should be
renewed when a node wants to send additional data. Reservations also get
removed when they are unused for a fixed amount of time.

It may happen that an ReSF reservation needs to be updated, for example
when the sensor data generation periodicity changes. In that case, the node
sends a new reservation message to its next hop with the same ID (of the old
reservation that needs to be updated) but it will propose a new reservation
tuple. This avoids the delay and energy waste of first removing the slots via
delete messages and only afterwards reserving new cells. When sending the
updated reservation message the same reservation process applies as described
earlier in this section. However, there is one additional step: when a node and
its next hop agree on a new set of reservation tuples for that particular ID, the
old reservation is deleted automatically.

4.4.4 Anticipating Packet Loss

To deal with possible packet loss (due to interference) in advance, instead
of reserving 1 recurrent cell per packet, ReSF by default allocates a number
of recurrent cells equal to the ceiled ETX value of the link to its next hop,
num_tuples = dET X (l inknex tHop)e, which is calculated in the getReqTuples
in Algorithm 1. ETX is the expected number of transmissions a packet needs to
reach its destination. When forwarding the reservation message, its next hop
will apply the same formula for allocating a number of cells to its next hop and
so on. Doing this over-provisioning, ReSF copes with possible packet loss due to
bad link quality.

RECURRENT LOW-LATENCY TSCH SCHEDULING 67

4.4.5 Preventing Schedule Collisions

When multiple transmitting and/or receiving ReSF reservation tuples, located in
the same node, each expect the exact same cell to be activated at a specific ASN,
this is called an ReSF schedule collision. Allowing multiple tuples to use the same
cell will result in packet transmission/reception failures whereby those packets
are queued to be retransmitted and the delay inevitably increases. In order
to minimize this delay, such schedule collisions should be kept to a minimum.
However, detecting collisions between recurrent reservations that only reoccur
every so many slotframes and at different time slots in those slotframes, is much
harder than detecting collisions between traditional reservations. The latter ones
persist every slotframe at the same time slot, which makes identifying collisions
trivial. In this section, we present an algorithm to search for reservation tuples
with the least amount of unique schedule collisions.

To efficiently calculate the number of collisions and the exact collision ASNs
of two reservations (star t1, stop1, period1) and (star t2, stop2, period2), we
search for the solution to:

∀x , y ∈ Z : star t1 + period1 · x = star t2 + period2 · y (4.12)

in the interval [star tmax , stopmin] with star tmax = max(star t1, star t2)
and stopmin = min(stop1, stop2). More specifically, we start at star tmax so we
are sure every reservation is already sending. Equation 4.12 can be rewritten
into the standard form of a linear Diophantine equation ax + b y = c where
a = period1, b = −period2, c = star t2 − star t1 are integers:

period1 · x − period2 · y = star t2 − star t1 (4.13)

A linear Diophantine equation has solutions if and only if the gcd(a, b)|c,
meaning that c should be a multiple of the greatest common divisor of a and
b. If not, this means there are no collisions between the two reservations. If
gcd(a, b)|c, the equation has infinitely many solutions. The solution (x0, y0)
can be calculated using the extended Euclidean algorithm1. Using (x0, y0) and
the Diophantine solution standard form, one can calculate all solutions:

∀n ∈ Z : x = x0 + n ·
b

gcd(a, b)
(4.14)

∀n ∈ Z : y = y0 − n ·
a

gcd(a, b)
(4.15)

All (x , y) tuples, for x , y ∈ Z, are solutions to Equation 4.12. However, we
are only interested in the values of n where the two reservation sequences can
collide, i.e., in the interval [star tmax , stopmin]. Replacing x , a and b:

1http://mathworld.wolfram.com/DiophantineEquation.html

68 CHAPTER 4

star tmax ≤ star t1+period1·(x0 + n ·
−period2

gcd(period1,−period2)
)≤ stopmin

(4.16)

Based on Equation 4.16, we calculate the lower- and upperbound of the n
values that we should consider:

nstar t = (
star tmax − star t1

period1
− x0) ·

gcd(period1,−period2)
−period2

(4.17)

nstop = (
stopmin − star t1

period1
− x0) ·

gcd(period1,−period2)
−period2

(4.18)

The number of schedule collisions numColl isions between the two reserva-
tions (star t1, stop1, period1) and (star t2, stop2, period2) equals the numbers
of integers in the interval [nstop, nstar t] (as nstop will always be smaller than
nstar t):

numColl isions = bnstar tc − dnstope+ 1 (4.19)

A node can immediately and exactly calculate all collision ASNs, by iterating
over all the integers in the interval [nstop, nstar t] using:

star t1 + period1 · (x0 + n ·
−period2

gcd(period1,−period2)
) (4.20)

Subsequently, to calculate the exact number of unique collisions between a
new candidate reservation tuple (star tk, stopk, periodk) and all other already
installed k − 1 tuples on that node, we have to pair-wise calculate the colli-
sions of the tuple (star tk, stopk, periodk) with every other reservation tuple
(star t i , stopi , periodi), as shown in the calcNrUniqueCollisions proce-
dure in Algorithm 3. The candidate reservation tuple (star tk, stopk, periodk)
and the k− 1 tuples are given as parameters to the procedure.

The procedure iterates over every tuple (star t i , stopi , periodi) and calcu-
lates the star tmax , stopmin, nstar t and nstop for each tuple t, as defined in Equa-
tions 4.17 and 4.18. Then at lines 5 and 6, for every (star t i , stopi , periodi),
we iterate over all n (integer) values in the interval [nstop, nstar t] and use them
to calculate every collision ASN relating to a n value. As show at lines 7 and 8,
if the result does not exist yet in the list of unique collisions ASNs, it is added.
The returned length of the ASNList, at line 9, is the total number of unique
collisions of the candidate tuple (star tk, stopk, periodk). The node will use this
number to compare this candidate with the other candidate tuples and select the
best candidate, i.e., the candidate with the lowest number of schedule collisions.

RECURRENT LOW-LATENCY TSCH SCHEDULING 69

Algorithm 3 Exact Collision Solving with Multiple Tuples

1: procedure CALCNRUNIQUECOLLISIONS(start, stop, period, tupleSet)
2: ASNList← list
3: for each t ∈ tupleSet do
4: star tmax ← max(start, t.start)
5: stopmin ← min(stop, t.stop)
6: nStart, nStop← See definition Equations 4.17 and 4.18
7: for each n ∈ [nStop, nStart] do
8: ASN← star t + period · (x0+ n · −t.period

gcd(period,−t.period))
9: if ASN /∈ ASNList then

10: append(ASN, ASNList)
11: return length(ASNList)

4.4.6 Queue Housekeeping using eLLSF

While extra recurrent cells are reserved to anticipate inferior link quality and
action is taken to limit the number of schedule collisions, packets can still
end up in the queue at the end of a slotframe when the number of reserved
recurrent slots, including the over-provisioned slots, does not suffice due to
more unanticipated packet loss or non-recurrent traffic.

To empty the queue and preventing the queued packets from taking up cells
that were meant for other ReSF reservations, we use the distributed scheduling
function eLLSF. It uses a periodical housekeeping moment at which it reserves
a required number of cells for the slotframes to come, i.e., cells that repeat
every slotframe. To keep the delay of those queued packets as low as possible,
ReSF calculates the required number of cells for the next eLLSF houskeeping
period by averaging the number of queued packets of every slotframe since the
last housekeeping, as to have extra resources to clear the queue and further
minimize latency. The housekeeping period is a configurable parameter.

eLLSF is actually an extended version of LLSF [55]. The idea behind LLSF is
to daisy-chain receiving and transmitting cells used in a multi-hop path in order
to decrease the latency. The authors however only described how LLSF behaves
in a multi-hop path where each node has one child and one parent. Based on
their description, we extended LLSF and implemented eLLSF so it can deal with
multiple children and use it for both up- and downstream reservations.

The process of adding and removing cells in eLLSF is similar to LLSF. How-
ever, in contrast to LLSF, eLLSF makes a difference between up- and downstream
packets when performing slot reservations and removals. This differentiation is
crucial as eLLSF considers the (possible) multiple children of a node.

Scheduling eLLSF cells If a node wants to reserve n transmit cells to its parent,
it uses the following four-step process:

1. For each reception cell from a child, count the number of cells between

70 CHAPTER 4

SLOTFRAME BEFORE HOUSEKEEPING

B

SHARED CELL RX CELL FROM CHILD TX CELL TO PARENT

A AB C B

LARGEST GAP NODE B (10 SLOTS)

C

LARGEST GAP NODE C (11 SLOTS)

LARGEST GAP NODE A (12 SLOTS)

SLOTFRAME AFTER HOUSEKEEPING

A AB C BC

R

D

A B C R R R R

Figure 4.4: eLLSF housekeeping on node D that wants to reserve 4 transmission
cells to its parent.

that reception cell and the previous reception cell of that child.

2. For each child, pick the cell with the largest gap to its left: this is the
largest amount of cells between two reception cells of that child.

3. Distribute the cells that are to be reserved evenly and randomly among
all children. For example, if a node wants to reserve five cells to its parent
and has three children, first assign one transmit cell to each of the children
of the node. After that, assign the remaining two cells to two random
children.

4. For each child that is assigned one or more transmission cells, place the
transmit cell(s) as closely as possible to the right of the reception cell with
the largest gap of that child.

When making a transmit cell reservation in the other direction i.e., to one of
its children, the 3-step LLSF reservation process is used: only the reception cells
of the child – to which the reservation is made – are considered when looking
for the largest gap. This way, minimum-delay communication between that
child and its parent is encouraged.

Figure 4.4 shows an example of a eLLSF housekeeping moment. The schedule
of node D before and after the housekeeping moment is shown (for simplicity
reasons only one channel is used). Node D wants to reserve 4 cells to its parent.
Therefore, it first determines the largest gap RX cells of each child. Afterwards,
it places a transmission cell as closely as possible to the largest gap reception
cell of each child, with one transmission cell to spare (because there are only 3
children). This last transmission cell is randomly assigned to a node: in this case
it is assigned to node B and placed in the beginning of the slotframe because
there are no empty cells left at the end of the slotframe.

Unscheduling eLLSF cells When a node has too many cells to a neighbor (i.e.,
parent or child), it will remove 1 or more cells to that neighbor. Again, eLLSF

RECURRENT LOW-LATENCY TSCH SCHEDULING 71

makes a distinction between removing a cell to a parent or to a child. When
removing a transmission slot to a parent, the algorithm looks for the largest gap
between a transmission cell to that parent and the reception cells of all children.
Then it removes the transmission cell with the largest gap to its left. In the case
a transmission cell to a child is being removed, we use the unscheduling process
of LLSF. It first looks for the largest gap between a transmission cell to that
child and the previous reception cell of that same child. Then it removes the
transmission cell to that child with the largest gap to its left.

Preventing collisions between eLLSF and ReSF In order to prevent the
eLLSF housekeeping from reserving recurrent cells that were meant for ReSF
reservations, a 2-step process is used: (1) calculate all the cells occupied by
active ReSF reservations during an interval [now, now+ bu f f er] (with bu f f er
being a preset parameter currently fixed at the length of 10 slotframes), (2)
schedule the housekeeping cells using eLLSF while not considering the slots
calculated in step 1 as available slots.

4.4.7 6P Integration

This section clarifies how to integrate ReSF in the 6P protocol. When looking at
the format of a normal 6P ADD transaction, an ReSF 6P transaction is very similar:
ADD and DELETE requests contain an additional ReSF ID that identifies the
reservation, the Destination of the reservation and a list of ReSF reservations
that have to be added/deleted. The receiver answers with the number of
requested ReSF reservation tuples that fit the node best. If the receiver does not
agree with any of the proposed tuples, it answers with an empty 6P RESPONSE
which indicates that the sender should propose other ReSF reservation tuples.

In Figure 4.5, both a 6P ADDmessage and ReSF reservation format are shown.
The maximum length of a 6TiSCH packet is 127 bytes. The IEEE 802.15.4 header
has a length of 23 bytes (including the FCS field) while the 6top header only
has a length of 8 bytes when leaving out the list of cells. This leaves 96 bytes
to specify the ReSF reservation. The ReSF ID can be represented by a 2-byte
integer, the Destination by 8 bytes. An ReSF reservation has a length of 14
bytes containing two 5-byte ASN values for the star t and stop value, a 2-byte
channel offset and a 2-byte period value. This means that a 6P ADD reservation
can include 6 reservations. There are 2 bytes left for future use.

4.5 Improved ReSF

In this section we present an improved version of the original ReSF scheduling
function as presented in Section 4.4. This updated ReSF improves over the
original ReSF with collision solver heuristics, a new approach for collision
avoidance and support for sporadic traffic. In contrast to the original ReSF,
the improved ReSF does not include a stop ASN in the reservation tuple, i.e.,

72 CHAPTER 4

V Code SFIDT R

Metadata CellOpt

NumCells ReSF ID

ReSF Reservation List (84 bytes)

ReSF Reseserved

FCS

Start ASN

Stop ASN

Period

Channel Offset

0 7 8 15 16 23 24 31

0 7 8 15 16 23 24 31

IEEE 802.15.4 Header (21 bytes)

ReSF

Reservation

6top

Header

IEEE 802.15.4

Header

ReSF Destination

ReSF Reseserved

SeqNum

Figure 4.5: Example of a 6P ADD request format for ReSF reservations (maximum
length of 127 bytes) and an ReSF reservation that includes the channel offset
and the reservation tuple (14 bytes).

(star t, period). Therefore, reservations are assumed to continue until they are
explicitly removed by a 6P DELETE message.

4.5.1 Fast Collision Solving

As explained in Section 4.4.5, to avoid the negative effects of schedule collisions,
an ReSF node aims to keep these schedule collisions to a minimum by applying a
collision solver algorithm to a list of possible candidate tuples. Whenever a node
proposes a new reservation tuple to another node or when a node receives an
ReSF request, the node selects the reservation tuple candidate with the lowest
number of schedule collisions as calculated by the procedure in Algorithm 3.

Below we first explain the slight change in the calculation of the number
of unique collisions. Afterwards, we introduce less computationally-intensive
heuristics.

4.5.1.1 Exact Collision Solving with Multiple Tuples

In this section we explain the slightly changed calculation of the exact number
of collisions between one tuple and multiple other tuples (compared with the
calculation in Section 4.4.5), due to the missing stop ASN in the reservation
tuple of the improved ReSF.

When calculating the exact number of unique collisions between a new
candidate reservation tuple (star tk, periodk) and the already k − 1 installed

RECURRENT LOW-LATENCY TSCH SCHEDULING 73

Algorithm 4 Exact Collision Solving with Multiple Tuples

1: procedure CALCNRUNIQUECOLLISIONS(start, period, tupleSet, startMax,
LCM)

2: ASNList← list
3: for each t ∈ tupleSet do
4: nStart, nStop← Now using star tMax and LC M
5: for each n ∈ [nStop, nStart] do
6: ASN← star t + period · (x0+ n · −t.period

gcd(period,−t.period))
7: if ASN /∈ ASNList then
8: append(ASN, ASNList)
9: return length(ASNList)

reservation tuples on that node, we now pair-wise calculate the collisions with
every tuple (star t i , periodi) in the interval:

[star tmax , star tmax + LC M(period1, period2, . . . , periodk)− 1] (4.21)

with star tmax = max(star t1, star t2, . . . , star tk) and LC M being the least com-
mon multiple. More specifically, we start at star tmax so every reservation is
sending and after a length of LC M(period1, period2, . . . , periodk), the same se-
quence repeats itself. The candidate reservation tuple (star tk, periodk), the k−1
tuples, star tmax and LC M(period1, period2, . . . , periodk) are given as param-
eters to the new calcNrUniqueCollisions procedure in Algorithm 4. The
main difference with the procedure in Algorithm 3 is that nstar t and nstop are now
calculated with the given star tmax and LC M parameters as defined in this sec-
tion. More specifically, the star tmax and stopmin variables in both Equations 4.17
and 4.18 are replaced with star tmax = max(star t1, star t2, . . . , star tk) and
stopmin = star tmax + LC M(period1, period2, . . . , periodk)− 1 respectively.

Algorithm 4 shows that the computational performance of the exact collision
solving approach is dependent on the size of tupleSet, but also of the length of
the interval [nstop, nstar t], i.e., the number of schedule collisions, for each tuple
in tupleSet.

4.5.1.2 Collision Solving Heuristic Using Summation

We introduce a heuristic to approximate the exact algorithm in terms of collision
solving performance, while avoiding the computationally-intensive procedure of
calculating all the unique collision ASNs between one and multiple ReSF tuples.

The heuristic is demonstrated in Algorithm 5. In the calcSumCollisions
procedure, we iterate over all the existing tuples in tupleSet and calculate the
number of collision ASNs, which is obtained by filling in bnstar tc − dnstope+ 1,
that the candidate tuple (star tk, periodk) has with each of the k− 1 tuples. All
these totals are aggregated in the sum variable which results in an estimation of

74 CHAPTER 4

Algorithm 5 Collision Solving Heuristic Using Summation

1: procedure CALCSUMCOLLISIONS(start, period, tupleSet, startMax, LCM)
2: sum← 0
3: for each t ∈ tupleSet do
4: nStart, nStop← . . .
5: sum← sum+ bnStar tc − dnStope+ 1
6: return sum

the unique number of collisions. Likely, this total is an overestimation as it can
include collisions ASNs that were counted multiple times with different tuples.

In contrast to the exact approach, the heuristic is only dependent on the
size of tupleSet, and not on the number of schedule collisions for each tuple in
tupleSet, making it computationally more attractive than the exact solution.

4.5.1.3 Collision Solving Heuristic Using Minimal Delay

We introduce another heuristic that always picks the earliest tuple available in
the list of candidate tuples (i.e., with the smallest star t value), which is the
tuple with the time slot directly after when the packet is generated or received.
Theoretically, this results in minimal delay and a perfectly daisy-chained path
from source to root. However, a possibly high number of schedule collisions
with this tuple can lead to packet loss and increased latency. Computationally,
always choosing the earliest and thus first tuple makes this heuristic the most
attractive.

4.5.2 Improved Collision Avoidance

Next to the collision solving algorithm, we introduce an additional feature
that aims to avoid schedule collisions. In the original ReSF the housekeeping
scheduling function, i.e., eLLSF, could not reserve cells that were occupied
by ReSF for a future period in time (i.e., parameter bu f f er in Section 4.4.6).
However, determining the optimal length of this period is not trivial. In the
updated ReSF version we propose an alternative and limit the choice of the eLLSF
slots to a pre-determined set. When allocating slots for housekeeping, eLLSF is
only allowed to choose slots out of this set and ReSF can never activate a cell at
any of these time slots for a recurrent reservation. Additionally, when a node
applies the collision solver algorithm to select the best candidate tuple, every slot
in that set is included as a separate reservation to compare to. Those slots are
characterized by the tuple (star t = ASNSlot, period = slot f rameLeng th),
where ASNSlot is the ASN of the time slot in the first slotframe. By explicitly
incorporating these slots in the collision solver process, the selected candidate
tuple will cause less schedule collisions between ReSF and eLLSF.

RECURRENT LOW-LATENCY TSCH SCHEDULING 75

4.5.3 Supporting Sporadic Traffic

In the previous version of ReSF, allocating extra cells to empty the queue from
failed packets was based on a periodic housekeeping moment. During that
moment the average number of packets in the queue since the last housekeep-
ing was used as an estimation for the (de-)allocation of extra cells until the
next housekeeping. In this updated version of ReSF, the extra cell adaptation
algorithm is changed to the traffic adaptation algorithm of MSF [38], which
was introduced in Chapter 2. Using this algorithm, ReSF does not look at queue
contents, but at the used extra cells during the last NumCellsPassed elapsed extra
cells. NumCellsPassed is a configurable parameter. Additionally, ReSF limits the
(de-)allocation of extra cells to only one at a time. In the scenarios with less
frequent traffic and more sporadic traffic, by applying these changes the traffic
adaptation algorithm should fluctuate less and management signaling in the
network decreases.

4.6 Evaluation

This section evaluates the proposed ReSF scheduling algorithm. In the first part
of the evaluation, the original ReSF proposed in Section 4.4 is tested extensively.
In the second part, the performance of the updated ReSF, combining the different
improvements introduced in Section 4.5, is assessed.

4.6.1 Original ReSF Evaluation

This section evaluates the performance of ReSF as introduced in Section 4.4
and compares it to the state-of-the-art TSCH scheduling functions SF0 and
eLLSF. A variety of experiments was conducted while observing several metrics
including packet latency and charge drawn. First, we present the different
experiment parameters. Afterwards, we determine the optimal value of the
reservation_bu f f er. Finally, we show the performance of ReSF with both
static and dynamic traffic patterns.

4.6.1.1 Simulation Setup

In order to evaluate the performance of ReSF, we used the 6TiSCH simulator as
introduced in Chapter 2 [83]2. As at the time of conducting the research, the
simulator’s implemented 6top sublayer did not support a real message-passing
6P protocol, we extended the simulator with this feature. The presented ILP
formulation is solved using Gurobi, which uses a hybrid solution procedure
that combines three different approaches to find an exact solution: (1) cutting
planes, (2) branch and bound, (3) relaxation and decomposition [102].

2The specific simulator implementation used for this evaluation is publicly available at https:
//github.com/imec-idlab/6tisch-ReSF

https://github.com/imec-idlab/6tisch-ReSF
https://github.com/imec-idlab/6tisch-ReSF

76 CHAPTER 4

Table 4.3: The default experiment parameters.

Parameter Value

Grid size 4.5 km x 4.5 km
Inter-node default distance 0.230 km
Nr. of runs per experiment 20
Simulated time 30 min
Frequency 2.4 GHz
Nr. of channels 16
Stable RSSI −93.6 dBm (PDR ∼ 0.5)
Nr. of stable neighbors 1
Avg. nr. of hops (25/100 nodes) 3.4 (σ = 0.4) / 5.8 (σ = 0.4)
Avg. nr. of children (25/100 nodes) 2.2 (σ = 0.4) / 1.7 (σ = 0.1)
Slotframe size 101
Nr. of SHARED cells 3
6top housekeeping False
SF0 threshold 0
RPL parent set size 1
RPL DIO Period 5 s
ReSF reservation_buffer 64
Housekeeping period 10 s
Time slot duration 10 ms
Packet size 127 bytes

During all experiments, the nodes are placed on a grid, with the root node
positioned in the center. The (x , y) grid position of each node (except for the
root node) is determined at random – with a different seed for each experiment
iteration – following the normal distributions N (x0, (d

8)
2) and N (y0, (d

8)
2)

respectively, with (x0, y0) being the initial grid position of each node. The dis-
tance is d, set to 230 meters, to ensure the topologies did not end up being star
topologies, while still maintaining end-to-end multi-hop connectivity between
the root and every other node. Generating heterogeneous traffic is done sam-
pling a normal distribution N (t, (t

4)
2), with t the mean traffic rate, for which 3

different values are used: 1 packet/min, 6 packets/min and 12 packets/min per
node. All network traffic is sent to the same sink node: the network root. The
default parameter values are summarized in Table 4.3. The optimal housekeep-
ing period parameter is experimentally determined and is set to 10 s for all three
scheduling functions (i.e., SF0, eLLSF and ReSF) as they all employ periodical
housekeeping. 6top housekeeping (i.e., relocation of cells) is not enabled as
this was not added to the message passing 6P implementation. To bootstrap the
network, 3 SHARED cells are installed at the first 3 cells of every slotframe.

All results in this section exclude the initial warm-up period in which the
network topology converges, meaning that each node has already selected a

RECURRENT LOW-LATENCY TSCH SCHEDULING 77

preferred parent and has negotiated 1 dedicated cell to that preferred parent.
In case of ReSF, it also means that each ReSF reservation of a node has already
reached the root. It is assumed that a link-layer ACK message does not fail and
that the intermediary processing of a data packet takes less than one cell length
(and thus can be forwarded in a cell immediately following the cell in which it
was received).

The latency metric encompasses the total time it takes a data packet to
reach the root, from the moment it is generated. It is important to mention
that a packet is only dropped after it has been retransmitted at least 5 times
and the queue of the node is full. The charge drawn metric is the aggregated
charge drawn by the radio of all the nodes, taking into account idle listening,
transmission and reception of each data and acknowledgement packet. The
charge values used in the simulator that correspond to these different actions
are based on the work by Vilajosana et al. who provided a realistic TSCH energy
consumption model [91]. All experiment results show the mean of 20 (random)
iterations and the associated standard error.

4.6.1.2 Reservation Buffer

The reservation_buffer parameter represents the number of tuples a node will
compare to all already activated reservations, when looking for the tuple with
the smallest collision rate, as explained in Section 4.4.3.1. As can be observed
in Figure 4.6, a higher reservation_buffer has a significant impact on the network
latency when there is a network load of 12 packets/min: taking the optimal
value of 64 improves 56 % in delay over not considering any extra tuples (i.e.,
a value of 0). When looking at lower traffic loads, increasing the buffer leads
to higher delays. At lower traffic loads the schedule is less congested and low
collision rate tuples are commonly available. Looking at tuples with later star t
ASNs to find an even better collision rate results in an increased latency because
of the extra difference in time between the packet arrival and the moment it
can be sent to the next hop. The reservation_buffer parameter is set to a value of
64 for all experiments. For the simplicity of parameter configuration, we show
the results for one reservation_buffer value for the different traffic loads. This,
of course, has an impact on the lower traffic loads: for 1 packet/min the latency
result is 16 % worse than the optimum (i.e., a reservation_buffer value of 0) and
for 6 packets/min are 6 % worse than the optimal results at a value of 4.

4.6.1.3 Static Traffic

Figure 4.7 shows the average latency for both 25 and 100 nodes in topologies
with static traffic patterns, meaning that a node will not change the period with
which it generates traffic throughout the experiment.

The results show that taking into account recurrent traffic behavior combined
with daisy-chaining the cells up to the root, results in superior performance in
terms of latency. Looking at results of 100 nodes with the traffic load means of

78 CHAPTER 4

0 4 8 16 32 48 64 96 128
Reservation Buffer Threshold (tuples)

0.0

0.5

1.0

1.5

2.0
La

te
nc

y
(s

ec
on

ds
)

TRM = 1 p/m
TRM = 6 p/m
TRM = 12 p/m

Figure 4.6: Reservation buffer parameter experiment with 100 nodes.

1 packet/min, 6 packets/min and 12 packets/min per node, the relative latency
improvements of ReSF over eLLSF are respectively 76 % (from 5.74 s to 1.40 s),
80 % (from 5.77 s to 1.16 s) and 78 % (from 5.53 s to 1.23 s). Looking at the
ReSF results for 100 nodes when traffic increases, the latency is almost constant.
This means that because of the traffic behavior-aware reservations ReSF is well
equipped to deal with different traffic rates. Looking at the results in Figure 4.7a,
the latency of ReSF is even slightly decreasing at higher mean traffic rates. This
is because ReSF defines the number of cells needed for a packet transmission
as the ceiled ETX value per link which is dynamically determined based on the
number of retransmissions. For example, if a link has an ETX value of 1.1, ReSF
will reserve 2 cells per link per packet sent, i.e., an over-provisioning of 1 cell.
However, with an ETX value of 1.1 the probability that the packet will actually
need two cells is rather small. This means that the over-provisioned cell(s) can
be used by other packets. This effect is magnified when dealing with higher
traffic rates as there will be more over-provisioned cells.

As expected, due to the daisy-chained paths scheduled by eLLSF, it also
improves over the random reserved cells of SF0 with respectively 15 %, 15 %,
and 12 %. Packet loss is minimal for all 3 scheduling functions: when considering
the high traffic load scenario of 12 packets/min with 100 nodes, ReSF has the
least amount of packet loss with 0.8 % of the packets lost, followed by eLLSF
with 1.7 % and SF0 with 1.8 % packet loss. Considering the other traffic loads,
the packet loss of ReSF is negligible at a maximum of only 0.04 %. For eLLSF
and SF0, the maximal packet loss values are 0.6 % and 0.7 %.

Table 4.4 shows that the same trend holds for larger network sizes up to
200 nodes and a traffic rate mean of 12 packets/min. For 150 and 200 nodes,
ReSF has an average latency of 1.94 s and 2.83 s respectively, while eLLSF
has an average latency of 6.93 s and 8.44 s respectively. However, the packet
losses introduced by ReSF increase to 4.24 % for 150 nodes and to 9.87 % for
200 nodes, while for eLLSF the packet loss increases to 4.08 % and 9.02 %

RECURRENT LOW-LATENCY TSCH SCHEDULING 79

1 6 12
Traffic Rate Mean (packets/minute)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

La
te

nc
y

(s
ec

on
ds

)
SF0
eLLSF
ReSF
ReSF_PF
ILP

(a) Latency for 25 nodes.

1 6 12
Traffic Rate Mean (packets/minute)

0
1
2
3
4
5
6
7
8
9

La
te

nc
y

(s
ec

on
ds

)

SF0
eLLSF
ReSF

(b) Latency for 100 nodes.

Figure 4.7: Latency results for static traffic with 25 and 100 nodes.

respectively. These results show that while ReSF has slightly more packet losses
compared to eLLSF when the network scale increases, ReSF scales significantly
better than eLLSF in terms of latency.

Figure 4.7a also shows the optimal solution. It is calculated by solving the
ILP formulation of the recurrent traffic problem, as defined in Section 4.3.2.
Optimal results for 100 nodes are omitted, due to the exponential execution
time increase in terms of network size. As the ILP formulation assumes perfect
link conditions without interference (i.e., ET X = 1), the graph also shows
ReSF results under perfect network conditions (i.e., RESF_PF) for a more fair
comparison. The ILP results average around 25 ms which is significantly better
than the normal ReSF results or the ReSF experiment with perfect links of which
the latency for all traffic rates averages around 250 ms. The reason that the ILP
solution has a latency about 10 times lower than ReSF_PF is because its result
is the theoretical optimal solution that avoids schedule collisions using perfect
global information, and it does not take into account interference or signaling
overhead.

80 CHAPTER 4

Table 4.4: Comparison of eLLSF and ReSF latency and packet loss values for a
traffic rate mean of 12 packets/min for different network sizes.

Size
eLLSF ReSF

Latency (s) Loss (%) Latency (s) Loss (%)

25 2.89 0.14 0.45 0.0
100 5.53 1.7 1.23 0.8
150 6.93 4.08 1.94 4.24
200 8.44 9.02 2.83 9.78

C
ha

rg
e

D
ra

w
n

Figure 4.8: Charge drawn for 100 nodes.

The charge drawn results show that there is only a minimal impact of ReSF
on battery life: a maximum increase of 6.3 % increase over eLLSF (and 6.54 %
over SF0) for a traffic load of 12 packets/min per node and a minimum of
1.96 % (and 1.74 % over SF0) for a traffic load of 1 packet/min. Figure 4.8
shows the charge drawn for 100 nodes (due to the similarity, the results for 25
nodes are not shown). The fact that there is a slight increase in charge drawn
is due to the extra cells that ReSF reserves in the slot frames when traffic is
expected. For each scheduling function, all nodes in the network have – by
default – a dedicated transmission cell to their parents to allow fast management
communication (i.e., 6P transactions) and also data transmissions. Next to those
default reserved dedicated cells, ReSF also reserves recurrent cells that are only
activated when traffic is expected and housekeeping cells to empty the queue
of any remaining traffic. SF0 and eLLSF also have to reserve extra cells when
dealing with unanticipated high traffic loads and because they do not anticipate
the recurrent traffic with recurrent cells they have to send significantly more
6P overhead as shown in Figure 4.9. The figure shows the number of sent 6P
packets before and after network convergence. For the lowest traffic load, ReSF
has higher total overhead, but this is only because of the sent ReSF reservations
during network convergence. When the network has converged, the overhead

RECURRENT LOW-LATENCY TSCH SCHEDULING 81

1 6 12
Traffic Rate Mean (packets/minute)

0

1000

2000

3000

4000

5000

6000
6P

 O
ve

rh
ea

d
(p

ac
ke

ts
) SF0 (after conv.)

LLSF (after conv.)
ReSF (after conv.)
SF0 (before conv.)
LLSF (before conv.)
ReSF (before conv.)

Figure 4.9: Number of sent 6P messages, before (i.e., hatched bars) and after
the network convergence.

of SF0 and eLLSF is significantly higher.

4.6.1.4 Dynamic Traffic

In these experiments, ReSF and eLLSF are tested on how they deal with dynamic
traffic. Every second every node has a probability that its traffic generation
period changes. When the traffic generation period changes, the new period
is drawn from the sample normal distribution out of which the original traffic
period was drawn.

The results in Figure 4.10 show that eLLSF is not affected by the traffic
period changes. Because the changes in traffic period are not that significant,
the housekeeping of eLLSF does not continuously need to send 6P DELETE and
ADD to adjust the number of resources. The number of 6P messages thereby
equals the overhead as if there were no traffic period changes, leading to similar
latency results. This is in contrast to ReSF, where for each traffic period change
at a node, a new recurrent reservation needs to be forwarded to the root. This
additional ReSF 6P overhead will hold up more data packets in the queue, which
results in additional 6P ReSF housekeeping overhead. All this extra overhead
decreases the performance of ReSF. However, the results show that for 25 nodes,
12 packets/min and a probability up to 20 % (meaning that, on average, every
second 5 nodes change their traffic period), ReSF can deal with these dynamic
traffic periods and it improves on latency while maintaining a throughput equal
to eLLSF. The graph shows that ReSF actually deals better with the changing
traffic periods when the traffic rate mean is higher. This is because when the
traffic rate is higher, recurrent cells are more frequently available to forward the
updated 6P ReSF reservations and thus less data packets are obstructed from
being forwarded. When observing 100 nodes at 12 packets/min, ReSF performs
better than eLLSF up to somewhere between 1.5 % and 2 %. While the latency
graph shows a significant improvement by ReSF, the throughput results showed

82 CHAPTER 4

0 1 2 5 7.5 10 15 20
Period Change Probability (%)

0
1
2
3
4
5
6
7
8

La
te

nc
y

(s
ec

on
ds

)

eLLSF, TRM = 1 p/m
ReSF, TRM = 1 p/m
eLLSF, TRM = 6 p/m
ReSF, TRM = 6 p/m
eLLSF, TRM = 12 p/m
ReSF, TRM = 12 p/m

(a) Latency for 25 nodes.

0 1 2 5 7.5 10
Period Change Probability (%)

1
2
3
4
5
6
7
8
9

10

La
te

nc
y

(s
ec

on
ds

)

eLLSF, TRM = 1 p/m
ReSF, TRM = 1 p/m
eLLSF, TRM = 6 p/m
ReSF, TRM = 6 p/m
eLLSF, TRM = 12 p/m
ReSF, TRM = 12 p/m

(b) Latency for 100 nodes.

Figure 4.10: Results for dynamic traffic with 25 and 100 nodes, comparing ReSF
to eLLSF, as a function of the probability that the traffic generation period of
each node changes every second.

that at 1.5 % the throughput of ReSF is better than eLLSF while at 2 % it was
slightly less (i.e., ReSF had 0.28 % less throughput).

It is important to note that such frequent traffic rate changes are unlikely
for most real-world sensing applications, such as temperate or heart rate mea-
surements. For example, in a topology with 100 nodes a 2 % change probability
means that it is expected that 2 out of 100 nodes change their traffic period every
second and every node would change it every 50 s on average. Considering a
generation mean of 1 packet/min such a change probability becomes even more
unrealistic as a node would change its generation period faster than it generates
an actual packet. So, a probability of 2 % is very high which means that ReSF is
well-equipped to handle dynamic traffic rates.

RECURRENT LOW-LATENCY TSCH SCHEDULING 83

Table 4.5: The 6TiSCH simulator parameters.

Parameter Value

Nr. of runs per experiment 25
Simulated time 1 h
Frequency 2.4 GHz (16 channels)
Stable RSSI −91 dBm (PDR ∼ 0.75)
Slotframe size 101 (with 15 ms slots)
Nr. of SHARED bootstrap cells 7
6top housekeeping False
TSCH [min, max] back-off exp. [0, 1]
Bayesian broadcast probability 0.33
RPL parent set size 1
RPL DAO period 90 s
MSF Join process False
MSF NumCellsUsed [low, high] [4, 12]
MSF NumCellsPassed 16
ReSF reservation buffer 20
ReSF reserved back-up slots 20

4.6.2 Improved ReSF Evaluation

In this section, we evaluate a newer version of ReSF that combines the im-
provements introduced in Section 4.5. First, we present the updated simulation
configuration. Afterwards, we evaluate the collision solving heuristics and the
collision avoidance feature. Finally, we compare the improved ReSF to the
original ReSF and the scheduling function eLLSF.

4.6.2.1 Simulation Setup

To properly evaluate the performance of improved ReSF, we use the official
6TiSCH simulator as introduced in Chapter 23. As the development of the
6TiSCH simulator is an ongoing process, it is important to mention that the
simulator used for the research in this section was a far more updated version
of the older simulator version used in the evaluation Section 4.6.1. Therefore,
comparing results from sections to each other is not recommended.

The simulator is again extended with eLLSF. The resource adapting algorithm
of eLLSF is now changed to that of MSF [38]. A summary of the simulator
configuration can be found in Table 4.5. The small maximum back-off exponent
observed in the configuration was experimentally set as this value resulted in
better latency and throughput performance of eLLSF compared to larger values.

3The specific simulator implementation used for this evaluation is publicly available at https:
//github.com/imec-idlab/6tisch-new-ReSF

https://github.com/imec-idlab/6tisch-new-ReSF
https://github.com/imec-idlab/6tisch-new-ReSF

84 CHAPTER 4

During the different iterations, the nodes are placed on a grid with the root
node positioned in the center and each node its final grid position is adjusted
slightly following a normal distribution around its initial grid position. The
initial inter-distance between the nodes is 100 m and the average hop count
is 5.5 ± 0.5. The scheduling functions are compared for three different traffic
scenarios, called fast (i.e., 3 s, 6 s or 9 s), frequent (i.e., 30 s, 45 s or 60 s) and
non-frequent (i.e., 300 s, 450 s or 600 s). At the start of the experiment, a node
picks one of the three transmission intervals of the specific scenario uniformly at
random. All network traffic is sent up to the root. The discussed results discard
the bootstrap of the network during which the network converges, meaning that
each node already has a reserved dedicated SHARED cell to its preferred parent
(i.e., a SHARED cell only shared between those two nodes). In the case of ReSF,
this also means that each node’s reservation reached the root.

The latency metric discussed in the evaluation is defined as the time it takes
for a data packet to reach the root, measuring from the moment it was generated
on the source node.

4.6.2.2 Collision Solving Approaches

In this section, the performance of the proposed collision solving heuristics is
evaluated. We compare the exact solution to the sum and the minimal delay
heuristic and a random approach. The random approach randomly selects a
tuple out of the proposed candidates. First, we compare the different approaches
by observing the error in estimated schedule collision percentage. Afterwards,
we evaluate the computational performance of the heuristics on real hardware.
Finally, the different solutions are evaluated in a simulated 6TiSCH network in
terms of packet delivery latency.

Collision Percentage Error To evaluate the performance of the different ap-
proaches, we introduce the collision percentage error metric, defined as the
absolute difference in collision percentage (i.e., the number of unique collisions
over the total number of transmissions of the candidate tuple), between the
tuple chosen by the exact approach and the one chosen by the heuristic.

We performed a standalone experiment (i.e., without the simulator) in which
we calculated the best candidate for the ReSF tuple (star tnew, periodnew) for
different numbers of reservations already present on the node. The experiment
was repeated 2000 iterations. For each iteration the start time and the period of
all tuples were randomly chosen between 101 time slots (i.e., the length of a
slotframe) and 6000 time slots (i.e., 90 s) and the number of candidates tested
was 64, as determined in our previous work. We limited the least common
multiple of the periods to 12 hours (in case the LCM was larger).

Figure 4.11 shows the results. As expected, the sum heuristic outperforms
the two other heuristics as its maximal error only goes up to 1.1 %, at 2000
tuples, while the minimal delay and random approach have an error up to 4.4 %
and 4.5 %, both at 1000 tuples with outliers that exceed a 10 % error. For

RECURRENT LOW-LATENCY TSCH SCHEDULING 85

Figure 4.11: Collision percentage error of the different heuristics, compared to
the optimal collision approach.

the sum heuristic, this means that on average the tuple that the sum heuristic
chooses only has a 1 % difference in terms of number of collisions with the tuple
that the optimal approach would calculate to have the best collision percentage.

Hardware Performance on an OpenMote B To show the difference in com-
putational performance of the different collision solving approaches, we tested
them on an OpenMote B4. The OpenMote B is an open-source hardware board
developed to accelerate the development of industrial IoT. It contains an ARM
Cortex-M3 micro-controller with 32KB on-chip RAM. We compare the algorithms
for different numbers of collisions. The exact algorithm calculates every collision
ASN (i.e., here we neglect the additional overhead of adding them to a list and
checking if a collision is unique or not) while the sum heuristic only calculates
the sum and adds it to a total, as shown in Algorithms 4 and 5. The minimal
delay heuristic will just take the proposed tuple, so its duration is less than
1 µs. Table 4.6 shows the results. It is clear that the exact algorithm’s execution
time increases with the number of collisions, while that of the sum heuristic is
constant. As an example, when a node wants to send an ReSF reservation and it
considers 20 candidate tuples (i.e., the ReSF reservation buffer is 20) and it has
to compare to 50 other reservations with on average 1000 collisions per tuple,
this will take a total of 1.1 s (i.e., 1094 us x 20 x 50) and 0.09 s (i.e., 94 us x 20
x 50) for the exact approach and the sum heuristic respectively.

Heuristic Performance in 6TiSCH network To evaluate how the heuristics
perform in terms of actual network performance, each heuristic was tested in a
200 node 6TiSCH simulation for all traffic scenarios, with a ReSF reservation
buffer of 64. Figure 4.12 shows that the performance of the sum heuristic is
nearly identical to the exact one, while the latency values of the minimal and

4http://www.openmote.com/product/openmote-b-bronze-kit/

http://www.openmote.com/product/openmote-b-bronze-kit/

86 CHAPTER 4

Table 4.6: Duration comparison on an OpenMote B board between the exact
collision solving algorithm and the heuristic.

Nr. collisions
Duration (µs)

Exact Algorithm Sum Min. delay

1 94 94 < 1
100 188 94 < 1
500 594 94 < 1
1000 1094 94 < 1

Figure 4.12: Latency comparison between the exact and heuristic ReSF collision
solving approaches.

random approach are higher. Especially in the fast traffic scenario, the latency
decrease of the sum heuristic is 27.4 % and 33.1 % better than those of the
minimal delay and random approach respectively. Because of this significant
performance increase, in the remainder of this evaluation we use the sum
heuristic. However, when there are a lot of tuples to compare to and the
computational performance of the sum heuristic would be a problem, one can
always switch to the minimal delay heuristic, which, especially in the frequent
and non-frequent scenarios, performs well.

4.6.2.3 Collision Avoidance

To evaluate the collision avoidance (CA) feature, we compare packet loss and
latency in a 200 node network. For the new CA feature, we experimentally set
the number of slots reserved for the housekeeping cells to 20. Table 4.7 shows
the results for ReSF without any CA, with the old CA and the new proposed
CA. We observe that for the highly saturated traffic case, i.e., the fast scenario,
there are noteworthy improvements of 13 % and 19.3 % in packet loss and
the latency decreases with 6.5 s and 13.1 s, compared to ReSF without CA and

RECURRENT LOW-LATENCY TSCH SCHEDULING 87

Table 4.7: Packet loss and latency for ReSF without, with the old CA and with
the new CA feature in a 200 node network.

Traffic
No CA Old CA New CA

Loss (%) Loss (%) Loss (%)
Fast 40.8 47.1 27.8
Frequent 0.1 0.4 0.2
Non-frequent 0.3 0.3 0.4

Latency (s) Latency (s) Latency (s)
Fast 15.4 22 8.9
Frequent 2.7 3.1 3.6
Non-frequent 4.7 4.7 5.8

Figure 4.13: Comparison of eLLSF, the original ReSF and new ReSF in a 200
node network with recurrent traffic.

with the old CA respectively. However, for the other scenarios with frequent
and non-frequent traffic, we observe that preventing ReSF of using the reserved
housekeeping slots actually has a negative effect on the latency. This is due to
the reduced amount of contention, and therefore collisions, making the reserved
housekeeping slots less useful as they actually prevent ReSF from daisy-chaining
all resources from source to root.

4.6.2.4 Recurrent Traffic

In this section we evaluate the improved ReSF, i.e., with the sum heuristic, the
new CA feature and the new housekeeping adaptation algorithm, to eLLSF and
the original ReSF, i.e., with the periodic housekeeping moment and the old CA,
in the different recurrent traffic scenarios. Figure 4.13 shows the results with
only recurrent traffic.

In all scenarios, the decrease in latency between eLLSF and the improved
ReSF is considerable, with respectively 40 %, 63.5 % and 65.1 %. Moreover, the

88 CHAPTER 4

Figure 4.14: Comparison of eLLSF, the original ReSF, the new ReSF with and
without CA in a 200 node network with recurrent and sporadic traffic.

PDR of the improved ReSF is 72 % in the highly saturated fast traffic scenario,
while that of eLLSF is only 66.7 % (not depicted in graphs). In the frequent and
non-frequent scenarios the PDR of ReSF is higher than 99.5 %, while the PDR of
eLLSF is 98.6 % and 96.6 % respectively. The improved ReSF also outperforms
the original ReSF, especially in the non-frequent scenario with a latency decrease
of 45.3 %. The PDR improves from 97 % to 99.5 %. These results show the
effectiveness of the improved ReSF.

4.6.2.5 Recurrent and Sporadic Traffic

In this section we compare the new ReSF to eLLSF and the original ReSF, and
also show the performance of new ReSF without the CA feature of only allocating
eLLSF cells from a pre-defined set. In addition to the recurrent traffic, every node
also sends sporadic traffic for which the node randomly waits approximately
30 s, 60 s or 90 s before sending a new sporadic packet. Figure 4.14 shows the
results.

In all scenarios, an improved version of ReSF (with or without CA) outper-
forms the original ReSF in terms of latency up to 61.5 % in the non-frequent
scenario. We also observed that in terms of PDR the original ReSF is outper-
formed by the newer versions, with an increase from 57.1 to 70.8 % in the fast
scenario. The traffic adaptation algorithm of the original ReSF seems too respon-
sive to the sporadic traffic and floods the network with resource management
signaling (especially in the frequent and non-frequent scenarios), which hinders
the data propagation. When comparing the improved ReSF to eLLSF, we ob-
served that the ReSF version with CA performs better in the saturated fast traffic
scenario, while ReSF without CA performs better in the other scenarios with a
maximum decrease in latency of 53.2 %. While in the saturated scenario the
reserved cells for housekeeping help ReSF to avoid schedule collisions, in other
scenarios these reserved slots limit ReSF from sending the data with minimal

RECURRENT LOW-LATENCY TSCH SCHEDULING 89

delay.

4.7 Conclusion

In this chapter, we explicitly focused on minimizing the latency of recurrent
traffic in WSNs. First, we stated the problem of minimal-latency scheduling of
recurrent transmissions formally, using an ILP. Second, we presented ReSF, a
distributed TSCH scheduling function, specifically designed for IoT applications
with recurrent traffic, such as sensor measurement applications. ReSF builds a
minimal-latency path from source to root and activates the recurrent cells on this
path only when traffic is expected, and deactivates them immediately afterwards.
Finally, we also presented improvements over the original ReSF in terms of fast
collision solving, improved collision avoidance and better support for sporadic
traffic. We have conducted numerous experiments using the 6TiSCH simulator,
comparing ReSF both to SF0 and eLLSF, and also tested the computational
performance of the different collision solving approaches on the OpenMote
hardware. The results show significant performance improvements. When
considering 100 nodes and each node having a static traffic pattern, ReSF
improves up to 80% in terms of latency compared to eLLSF while only having
a minimal impact on the battery charge drawn of at most 6.3%. We have also
experimentally shown that ReSF can handle a per-second traffic rate change
probability up to 20 % when considering 25 nodes and between 1.5 % and 2 %
in a topology of 100 nodes. Traffic rate changes in most real-world sensor
applications are typically much less dynamic. We conclude that ReSF is well-
equipped to maintain a minimal delay in both static and dynamic recurrent
traffic rate scenarios.

Chapter 5

Analysing Slot Bonding for
Adaptive Physical Layers in
TSCH

The content of this chapter is partially based on:

• Glenn Daneels, Carmen Delgado, Steven Latré, and Jeroen Famaey
(2020, June). Towards Slot Bonding for Adaptive MCS in IEEE 802.15.4e
TSCH Networks. In IEEE International Conference on Communications
(ICC). IEEE.

• Glenn Daneels, Carmen Delgado, Robbe Elsas, Eli De Poorter, Steven
Latré, Chris Blondia, and Jeroen Famaey (2021). Slot Bonding for
Adaptive Modulations in IEEE 802.15.4e TSCH Networks. IEEE Internet
of Things Journal. [Impact Factor: 9.936]

5.1 Introduction

Industry 4.0 and its numerous applications, including time-critical remote con-
trol of actuators to continuous monitoring of machinery, pose hard challenges for
wireless connectivity [103]. The stringent industrial requirements are often de-
fined by a trade-off between low delay, high reliability and low-power operation.
As explained in Chapter 2, the IEEE 802.15.4 standard, first released in 2003,
was introduced to tackle the challenges of such applications [27]. It defines
the PHY and MAC layers for low-power wireless networks in the sub-GHz and
2.4 GHz frequency band. At the MAC layer, among others, the TSCH mode was
proposed to bring reliability and low-power operation in challenging wireless

92 CHAPTER 5

environments [12]. At the PHY layer, the IEEE 802.15.4g-2012 PHY amend-
ment introduced, among others, three new sets of so-called SUN modulation
families, being Frequency Shift Keying (FSK), Offset-Quadrature Phase Shift
Keying (O-QPSK) and Orthogonal Frequency Division Multiplexing (OFDM),
different data rates and two frequency bands (sub-GHz and 2.4 GHz) [32]. This
results in a variety of PHYs that have their own additional characteristics in
terms of communication range, bandwidth, energy consumption and reliability.
As mentioned in Chapter 1, we define a PHY (layer) as a radio configuration,
consisting of a modulation, a data rate and a frequency band.

For many years, TSCH has proven its efficiency in various low-power wireless
mesh scenarios. However, traditionally all nodes in the network use the same
IEEE 802.15.4 PHY and are thus limited by the characteristics of the chosen
PHY. Additionally, the reliability of that one PHY can be heavily affected by the
often challenging wireless environments. For example, a network deployed at
large industrial sites can experience a lot of external interference from other
wireless technologies and its signal is often disrupted by the many blocking
metal constructions. Addressing this issue, it is shown that enabling adaptive
modulation switching can improve reliability in industrial environments with
location-dependent heterogeneous propagation behaviour [18]. Therefore, a
TSCH network could significantly improve from being able to use different PHYs
for different network links simultaneously and adapt the PHY layer of each link
to the local propagation characteristics and the application’s requirements.

In this chapter, we explore the exploitation of multiple PHYs in a single
TSCH network by introducing the concepts of slot and channel bonding which
allows the creation of different-sized bonded slots with a duration and number
of used channels adapted to the data rate and bandwidth of each chosen PHY.
Specifically, we focus on the slot bonding technique that thus facilitates the use
of multiple PHYs with different data rates within a single TSCH network in a
resource-efficient manner. In contrast, traditional TSCH relies on fixed-duration
slots, large enough to send a packet of any size given the fixed data rate, which
results in wasted airtime if different PHYs with different data rates are used
simultaneously.

The contributions of this chapter are three-fold. First, we give a formal
description of the TSCH slot bonding problem that allows us to analyse the
proposed slot bonding technique, including interference avoidance and parent
selection to optimize the overall network PDR while keeping the radio on time
minimized. This problem has a high computational complexity when solving
it for large network scenarios. Additionally, to allow a node to allocate an
arbitrary number of slots to its parent, resulting in flexible and realistic TSCH
schedule allocations, a Markov chain model was introduced. To be able to
implement and solve the formulated problem with the Markov Chain, we used
a Genetic Algorithm (GA) to find the best heuristic solution for the slot bonding
problem by selecting the most appropriate parent, PHY, and bonded time slots
for each node. Finally, we provide insights into preferred parent selection and
PHY configurations by using this heuristic approach during extensive TSCH

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 93

simulation experiments, in which the scalability advantage of slot bonding over
longer fixed-duration slots in terms of network-wide PDR is also shown.

The remainder of this chapter is structured as follows. First, we introduce
the related work on using multiple PHYs simultaneously and other techniques
to combat external interference and multi-path fading effects in TSCH in Sec-
tion 5.2. Second, in Section 5.3, we explain the concept of slot and channel
bonding. In Section 5.4, we formally define the slot bonding problem, while in
Section 5.5, we introduce our genetic algorithm approach to solve the slot bond-
ing problem heuristically. Afterwards, the slot bonding approach is evaluated in
Section 5.6. Finally, Section 5.7 presents the conclusions of this chapter.

5.2 Related Work

Due to the popularity gain of low-power wireless networks and the first capable
IEEE 802.15.4g transceivers appearing on the market, there is an increased
research effort on the available PHYs and their usage in different real-world
scenarios. There have been experimental evaluations in several outdoor scenar-
ios [17,104], testing their suitability for smart building applications [105] and
the interference robustness of the different modulations, i.e., more specifically
the impact on the resulting PDR and depending on the length of the transmitted
packet [106]. As low-power wireless networks are being used more and more
in industrial settings, there is also an increased interest, specifically in the relia-
bility performance of SUN modulations, in such environments. Tuset-Peiró et
al. presented a large real-world data set consisting of data of 11 nodes being
deployed in an industrial warehouse transmitting packets with 3 SUN modula-
tions [18]. The results show large variability and poor PDRs, due to multi-path
propagation and external interference effects, making them not suitable for
stringent industrial requirements. As such, the authors and other related studies
propose packet replication and the use of multiple IEEE 802.15.4 modulations
for different packets, i.e., modulation diversity, to increase network reliabil-
ity [33, 107]. Similarly, J. Muñoz et al. hint to the use of a different OFDM
Modulation and Coding Scheme (MCS) on a per-link basis [105]. M. Rady et
al. adjusted the OpenWSN firmware to support O-QPSK (2.4 GHz at 250 kbps),
FSK (868 MHz option 1 at 50 kbps) and OFDM (868 MHz option 1 MCS3 at
800 kbps). The different PHYs were tested on a 42 nodes testbed in an office
environment. The authors conclude that no PHY outperforms the other PHYs
for all other metrics, and therefore the combination of different PHYs should be
considered in a 6TiSCH architecture. [19].

Besides progress at the PHY layer in the IEEE 802.15.4 standard, a lot of
research effort also went into increasing network reliability by the introduction
of the IEEE 802.15.4e TSCH mode in 2015. T. Watteyne et al. showed the
importance of the channel hopping feature present in TSCH, to mitigate multi-
path fading effects and increase reliability of low-power wireless networks [26].
Since its introduction, numerous centralized, distributed and autonomous TSCH

94 CHAPTER 5

scheduling solutions have been proposed, as discussed in Section 2.3.3. While
these scheduling functions aim at finding the optimal trade-off between through-
put, latency and energy consumption for the given application, their performance
still heavily depends on environmental factors, such as external interference
and multi-path fading effects. To cope with those effects, other techniques are
proposed to improve reliability, such as channel blacklisting [108] and more
recently the PAREO methodology [109] on top of TSCH, which is an applica-
tion of the IETF Reliable and Available Wireless (RAW) layer-3 approach [110]
of Automatic Repeat reQuest (ARQ), Replication and Elimination (RE) and
Overhearing (OH).

While all of those techniques offer valid solutions to deal with various link
conditions, they are still limited by the employed PHY layer. That is why we
introduce the concept of TSCH slot and channel bonding (and provide an in-
depth theoretical analysis of slot bonding) to allow PHY diversity in a resource-
efficient manner to improve the reliability in one single network. M. Brachmann
et al. proposed a similar approach of multiple PHYs by presenting, among others,
two multi-PHY designs: (i) a design where slower PHYs are scheduled to have
logical slots spanning multiple real slots, and (ii) a design where the slot size is
based on the slowest PHY [111]. Their multi-template design is similar to our
slot bonding approach. Van Leemput et al. also use multiple PHYs, but focus
on throughput improvement. They define two alternative time slot structures
allowing multiple packets transmissions to increase the throughput for higher
data rate PHYs while maintaining a fixed slot duration [34]. In this chapter, we
analyse the slot bonding technique in detail by presenting a realistic model that
includes interference avoidance and also builds an optimal multi-PHY network
topology tree.

5.3 TSCH Slot and Channel Bonding

TSCH slot and channel bonding allows a single TSCH network to exploit the
characteristics of different available PHYs in the IEEE 802.15.4 standard. By
choosing the most appropriate PHY layer, the performance of each link can be
tailored to the local environmental conditions and application’s requirements to
maximize the overall network performance. When using different PHY layers in
the same TSCH network, both the time and channel management of a TSCH
schedule are affected and therefore we introduce both the concepts of slot and
channel bonding.

As different PHY layers are computationally different and have different
data rates, their processing and transmission time directly impacts the optimal
TSCH slot length, which should encompass the time it takes to send a data
packet of the maximum allowed size (e.g., 127 bytes in TSCH) and receive an
ACK. At the same time, different PHY layers can require different bandwidths,
which influences both the total number of available frequency channels in a
TSCH schedule and the effective number of channels a transmission would

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 95

need to bond together to send the data. For both the time slot and channel
management when supporting multiple PHY layers, we propose the concepts
of slot and channel bonding respectively, which can be applied combined or
used separately. The former bonds multiple regular time slots into a bonded slot
which has the necessary length to transmit or receive data given the data rate
and computational time of the selected PHY. The latter bonds multiple available
frequency channels to allocate the necessary bandwidth to accommodate the
chosen PHY layer. In contrast to a more greedy approach in which the TSCH
schedule is configured with cells that are long enough in time and occupy a
bandwidth wide enough to be compatible with all supported PHYs at once, the
proposed slot and channel bonding technique tailors each bonded slot to the
requirements of the specific PHY. It thus has the advantage of limiting the waste
of airtime and bandwidth resources.

Figure 5.1 shows an example of a TSCH schedule that applies both slot
and channel bonding in a slotframe of 11 slots of 10 ms each. The PHY PHY1
applied for the link from node X to the root requires a 30 ms bonded time slot,
thus bonding 3 regular time slots, and the bonding of two 200 kHz frequency
channels to a 400 kHz bandwidth. PHY2 used for the link from node Y to the
root requires the bonding of two 10 ms time slots to a 20 ms time slot in order
to be able to transmit a packet and receive an ACK. The minimal shared cell
to bootstrap the network, indicated by the orange bonded slot in the figure, is
configured with the same PHY1 PHY layer. Usually, the bootstrap cell should
use the most robust PHY, to ensure it can be used by all nodes independent of
the link quality.

Allocating a bonded slot would be very similar to the traditional 6P trans-
action to allocate a TSCH cell [39]. In addition to the conventional 2-step or
3-step 6P negotiation between two nodes, the nodes also agree on the employed
PHY which can be specified in the reserved bits in the CellOptions bitmap when
adding the bonded slot. When a node wants to change the PHY layer of a
particular bonded slot, it can issue a 6P RELOCATE request to its neighbor that
does not relocate the cell but mentions another PHY index in the CellOptions
bitmap.

Also, the coexistence of slot bonding nodes and normal TSCH nodes (i.e.,
nodes that do not support slot bonding) in one network is possible when 2
requirements are fulfilled: (a) the regular TSCH timings are the same (i.e., the
regular time slot length and all its sub-states, such as, the time to wait until
transmission of the data and reception of the ACK) (b) the default PHY to join
the network should also be used by the slot bonding nodes to send EB messages
and let other nodes join.

In this work, we will only focus on slot bonding, by only considering PHYs
that require the same bandwidth. In case PHYs with different bandwidth re-
quirements would be considered, this work can be extended to also include
channel bonding.

While supporting multiple PHYs, we make use of the flexibility of OFDM as
it provides various data rates for a single bandwidth. The OFDM modulation

96 CHAPTER 5

X Root Y

10 msSLOT

MINIMAL

SHARED CELL

SLOTFRAME

PHY1

PHY1

PHY2

PHY2PHY1

TIME OFFSET

20 ms

30 ms

400 kHz

0 1 2 3 4 5 6 7 8 9 10

0

1

2C
H

A
N

N
E

L
 O

F
F

S
E

T

Figure 5.1: A TSCH schedule with regular slots of 10 ms length and 200 kHz
bandwidth. For accommodating PHY1 on the link from node X to the root 3
slots and 2 channels are bonded to a 30 ms slot of 400 kHz wide while PHY
PHY2 used by node Y only requires 2 10 ms slots bonded together.

that was introduced in the IEEE 802.15.4g-2012 amendment offers 31 PHY
variations, which are subdivided in 4 different options that determine how many
sub-carriers are grouped together in order to form an OFDM channel [106]. Each
option has its own specific bandwidth requirement and also a set of different
MCS values that determine how each sub-carrier is modulated (and whether
frequency repetition and Forward Error Correction (FEC) are applied). As
explained earlier, the different characteristics of the MCSs lead to different time
slot lengths which translates to bonded slots with different numbers of regular
slots for each MCS, as shown in Table 5.1 for regular slots of lengths 10 ms and
40 ms. To calculate the necessary number of regular slots per bonded slot, we
take into account the radio on time for a specific MCS and assume 5 ms of CPU
processing time and 3 ms for reconfiguration of the radio per bonded slot, in
line with the values reported by respectively Daneels et al. and Brachmann et
al. [20,111]. The radio on time for each MCS was calculated for a 127 bytes
data packet and a 27 bytes ACK (i.e., the default size in TSCH to determine the
slot duration), including the duration for sending the OFDM Synchronization
Header (SHR) and PHY Header (PHR) in the lowest MCS of the chosen OFDM
option, i.e., MCS2 of option 4 in this case [32,112].

Because of the focus on OFDM, throughout the remainder of this chapter,
the term PHY may be interchanged with MCS, both referring to the used radio
configuration.

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 97

Table 5.1: MCS2, MCS3 and MCS4 of OFDM option 4 which all require 200 kHz
bandwidth.

Mode
Modulation,

Code rate, Freq. rep.
Datarate
(kbps)

Radio on
(ms)

Regular slots
per bonded slot

10 ms 40 ms

MCS2
O-QPSK,
1/2, 2x 50 27.84 4 1

MCS3
O-QPSK,
1/2, 0 100 15.48 3 1

MCS4
O-QPSK,
3/4, 0 150 11.28 2 1

5.4 Problem Formulation

This section formally describes the IEEE 802.15.4e TSCH slot bonding problem in
which the expected number of delivered packets at the root is maximized, while
the total radio on time is minimized. The inputs to this problem are the physical
location of the nodes, the possible MCSs every node can employ to communicate
with other nodes and the reliability of the link when using a specific MCS. As
is often the case within WSN applications (e.g., periodical sensor monitoring
at industrial environments), it is assumed that data packets are generated at a
fixed rate. We consider interference avoidance, parent selection, MCS selection,
and slot assignment.

First, we describe the expected delivered packets calculation and the radio
on time calculation. Afterwards, we apply these calculations and propose the
new slot bonding problem formulation. The symbols used in this section, are
listed in Table 5.2.

5.4.1 Delivered Packets Calculation

In this section we describe how for all resource allocations made in a single
TSCH slotframe, the expected total number of delivered packets at the root of
the tree topology, originating from all nodes in the network, is calculated. First,
we introduce a Markov chain model that helps us to calculate the number of
packets a node can successfully transmit to its parent in a slotframe on average.
Afterwards, we show how the result of the proposed stochastic process is used
to calculate the expected number of delivered packets to the root of the entire
network.

98 CHAPTER 5

Table 5.2: All used symbols and their respective meaning.

Symbol Meaning

B Matrix containing bvi ,v j
probabilities at the (i, j)-th entry that represent

the chain starting in transient state vi and being absorbed in state v j
Bl B matrix containing bl

vi ,v j
probabilities for a link reliability l ∈ [0,1]

Cn Set of all children of node n, i.e., Cn ⊂ N
Dn Set of all descendants of node n, i.e., Dn ⊂ N
F Set of available channel offsets, i.e., { f0, f1, ..., fmax}
In Set of nodes that interfere with receiving node n
Jx Set of absorbing states in which x packets arrive at the parent, i.e., Jx ⊂ V
M Set of available MCSs, i.e., {m0, m1, ..., mmax}
N Set of all network nodes, i.e., {n0, n1, ..., nmax}
N0 N without the root, i.e., {n1, ..., nmax}
P Markov process transition probability matrix
Q Max. queue size of the node
R Probability matrix going from transient to absorbing state
S Set of possible number of consecutive regular slots bonded together,

i.e., S = {1, ..., |T |}
T Set of slots in slotframe, i.e., {t0, t1, ..., tmax}
V Set of all Markov chain states
W Probability matrix going from transient to transient state
a Number of remaining slots in the slotframe which can all be used by the node

for transmission
an Number of TX slots allocated by node n

bvi ,v j
The probability that the chain will be absorbed in the absorbing state v j
if it starts in the transient state vi , is the (i, j)-th entry of the matrix B

en Approx. of expected number of packets in queue of node n
g Number of packets generated per slotframe per node

hCn ,q Probability of q packets arriving at n from its children Cn
l Link reliability ∈ [0, 1] between node and parent, depends on used MCS
ln Link reliability l for a node n to its parent
n0 Root node of the network, i.e., n0 ∈ N

ostate Radio on time for a specific TSCH state
pn Parent of node n, i.e., pn ∈ N
q Number of packets waiting for transmission
qe Number of packets left in queue after the previous slotframe
r Remaining number of retransmissions for current packet

rmax Max. retransmissions before being discarded
sm Number of consecutive regular slots necessary for 1 bonded slot

for MCS m, i.e., sm ∈ S
un Avg. number of TX slots that node n is expected to use during one slotframe
vi State of the Markov Chain, i.e., vi ∈ V
x Number of packets successfully arrived at parent

yx ,q,a,l Probability of x packets arriving at the parent at end of slotframe, while at the
start of the frame the state was (q, a, rmax , 0), over a link with reliability l

zn
x Probability that x packets arrive from a node to its parent

σt, f ,s,n Binary decision variable that equals 1 when node n ∈ N0 transmits in
a bonded slot, using s ∈ S consecutive slots allocated at time offsets
{t, t + 1, . . . , t + (s− 1)} ⊂ T and channel offset f ∈ F to its parent p ∈ N , else 0

γp,m,n Binary decision variable that equals 1 when node n ∈ N0 selects p ∈ N
as its parent and m ∈ M as the MCS to transmit to the parent, else 0

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 99

5.4.1.1 Markov Chain Model

In order to calculate the number of packets a node can successfully transmit to
its parent, we propose a Markov chain model of a transmitting node in a TSCH
network. This model takes as inputs the TSCH schedule slotframe with its set
of slots T = {t0, t1, ..., tmax}, the number of allocated transmission slots in the
slotframe, the maximum queue size Q of the node, the number of packets in the
queue at the start of the slotframe, the chosen MCS between the node and its
parent that determines the reliability l ∈ [0,1] of the link to its parent and the
maximum number of retransmissions rmax before the node discards the packet.
Each node in the network generates a fixed number of g packets per slotframe
which are assumed to be generated at the beginning of the slotframe. As for
the outputs, the probabilities determined by the model allow us to calculate
the probability that the node successfully sent x packets to its parent during
a slotframe. More specifically, x denotes all packets that were present in the
queue at the beginning of the slotframe and that are sent successfully before the
end of the frame (hence leaving an empty queue). Or, x denotes that part of the
packets present at the start of the frame in the queue that are sent successfully
to the parent when the end of the frame is reached (i.e., leaving a non-empty
queue).

Consider the stochastic process defined by the four variables (q, a, r, x),
which are considered at the start of each slot t i of a frame, t i ∈ T , and at the
end of slot tmax , denoted by tmax+1. q is the number of packets waiting for
transmission with 0≤ q ≤ min(Q, qe + g), with qe being the packets left in the
queue at the end of the previous slotframe. a is the number of remaining slots in
the slotframe and the node can transmit in all of them, with a = |T |− i at slot t i ,
0≤ a ≤ |T |. r is the number of remaining transmissions that are allowed for the
current packet to be transmitted, 1≤ r ≤ rmax . When a packet is transmitted for
the first time, then r = rmax . If after a transmission that started with r = 1 the
transmission was unsuccessful, the packet is lost. x is the number of successful
packet transmissions in the previous slots of the current frame, 0≤ x ≤ |T | − a.

PS(q, a, r, x) denotes the stochastic process and V is the set of all Markov
Chain states. There are two classes of absorbing states, i.e., (0, a, r, x) and
(q, 0, r, x), representing respectively that the process can not transition to any
other state when there are no more packets left to transmit or when there are no
allocated slots in the slotframe left to transmit in. In what follows we describe
the possible transitions in the transition matrix P of the process PS from slot
t i , so starting from state (q, a, r, x) to slot t i+1, for 0≤ i ≤ |T | − 1, as shown in
Figure 5.2:

• if r > 1, a > 1 and q > 1: the current packet is transmitted. With
probability l the packet reaches the parent and the process goes to state
(q− 1, a− 1, rmax , x + 1). With probability 1− l the packet is lost and the
process retries transmitting the packet in state (q, a− 1, r − 1, x).

• if r = 1, a > 1 and q > 1: the current packet is retransmitted one

100 CHAPTER 5

(q -1, a - 1, r
max

, x + 1) (q, a, r, x) (q, a - 1, r - 1, x)
1 - l r > 1l

(q -1, a - 1, r
max

, x)

(0, a, r, x) (q, 0, r, x)

...

^

1 - l r = 1^

1 1

(successful TX) (failed TX)

(discarded packet)

Figure 5.2: Diagram of the Markov chain.

more time. With probability l the packet reaches the parent, and the
process goes to state (q− 1, a− 1, rmax , x + 1). With probability 1− l the
transmission fails and the packet is discarded. The process proceeds to
the next packet, in state (q− 1, a− 1, rmax , x).

• if a = 0: there are no allocated slots left for the node to transmit in, the
process stays in the same absorbing state with probability 1.

• if q = 0: there are no waiting packets left, the process stays in the same
absorbing state with probability 1.

We renumber the states of the transition matrix P in such a way that the
transient states come first and the absorbing states last, resulting in following
canonical form:

P =
�

W R
0 I

�

(5.1)

where I is the identity matrix and W and R are non-zero matrices containing
the probabilities of going from a transient state to another transient state and
the probabilities going from a transient to an absorbing state, respectively.

According to the Theorem 11.6 of [113], the probability bvi ,v j
that the chain

will be absorbed in the absorbing state v j if it starts in the transient state vi , is
the (i, j)-th entry of the matrix B, given B = (I −W)−1 · R. Note that according
to Theorem 11.4 of [113], the inverse matrix (I −W)−1 exists.

These probabilities bvi ,v j
allow us to evaluate the probability that, when the

system starts in a transient state, the system is absorbed in a state (0, a, r, x),
i.e., the queue is emptied before the end of the frame and there have been x
packets transmitted, or the system is absorbed in a state (q, 0, r, x), i.e. the
end of the frame is reached and there have been x packets transmitted. These
probabilities are used in Section 5.4.1.2, to calculate the average number of
delivered packets at the root, for all nodes in the network, in one slotframe.

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 101

5.4.1.2 Number Of Delivered Packets

We describe how the expected number of packets arriving at the root in a single
slotframe is calculated, using the probabilities determined by the Markov chain
defined in Section 5.4.1.1.

We define yx ,q,a,l as the probability that at the end of the slotframe x pack-
ets have arrived at the parent when at the start of the frame the state was
(q, a, rmax , 0), over a link to the parent with reliability l ∈ [0, 1]:

yx ,q,a,l =
∑

vi∈Jx

bl
vstar t ,vi

(5.2)

where vstar t = (q, a, rmax , 0) is the start transient state and Jx the set of absorbing
states where x packets successfully arrived at the parent. The probability
bl

vi ,v j
∈ [0,1] which is the (i, j)-th entry of the Bl matrix is calculated with

the Markov chain model defined in Section 5.4.1.1, for a link reliability l ∈ [0, 1]
from a node to its parent.

Subsequently, the probability zn
x that x packets successfully arrive from node

n to its parent is represented by:

zn
x =

|Dn|·g
∑

q=0

hCn,q · yx ,min(Q,q+g),an,ln
(5.3)

where Dn is the set of all descendants of node n, an the number of slots allocated
for transmission by n, ln the reliability of the link to the parent of n, of which
the value is dependent on propagation characteristics of the link between the
node to its parent and the MCS used by that node, and hCn,q is the probability
that in total q packets arrived from the children Cn at node n. In the case that
node n is a leaf node, hCn,q is considered 1. Note that x ≤ |Dn| · g + g, as in the
other cases zn

x equals 0 because a node can not transmit more packets than it
received from its children, i.e., |Dn| · g, and the packets it generates itself, i.e.,
g packets. min(Q, q+ g) is the maximum number of packets that can arrive at
the parent of n from node n, with the maximum queue size being Q and q+ g
being the number of packets q from the children of n aggregated with the g
packets generated at node n. For leaf nodes, zn

x = yx ,g,an,ln
with x ≤ g, as only

the generated packets can be transmitted.
hCn,q is defined as the sum of all permutations of how q packets can arrive

at node n from its children. For each permutation, we multiply the probabilities
zc1

x1
, zc2

x2
, . . . , z

c|Cn |
x|Cn |

, where Cn = {c1, c2, . . . , c|Cn|} and q =
∑|Cn|

i=1 x i . For example, let
us assume that node n has two children Cn = {c1, c2}, then hCn,q for q = 2 is
calculated as follows:

hCn,2 = zc1
2 · z

c2
0 + zc1

0 · z
c2
2 + zc1

1 · z
c2
1 (5.4)

which represents the probability that exactly 2 packets arrive from the children
of node n.

102 CHAPTER 5

The above calculations are performed in an iterative fashion for all nodes in
the topology tree, starting from the leaf nodes, continuing with their parents,
and so on, until the root is reached. At the root, we can calculate the expected
total number of delivered packets as follows:

|Droot |·g
∑

q=0

hCroot ,q · q (5.5)

5.4.2 Radio On Time Calculation

Here we calculate the expected radio on time of the entire network during a
single TSCH slotframe. To do so, we calculate the radio on time of each node
separately and aggregate those to one total value. The expected number of
packets a node will have in its queue at the beginning of the slotframe and
the number of slots that will be used by the node and its parent to effectively
transmit and receive these packets, is calculated. Using those values and the
different radio on values for the different states a TSCH node can be in, the
radio on time for the entire network can be approximated.

To calculate the radio on time for the packets transmitted from node n to its
parent, we first approximate the expected number of packets that there will be
in the queue of the node, en, defined as follows:

en = round

g +
|Dn|·g
∑

q=0

hCn,q · q

!

(5.6)

with g packets being generated at the node, |Dn| · g being the maximal
number of packets that can arrive from the children of node n and hCn,q as
defined in Section 5.4.1.2.

In every slotframe, a node n has an slots allocated towards its parent. Subse-
quently, we calculate the average number of slots that node n is expected to use,
un, out of the an allocated slots, to transmit its queued packets en to its parent:

un = an −
∑

vi∈Jx

bl
vstar t ,vi

∑

vi∈Jx
bl

vstar t ,vi

· a′ (5.7)

where a′ is the number of slots not used by node n for every state v j =
(q′, a′, r ′max , x), with q′ being the packets left in the queue and r ′max being the
number of unused retransmissions. vi ∈ Jx represents all the absorbing states
with x arrived packets at the parent of node n, starting from state vstar t =
(q, a, rmax , 0) over a link to its parent with reliability l.

Finally, we can calculate the radio on time for the communication between
a node n and its parent as follows:

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 103

min(an,en)
∑

x=0

yx ,en,an,l · (x · (ot x DataRxAck + or x DataT xAck) +

(un − x) · (1− l) · (ot x Data + or x Idle) +
(un − x) · l · (ot x DataRxNack + or x DataT xNack) + (an − un) · or x Idle) (5.8)

with yx ,en,an,l being the probability that at the end of the slotframe x packets
have arrived at the parent, as described in Equation 5.2. The ostate values are
the different radio on time values for the different states a TSCH node can be
in, using the MCS chosen by node n. These different states are described in
Section 3.3.1 of Chapter 3 and the radio on time value of each state is calculated
similarly to the values in Table 5.1 for each MCS. The radio on time of every
node in the network is calculated and summed, resulting in the radio on time of
the entire network.

5.4.3 TSCH Slot Bonding Problem Formulation

Using the expected number of delivered packets and radio on time calculations
as described in the previous sections, we propose the slot bonding problem
formulation that maximizes the number of delivered packets while keeping the
radio on time to a minimum. It is important to note that the problem formulation
assigns slots in a single TSCH slotframe and this schedule is assumed to be
repeated every slotframe.

5.4.3.1 Input Variables

The network consists of a set of nodes N = {n0, n1, ..., nmax}, of which node n0 is
the root, i.e., the sink node. N0 ⊂ N represents the set of nodes without the root
n0. M = {m0, m1, ..., mmax} is the set of possible MCSs for each n ∈ N0. The set
of slots in a slotframe are denoted by T = {t0, t1, ..., tmax} and the set of channel
offsets at which a node can transmit are represented by F = { f0, f1, ..., fmax}.
Every node n has a set In ⊂ N0 which contains the set of nodes that interfere
with the receiving node n, i.e., all the nodes that have a Received Signal Strength
Indicator (RSSI) value at n higher than the channel noise floor, added to the
noise figure of the receiver device. Each MCS m ∈ M , requires a bonded slot
consisting of sm ∈ S regular slots, with S = {1, ..., |T |}, to transmit a 127 bytes
packet and receiving an ACK.

5.4.3.2 Decision Variables

The first binary decision variable σt, f ,s,n represents the specific assigned bonded
slots a node should select in the TSCH schedule. σt, f ,s,n is 1 when node n ∈ N0
transmits in a bonded slot, using s ∈ S consecutive regular slots allocated at

104 CHAPTER 5

time offsets {t, t + 1, . . . , t + (s− 1)} ⊂ T and channel offset f ∈ F in the TSCH
schedule matrix to its parent p ∈ N , else it is 0.

The second binary decision variable γp,m,n is 1 when node n ∈ N0 selects
p ∈ N as its parent and m ∈ M as the MCS to transmit to the parent, else it is 0.

5.4.3.3 Objective

The objective is to maximize the expected number of delivered packets at the
root in one slotframe, while keeping the radio on time to a minimum.

Therefore, the goal is to maximize Equation 5.5 that calculates the delivered
packets at the root, given a TSCH network determined by the values assigned to
the σt, f ,s,n and γp,m,n variables. Simultaneously, for those solutions that provide
the same number of delivered packets, the solution with the smallest radio on
time of the network, defined as the sum of all radio on time values of all nodes
in the network, should be preferred. To calculate the radio on time of the entire
network, we need to calculate the radio on time for every node n using the
values assigned to the σt, f ,s,n and γp,m,n variables and Equation 5.8.

5.4.3.4 Constraints

A node n ∈ N0 can choose only one parent p ∈ N and one MCS m ∈ M to
transmit to that parent p:

∀n ∈ N0 :
∑

p∈N

∑

m∈M

γp,m,n = 1 (5.9)

A node n ∈ N0 that uses MCS m ∈ M to its parent p ∈ N , should allocate
exactly sm consecutive slots for a bonded slot transmission:

∀n ∈ N0, p ∈ N , t ∈ T, f ∈ F, m ∈ M , s ∈ S|s 6= sm : γp,m,n ·σt, f ,s,n = 0 (5.10)

A bonded slot transmission σt, f ,s,n consisting of s consecutive slots should
not exceed the slotframe length:

∀n ∈ N0, t ∈ T, f ∈ F, s ∈ S : (t + s− 1) ·σt, f ,s,n ≤ tmax (5.11)

A transmission of node n ∈ N0 to its parent cannot overlap with any other
transmission of the same node, nor with any of the transmissions of the nodes
that have node n as their parent, as a node can only perform one action (i.e.,
transmit or receive) during each slot:

∀n ∈ N0, t ∈ T :

∑

f ∈F

∑

t ′∈[0,t]

∑

s∈[t−t ′+1,(tmax+1)−t ′]

σt ′, f ,s,n

!

+

∑

f ∈F

∑

t ′∈[0,t]

∑

s∈[t−t ′+1,(tmax+1)−t ′]

∑

m∈M

∑

j∈N0

γn,m, j ·σt ′, f ,s, j

!

≤ 1 (5.12)

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 105

The transmissions of the children of the root cannot be in the same slot, as
the root can only listen to one child at once:

∀t ∈ T :
∑

f ∈F

∑

t ′∈[0,t]

∑

s∈[t−t ′+1,(tmax+1)−t ′]

∑

m∈M

∑

j∈N0

γn0,m, j ·σt ′, f ,s, j ≤ 1 (5.13)

A transmission of node n ∈ N0 to its parent p cannot overlap with any other
transmission of the interferers of the receiving parent node p:

∀n ∈ N0, t ∈ T, f ∈ F :

∑

t ′∈[0,t]

∑

s∈[t−t ′+1,(tmax+1)−t ′]

σt ′, f ,s,n

!

·

∑

t ′∈[0,t]

∑

s∈[t−t ′+1,(tmax+1)−t ′]

∑

p∈N

∑

m∈M

∑

j∈Ip

γp,m,n ·σt ′, f ,s, j

!

= 0 (5.14)

The output of this slot bonding formulation is a set of MCSs and bonded slot
allocations from each node to its chosen parent, represented by the σt, f ,s,n and
γp,m,n decision variables, in order to maximize the expected number of delivered
packets at the root while minimizing the radio on time. However, the proposed
slot bonding problem becomes highly computationally complex when solving
it for large topologies. Therefore, a GA is proposed in Section 5.5 to solve the
problem in a heuristic manner. The slot bonding formulation sub-problem of
finding slot allocations for all nodes in a saturated network scenario is equivalent
to the scheduling problem formulated by S.C. Ergen et al., which is proven to
be NP-complete [114]. Additionally, the sub-problem of building the topology
tree by making parent and PHY selections can be seen as equivalent to the
construction of the minimum routing cost spanning tree which is NP-hard [115].
As such, solving the slot bonding formulation is not possible in polynomial time.

5.5 A Heuristic Approach

In this section, detailed information is provided on the GA that allows us to
implement and solve the slot bonding problem defined in Section 5.4. First,
we describe the genetic algorithm and its different operators. Afterwards, the
feasibility heuristic that is used to know if a GA solution fits in the TSCH schedule,
is explained in detail.

5.5.1 Genetic Algorithm

A GA is a heuristic technique to solve optimization or search problems by simu-
lating natural evolution [116]. It is an iterative process that starts from an initial
randomly or heuristically created population. A population consists of so-called
individuals that represent candidate solutions of the problem that is being solved.

106 CHAPTER 5

Each generation (i.e., iteration), the GA applies biologically inspired operators
to select appropriate individuals and do cross-over and mutation operations on
the individuals in the population, which results in a new offspring population.
This offspring combined with the population at the start of the generation will
be the population for the next generation in the evolutionary process. To select
appropriate individuals for the operators and the next generations, each individ-
ual is evaluated and assigned a fitness value during each generation. This value
represents its performance measured by the optimization problem’s objective
function. The goal of a GA is to evolve towards a population that contains the
best candidate solutions for the problem at hand.

We applied a GA to find the best candidate solutions for the slot bonding prob-
lem defined in Section 5.4. Most importantly, the operators (see Sections 5.5.1.2
and 5.5.1.3) and objective function (see Section 5.5.1.4) of the GA can easily be
adjusted to, respectively, respect the validity of the network topology and make
the complex delivered packets calculations. Additionally, the choice of a parent,
MCS, and the number of allocated TSCH slots can easily be encoded in a GA
integer string (see Section 5.5.1.1), similarly to what was argued by M. Ojo et
al. [117]. Also, as GAs are well-fitted for finding global solutions for problems
with large search spaces and the search space of our slot bonding problem is
huge, applying a GA for this problem is suitable. For example, for a network
with only 5 nodes except the root, so 5 potential parents, 2 potential MCSs and
a slotframe length of 9 slots (so 10 possible numbers of allocated slots), the size
of the solution space is already (5 · 2 · 10)5 = 1010.

The inputs to the GA are the set of network nodes N , the set of interferers In
for each node n, the set of different available MCSs M that all result in a specific
reliability l for each node-parent pair, the length of the bonded slots for each
MCS sm ∈ N>0, the radio on time ostate for each state a TSCH node can be in
and for every MCS m that can be chosen, and the TSCH schedule with its set of
slots T and frequency channels F . The output of the GA is a parent selection
for each node in the network and MCS and slot allocations for each node to its
chosen parent, in order to maximize the expected number of delivered packets
at the root while minimizing the radio on time. In this section, we explain the
candidate solution representation, the different operators, the fitness function,
and provide an exact overview of the GA workflow.

5.5.1.1 Representation

A candidate solution of the slot bonding problem is represented by a GA indi-
vidual as shown in Figure 5.3. Each node in the individual is represented by
3 so-called genes, being an encoder of a characteristic of the node, with each
gene value being a natural number. The first gene pn represents the parent of
the node n, mn represents the MCS that node n applies to communicate with
its parent and the last gene an is the number of bonded slots it allocates to its
parent. The root node does not need representation in the individual as other
nodes connect and allocate resources to the root.

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 107

p
1
 m

1
 a

1
 p

2
 m

2
 a

2
 p

3
 m

3
 a

3
 . . . p

n-1
 m

n-1
 a

n-1

node 1 node 2 node 3 node n-1

Figure 5.3: GA individual for a topology of n nodes with 3 genes per node. The
root is not explicitly represented in the individual.

5.5.1.2 Cross-over Operator

A cross-over operation recombines the genetic information of two individuals
into new offspring individuals. A slightly altered version of the traditional
two-point cross-over was applied. The two-point cross-over was chosen over
the single-point crossover to reduce the positional bias [118]. Traditionally,
this technique chooses two random positions in the individuals, after which
both parent individuals are cut at those positions and the genetic substring
between those positions of the first parent is interchanged with the substring
at the same location in the second parent. We applied two changes to that
operator implementation. First, the random positions are limited to be multiples
of three in order to never separate the three genes of one node. Second, if
interchanging the substring between the chosen positions does not result in a
new valid topology tree (i.e., there is a path from each node to the root and
there is no path loop), we decrement the substring with 3 genes (i.e., 1 node)
and retry if this cross-over results in a valid tree. This process is repeated until
this results in a valid cross-over or until the length of substring is 0 and thus
no cross-over is applied. Figure 5.4 shows a successful crossover operation in
which the genetic information of the first 2 nodes is interchanged, resulting into
2 new individuals with valid topologies.

5.5.1.3 Mutation Operator

A mutation operator introduces genetic diversity into the population by ran-
domly altering one or more genes of the individual. We implemented a 3-phase
mutation operator. In the first phase, our mutation operator iterates over all
nodes in the individual and with a probability pgene alters the parent gene pn
of a node n. This parent is chosen out of the list of valid parents for that node,
i.e., based on the topology information and the communication range of the
different available MCSs. From this list of possible parents, all nodes that are
currently descendants of the node are excluded to prevent the mutation oper-
ator from introducing a loop in the network tree. The current parent is also
excluded. Figure 5.5 shows an example of such a successful parent mutation.
In the second phase, the mutation operator iterates over all MCS genes of all
nodes in the individual and, with the same probability pgene or if the parent
of this node was changed, randomly alters the gene value mn. When picking
a new MCS, the possible MCSs depend on the current parent of the node to
prevent it from choosing an MCS to its parent that results in reliability that is

108 CHAPTER 5

0 2 1

3

0 1 2

3

0 1 2

3

0 2 1

3

p
1
 = 2 ... p

2
 = 0 ... p

3
 = 0 ...p

1
 = 0 ... p

2
 = 1 ... p

3
 = 2 ...

p
1
 = 0 ... p

2
 = 1 ... p

3
 = 0 ...p

1
 = 2 ... p

2
 = 0 ... p

3
 = 2 ...

Figure 5.4: Example of successful two-point cross-over operation where the
genetic information of the first 2 nodes is interchanged, resulting in 2 new
individuals with valid topologies.

0

1 2

3

4

5

p
1
 = 0 ... p

2
 = 0 ... p

3
 = 2 ... p

4
 = 0 ... p

5
 = 4 ...

0

1 2

3

4

5

p
1
 = 0 ... p

2
 = 4 ... p

3
 = 2 ... p

4
 = 0 ... p

5
 = 4 ...

mutate p
2
 to possible parent in set {0, 3, 4}

Figure 5.5: Example of the mutation operation in which the parent of node 2
is altered. Assuming that the possible parent set of node 2 is {0, 3, 4}, the new
parent can only be node 4, as the current parent is 0 and node 3 is a descendant
of node 2 (which would lead to a loop).

below the predefined threshold to form a link (i.e., see the experiment setup in
Section 5.6.1 for the threshold value). In the third and last phase, the operator
iterates over the third gene of all nodes, i.e., the number of bonded slots a node
allocates an. It alters the gene value with the probability pgene or whenever
the MCS value of a node was altered (to make sure the new number of slots
value does not exceed the slotframe length). The valid range for the number
of slots depends on the picked MCS, and is [0,

�

len(slot f rame)
len(bonded_slot,MCS)

�

] in which
len(bonded_slot, MCS) represents the number of regular slots needed to bond
together for the chosen MCS.

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 109

Algorithm 6 Genetic algorithm workflow.

1: best_ind← None
2: generation← 0
3: pop← initialize_population(pop_size)
4: evaluate_fitness(pop)
5: while generation ≤ max_generations do
6: parent_pop← select(pop, pop_size)
7: offspring← crossover(parent_pop)
8: offspring← mutate(offspring, pgene)
9: evaluate_fitness(offspring)

10: pop← select(pop + offspring, pop_size)
11: for ind ∈ pop do
12: if ind.fitness > best_ind.fitness then
13: best_ind← ind
14: return best_ind

5.5.1.4 Fitness function

To evaluate the fitness of an individual according to the slot bonding problem
formulated in Section 5.4, the fitness function calculates the expected total
number of delivered packets at the root and the network radio on time. To
calculate the total number of delivered packets, we apply the calculation defined
in Section 5.4.1. The radio on time for each node is calculated by applying
Equation 5.8. These radio on times are summed, resulting in the network
radio on time. Consequently, the individual with the highest expected number
of delivered packets and lowest radio on time, in lexicographical order, is
considered the best individual. This means that the first goal of the GA is
maximizing the expected number of delivered packets and then individuals
with identical delivered packets values are ranked according to their radio on
time. However, before evaluating the expected number of delivered packets
and radio on time, an individual is first checked on being feasible, meaning
that all allocations should fit the in TSCH schedule. To do so, the individual
is passed to the feasibility checking algorithm defined in Section 5.5.2. If the
individual is not feasible, the number of delivered packets is set to a negative
value (i.e., -100) and the radio on time to an unrealistic high positive value (i.e.,
1× 106 ms). In case the individual is feasible, the fitness function continues to
calculate the expected number of delivered packets and the radio on time.

5.5.1.5 Workflow

Algorithm 6 shows the workflow of the genetic algorithm. Before the GA starts
for a run of max_generations generations, the population pop is initialized
with pop_size number of individuals. The initial individuals are built by starting
from one and the same valid topology (i.e., this initial topology is the same

110 CHAPTER 5

for all individuals in the initial population), while the mn and an genes are
picked uniformly at random out of the set of valid options for that node n
to its parent, meaning that only MCSs can be chosen that allow the node to
communicate with its parent and the length of all allocated bonded slots does
not exceed the slotframe length. Then, the mutation operation of Section 5.5.1.3
is applied 100 times to randomize the individual while guaranteeing that the
MCS allocations, the slot allocations and the represented topology stay valid
(i.e., each node can reach the root and there are no routing loops). In each
generation, on line 6, it first selects pop_size parents for reproduction. Then,
the cross-over operator as discussed in Section 5.5.1.2 is applied to all sets of
two parents in parent_pop, after which the GA mutates each individual of the
o f f spring, with a probability pgene being the probability to alter a gene of the
individual, according to the operator described in Section 5.5.1.3. Afterwards,
at line 9, the fitness of the o f f spring is evaluated using the fitness function of
Section 5.5.1.4. The population for the next generation is prepared by selecting
pop_size individuals out of the population pop that started the generation and
the produced o f f spring. At lines 11-14, the fitness of each individual in the
new population is checked to be better than the fitness of the current best
individual best_ind. If so, that individual becomes the new best_ind. This
procedure is repeated until the max_generations is reached, after which the
best_ind is returned.

The exact probability pgene, and the different selection strategies of line 6
and 10, were selected empirically and are discussed later in Section 5.6.1.

5.5.2 Feasibility Heuristic

An individual returned by the proposed GA should be feasible, meaning that
all allocations should fit in one TSCH slotframe while avoiding interference
and respecting that a node cannot transmit and receive simultaneously. To
check if this holds for the given individual, it is possible to formulate a set of
linear constraints that the solution should satisfy, based on the formulation in
Section 5.4.3. However, because of the computational complexity of such a
feasibility check with linear constraints, instead we employ a greedy bin-packing
heuristic that guarantees to identify all infeasible solutions (while it might
identify a small percentage of the feasible solutions as infeasible). The heuristic
takes as input the network tree topology, the number of bonded slot allocations
an for the chosen MCS between a node n and its parent, as represented in the
tested individual, and the interferers of all nodes in the network. This heuristic
is also used to generate a possible TSCH schedule from the best individual found
by the proposed genetic algorithm.

The heuristic is shown in Algorithm 7. It iterates over all nodes except the
root, N0, and checks if the number of allocated bonded slots an of node n is
larger than zero. If not, the heuristic can directly continue to the next node. The
for loops of lines 4 and 5 iterate over the entire schedule and the heuristic tries
to allocate the bonded slot of length smn

(with mn being the MCS picked by node

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 111

Algorithm 7 Feasibility heuristic

1: for n ∈ N0 do
2: if an > 0 then
3: num_slots = an
4: for f ∈ [0, fmax] do
5: for t ∈ [0, tmax − smn

+ 1] do
6: if allocate(n, smn

, t, f) then
7: num_slots = num_slots − 1
8: if num_slots > 0 then
9: continue with next slot

10: else
11: continue with next node
12: if num_slots > 0 then
13: return False
14: return True

n) at each slot (t, f). To allocate a bonded slot starting at a slot (t, f), it checks
if the node or the parent of the node is not yet transmitting or receiving in the
range [(t, f), (t + smn

−1, f)] and if no slot in that range is used by an interferer.
If the bonded slot can be allocated successfully, the heuristic continues with the
next bonded slot for that node or with the next node, depending on if there
are bonded slots left to allocate, i.e., the value of num_slots > 0 at line 8. If it
cannot be allocated, the heuristic moves on to the next slot. If the heuristic has
iterated over all slots in the schedule and there are still bonded slots to allocate,
i.e., num_slots > 0 at line 12, the individual is considered infeasible. If the
heuristic can iterate over all nodes and allocate all bonded slots, the individual
is considered feasible.

It it important to stress that the bin-packing heuristic will correctly identify
all infeasible individuals. However, depending on the order of the nodes in
N0, some feasible individuals will be identified as infeasible. Therefore, for
each individual, there are different runs of the heuristic in Algorithm 7, each
time with N0 sorted differently, such as sorting the nodes with most bonded slot
allocations first or using a breadth-first search of the tree topology. As long as
the heuristic labels the individual as infeasible and there are sorting algorithms
left to try, the heuristic runs again. From the moment an individual is considered
feasible by the heuristic, this process stops and the positive outcome is returned.
If none of the sorting algorithms make the heuristic return a feasible result, the
individual is returned as an infeasible solution.

5.5.3 Time Complexity Analysis

To analyse the time complexity of the GA, the different steps of a single gen-
eration in Algorithm 6 (i.e., the while-loop from line 5 to 13) were analysed.

112 CHAPTER 5

The time complexity of the cross-over operator (i.e., O(|N |3)), the mutation
operator (i.e., O(|N |2)), the selection operator at line 6 (i.e., tournament selec-
tion with time complexity O(k · pop_size) and k being the tournament size),
the selection operator at line 10 (i.e., elitist selection with time complexity
O(pop_size · log(pop_size))) are all dominated by the time complexity of the
fitness function calculation (specifically, the calculation of the hCn,q values at
every node, as defined in Section 5.4.1.2), resulting in a total time complex-
ity of O(|N |! · |N |2), while assuming fixed constants for parameters such as
max_generations, pop_size,Q, |F |, |T | and g. The analysis confirms the high
complexity of solving the proposed slot bonding formulation.

5.6 Evaluation

In this section, we evaluate the effectiveness of the decisions taken by the pro-
posed GA, in terms of the parent selections and MCS and slot allocations, to solve
the proposed TSCH slot bonding problem by applying them in TSCH network
simulations. First, we compare the GA heuristic to the optimal solution obtained
from an exhaustive search approach. Afterwards, we test the effectiveness of
the feasibility heuristic proposed in Section 5.5.2 and validate the proposed
GA by comparing its results to the simulation results. Then, we run the GA for
different network sizes while showing the advantages of slot bonding. We also
show the advantage of employing multiple PHYs (or MCSs), compared with
only using one MCS. Finally, we provide insight in preferred parent selection
and MCS configuration when applying slot bonding that can be used as a basis
to develop practical scheduling and routing algorithms for multi-MCS TSCH
networks.

5.6.1 Experiment Methodology & Setup

The experiments are conducted by following a four-step process: first, the net-
work topologies were generated by the 6TiSCH simulator which was introduced
in Chapter 2. Second, those topologies were fed to the GA, implemented in the
Python DEAP framework [119], that solves the slot bonding problem defined in
Section 5.4 heuristically. Third, the best possible solution found by the GA was
used as input for the heuristic defined in Section 5.5.2 to generate a TSCH sched-
ule for all nodes in the network. Fourth, the scheduling solution provided by the
heuristic is used as a centralized schedule to make static schedule allocations in
the TSCH experiments using the 6TiSCH simulator. This evaluation process that
allows us to analyse the slot bonding technique is illustrated in Figure 5.6. The
source code changes to the 6TiSCH simulator, the GA implementation and the
feasibility heuristic are publicly available1. The number of slots per bonded slot
are configured as shown in Table 5.1. Every node of the network is configured

1https://github.com/imec-idlab/adaptive-mcs-ga-simulator

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 113

NETWORK TOPOLOGY TSCH SCHEDULE

MCS_A MCS_C

GENETIC ALGORITHM

solves

SLOT BONDING PROBLEM

NETWORK LAY-OUT

MODULATION INFORMATION

MCS_A

MCS_B

MCS_C

Modulation Rate # Bonded slots

MCS_A

MCS_B

MCS_C

X kbps

Y kbps

Z kbps

U slots

V slots

W slots

TSCH SLOT FRAME INFORMATION

TIME OFFSETS

C

H

A

N

N

E

L

O

F

F

S

E

T

S

MCS_A MCS_B

TIME OFFSETS

C

H

A

N

N

E

L

O

F

F

S

E

T

S

INPUT

OUTPUT

6TiSCH SIMULATOR

runs with

CENTRALISED SCHEDULE

INPUT

Figure 5.6: Flow diagram showing the evaluation process, showing that the
output of the GA is used as a centralised schedule for the 6TiSCH simulator to
analyse the proposed slot bonding technique.

to generate 1 packet per slotframe. Each experiment result is averaged over at
least 20 iterations. The error bars in the figures represent the standard deviation
over these iterations.

5.6.1.1 6TiSCH Simulator

We extended the simulator with a sub-GHz outdoor propagation model based
on the 3rd Generation Partnership Project (3GPP) spatial channel model [120]
and use 3 channels in the 868 - 868.6 MHz band. The simulator supports the 3
different MCSs in option 4 of the OFDM PHY which all require 156 kHz nominal
bandwidth per channel, as listed in Table 5.1. In addition, to determine the
link reliabilities for every MCS (as introduced in Section 5.4.1.2), real-world

114 CHAPTER 5

measurements were performed with the Atmel AT86RF215 transceiver2 (which
is fully compliant with the IEEE 802.15.4g-2012 standard and thus supports
OFDM) of two OpenMote-B nodes. After configuring both nodes with the same
MCS, attenuating the transmitter by a certain value and transmitting 200 frames
with a 127 byte Physical Service Data Unit (PSDU), the packet reception rate
(PRR) and average RSSI were calculated from the receiver logs. This process
was repeated for each combination of MCS and attenuation in order to map the
PRR in function of average RSSI for each of the selected MCSs. The measured
data and resulting regression models are publicly available3.

The topologies were created by randomly placing nodes until a node had at
least one reliable link (i.e., a PDR of at least 70% for MCS2) to one of the other
nodes. This was done to ensure that the network is fully connected and each
node can reach the sink over one or multiple hops. In our experiments, only the
PHY and MAC layer were enabled and all other stack layers were disabled. The
interference model implemented in the simulator, was changed to the Yet Another
Network Simulator (YANS) model [121]. Note that while the interference
model was enabled during all simulations, there were no transmission failures
due to interference effects because the proposed slot bonding model includes
interference avoidance. The receiver noise floor is calculated using the thermal
noise calculation N = 1.381 · 10−23 J

K · 290K · 156 · 103Hz, added to the noise
figure of the Atmel AT86RF215 chip, i.e., 4.5 dB.

5.6.1.2 GA

The GA workflow is configured as described in Section 5.5.1. The population size
pop_size is set to 100 individuals, while the maximum number of generations
max_generations is configured to 10000 generations. The parent selection
operator, at line 6 in Algorithm 6, is set to tournament selection with a tourna-
ment size of 2. The mutation probability of a gene pgene is set to 0.05. Within
the mutation operator, the minimum reliability threshold for a node to be able
to pick a specific PHY to its parent, is 70 %. To select the population for the next
generation, at line 10 in Algorithm 6, elitist selection, retaining the 10 % best
individuals of the previous generation, is applied. This GA configuration showed
the best overall performance after evaluating a large number of configurations
for a wide variety of inputs (results omitted due to space constraints). To calcu-
late the expected number of delivered packets and the network radio on time in
the fitness function of the GA as described in Section 5.4.1 and Section 5.4.2, the
output of the topology creation is provided as input to the GA, i.e., the different
available MCSs and corresponding link reliabilities between all network nodes.
The parameter g is set to 1 as each node is configured to generate 1 packet per
slotframe. The maximum number of allowed transmission opportunities per

2http://ww1.microchip.com/downloads/en/devicedoc/atmel-42415-
wireless-at86rf215_datasheet.pdf

3https://github.com/imec-idlab/adaptive-mcs-ofdm-measurements

http://ww1.microchip.com/downloads/en/devicedoc/atmel-42415-wireless-at86rf215_datasheet.pdf
http://ww1.microchip.com/downloads/en/devicedoc/atmel-42415-wireless-at86rf215_datasheet.pdf
https://github.com/imec-idlab/adaptive-mcs-ofdm-measurements

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 115

packet, denoted by rmax in Section 5.4.1.1, is set to 4 as advised by the 6TiSCH
Minimal Configuration [36].

5.6.2 GA Validation

We compare the expected number of delivered packets and radio on time results
returned by the GA to the results returned by exhaustive search. Due to the
computational complexity, we could only run exhaustive search experiments for
topologies up to 7 nodes for 10 ms regular slots (while applying slot bonding)
and 8 nodes for 40 ms regular slots. The TSCH schedule was configured to have
a slotframe length of 120 ms, 2 channels and 2 MCSs, i.e., MCS2 and MCS4 of
Table 5.1. Next to the optimality of delivered packets and the difference in radio
on time between the GA and the exhaustive search, Table 5.3 also shows the
relative number of candidate solutions (i.e., individuals) checked by the GA and
the relative computation time needed by the GA compared with the exhaustive
search. The relative number of candidate solutions is the number of unique
solutions checked by the GA over the number of candidate solutions checked
by the exhaustive search (after filtering out a small set of invalid solutions
beforehand). The relative computation time is the time needed by the GA
over the time needed by the exhaustive algorithm to find the optimal solution.
As expected, for an increasing number of nodes and the shorter the regular
slot length (which results in more slots in a slotframe), the relative number of
candidate solutions and relative computation time for the GA becomes smaller
as the number of candidate solutions increases exponentially. For 5 nodes and a
regular slot length of 40 ms, we notice that the GA took slightly more time to
complete than the exhaustive search while considering less unique candidates.
The reason is that the GA employs a fixed population size (i.e., 100 individuals)
and a fixed number of generations (i.e., 10000 generations), resulting in a total
of 1000000 solutions that need to be checked by the GA. As for this experiment
configuration the number of unique solutions is smaller than 1000000, the total
number of individuals checked by the GA includes many duplicate solutions
that require extra computation time. The delivered packets and radio on time
differences in Table 5.3 show that, for topologies up to 5 nodes and a regular
slot length of 10 ms, the GA finds a globally optimal solution, while for 6 and
7 the optimality drops with 0.6 % and 0.4 % respectively. For a regular time
slot length of 40 ms a globally optimal solution is found for all topology sizes.
These results confirm that the proposed GA is capable of finding (near-)optimal
solutions for the slot bonding problem.

To show the accuracy of the feasibility heuristic presented in Section 5.5.2,
the output of the heuristic is compared with the output of a computationally-
intensive Integer Linear Program (ILP) model that can determine the feasibility
of a GA individual with 100 % accuracy. This ILP is extracted from the set of
decision variables and constraints defined in the slot bonding formulation in
Section 5.4. Table 5.4 shows the results for a slotframe length of 200 ms and
2000 generations. The heuristic proves to be much faster as it needs only 3.9 %

116 CHAPTER 5

Table 5.3: Averaged GA results compared with exhaustive search results, for
different topology sizes and slot lengths.

Nr. nodes,
slot length

Delivered
packets

optimality
(%)

Radio on
difference

(ms)

Relative nr.
candidates

(%)

Relative
comp. time

(%)

5 nodes, 10 ms 100 0 0.6 21.5

6 nodes, 10 ms 99.4 1.7 < 0.1 3.1

7 nodes, 10 ms 99.6 5.2 < 0.1 0.5

5 nodes, 40 ms 100 0 3.7 102

6 nodes, 40 ms 100 0 0.3 8.8

7 nodes, 40 ms 100 0 < 0.1 1.1

8 nodes, 40 ms 100 0 < 0.1 0.6

Table 5.4: Feasibility heuristic compared with the exact ILP feasibility model for
a slotframe length of 200 ms and 2000 generations.

Topology
size

Relative
comp. time (%)

True negative rate False negative rate

8 3.9 ± 0.5 1.0 ± 0 0.17 ± 0.014

14 2.4 ± 0.7 1.0 ± 0 0.058 ± 0.039

and 2.4 % of the ILP computation time. The results also show that the heuristic
identifies all infeasible individuals, i.e., the true negative rates are 1. However,
the heuristic does label some individuals as infeasible while they are feasible:
the false negative rate of 0.017 for 8 nodes increases to 0.058 for 14 nodes.
While the increasing number of nodes clearly makes it more difficult for the
heuristic to fit all allocations in the TSCH schedule, this has a minimal impact
on the expected delivered packets results. When comparing the best solution
found when using the heuristic with the best solution found when using the ILP,
the average optimality of the number delivered packets is 99.2 % ± 2.6 % and
98.0 % ± 7.4 % for 8 and 14 motes respectively.

We also validate the GA by comparing its PDR results (i.e., the expected
delivered packets value calculated in Equation 5.5, over the number of generated
packets per slotframe) with the PDR results of the TSCH simulation that used the

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 117

0.0 0.2 0.4 0.6 0.8 1.0
Simulation PDR

0.0

0.2

0.4

0.6

0.8

1.0
G
A
 P
D
R

Figure 5.7: GA and simulation PDR for all experiment iterations for the 10 ms
bonded slots for 120 ms, 200 ms, 280 ms and 360 ms slotframe lengths in a
network with 14 nodes.

GA schedule allocations as input. Figure 5.7 compares the GA and simulation
PDR values for all iterations for the 10 ms bonded slots and 40 ms experiments
with 120 ms, 200 ms, 280 ms and 360 ms slotframe lengths in a network with
14 nodes. For all iterations, both values are nearly identical with an overall root
mean squared error (RSME) of only 0.0044, confirming that the GA model and
TSCH simulator behave similar and validating that the expected PDR calculated
by our GA model is accurate.

5.6.3 Slot Bonding Scalability

To show the effect of slot bonding on scalability, we compare the resource-
efficient slot bonding technique with the static approach without slot bonding
where a time slot should have a length long enough to accommodate all possible
MCSs (and thus valuable slotframe time is wasted for transmissions using MCSs
with fast data rates that do not require the maximum slot length). We compare
TSCH schedules that contain 10 ms bonded slots to schedules with 40 ms regular
slots. Table 5.1 shows the number of slots needed for each supported MCS. The
40 ms slots are long enough to support all MCSs and thus no slot bonding is
required. We compare both techniques for slotframe lengths of 120 ms, 200 ms,
280 ms and 360 ms, meaning that there are 12, 20, 28 and 36 slots for the
slotframe with 10 ms bonded slots and 3, 5, 7 and 9 regular slots for the slotframe
with 40 ms slots respectively.

Figure 5.8 shows the average PDR GA results for 8 and 14 nodes. It is clear
that the slot bonding technique offers a clear PDR advantage over the static
approach for different slotframe lengths. For a 120 ms slotframe length and 8
nodes, the PDR increases from 0.426 (± 0.011) to 0.75 (± 0.095), while for 14
nodes the PDR almost doubles from 0.23 (± 0.004) to 0.446 (± 0.042). For
the slotframe length of 360 ms, the difference for 8 nodes between both PDRs
is negligible as both PDRs are close to 1 because the slotframe length is long

118 CHAPTER 5

120 200 280 360
Slotframe length (ms)

0.0

0.2

0.4

0.6

0.8

1.0

P
D

R

14 nodes, 10 ms, multi-MCS
14 nodes, 40 ms, multi-MCS
14 nodes, 10 ms, MCS2
8 nodes, 10 ms, multi-MCS
8 nodes, 40 ms, multi-MCS

Figure 5.8: PDR comparison for 10 ms bonded slots and 40 ms slots, for different
slotframe lengths.

enough to accommodate all the necessary bonded slots. Additionally, applying
slot bonding allows to achieve a PDR near 1 at a 200 ms slotframe length, while
for 40 ms this requires a 280 ms length. For 14 nodes and a slotframe length of
360 ms, there is still a PDR increase of 42 % with the 40 ms approach having a
PDR of 0.689 (± 0.014) while the slot bonding approach has a PDR of 0.978 (±
0.045). As expected, for both techniques the PDR increases as the length of the
slotframe increases and the contention decreases.

Table 5.5 shows the average number of drops due to the maximum of
retransmissions being reached (i.e., caused by link failures or full queues at the
receiver) relative to the number of generated packets, the average number of
generated packets that was immediately dropped (because the queue of the
transmitter was full), the average link reliability and the average hop count. For
the last two metrics, only the nodes for which a packet could reach the root
were considered, meaning only nodes for which there was a path to the root
with every node along that path having at least one allocated slot to its parent.
Because the reliability of the allocated links in both approaches was high, it is
clear that the major reason for the difference in PDR is due to saturated queues,
either at the transmitter or at the receiver.

These results show that the slot bonding technique is more efficient and can
choose to allocate an extra slot with an MCS that requires less time (a bonded
slot of 20 ms or 30 ms) which could be just short enough and have enough
reliability to serve an extra node or packet in the network. In contrast, for each
extra slot the 40 ms static approach wants to allocate, the complete slot length
needs to be allocated, i.e., 40 ms. This confirms the scalability advantage of the
slot bonding approach over the static approach with fixed 40 ms slot lengths.

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 119

Table 5.5: GA averaged results for 14 node topologies, for both 10 ms (with slot
bonding) and 40 ms regular slot lengths and different slotframe lengths.

Slot length,
slotframe

(ms)

Retransmission
drops
(%)

Full queue
drops
(%)

Link
reliability

(%)

Hop
count

10, 120 0 ± 0 55.4 ± 4.2 99.1 ± 3.8 1.6 ± 0.6

10, 200 0.1 ± 0.1 29 ± 7.1 98.1 ± 5.5 1.9 ± 0.8

10, 280 0.5 ± 1.7 7.3 ± 9.2 97.6 ± 5.8 2.2 ± 1

10, 360 0.1 ± 0.1 2.1 ± 4.5 98 ± 5.5 2.2 ± 1

40, 120 0 ± 0 77 ± 0.4 99.7 ± 2.3 1.1 ± 0.3

40, 200 0 ± 0 61.7 ± 0.9 99.8 ± 1.9 1.4 ± 0.6

40, 280 0.2 ± 0.6 46.2 ± 0.9 99.5 ± 3.2 1.6 ± 0.7

40, 360 0.6 ± 1.8 30.5 ± 2.1 99.3 ± 3.4 1.8 ± 0.8

5.6.4 Adaptive PHYs

We show the advantage of employing multiple PHYs to adapt to the link condi-
tions compared with only using a single PHY. Figure 5.8 shows the results in a
network with 14 nodes when applying the slot bonding approach with 10 ms
slots for both multiple MCSs and only employing MCS2. Only employing MCS4
was not possible, as it cannot always create a reliable enough link to create a
fully connected network. It is clear that using multiple MCSs combined with
slot bonding results in significantly better PDR values. The figure also shows
that the PDR performance of only using MCS2 is the same as the performance
of a network that only uses 40 ms regular slots (i.e., without slot bonding) for
multiple MCSs. The reason for this is that in order to use MCS2, 4 regular slots
always have to be bonded together. However, when comparing the radio on time
of both experiments, there is a clear difference in the experiment with multiple
MCSs as the nodes can choose MCSs that may provide the same reliability as
MCS2 but require less transmission time. For the slotframe lengths of 120 ms,
200 ms, 280 ms and 360 ms, there was a respective 56.2 %, 50 %, 46.2 % and
43.7 % decrease in radio on time when using multiple MCSs.

5.6.5 Allocation Analysis

First, to understand how the network tries to optimize the PDR, we observe the
different PHYs used by the nodes. Figure 5.9 shows the results for 14 nodes,
when applying slot bonding with 10 ms and with 40 ms regular slots. Table 5.5

120 CHAPTER 5

120 200 280 360
Slotframe length (ms)

0

2

4

6

8

10

Li
nk

s

MCS 2
MCS 3
MCS 4

(a) 10 ms bonded slots.

120 200 280 360
Slotframe length (ms)

0

2

4

6

8

10

Li
nk

s

MCS 2
MCS 3
MCS 4

(b) 40 ms bonded slots.

Figure 5.9: MCSs used in a TSCH network with a topology size of 14 nodes.

shows the average reliabilities for all the links in the network. The figure only
shows the MCSs for links of nodes for which a packet could reach the root.
It is clear that when applying slot bonding more nodes in the network can
make slot allocations, especially for the short slotframe lengths of 120 ms and
200 ms, compared with the 40 ms naive approach. In general, the nodes try to
allocate many links using MCS4, which is the fastest MCS and thus requires less
transmission time. In the case of slot bonding, this means that only 2 regular
slots are bonded together, thus leaving more free space in the schedule for other
allocations. Moreover in the slot bonding case, when increasing the slotframe
length, also more MCS2 PHYs are allocated in an effort to guarantee more
reliability as there is more free space in the schedule to do so.

Additionally, different metrics were tested to thoroughly understand the
decisions that were taken when choosing a node’s parent and MCS in order to
optimize the PDR and radio on time. Table 5.6 shows the different metrics and
the average values over the results obtained for the 120 ms, 200 ms, 280 ms
and 360 ms slotframe lengths for two GA experiments with respectively 8 and
14 nodes, when applying slot bonding with a 10 ms regular slot length. The
results in the table show that when a node chooses its parent and the MCS
to that parent, it first focuses on MCS that provide high reliability rather than
preferring fast MCSs, as the numbers of picking reliable MCSs are higher than
those of picking faster MCSs. These results, combined with the picked MCSs
shown in Figure 5.9 and the reliability values listed in Table 5.5 make it clear
that many nodes were able to pick the fastest PHY MCS4 while still achieving
high reliability. Also, when there are different MCSs available at the parent that
provide an equal reliability, the results show that in virtually all cases the node
will pick the fastest MCS.

When looking at parent selection choices, parent nodes that are physically
closer to the root than the node picking the parent, were clearly preferred with
averages of 96.5 % and 94.3 % for 8 and 14 nodes respectively. Due to shorter
distance, those neighbors experience less path loss than nodes that are further

ANALYSING SLOT BONDING FOR ADAPTIVE PHYSICAL LAYERS IN TSCH 121

Table 5.6: Different metrics tested for two GA runs for respectively 8 and 14
nodes when applying slot bonding with 10 ms, showing the average values
over the results obtained for the 120 ms, 200 ms, 280 ms and 360 ms slotframe
lengths.

Metric 8 nodes 14 nodes

Picked most reliable MCS of
parent / overall (%)

94.8 ± 7.8
85.3 ± 9.1

95.3 ± 1.6
88.5 ± 4

Picked fastest MCS of
parent / overall (%)

70.5 ± 2.7
64.8 ± 2.7

77.2 ± 6.6
72.1 ± 9.1

Picked fastest MCS of
equal reliable MCSs of
parent / overall (%)

99.9 ± 0.2
94.2 ± 0.9

100 ± 0
95.6 ± 1.9

Picked parent closer to root
than itself (%)

96.5 ± 1.2 94.3 ± 2.8

Picked parent with equal or better
reliability than itself (%)

77.5 ± 6.3 78.8 ± 7.2

Picked parent with equally fast or faster
rate than itself (%)

64.7 ± 14.7 81.8 ± 9.8

away from the root, making them the more reliable choice. More reliability
means less transmissions needed to deliver the packets and thus less radio on
time and slots that need to be allocated, again leaving more free space in the
schedule for other nodes. Additionally, the nodes seemed to have a strong
preference for parent nodes that had a reliability towards their respective parent
that was equal or higher than the reliability between the node itself and its
parent. On average, in 64.7 % and 81.8 % of the cases for the experiments with
8 and 14 nodes respectively, a node also preferred a parent node with equally
fast or faster MCSs to their parent compared to the rate of the MCS between the
node itself and its parent. Moreover when only looking at nodes that allocated
the slowest MCS2 PHY towards their parent, it is significant that on average in
95.3 % and 91.1 % of the nodes (i.e., in the experiments with 8 and 14 nodes
respectively) prefer a parent that allocated a MCS with a faster rate than the
MCS between the node itself and its parent. When looking at nodes with the
fastest MCS MCS4 allocated towards their parent, we observe that especially
for the shorter slotframe lengths nodes prefer parents with the same rate (it is
not possible to allocate a faster MCS), while for the longer slotframe lengths
this effect diminishes, i.e., for a 120 ms (and a network of 14 nodes) 91.3 %
of the nodes prefer the same MCS, while for 360 ms length this is only 54.4 %.
As there is more space in the schedule with longer slotframe lengths, nodes

122 CHAPTER 5

probably start to prefer the slower but more reliable MCS2 PHYs.

5.7 Conclusion

This chapter explored the simultaneous use of multiple PHYs in a IEEE 802.15.4e
TSCH network by proposing the concepts of slot and channel bonding and
performing an in-depth analysis of the slot bonding concept. We formally
described the slot bonding problem that maximizes the expected number of
delivered packets to the root while minimizing the radio on time. Additionally,
we proposed a GA as a static analysis tool, allowing us to implement and solve
the computationally complex slot bonding problem up to a network size of
14 nodes. The GA finds an near-optimal solution in terms of parent and MCS
selection as well as slot allocations, i.e., the maximum deviation in terms of
delivered packets to the root is on average less than 1%.

The results of applying the GA solutions in TSCH network simulations con-
firmed the scalability advantage of the slot bonding approach in terms of PDR,
as it can bond multiple regular slots together in a bonded slot without over-
allocating the slot time it needs and thus avoid wasting radio on time and energy.
It was also shown that simultaneously using different PHYs in the same network
compared to only allowing the most reliable PHY demands less radio on time
while maintaining the same PDR. Finally, the simulations showed insight in the
preferred PHY and parent selections for the slot bonding approach to optimize
the number of delivered packets.

Chapter 6

Parent and PHY Selection in
TSCH Slot Bonding Networks

The content of this chapter is partially based on:

• Glenn Daneels, Dries Van Leemput, Carmen Delgado, Steven Latré, Eli
De Poorter and Jeroen Famaey. (2021). Parent and PHY Selection in
TSCH Slot Bonding Networks. To be submitted.

6.1 Introduction

Industrial applications that are deployed on low-power wireless sensor networks
often demand a trade-off between data rate, energy consumption, latency and
reliability. To fit the exact requirements, 6TiSCH networks allow to tune the
network characteristics at different layers in the network stack, starting from
the IEEE 802.15.4e TSCH MAC layer up to the application layer [12, 122].
Nevertheless, the IIoT stack is limited by the characteristics of the chosen PHY
layer, that is often challenged by the harsh conditions of industrial environments
which are filled with the presence of other wireless technologies and metal
infrastructure. To overcome this limitation, the TSCH and 6TiSCH community
is shifting research efforts to the support of multiple PHY layers, as discussed in
Chapter 5 [19,23,34,111].

Employing different PHYs in a single TSCH network also means embracing
the different characteristics of each PHY, such as its data rate, bandwidth, com-
putational complexity, energy consumption and wireless reliability. Integrating
multi-PHY support in a 6TiSCH network therefore implies on the one hand
dealing with the different transmission lengths and bandwidth requirements
to fit the PHY allocation in the TSCH schedule, and on the other hand defining

124 CHAPTER 6

policies on how to select the appropriate PHY for each network link. In Chap-
ter 5, we have answered how different PHYs can be fitted in a TSCH schedule
by introducing the concepts of slot and channel bonding. In this chapter, we
investigate the parent and PHY selection for each network node, related to
making correct routing decisions based on the available PHYs and being able to
schedule those PHY resources in the TSCH schedule.

The contributions of this chapter are two-fold. First, we propose a com-
putationally efficient heuristic that is a step towards a distributed PHY and
parent selection mechanism for a TSCH network that applies slot bonding. The
performance of this heuristic is initially evaluated via simulation results, by
comparing it against the near-optimal, but computationally complex multi-PHY
scheduler proposed in Chapter 5. Second, we propose an easy-to-configure
TSCH slot bonding implementation in the latest version of the Contiki-NG IIoT
operating system. Subsequently, this slot bonding implementation is used to
extensively evaluate the proposed heuristic on a real hardware sensor testbed.

The remainder of this chapter is structured as follows. First, we introduce the
related work on using multi-PHY TSCH in Section 6.2. Second, in Section 6.3, we
introduce the parent and PHY selection heuristic. In Section 6.4, we describe the
TSCH slot bonding implementation in the Contiki-NG firmware. Afterwards, the
heuristic is evaluated in Section 6.5. Finally, Section 6.6 presents the conclusions
of this chapter.

6.2 Related Work

The introduction of the IEEE 802.15.4g amendment and the commercial avail-
ability of IEEE 802.15.4g-compliant transceivers has spiked research towards
the available PHYs and their potential for 6TiSCH networks. Section 5.2 of
Chapter 5 already discussed many works carrying out experimental evalua-
tions including range tests, interference robustness and overall suitability of
different IEEE 802.15.4g PHYs, tested in outdoor, smart building or industrial
scenarios [17,18,104,105,106,107,112].

Currently, research that investigates specifically how different PHYs can be
combined in a single TSCH network, is scarce. M. Rady et al. adjusted the
OpenWSN firmware to support O-QPSK (2.4 GHz at 250 kbps), FSK (868 MHz
option 1 at 50 kbps) and OFDM (868 MHz option 1 MCS3 at 800 kbps) [19].
For a fair comparison, the authors used a 40 ms time slot that could facilitate
all implemented PHYs. This approach is similar to the baseline approach used
in Chapter 5. After evaluating the different PHYs on a 42 nodes office testbed,
the authors conclude that no PHY outperforms the other PHYs for all metrics,
and therefore the combination of different PHYs should be considered on a
frame-by-frame basis (depending on the changing propagation characteristics
of the link) in a 6TiSCH architecture. Defining a policy on how to select the
appropriate PHY was not in the scope of the article. Gomes et al. propose
different policies on packet replication and the use of multiple IEEE 802.15.4g

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 125

modulations for different packets, i.e., modulation diversity, to increase network
reliability [33]. The authors do not discuss how to exactly integrate the different
modulations in TSCH, but their defined policies should be considered a PHY
selection mechanism, that can be applied on top of our slot bonding approach.
Another recent, interesting approach is presented by Van Leemput et al. who
take into account the different data rates possible for different PHYs [34]. The
authors defined two alternative timeslot structures allowing multiple packets
transmissions to increase the throughput for higher data rate PHYs while main-
taining a fixed slot duration. This approach is different from our slot bonding
approach where only 1 packet is transmitted, but the slot length is adapted
to the chosen PHY. Consequently, while our approach might be more complex
to implement, it is more flexible and extensible to efficiently support a wider
range of PHYs. Additionally, they developed a flexible Link Quality Estimation
technique to dynamically switch between PHYs depending on the current prop-
agation’s characteristics of the link. Another interesting work is the approach of
Brachmann et al. They proposed two multi-PHY designs: (i) a multi-template
design where slower PHYs are scheduled to have logical slots spanning multiple
real slots, and (ii) a single-template design where the slot size is based on the
slowest PHY [111]. Their multi-template design is similar to our slot bonding
approach presented in Chapter 5. The real hardware evaluation of Brachmann
et al. applies their multi-template design by assigning management traffic to
the slower, more reliable PHY while data is transmitted over the faster, less
reliable PHY. As such, they do not not discuss a PHY selection mechanism and
their results primarly focus on the advantages of using a multi-PHY in terms of
range, channel utilization and synchronization accuracy. The TSCH slot bond-
ing firmware implementation presented in this chapter is a combination of a
new easy-to-configure implementation, developed in the latest version of the
Contiki-NG repository, merged with insights from the open-source multi-PHY
work from both Van Leemput et al. and Brachmann et al.

To the best of our knowledge, this work is the first to evaluate a parent and
PHY selecting mechanism in a TSCH slot bonding, multi-hop network deployed
on a real hardware testbed.

6.3 Heuristic Parent and PHY Selection

In this section, we propose a computationally efficient heuristic algorithm that
allows TSCH slot bonding nodes to make a parent and PHY selection. The
heuristic is a step towards a distributed selection mechanism that could be
integrated into the RPL or any other routing protocol. First, we re-iterate how
parent nodes are normally selected in a single PHY network and afterwards
explain the motivation for this heuristic by briefly referring back to our work in
Chapter 5. Then, we present the heuristic itself. We conclude with providing
insight in how this heuristic could be integrated into RPL.

126 CHAPTER 6

6.3.1 RPL Parent Selection

In 6TiSCH networks, it is the RPL routing protocol that organizes the network
paths along which data is transmitted from the originating node to the network
sink [45]. In Section 2.3.4, we already gave an overview of RPL, but here we
will explain the important concepts related to RPL parent selection.

RPL organizes the network nodes in a tree topology which is rooted at the
sink node (i.e., a border router). Each node in the RPL routing tree can have
zero or more child(ren), and one or more parent(s). A node that has no children,
is a leaf node, and the node in the tree that does not have any parents, is the
root node of tree. When data has to be transmitted to the sink (or root) of the
network, it is forwarded on the link between every node and its parent along
the path from the originating node towards the root. The location of the node in
this routing tree, is determined by its Rank value. The node calculates this value
itself and broadcasts this information in so-called DIO messages. To calculate
this Rank value, but also to select the preferred routing parent, a node applies an
Objective Function (OF) that uses one or more routing metrics to approximate
the distance of the node to the root. The minimal 6TiSCH profile mandates to
use the default OF0 [36, 46]. More specifically, when a node applies OF0 to
select a parent among its set of neighbors, it uses a so-called step_of_rank value
which represents the link properties to the specific neighbor. That step_of_rank
becomes part of a normalized rank_increase value that is added to the Rank
value received via routing broadcast messages (i.e., DIO messages) from each
neighbor. The neighbor with the lowest resulting Rank value is picked as (new)
preferred parent (only if the difference with the rank of the previous parent
exceeds a parent switching threshold). The minimal 6TiSCH profile defines this
step_of_rank as a function of the ETX (i.e., the estimated number of needed
transmission attempts for one successful transmission) towards that neighbor.
An alternative to OF0 is the MRHOF OF [70], which selects routes that minimize
a metric, while using hysteresis to reduce churn in response to small metric
changes. It works with additive metrics along a route, and the metrics it uses are
determined by the metrics that the RPL DIO messages advertise. In the absence
of advertised metrics, MRHOF also uses ETX to make parent selections.

6.3.2 Motivation

In Chapter 5, we defined a GA that acted as a centralized scheduler for multi-PHY
TSCH networks by making parent, PHY and slots selections for each node in the
network. This GA allowed us to implement the slot bonding problem and find
solutions in near-optimal fashion. As such, it was used for the analysis of the
proposed multi-PHY TSCH slot bonding technique. Due to its time complexity
(see Section 5.5.3) and its centralized approach, it is not feasible to use it for
real-time parent and PHY selections in TSCH networks.

Therefore in this chapter, we present a computationally efficient heuristic
that allows nodes to make parent and PHY selections in a multi-PHY 6TiSCH

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 127

Algorithm 8 Procedure to map the preferred PHY per possible parent

1: procedure MAPPHYPERPARENT(n, δ)
2: mn = map() . for node n, map possible parents to PHY
3: for p ∈ Pn do . loop over every possible parent of node n, in Pn
4: mrel iable = None . most reliable PHY to parent p
5: for m ∈ Mp do . find most reliable PHY
6: if rel iabil i t y(m)> rel iabil i t y(mrel iable) then
7: mrel iable = m

mn[p] = mrel iable
8: for m ∈ Mp do . find possible faster PHY
9: if rate(m)> rate(mn[p]) then

10: if rel iabil i t y(mrel iable)− rel iabil i t y(m)≤ δ then
11: mn[p] = m
12: return mn

network. The algorithm is a step towards a distributed approach that can be
integrated in RPL OFs, taking into account the ETX and a PHY characteristic,
i.e., the data rate that is translated into the number of slots needed to bond
together to transmit a packet.

6.3.3 Heuristic

The proposed heuristic aims to optimize the overall PDR of the network. Its
inputs are a reliability threshold value (i.e., δ), the data rates of the available
PHYs and for each node, the link reliability values for all PHYs to all the node’s
possible parents. The output of the heuristic is a preferred parent and a PHY, to
connect to that parent, for each node in the network. To achieve its goal, the
heuristic first selects, for each node, a preferred PHY for each of its possible
parents. Afterwards, taking into account those PHYs for each possible parent,
the heuristic minimizes the number of allocated slots from each node to the
root. Therefore it considers the bonded slot length necessary for each PHY and
the link reliability to that possible preferred parent. Both steps of the heuristic
are described in Algorithms 8 and 9 and discussed in detail below.

In the first step of the heuristic, each node in the network, except the root
(i.e., each node n in the set N0), assigns a preferred PHY to each possible parent
in its set of possible parent nodes. To do so, it considers the trade-off between
reliable and/or fast PHYs as we have seen in the allocation analysis of Section
5.6.5 that both metrics are important when picking a parent. This PHY selection
procedure is shown in Algorithm 8 (and this procedure is called in Algorithm 9
at lines 2 and 3). Given node n, this algorithm first searches, for every possible
parent of n (i.e., in set Pn), for the most reliable PHY, mrel iable from node n to
that parent p. Afterwards, based on the known data rate of each possible PHY,
the fastest PHY is selected that is within a given threshold (i.e., the parameter δ)

128 CHAPTER 6

Algorithm 9 Heuristic to find parents and PHYs

1: procedure ASSIGNPARENTANDPHY(α, δ)
2: for n ∈ N0 do . for every n, assign the preferred PHY per parent
3: mn = MAPPHYPERPARENT(n, δ)
4: converged = false
5: while ¬ converged do . stop when no node changed parent anymore
6: converged = true
7: x0 = 0 . score of root initialized to 0
8: for n ∈ N0 do
9: pn = None . preferred parent of node n

10: xn = None . score to preferred parent of n
11: for p ∈ Pn do
12: if xp 6= None then . only if possible parent has a score
13: ET X = 1

rel iabil i t y(mn[p])
. ET X = 1

rel iabil i t y
14: x = xp + ET X · smn[p] . sm is bonded slot length of PHY m
15: if xn = None ∨ x < xn then
16: xn = x
17: pn = p
18: converged = false . there was a change
19: return {p0, p1, . . . , p|N0|}, {m0[p0], m1[p1], . . . , m|N0|[p|N0|]}

of the most reliable PHY to that parent. Formally, this means that for the selected
PHY m to a possible parent the link reliability lm is such that lm ≥ lmax −δ with
lmax being the highest possible reliability among all PHYs supported by the node
to that possible parent. Choosing a small δ value will lead to more reliable links
between a node and its parent, but also leads to less free space in the schedule
as PHYs with lower data rates need more time to transmit a packet and thus
need more regular slots to be bonded together. Choosing a large δ allows less
reliable PHYs to be chosen, and assuming that less reliable PHYs have faster date
rates that need a shorter bonded slot to transmit a packet (this assumption is
largely confirmed by the PDR results of the different IEEE 802.15.4g modulations
in [17]), this will lead to more free space in the schedule. Specifically, if δ = 0,
the heuristic always chooses the most reliable PHY for each possible parent,
while when δ = 1, the heuristic always chooses the PHY with the fastest data
rate. The value of δ should thus be determined empirically and can be network,
application or even node-specific.

Having selected a PHY for each possible parent for each node n, from line
5 onward in Algorithm 9, the heuristic searches for the preferred parent pn of
every node n. The heuristic stops when every node has selected a preferred
parent. Every node n is assigned a so-called score xn and the score of the root is
0, assigned at line 7. The algorithm tries to minimize this score for each node as
it represents the expected number of regular slots (i.e., not bonded slots) needed

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 129

to transmit a packet along the path from the node to the root. For every node n,
it loops over every possible parent p of node n and if that parent was already
assigned a score xp, it calculates a new score x for node n. On line 13, this score
is calculated by using the ETX value for the PHY selected for that possible parent.
Afterwards on line 14, that ETX is multiplied with the bonded slot length of that
PHY (i.e., sm, the number of regular slots that need to be bonded together to
transmit a packet, using PHY m), and added to the score xp of the parent. If it
is the first time the score is assigned to the node n or the score is smaller than
the previous xn, this possible parent becomes the new preferred parent (see line
15-17). By using the ETX and the bonded slot length for the score calculation,
and by looking for the smallest parent score xp, the heuristic actually aims to
pick a preferred parent with a path to the root that minimizes the number of
allocations in the schedule. As we have seen in the results of Section 5.6 (of
the previous chapter) that more free space leads to higher PDR values, this way
the heuristic tries to optimize the space in the schedule so every node can make
sufficient allocations to successfully (re-)transmit their packets. On line 18, we
denote that there was a change in topology as this may affect other scores of
other nodes. As such, the heuristic should not converge yet and keep running
until no changes happen. Finally, when converged, the heuristic returns the sets
of chosen parents and PHYs for each node.

An example of the heuristic is given in Figure 6.1. Node 3 uses the heuristic
to choose a preferred parent between the nodes 0, 1 or 2 and a PHY to that
parent. First, it selects a PHY per parent, with δ = 0.1. Afterwards, it calculates
the x score using the score from each possible parent, xp, the ETX value to that
parent and the bonded slot length for the preferred PHY to that parent, sPHY , to
select node 2 as its new preferred parent (using preferred PHY PHY1).

6.3.4 RPL Integration

While the proposed heuristic is defined from a centralized point of view (and it
can be used as a centralized scheduler), it is clearly a step towards a distributed
parent and PHY selection mechanism. Here, we provide an explanation on how
the different inputs of the heuristic can be obtained and how the heuristic can be
integrated into an RPL OF in a distributed way (i.e., utilizing only information
that is locally available at each node).

The inputs of the heuristic are the data rates of the different PHYs, the
different link reliability values (or ET X = 1

rel iabil i t y) and the score values of
possible parent nodes. The data rates of the different PHYs and the related
number of regular slots that need to be bonded together to transmit a packet,
sm, are known by every node beforehand as they are characteristic for each PHY.
The different reliability values could be approximated by mapping neighbor
RSSI values to PDR values, based on PHY measurements carried out in the

130 CHAPTER 6

1

2

03

x
1
 = 1.1

x
0
 = 0

x
2
 = 1.2

PHY0 PHY1reliability

3 0

3 1

3 2

x
p ETX

3 0

3 1

3 2

s
PHY x

0

0

0

1.1

1.2

PHY0 PHY1

s
PHY 4 slots 1 slot

0.3 0.2

0.7 0.5

5

0.9

5

1.4

1.1

4

1

1 2.3

6.7

1

1) Select PHY per parent (δ = 0.1) 2) Calculate x score and select parent

rate 50 kbps 1000 kbps

Figure 6.1: Example of node 3 using the heuristic to select its parent and
PHY. First, the node selects the PHY per parent (with threshold δ = 0.1) and
afterwards the node calculates the x score to select parent 2.

environment where the network is being deployed. For example, Contiki-NG1

has the option called LINK_STATS_INIT_ETX_FROM_RSSI to estimate the
ETX from RSSI values [73]. This could be extended to support multiple PHYs.
Alternatively, it is also possible to learn the link reliability over time. The link
reliability can be defined as the number of ACKs over the number of transmission
attempts, which can then be turned into an ET X = num_t x

num_ack , as it is done in
Contiki-NG (i.e., option LINK_STATS_ETX_FROM_PACKET_COUNT) but also
in the 6TiSCH OpenWSN implementation2. When no transmission attempts
are available for a certain possible parent, a default ETX value can be chosen
(e.g., representing an average link quality). In this case where link reliability is
learned over time and a node has to find a fast and reliable PHY for the current
preferred parent (as proposed in Algorithm 8), a node can apply a Link Quality
Estimation (LQE) technique as proposed by Van Leemput et al. to iterate through
the different PHYs [34]. The necessary score values xp of possible parents can
be distributed throughout the network using the Metric Container option in RPL
DIO messages, similar to the metrics distributed for the MRHOF OF [45,70].

Using those inputs, the MRHOF OF can be used to further integrate the
heuristic, as that OF is designed to minimize the path cost based on additive
metrics (that are turned into Rank values), i.e., the score values used in the
heuristic. Subsequently, using MRHOF, the node will select (with hysteresis) a
parent that requires less defaults slots to be scheduled along the path towards

1https://github.com/contiki-ng/contiki-ng/blob/develop/os/net/link-
stats.c

2https://github.com/openwsn-berkeley/openwsn-fw/blob/develop/
openstack/02b-MAChigh/neighbors.c

https://github.com/contiki-ng/contiki-ng/blob/develop/os/net/link-stats.c
https://github.com/contiki-ng/contiki-ng/blob/develop/os/net/link-stats.c
https://github.com/openwsn-berkeley/openwsn-fw/blob/develop/openstack/02b-MAChigh/neighbors.c
https://github.com/openwsn-berkeley/openwsn-fw/blob/develop/openstack/02b-MAChigh/neighbors.c

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 131

the root, as this is the goal of the proposed heuristic.

6.4 Slot Bonding Implementation

This section gives an overview of our proof-of-concept TSCH slot bonding im-
plementation in the Contiki-NG firmware. The implementation is publicly
available3. First, we discuss the development platform. Second, we discuss
the different PHYs that were considered and the possible channel allocations.
Finally, we discuss the used TSCH timing values used in the implementation.

6.4.1 Platform

The slot bonding proof-of-concept is implemented in the latest version4 of
the Contiki-NG firmware [73]. Contiki-NG is an open-source, cross-platform
operating system for IoT devices with support for the 6TiSCH stack. The imple-
mentation is developed on the Zolertia hardware platform, more specifically the
RE-Mote (revision B) platform featuring the Texas Instruments CC1200 sub-GHz
low-power transceiver5. As the Contiki-NG firmware is ported to many differ-
ent platforms, also the slot bonding implementation can be used on different
hardware.

6.4.2 PHYs

The implementation supports the 2 sub-GHz PHY configurations shown in Ta-
ble 6.1, i.e., the 2-GFSK modulation with 200 kHz channel spacing and 50 kbps
data rate and the 4-GFSK modulation with 1667 kHz channel spacing and
1000 kbps data rate. PHY layers in the sub-GHz spectrum are used because of
the better propagation characteristics compared to the 2.4 GHz spectrum [123].
Both CC1200 radio configurations are by default available in the Contiki-NG
repository. The implementation can be extended to support more PHY radio
configurations. As indicated in the work of Van Leemput et al. and as seen in
Table 6.2, taking into account the strict regulation of the sub-GHz spectrum,
44 200 kHz and 4 1667 kHz channels are possible (with frequency overlap) in
the 7 sub-GHz bands divided over the European Union 863-870 MHz and 873-
920 MHz spectra [34,124]. Such a channel allocation with frequency overlap
actually avoids wasting bandwidth and allows for a rich frequency diversity.
However, the frequency overlap can also result in inter-PHY interference and
possible duty cycle saturation for certain frequency bands. The alternative
is allocating channels for the different PHYs without frequency overlap (thus
reserving different parts of the wireless spectrum for different PHYs), with the
consequence of limiting the frequency diversity.

3https://github.com/imec-idlab/tsch-slotbonding
4https://github.com/contiki-ng/contiki-ng, commit 5fdfc98
5http://www.ti.com/product/CC1200/datasheet/

https://github.com/imec-idlab/tsch-slotbonding
https://github.com/contiki-ng/contiki-ng
http://www.ti.com/product/CC1200/datasheet/

132 CHAPTER 6

Table 6.1: The used PHYs configurations, together with their configured time
slot length and number of bonded regular slots.

Modulation
Bandwidth

(kHz)
Data rate

(kbps)
Time slot length

(µs)
Bonded

nr. of slots

2-GFSK 200 50 36000 4
4-GFSK 1667 1000 9000 1

Table 6.2: Possible channel allocations for 200 kHz and 1000 kHz channels in
the European sub-GHz frequency band, as listed by Van Leemput et al. [34].

Start Freq. End Freq. Bandwidth 200 kHz 1000 kHz

863 MHz 868 MHz 5000 kHz 25 3
868 MHz 868.6 MHz 600 kHz 3 0

868.7 MHz 869.2 MHz 500 kHz 2 0
869.4 MHz 869.65 MHz 250 kHz 1 0
869.7 MHz 870 MHz 300 kHz 1 0
874 MHz 874.4 MHz 400 kHz 2 0

917.4 MHz 919.4 MHz 2000 kHz 10 1

44 4

6.4.3 Timing Values

As introduced in Chapter 5, TSCH slot bonding bonds multiple regular time slots
into a bonded slot that is long enough to transmit or receive a frame of 128
bytes (125 data bytes, 2 CRC bytes and 1 byte frame length), given the data rate
of the selected PHY. As such, each bonded slot is tailored to the requirements
of the specific PHY and thus has the advantage of limiting the waste of airtime
resources.

As described in Section 6.4.2, we use the 2 available CC1200 PHYs with data
rates of 50 kbps and 1000 kbps. The differences between the two PHYs and their
data rate is reflected in the total time slot lengths and the timing values for the
different states within a time slot, as defined in the radio configurations of these
PHYs. Brachmann et al. list these different timing values and how they can be
determined [111]. The largest difference between the 2 PHYs is reflected in the
transmission length of the data frame due to the difference in data rate (i.e., in
kbps), as the transmission length equals 128×8

datarate milliseconds. Using the timings
as defined in their original radio configurations, the total time slot lengths are
31.46 ms and 5.808 ms for 50 kbps and for 1000 kbps respectively. However,
we also have to include extra time at the start of the slot to reconfigure the
radio for the appropriate PHY. Similar to Brachmann et al., we add 3 ms for this

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 133

9 ms0 ms

36 msRadio reconfiguration (max. 3 ms) Max. TX Data (20.48 ms)
Max. RX ACK (3.36 ms)

Max. TX Data (1.024 ms)

Max. RX ACK (0.168 ms)

1000 kbps PHY

50 kbps PHY

Figure 6.2: Illustration of the slot timings for the 1000 kbps and 50 kbps
(bonded) slots.

reconfiguration per time slot, bringing the total time slot lengths to 34.46 ms
and 8.808 ms. As slot bonding requires bonding multiple slots together to form
a longer time slot for PHYs with slower data rates, the total time slot length
of the fastest PHY should be a common divisor of the time slot lengths of the
slower PHY(s). Therefore, we extended the slack time at the end of both time
slots to end up with total lengths of 9 ms and 36 ms, as shown in Table 6.1. This
means that the regular time slots in the TSCH schedule have a length of 9 ms
(meaning that the TSCH ASN is incremented every 9 ms) and are used by the
1000 kbps PHY. When allocating a slot for the 50 kbps PHY, 4 regular slots of
9 ms will be bonded together. Figure 6.2 illustrates the differences between the
time slots of the 2 chosen PHYs.

6.5 Evaluation

In this section we evaluate the proposed parent and PHY selection heuristic.
First, we present our experiment setup and methodology. Afterwards, we use the
6TiSCH simulator to compare the heuristic against the near-optimal approach,
proposed in Chapter 5. Finally, we evaluate the heuristic on a real hardware
office testbed using the proposed slot bonding implementation.

6.5.1 Experiment Methodology & Setup

We first describe the experiment methodology and setup for the simulation
experiments, afterwards we describe the testbed experiments.

6.5.1.1 Simulator Experiments

In the simulation experiments, we compare the proposed parent and PHY heuris-
tic of Section 6.3 to the near-optimal GA scheduler defined in Chapter 5. The
experiment process of the GA is similar to the 4-step process used in Section 5.6.1.
First, the network topologies were generated by the 6TiSCH simulator that was
introduced in Chapter 2 [83]. Second, those topologies were fed to the GA that
solves the slot bonding problem in near-optimal fashion. Both the simulator and

134 CHAPTER 6

FLOOR 9 FLOOR 10

SCENARIO 1

SCENARIO 2

Figure 6.3: The two floors of the hardware testbed with the 13 used nodes
illustrated at their locations. We considered 2 scenarios of 12 nodes: scenario 1
includes the 11 grey nodes and the blue node while scenario 2 includes the 11
grey nodes and the green node.

the GA are publicly available6. Third, the best possible solution found by the
GA, that includes the selection of a parent, PHY and a number of slots for each
node, was used as input for the algorithm defined in Section 5.5.2 to generate a
TSCH schedule for all nodes in the network. Fourth, the resulting scheduling
solution is used as a centralized schedule to make static schedule allocations
in the TSCH experiments using the 6TiSCH simulator. For a more elaborate
description and illustration of this experiment setup, we refer the reader back
to Section 5.6 and Figure 5.6 in Chapter 5.

The proposed heuristic only makes parent and PHY selections and does not
allocate (bonded) slots. Therefore, using the network topology created by the
6TiSCH simulator in the first step of the experiment process, we let the proposed
heuristic make the parent and PHY selections and fix these selections, and
afterwards let the GA find the best slot allocation solution for those parent and
PHY choices. The reason for keeping the GA scheduler for the slot allocations,
is that we want to fairly compare the PHY and parent selection, without having
influence from (sub-optimal) slot allocation. This implementation is publicly
available7.

6.5.1.2 Testbed Experiments

The proposed heuristic is also validated on the imec Wireless OfficeLab, using
the TSCH slot bonding proof-of-concept discussed in Section 6.4 [125]. The
testbed is located in an office environment spanning different floors of 805 m2

separated, with reinforced concrete, with a total of 150 sensor nodes of which a
subset of 13 nodes was used as illustrated in Figure 6.3. The deployed sensor
nodes are the Zolertia RE-motes [82].

6https://github.com/imec-idlab/tsch-slotbonding-ga-simulator
7https://github.com/imec-idlab/tsch-slotbonding

https://github.com/imec-idlab/tsch-slotbonding-ga-simulator
https://github.com/imec-idlab/tsch-slotbonding

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 135

The testbed evaluation was a 3-step process as illustrated in Figure 6.4.
First, using the slot bonding implementation, we monitored the link reliability
between all nodes, in both directions, for the 50 kbps and 1000 kbps PHYs (as
listed in Section 6.4.2). Every link was monitored for 300 s, transmitting a
packet of 127 bytes every second, and its reliability was defined as the average
num_ACKs
num_T X of 5 consecutive observations, each over a time span of 60 s. The

monitored link reliability values are publicly available8. Links between nodes
that did not connect or became disassociated during the experiment, were
assigned a reliability value of 0. We considered 2 different scenarios, each with
12 nodes as illustrated in Figure 6.3. It turned out that in normal conditions,
the 1000 kbps PHY was able to connect (almost) all nodes with a very good
reliability. Therefore, to better emulate an industrial environment in which the
reliability of different network links can heavily vary and/or some nodes can
not connect with certain PHYs, we used different transmission powers for the 2
PHYs and disabled a part of the 1000 kbps PHY links in both scenarios. For the
50 kbps PHY, the transmission power was set to 14 dBm, while for the 1000 kbps
PHY it was set to 0 dBm. Additionally, we disabled uniformly at random 70 % of
the 1000 kbps PHYs links of each node (i.e., assigning links a reliability value of
0). The goal of the monitoring step was to determine the link reliability values
of all nodes to each other for each PHY, as these will be used by the heuristic
to make the parent and PHY selections. While this monitoring step simplified
our evaluation of the heuristic, in an integrated solution this could be replaced
with run-time statistics as explained in Section 6.3.4. As such, afterwards these
reliability values were fed, together with the slotframe information and the
selected set of nodes (including a randomly selected root node), to the GA
scheduler. In case of the heuristic, the GA only decided the slot allocations as
the heuristic determined the parent and PHY selection for each node. Finally,
the resulting network topologies with selected parents and PHYs and the TSCH
schedules were configured on all selected nodes in the hardware testbed and
the results were monitored for 300 ms.

The slot bonding implementation that we deployed on the hardware testbed
has a channel allocation of 3 channels of 200 kHz and 2 channels of 1667 kHz
for the 50 kbps and 1000 kbps PHY respectively, without frequency overlap in
the 863-868 MHz band, as shown in Figure 6.5. We have limited the number of
channels to speed up the network bootstrap process. We considered 2 different
slotframe lengths of 261 ms (i.e., 29 slots of 9 ms) and 423 ms (i.e., 47 slots
of 9 ms). The nodes can actually only use 17 and 36 slots respectively in each
slotframe: we included 8 slots to facilitate 2 shared bonded slots (of 4 regular
slots each) that use the 50 kbps PHY and padded the resulting length with
unused extra slots to become a prime number of slots (to achieve pseudo-
random channel hopping). The shared slots are placed at the beginning of
each slotframe and used to broadcast the TSCH EB messages that advertise the
network (every 7 seconds). We disabled the 6P layer and applied the Contiki-NG

8https://github.com/imec-idlab/officelab-reliabilities

https://github.com/imec-idlab/officelab-reliabilities

136 CHAPTER 6

NETWORK TOPOLOGY
TSCH SCHEDULE

PHY_50 PHY_1000

GENETIC ALGORITHM

SELECTS

PARENTS, PHYs and SLOTS

PHY LINK RELIABILITY

INFORMATION

1

1

2

2

...

NODE X NODE Y PHY

PHY_50_KBPS

PHY_1000_KBPS

PHY_50_KBPS

PHY_1000_KBPS

...

TSCH SLOT FRAME INFORMATION

TIME OFFSETS

C

H

A

N

N

E

L

O

F

F

S

E

T

S

TIME OFFSETS

C

H

A

N

N

E

L

O

F

F

S

E

T

S

INPUT

OUTPUT

OFFICELAB TESTBED

WITH TSCH SLOT BONDING PROOF-OF-CONCEPT

INPUT

PHY_50PHY_50

HEURISTIC

SELECTS PARENTS AND PHYs

GENETIC ALGORITHM

SELECTS SLOTS

OR

OFFICELAB TESTBED

LINK RELIABILITY MONITORING

OUTPUT

2

2

1

1

...

RELIABILITY

0.98

0.71

0.94

0.68

...

RANDOM NODE SELECTION

Figure 6.4: Flow diagram illustrating the testbed evaluation process. The testbed
link monitoring information is used as input for the heuristic (with the GA for
slot allocations) or the GA, and the outcomes of those schedulers is loaded on
the sensor nodes in the testbed.

NullNet option, meaning there is no network or any higher layer functionality.
All network topologies and schedule allocations are statically configured at the
MAC layer, using the parent and PHY selections and the TSCH schedule provided
by the heuristic and/or GA. The queue size is set to 8 packets. The maximum
number of allowed transmission opportunities per packet, is set to 4, as advised
by the 6TiSCH Minimal Configuration [36]. Every node transmits a packet of
127 bytes every slotframe.

The GA configuration (i.e., operators, number of generation and mutation
and cross-over probabilities) is the same as described in Section 5.6.1.2. How-
ever, the GA (and the proposed heuristic) now use the 50 kbps and 1000 kbps
PHYs. Subsequently, the feasibility algorithm that determines the TSCH sched-

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 137

MHz

863 868

864.142863.025 863.625 864.141 867.476

2 x 1667 kHz channels

(1000 kbps PHY)
3 x 200 kHz channels

(50 kbps PHY)

Figure 6.5: The channel allocation for the 50 kbps and 1000 kbps PHYs in the
863-868 MHz band, as used in the evaluation. The former uses 3 channels of
200 kHz while the latter uses 2 channels of 1667 kHz.

120 200 280 360
Slotframe length (ms)

0

20

40

60

80

100

P
D
R
 (%

)

δ = 0.2
δ = 0.4
δ = 0.6
δ = 0.8
δ = 1
GA

Figure 6.6: PDR simulation results for different δ values for different slotframe
lengths, comparing the heuristic with the GA scheduler. The x denotes the mean
value.

ule, defined in Section 5.5.2, was extended to be able to allocate bonded slots
in the non-overlapping channels reserved for the respective PHYs. Additionally,
no interference between any of the nodes was allowed.

The simulator results are averaged over 20 iterations, while the testbed
results are averaged over 12 iterations.

6.5.2 Simulator Results

First, we compare the heuristic for different δ values to the GA scheduler in
TSCH simulation experiments with 14 nodes. The results are shown in Figure 6.6.
The PDR results are compared for different slotframe lengths of 120 ms, 200 ms,
280 ms and 360 ms, and δ values ranging from 0.2 to 1.0. When δ = 1.0,
the heuristic will pick for each possible parent the fastest available PHY. It is
clear that the performance of the heuristic approximates the performance of
the GA for all slotframe lengths. The PDRs of the GA scheduler were 44.6 %
(120 ms), 69.4 % (200 ms), 89.8 % (280 ms) and 96.8 % (360 ms). While the
performance of all δ values is very similar for all slotframe lengths, when δ = 0.6

138 CHAPTER 6

120 200 280 360
Slotframe length (ms)

0.0

0.2

0.4

0.6

0.8

1.0

Li
nk

 R
el
ia
bi
lit
y

δ = 0.2
δ = 0.4
δ = 0.6
δ = 0.8
δ = 1
GA

Figure 6.7: Mean link reliability values for different slotframe lengths, for
different δ values of the heuristic. The x denotes the mean value.

the PDRs were the highest with 43.1 % (i.e., a decrease of 3.4 % of the GA’s
performance), 66.6 % (i.e., a 4 % decrease), 84.3 % (i.e., a 6.1 % decrease) and
93.5 % (i.e., a 3.4 % decrease) respectively. Figure 6.7 shows the reliability
values for all links for the different δ values (with the mean reliability value
denoted by an x). As expected (see Algorithm 8), the results show that with
increasing δ values, the average link reliability value decreases. This decreasing
reliability has an effect on the number of propagation failures, the number of
needed retransmissions and consequently the number dropped packets (because
of too many retransmission attempts). However, faster PHYs also need less
transmission time and thus shorter bonded slots (i.e., less regular slots per
bonded slot), leaving more free space in the schedule for extra retransmission
slots or for other nodes to make slot allocations. As such, in this case the
best trade-off between using shorter/longer bonded slots and lower/higher
reliability values was found when δ = 0.6. This was confirmed by δ = 0.6
consistently achieving the lowest total number of packet drops, including the
dropped packets because of exceeding the retransmission threshold, but also
the packets that were dropped immediately at the transmitter because there
were not enough allocated slots to empty the queue on time.

6.5.3 Testbed Results

Here we evaluate the performance of the heuristic on the testbed. First, we select
an appropriate δ value for the heuristic by comparing theoretical PDR values
using the monitored reliability data. Afterwards, we look at the PHY allocations
for the different slotframe lengths. Finally, we compare the performance of the
heuristic (with the selected δ) to that of the near-optimal GA scheduler using
our proposed slot bonding implementation on the testbed.

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 139

6.5.3.1 δ Selection

First, we search for the optimal δ values for the heuristic, using the monitored
link reliability values of the testbed. We used the expected number of delivered
packets calculation to calculate the expected PDR values, defined in Section 5.4.1.
Figure 6.8 show the comparison between different δ values, for the 2 network
scenarios as discussed in Section 6.5.1.2, each for the 2 different slotframe
lengths 261 ms and 423 ms. It is clear from the results that the 261 ms slotframe
is saturated, with all average PDR values being below 1. For scenario 1, with
both the 261 ms and the 423 ms slotframe, the best performing δ is 0.6 with
the PDRs being 0.86 and 0.97, while the PDRs of the GA were 0.91 and 0.99.
So similar to the simulator results, the heuristic finds the best trade-off between
using fast PHYs with shorter bonded slots and lower reliability values when
δ = 0.6. When δ > 0.6, the lower reliability actually starts deteriorating the
overall PDR. For scenario 2, the heuristic actually performs best when δ = 0.8
with the average PDRs being 0.93 and 0.98 compared to the 0.96 and 1.0 PDRs
of the GA. So again, the performance of the heuristic is very close to that of the
centralized GA scheduler. The results show that the optimal δ is different for
scenario 1 (i.e., δ = 0.6) and scenario 2 (i.e., δ = 0.8) (although the differences
between the PDR results are small for both δ values in both scenarios). This is
explained by the fact that the enabled 1000 kbps PHY links in scenario 1 showed
lower link reliability values, when compared to the values of the enabled links
in scenario 2 (as explained in Section 6.5.1.2, a random subset of the 1000 kbps
links was disabled in each scenario). Therefore, in scenario 1, a δ > 0.6 affects
the PDR results more severely than in scenario 2 as it introduces more less
reliable links in the topology. Figure 6.9 shows the average number of times per
iteration each PHY was used for a link for the GA scheduler and the heuristic
with increasing δ values for scenario 2 for both slotframe lengths. We do not
show the PHY allocations of scenario 1 as these were similar to those of scenario
2. Only links of nodes for which a packet could reach the root (i.e., there is
at least one allocated slot for every link along the path towards the root) are
shown. While the the heuristic clearly prefers the faster 1000 kbps PHY (i.e., if
the link is reliable enough, as defined in Algorithm 8), the GA also seems to
focus on allocating 50 kbps PHYs. In case of the heuristic, when δ increases,
the number of 1000 kbps PHYs also increases and the number of used 50 kbps
PHYs decreases. When comparing both slotframes, it is clear that for the longer
slotframe length of 423 ms, it is possible to allocate more 50 kbps PHYs because
there is more free space, leading to higher PDR values, as observed in Figure 6.8.

The PHY allocation and theoretical PDR results show that the heuristic
generally performs well in terms of PDR but that the optimal δ value is dependent
on the specific environment. Simultaneously, the results also clearly indicate that
the heuristic does not necessarily need the most reliable links to perform well,
but can benefit from using more faster and less reliable PHYs that leave more
free space for possible extra slots for retransmissions or other nodes’ allocations.

Additionally, Figure 6.8 also shows the benefits of using multiple PHYs as

140 CHAPTER 6

261 423
Slot frame length (ms)

0.4

0.6

0.8

1.0

P
D

R

Heuristic, δ = 0.2
Heuristic, δ = 0.4
Heuristic, δ = 0.6
Heuristic, δ = 0.8
Heuristic, δ = 1.0
GA scheduler
GA, 50 kbps PHY

(a) Scenario 1 with 12 nodes.

261 423
Slot frame length (ms)

0.4

0.6

0.8

1.0

P
D

R

Heuristic, δ = 0.2
Heuristic, δ = 0.4
Heuristic, δ = 0.6
Heuristic, δ = 0.8
Heuristic, δ = 1.0
GA scheduler
GA, 50 kbps PHY

(b) Scenario 2 with 12 nodes.

Figure 6.8: PDR values for different δ values for 261 ms and 423 ms slotframe
lengths, comparing the heuristic with the GA scheduler and the GA scheduler
that can only use the 50 kbps PHY.

when only allowing the 50 kbps PHY results in PDRs of 0.36 and 0.82 for scenario
1 and PDRs of 0.36 and 0.82 for scenario 2, for the 261 ms and 423 ms slotframe
respectively. This is explained by the fact that the 50 kbps PHY requires bonded
slots with a length of 4 regulars slots, thereby occupying a lot of space in the
schedule per transmission attempt and not allowing sufficient free space for
extra slots or other nodes to allocate slots. We do not show the results for only
using the 1000 PHY as that did not allow for fully connected topologies.

6.5.3.2 Testbed Validation

We have carried out experiments using the nodes of scenario 2 on the hardware
testbed, using the proposed slot bonding implementation. Figure 6.10 shows the
results for the heuristic (with δ = 0.8), the multi-PHY GA and the single-PHY
GA that can only use the 50 kbps PHY.

PARENT AND PHY SELECTION IN TSCH SLOT BONDING NETWORKS 141

GA Heuristic
δ = 0.2

Heuristic
δ = 0.6

Heuristic
δ = 1

Experiment type

0

2

4

6

8

10

12

14

Li
nk
s

50 kbps PHY
1000 kbps PHY

(a) 261 ms slotframe length.

GA Heuristic
δ = 0.2

Heuristic
δ = 0.6

Heuristic
δ = 1

Experiment type

0

2

4

6

8

10

12

14

Li
nk
s

50 kbps PHY
1000 kbps PHY

(b) 423 ms slotframe length.

Figure 6.9: Average number of PHY allocations per iteration for the GA scheduler
and the heuristic with different δ values, for scenario 2. The error bars in the
figures represent the standard deviation.

261 ms 423 ms
Slot frame length (ms)

0.0

0.2

0.4

0.6

0.8

1.0

PD
R

Heuristic, δ = 0.8
GA
GA - 50 kbps PHY

Figure 6.10: The PDRs values for the testbed experiments, showing the results
for the heuristic, the GA and the GA that can only use the 50 kbps PHY. The x
denotes the mean value.

In general, it is observed that the testbed results approximate the theoretical
values shown in Figure 6.8b. As expected, with the longer slotframe length,
the mean PDR values also increase compared to the shorter slotframe length.
More specifically, in the case of the 261 ms slotframe length, the GA performs
better than the heuristic with PDRs of 0.88 and 0.86 respectively, meaning
there is only 2.3 % decrease in performance. The GA that can only use the
50 kbps PHY is outperformed by its multi-PHY counterparts as it only achieves
a PDR of 0.33 (i.e., the GA and the heuristic increase on this performance with
166.7 % and 160.6 % respectively). When using a 423 ms slotframe length, the
heuristic actually performs slightly better than the GA with PDRs of 0.94 and
0.88, and both again outperform the single-PHY GA that has a PDR of 0.75
(i.e., the GA and the heuristic increase on this performance with 25.3 % and

142 CHAPTER 6

17.3 % respectively). The heuristic performing better than the multi-PHY GA
is explained by the observation of link reliability values during these multi-
hop experiments which differed from the reliability values observed during the
monitoring phase (on which the parent, PHY and slot allocation was based).
More specifically, the monitoring results showed better performance mainly
for the 50 kbps PHY compared to the values observed during the multi-hop
experiments. As the GA more often uses 50 kbps PHY than the heuristic does,
the PDRs of the GA got more negatively affected as a result. As such, these
results actually motivate the integration of the heuristic in a routing protocol’s
objective function with real-time link reliability monitoring to dynamically adapt
to varying link conditions, as discussed in Section 6.3.4. Overall, the results
clearly show the efficiency of the proposed parent and PHY selection heuristic.

6.6 Conclusion

This chapter further explored the support of multiple PHY layers in a single
IEEE 802.15.4e TSCH slot bonding network. More specifically, we have investi-
gated parent and PHY selection in such a multi-PHY network. We first proposed
a computationally efficient PHY and parent selection heuristic that can be in-
tegrated into a distributed routing protocol. The performance of this heuristic
was initially evaluated via simulation and theoretical results, by comparing it
against the near-optimal, but computationally complex centralized scheduler
proposed in Chapter 5. The results confirmed that the heuristic is capable of
approximating the PDR results of the centralized scheduler. Second, we also
proposed an easy-to-configure TSCH slot bonding implementation in the latest
version of the Contiki-NG IIoT operating system. Subsequently, the slot bonding
implementation was used to confirm the PDR performance of the proposed
heuristic in a real sensor testbed. In this testbed experiment, the proposed
heuristic was at most 2.3 % worse than the GA in terms of PDR. Both approaches
outperformed the single-PHY solution, increasing PDR results up to more than
160 %.

Chapter 7

Conclusion

7.1 Summary and Contributions

This thesis focused on the application of the IoT in industry, also called IIoT.
More specifically, I focused on the improvement of IEEE 802.15.4e TSCH that
has become an increasingly popular wireless solution for IIoT applications. Its
combination of a time-synchronized approach and frequency diversity has been
proven to be highly reliable and capable of low-power operation. Despite its
proven track record, still a lot of research has to be carried out to investigate
how these networks can be optimized for IIoT applications. The contributions
in this book aimed at answering 3 major research questions related to this topic:

1. How do we precisely characterize the TSCH energy consumption? An
accurate energy consumption model for both the sub-GHz and 2.4 GHz
frequency bands, using state-of-the-art IIoT hardware, has been presented.
The model includes an elaborate and up-to-date set of time slots and
states and accurately models variable packet sizes. The accuracy of the
model was experimentally verified by comparing the measurements to
the modelled values. For both the comparison between modelled and
measured time slots and a small-scale network comparison experiment,
the average error was less than 3 %. Additionally, the energy model
allowed us to compare the energy consumption of sub-GHz and 2.4 GHz
frequency bands in a simulation environment. The presented model
allows researchers to quickly characterize the energy consumption of
new network topology formations, new TSCH scheduling approaches or
higher-layer algorithms/applications that should satisfy the low-power
operation requirements of IIoT.

2. How do we achieve low-latency communication in a TSCH network?
Minimizing the communication delay while maintaining the TSCH low-
power operation is an important requirement for (time-critical) IIoT ap-

144 CHAPTER 7

plications. Therefore, I formally stated the problem of minimal-latency
scheduling of recurrent transmissions, such as sensor data with a fixed re-
porting interval. Afterwards, I presented a new TSCH distributed schedul-
ing approach, called Recurrent Low-Latency Scheduling Function (ReSF).
This scheduling approach minimizes the latency of recurrent traffic in
multi-hop networks while keeping the energy consumption to a minimum.
ReSF builds a minimal-delay path from source to root and activates the
recurrent cells on this path only when traffic is expected, and deactivates
them immediately afterwards. Numerous simulation results showed the
significant latency improvement - up to 80 % in static traffic scenarios
- of this approach over traditional TSCH scheduling approaches. The
presented scheduling approach is thus proven capable of improving the
responsiveness of IIoT networks.

3. How do we use multiple PHYs in TSCH to increase the reliability?
While TSCH inherently introduces frequency diversity to enhance its re-
liability, its performance is limited by the characteristics of the chosen
PHY layer. Therefore, I presented a method to use multiple PHYs within
a single TSCH network, called slot bonding. The slot bonding approach
allows improving the network’s number of delivered packets by efficiently
adapting the allocated resources to each PHY’s requirements. First, I
formally described the complex slot bonding problem. Afterwards, a near-
optimal approach was implemented to solve and analyse the problem
and, in combination with TSCH network simulation, prove the scalability
advantage of slot bonding in terms of packet delivery ratio. Additionally,
a heuristic was provided, that could be integrated in a routing protocol’s
distributed objective function, to replace the computationally complex
near-optimal approach. It allowed slot bonding nodes to select an ap-
propriate parent and PHY to optimize the network’s number of delivered
packets. Using a slot bonding enabled TSCH network on a real hardware
testbed, it was shown that the heuristic performed at most 2.3 % worse
than the near-optimal centralized scheduler in terms of delivered packets.
These results contributed to the proof that the industrial network’s overall
reliability could clearly benefit from using the slot bonding approach to
introduce multiple PHY layers in a single network to adapt the PHY layer
to the link’s propagation characteristics.

As such, the answers to these research questions, as investigated in this
thesis, have contributed to the further improvement of the domains of energy
consumption, responsiveness and reliability when applying IEEE 802.15.4e
TSCH in an IIoT context.

CONCLUSIONS 145

7.2 Future Work

While this thesis offers several contributions towards an energy-efficient, respon-
sive and reliable IIoT, research on this topic is still ongoing and several open
issues remain to be solved.

• The popularity of TSCH and 6TiSCH drives the implementation of the
6TiSCH stack into a plethora of new hardware platforms. The presented
energy model can be extended to support these other platforms. While
maintaining the same level of accuracy is a burdensome task (as numerous
measurements have to be done to include all states and time slots), one
can simplify the work by focusing on states that are expected to consume
the most energy at the cost of a slight decrease in accuracy. Furthermore,
the consumption of the CPU and radio does not necessarily have to be
measured as theoretical (but less accurate) values can be found in the
data sheet of the manufacturer. Such an extension would allow future
research to compare different platforms to each other when evaluating a
new algorithm or IIoT application.

• As investigated and confirmed in this thesis, using multiple PHYs in the
same TSCH networks seems a promising direction to further improve
the network’s reliability. Therefore, it also important to further research
the energy consumption impact of these new PHY layers. Different
data rates lead to different transmission and reception state durations
and different modulation computational complexities lead to different
current consumption. Updating the presented energy model such that
it is able to characterize the energy consumption of the most important
PHYs of the IEEE 802.15.4g amendment (e.g., SUN-FSK, SUN-OQPSK and
SUN-OFDM) would profoundly help new multi-PHY TSCH research.

• Autonomous scheduling approaches show interesting advantages for TSCH
networks as they make resource negotiation traffic unnecessary by using
available routing information. ReSF, the proposed distributed scheduling
function, manages to significantly decrease network latency, might also
profit from an autonomous approach. An interesting first step towards
this goal might be the Escalator scheduling function that manages to
daisy-chain its autonomous resources [64]. By additionally taking into
account the recurrent information and distributing it in routing manage-
ment traffic, no extra management traffic would be necessary and the
energy consumption can be further decreased by deactivating autonomous
resources when they are not needed.

• The merits of using TSCH slot bonding for multi-PHY networks was proven
in Chapter 5. However, the slot bonding analysis primarily focused on one
particular SUN-OFDM option for which the different MCSs (i.e., the PHYs)
needed the same bandwidth. When combining even more PHYs from the

146 CHAPTER 7

IEEE 802.15.4g amendment, with different bandwidth requirements, this
assumption will not hold anymore. Therefore, we also briefly introduced
the concept of channel bonding that can bond different channels together
so also PHYs needing wider channels can be supported. The efficiency
of this channel bonding approach should be investigated. It should be
compared to the approach used in the implementation of Chapter 6 that
assigned different parts of the available frequency band to the different
PHYs without overlap (resulting in less available wireless spectrum per
PHY).

• The heuristic introduced in Chapter 6 allows slot bonding nodes to select
a parent and PHY. Such a selection strategy should be integrated with
existing or new scheduling approaches and routing protocol objective
functions. However, to achieve an optimal performance, such an integra-
tion should carefully consider the trade-off between the current state of
the node (e.g., amount of traffic, battery state and free schedule space)
and the different characteristics of each possible PHY (e.g., achievable
throughput, energy consumption and resource duration). In addition,
while combining different PHYs with different transmission lengths, a
node must closely monitor that it complies with the frequency band duty
cycle regulations.

Appendices

Appendix A

TSCH Energy Modeling
Results

The content of this appendix is partially based on:

• Glenn Daneels, Esteban Municio, Bruno Van de Velde, Glenn Ergeerts,
Maarten Weyn, Steven Latré, and Jeroen Famaey. "Accurate Energy Con-
sumption Modeling of IEEE 802.15.4e TSCH Using Dual-Band OpenMote
Hardware." In Sensors, no. 2 (2018): 437. [Impact Factor: 3.031]

A.1 Introduction

This appendix lists additional research results obtained in Chapter 3. As such,
the different states within a time slot and their resulting CPU and radio states
are listed for different time slots in Section A.2, the durations of different states
within different time slots are shown in Section A.3 and Section A.4 compares
the measured current drawn over time with the model for different time slots.

A.2 Time Slot States

This section lists the different states and accompanying CPU and radio states for
the RxDataTxAck, TxData, RxData, RxIdle, Sleep and TxDataRxNoAck
time slots in Tables A.1 to A.6 respectively. These different time slots are
discussed in detail in Section 3.3.

150 APPENDIX A

Table A.1: States in a RxDataTxAck slot.

State CPU State Radio State

RxDataOffsetStart Active Sleep
RxDataOffset Sleep Sleep
RxDataPrepare Active Idle
RxDataReady Sleep Idle

RxDataListenStart Active Idle
RxDataListen Sleep Listen
RxDataStart Active RX

RxData Sleep RX
TxAckOffsetStart Active Idle

TxAckOffset Sleep Sleep
TxAckPrepare Active Idle
TxAckReady Sleep Idle

TxAckDelayStart Active Idle
TxAckDelay Sleep TX
TxAckStart Active TX

TxAck Sleep TX
RxProc Active Sleep
Sleep Sleep Sleep

A.3 Time Slot State Durations

The duration of the different states within different time slots are listed in
this section. The state durations for the RxDataTxAck, TxData, RxData,
RxIdle, Sleep and TxDataRxNoAck time slots are shown in Tables A.7 to A.12
respectively. Section 3.4.2 discusses these results in detail.

A.4 Slot Measurements and Model Comparison

Figures A.1 and A.2 show the current drawn over time according to both the
measurements and the model, for the TxData, RxData, RxIdle and Sleep
time slots, when using the CC2538 and CC1200 radio respectively. These results
are discussed in detail in Section 3.5.1.

TSCH ENERGY MODELING RESULTS 151

Table A.2: States in a TxData slot.

State CPU State Radio State

TxDataOffsetStart Active Sleep
TxDataOffset Sleep Sleep
TxDataPrepare Active Idle
TxDataReady Sleep Idle

TxDataDelayStart Active Idle
TxDataDelay Sleep TX
TxDataStart Active TX

TxData Sleep TX
TxProc Active Sleep
Sleep Sleep Sleep

Table A.3: States in a RxData slot.

State CPU State Radio State

RxDataOffsetStart Active Sleep
RxDataOffset Sleep Sleep
RxDataPrepare Active Idle
RxDataReady Sleep Idle

RxDataListenStart Active Idle
RxDataListen Sleep Listen
RxDataStart Active RX

RxData Sleep RX
RxProc Active Idle
Sleep Sleep Sleep

Table A.4: States in a RxIdle slot.

State CPU State Radio State

RxDataOffsetStart Active Sleep
RxDataOffset Sleep Sleep
RxDataPrepare Active Idle
RxDataReady Sleep Idle

RxDataListenStart Active Idle
RxDataListen Sleep Listen

RxProc Active Sleep
Sleep Sleep Sleep

152 APPENDIX A

Table A.5: States in a Sleep slot.

State CPU State Radio State

SleepStart Active Sleep
Sleep Sleep Sleep

Table A.6: States in a TxDataRxNoAck slot.

State CPU State Radio State

TxDataOffsetStart Active Sleep
TxDataOffset Sleep Sleep
TxDataPrepare Active Idle
TxDataReady Sleep Idle

TxDataDelayStart Active Idle
TxDataDelay Sleep TX
TxDataStart Active TX

TxData Sleep TX
RxAckOffsetStart Active Sleep

RxAckOffset Sleep Sleep
RxAckPrepare Active Idle
RxAckReady Sleep Idle

RxAckListenStart Active Idle
RxAckListen Sleep Listen

TxProc Active Sleep
Sleep Sleep Sleep

TSCH ENERGY MODELING RESULTS 153

Table A.7: State durations in the RxDataTxAck time slot with a total length of
15 ms and s being the packet size in bytes.

State Duration (µs)

CC2538 CC1200

RxDataOffsetStart 126 126
RxDataOffset 1567 1567
RxDataPrepare 38 676
RxDataReady 969 331

RxDataListenStart 17 58
RxDataListen 1283 1242
RxDataStart 17 15

RxData (3+ s)× 32− 17 (3+ s)× 32− 15
TxAckOffsetStart 126+ (s× 0.91) 362+ (s× 8.439)

TxAckOffset 3443− (s× 0.91) 2810− (s× 8.439)
TxAckPrepare 153 930
TxAckReady 518 77

TxAckDelayStart 17 58
TxAckDelay 349 369
TxAckStart 16 15

TxAck 880 881
RxProc 94 135
Sleep 5308− (s× 32) 5267− (s× 32)

Table A.8: State durations in the TxData time slot with a total length of 15 ms
and s being the packet size in bytes.

State Duration (µs)

CC2538 CC1200

TxDataOffsetStart 105 105
TxDataOffset 1515 1454
TxDataPrepare 60+ (s× 0.875) 738+ (s× 8.152)
TxDataReady 1954− (s× 0.875) 1276− (s× 8.152)

TxDataDelayStart 17 58
TxDataDelay 349 369
TxDataStart 16 16

TxData (3+ s)× 32− 16 (3+ s)× 32− 16
TxProc 72 109
Sleep 10,832 −(s× 32) 10,795 −(s× 32)

154 APPENDIX A

Table A.9: State durations in the RxData time slot with a total length of 15 ms
and s being the packet size in bytes.

State Duration (µs)

CC2538 CC1200

RxDataOffsetStart 126 126
RxDataOffset 1567 1567
RxDataPrepare 38 676
RxDataReady 969 331

RxDataListenStart 17 58
RxDataListen 1283 1242
RxDataStart 17 15

RxData (3+ s)× 32− 17 (3+ s)× 32− 15
RxProc 198+ (s× 0.91) 488+ (s× 8.439)
Sleep 10,706 −(s× 31.09) 10,416 −(s× 23.561)

Table A.10: State durations in the RxIdle time slot with a total length of 15 ms.

State Duration (µs)

CC2538 CC1200

RxDataOffsetStart 126 126
RxDataOffset 1567 1567
RxDataPrepare 38 676
RxDataReady 969 331

RxDataListenStart 17 58
RxDataListen 2583 2542

RxProc 25 118
Sleep 9675 9582

Table A.11: State durations in the Sleep time slot with a total length of 15 ms.

State Duration (µs)

CC2538 CC1200

SleepStart 57 57
Sleep 14.943 14.943

TSCH ENERGY MODELING RESULTS 155

Table A.12: State durations in the TxDataRxNoAck time slot with a total length
of 15 ms and s being the packet size in bytes.

State Duration (µs)

CC2538 CC1200

TxDataOffsetStart 105 105
TxDataOffset 1515 1454
TxDataPrepare 60+ (s× 0.875) 738+ (s× 8.152)
TxDataReady 1954− (s× 0.875) 1276− (s× 8.152)

TxDataDelayStart 17 58
TxDataDelay 349 369
TxDataStart 16 16

TxData (3+ s)× 32− 16 (3+ s)× 32− 16
RxAckOffsetStart 32 75

RxAckOffset 3769 3116
RxAckPrepare 38 587
RxAckReady 267 328

RxAckListenStart 17 58
RxAckListen 983 942

TxProc 44 137
Sleep 5754− (s× 32) 5661− (s× 32)

156 APPENDIX A

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

Cu
rre

nt
 (m

A)

(a) TxData time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

Cu
rre

nt
 (m

A)

(b) RxData time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

Cu
rre

nt
 (m

A)

(c) RxIdle time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

Cu
rre

nt
 (m

A)

(d) Sleep time slot.

Figure A.1: Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the CC2538 radio.

TSCH ENERGY MODELING RESULTS 157

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

60

70

80

Cu
rre

nt
 (m

A)

(a) TxData time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

60

70

80

Cu
rre

nt
 (m

A)

(b) RxData time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

60

70

80

Cu
rre

nt
 (m

A)

(c) RxIdle time slot.

0 2 4 6 8 10 12 14
Time (ms)

0

10

20

30

40

50

60

70

80

Cu
rre

nt
 (m

A)

(d) Sleep time slot.

Figure A.2: Measured (left, between vertical lines m1 and m2) and modeled
(right) current comparison for each time slot when using the CC1200 radio.

Bibliography

[1] D. Sarangan, “2019 Update—Total Internet of Things (IoT) Device Fore-
cast, 2017-2025,” Frost & Sullivan, Tech. Rep., 2019.

[2] H. Sundmaeker, P. Guillemin, P. Friess, and S. Woelfflé, “Vision and chal-
lenges for realising the internet of things,” Cluster of European Research
Projects on the Internet of Things, European Commision, vol. 3, no. 3, pp.
34–36, 2010.

[3] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”
Business & information systems engineering, vol. 6, no. 4, pp. 239–242,
2014.

[4] X. Vilajosana, T. Watteyne, M. Vučinić, T. Chang, and K. S. Pister, “6TiSCH:
Industrial Performance for IPv6 Internet-of-Things Networks,” Proceedings
of the IEEE, vol. 107, no. 6, pp. 1153–1165, 2019.

[5] A. Seferagić, J. Famaey, E. De Poorter, and J. Hoebeke, “Survey on Wireless
Technology Trade-Offs for the Industrial Internet of Things,” Sensors,
vol. 20, no. 2, p. 488, 2020.

[6] Sigfox Connected Objects: Radio specifications, Sigfox Standard v1.5,
February 2020. [Online]. Available: https://build.sigfox.com/sigfox-
device-radio-specifications

[7] L. Alliance, “Lorawan™ specification v1.1,” Lora Alliance, Tech.
Rep., 2017. [Online]. Available: https://lora-alliance.org/resource-
hub/lorawantm-specification-v11

[8] Wireless communication network and communication profiles - Wire-
lessHART, IEC Standard 62 591:2016, March 2016.

[9] 3GPP, “Narrowband Internet of Things (NB-IoT), Technical Report TR
36.802 V1.0.0, Technical Specification Group Radio Access Networks.”

[10] Bluetooth Core Specification, Bluetooth Special Interest Group Standard
v5.2, December 2019. [Online]. Available: https://www.bluetooth.com/
specifications/bluetooth-core-specification/

https://build.sigfox.com/sigfox-device-radio-specifications
https://build.sigfox.com/sigfox-device-radio-specifications
https://lora-alliance.org/resource-hub/lorawantm-specification-v11
https://lora-alliance.org/resource-hub/lorawantm-specification-v11
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/

160 BIBLIOGRAPHY

[11] IEEE Local and Metropolitan Area Networks–Specific Requirements - Part
11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications Amendment 2: Sub-1GHz License Exempt Operation, IEEE
Std., May 2017.

[12] IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC
sublayer, IEEE Std. 802.15.4e-2012, 2012.

[13] L. Doherty, W. Lindsay, and J. Simon, “Channel-specific Wireless Sensor
Network Path Data,” in 2007 16th International Conference on Computer
Communications and Networks. IEEE, 2007, pp. 89–94.

[14] K. Pister and L. Doherty, “TSMP: Time Synchronized Mesh Protocol,”
IASTED Distributed Sensor Networks, vol. 391, p. 398, 2008.

[15] T. Watteyne, L. Doherty, J. Simon, and K. Pister, “Technical Overview of
Smartmesh IP,” in 2013 Seventh International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing. IEEE, 2013, pp.
547–551.

[16] ISA, Standard ISA-100.11a-2011 Wireless Systems for Industrial Automa-
tion: Process Control and Related Applications. ISA, 2011.

[17] J. Muñoz, T. Chang, X. Vilajosana, and T. Watteyne, “Evaluation of
IEEE802.15.4g for Environmental Observations,” Sensors, vol. 18, no. 10,
p. 3468, 2018.

[18] P. Tuset-Peiró, R. D. Gomes, P. Thubert, and X. Vilajosana, “Evaluating IEEE
802.15.4g SUN for Dependable Low-Power Wireless Communications In
Industrial Scenarios,” Sensors (available on Preprints), vol. 20, 2020.

[19] M. Rady, Q. Lampin, D. Barthel, and T. Watteyne, “No Free
Lunch—Characterizing the Performance of 6TiSCH When Using Different
Physical Layers,” Sensors, vol. 20, no. 17, p. 4989, 2020.

[20] G. Daneels, E. Municio, B. Van de Velde, G. Ergeerts, M. Weyn, S. La-
tré, and J. Famaey, “Accurate Energy Consumption Modeling of IEEE
802.15.4e TSCH Using Dual-Band OpenMote Hardware,” Sensors, vol. 18,
no. 2, p. 437, 2018.

[21] G. Daneels, B. Spinnewyn, S. Latré, and J. Famaey, “ReSF: Recurrent
Low-latency Scheduling in IEEE 802.15.4e TSCH Networks,” Ad Hoc
Networks, vol. 69, pp. 100–114, 2018.

[22] G. Daneels, S. Latré, and J. Famaey, “Efficient Recurrent Low-Latency
Scheduling in IEEE 802.15.4e TSCH Networks,” in 2019 IEEE Interna-
tional Black Sea Conference on Communications and Networking (Black-
SeaCom). IEEE, 2019, pp. 1–6.

BIBLIOGRAPHY 161

[23] G. Daneels, C. Delgado, S. Latré, and J. Famaey, “Towards Slot Bonding
for Adaptive MCS in IEEE 802.15.4e TSCH Networks,” in Proceedings of
the IEEE International Conference on Communications. IEEE, 2020.

[24] G. Daneels, C. Delgado, R. Elsas, E. De Poorter, S. Latré, C. Blondia, and
J. Famaey, “Slot Bonding for Adaptive Modulations in IEEE 802.15.4e
TSCH Networks,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[25] G. Daneels, D. Van Leemput, C. Delgado, S. Latré, E. De Poorter, and
J. Famaey, “Parent and PHY Selection in TSCH Slot Bonding Networks,”
To be submitted, 2021.

[26] T. Watteyne, S. Lanzisera, A. Mehta, and K. S. Pister, “Mitigating Multipath
Fading through Channel Hopping in Wireless Sensor Networks,” in 2010
IEEE International Conference on Communications. IEEE, 2010, pp. 1–5.

[27] IEEE Standard for Low-Rate Wireless Networks, IEEE Std. 802.15.4-2015,
2016.

[28] S. Jeong, J. Paek, H.-S. Kim, and S. Bahk, “TESLA: Traffic-Aware Elas-
tic Slotframe Adjustment in TSCH Networks,” IEEE Access, vol. 7, pp.
130 468–130 483, 2019.

[29] D. Stanislowski, X. Vilajosana, Q. Wang, T. Watteyne, and K. S. Pister,
“Adaptive Synchronization in IEEE802.15.4e Networks,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 1, pp. 795–802, 2013.

[30] T. Chang, T. Watteyne, K. Pister, and Q. Wang, “Adaptive Synchronization
in Multi-hop TSCH networks,” Computer Networks, vol. 76, pp. 165–176,
2015.

[31] B. Martinez, X. Vilajosana, and D. Dujovne, “Accurate Clock Discipline
for Long-term Synchronization Intervals,” IEEE Sensors Journal, vol. 17,
no. 7, pp. 2249–2258, 2017.

[32] IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-
Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical
Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering
Utility Networks, IEEE Std. 802.15.4g-2012, 2012.

[33] R. D. Gomes, P. Tuset-Peiró, and X. Vilajosana, “Improving Link Reliability
of IEEE 802.15. 4g SUN Networks with Adaptive Modulation Diversity,”
in 31st IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC 2020). IEEE, 2020.

[34] D. Van Leemput, J. Bauwens, R. Elsas, J. Hoebeke, W. Joseph, and
E. De Poorter, “Adaptive Multi-PHY IEEE 802.15.4 TSCH in Sub-GHz
Industrial Wireless Networks,” Ad Hoc Networks, vol. 111, p. 102330,
2020.

162 BIBLIOGRAPHY

[35] P. Thubert, “An Architecture for IPv6 over the TSCH mode of IEEE
802.15.4,” Internet Engineering Task Force, Internet-Draft draft-ietf-
6tisch-architecture-29, Aug. 2020, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-architecture-29

[36] X. Vilajosana, K. Pister, and T. Watteyne, “Minimal IPv6 over the TSCH
Mode of IEEE 802.15.4e (6TiSCH) Configuration,” RFC 8180, May 2017.
[Online]. Available: https://rfc-editor.org/rfc/rfc8180.txt

[37] M. Vučinić, J. Simon, K. Pister, and M. Richardson, “Constrained Join
Protocol (CoJP) for 6TiSCH,” Internet Engineering Task Force, Internet-
Draft draft-ietf-6tisch-minimal-security-15, Dec. 2019, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-
6tisch-minimal-security-15

[38] T. Chang, M. Vučinić, rf Vilajosana, S. Duquennoy, and D. Dujovne,
“6TiSCH Minimal Scheduling Function (MSF),” Internet Engineering Task
Force, Internet-Draft draft-ietf-6tisch-msf-18, Sep. 2020, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-
6tisch-msf-18

[39] Q. Wang, X. Vilajosana, and T. Watteyne, “6TiSCH Operation Sublayer
(6top) Protocol (6P),” RFC 8480, Nov. 2018. [Online]. Available:
https://rfc-editor.org/rfc/rfc8480.txt

[40] G. Montenegro, J. Hui, D. Culler, and N. Kushalnagar, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, Sep. 2007.
[Online]. Available: https://rfc-editor.org/rfc/rfc4944.txt

[41] P. Thubert and J. Hui, “Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks,” RFC 6282, Sep. 2011. [Online].
Available: https://rfc-editor.org/rfc/rfc6282.txt

[42] P. Thubert and R. Cragie, “IPv6 over Low-Power Wireless Personal Area
Network (6LoWPAN) Paging Dispatch,” RFC 8025, Nov. 2016. [Online].
Available: https://rfc-editor.org/rfc/rfc8025.txt

[43] P. Thubert, C. Bormann, L. Toutain, and R. Cragie, “IPv6 over Low-Power
Wireless Personal Area Network (6LoWPAN) Routing Header,” RFC 8138,
Apr. 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8138.txt

[44] P. Thubert, E. Nordmark, S. Chakrabarti, and C. E. Perkins, “Registration
Extensions for IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Neighbor Discovery,” RFC 8505, Nov. 2018. [Online].
Available: https://rfc-editor.org/rfc/rfc8505.txt

[45] A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis, R. Struik,
R. Kelsey, T. H. Clausen, and T. Winter, “RPL: IPv6 Routing Protocol

https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-architecture-29
https://rfc-editor.org/rfc/rfc8180.txt
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-15
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-minimal-security-15
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-msf-18
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-msf-18
https://rfc-editor.org/rfc/rfc8480.txt
https://rfc-editor.org/rfc/rfc4944.txt
https://rfc-editor.org/rfc/rfc6282.txt
https://rfc-editor.org/rfc/rfc8025.txt
https://rfc-editor.org/rfc/rfc8138.txt
https://rfc-editor.org/rfc/rfc8505.txt

BIBLIOGRAPHY 163

for Low-Power and Lossy Networks,” RFC 6550, Mar. 2012. [Online].
Available: https://rfc-editor.org/rfc/rfc6550.txt

[46] P. Thubert, “Objective Function Zero for the Routing Protocol for
Low-Power and Lossy Networks (RPL),” RFC 6552, Mar. 2012. [Online].
Available: https://rfc-editor.org/rfc/rfc6552.txt

[47] M. Gupta and A. Conta, “Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification,” RFC 4443, Mar.
2006. [Online]. Available: https://rfc-editor.org/rfc/rfc4443.txt

[48] “User Datagram Protocol,” RFC 768, Aug. 1980. [Online]. Available:
https://rfc-editor.org/rfc/rfc768.txt

[49] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” RFC 7252, Jun. 2014. [Online]. Available: https://rfc-
editor.org/rfc/rfc7252.txt

[50] G. Selander, J. P. Mattsson, F. Palombini, and L. Seitz, “Object Security for
Constrained RESTful Environments (OSCORE),” RFC 8613, Jul. 2019.
[Online]. Available: https://rfc-editor.org/rfc/rfc8613.txt

[51] M. R. Palattella, N. Accettura, M. Dohler, L. A. Grieco, and G. Boggia,
“Traffic Aware Scheduling Algorithm for reliable Low-Power multi-hop
IEEE 802.15.4e Networks,” in 2012 IEEE 23rd International Symposium
on Personal, Indoor and Mobile Radio Communications - (PIMRC), Sept
2012, pp. 327–332.

[52] D. Dujovne, L. A. Grieco, M. R. Palattella, and N. Accettura, “6TiSCH
Experimental Scheduling Function (SFX),” Internet Engineering Task
Force, Internet-Draft draft-ietf-6tisch-6top-sfx-01, Mar. 2018, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-6tisch-6top-sfx-01

[53] ——, “6TiSCH 6top Scheduling Function Zero (SF0),” Internet
Engineering Task Force, Internet-Draft draft-ietf-6tisch-6top-sf0-05, Jul.
2017, work in Progress. [Online]. Available: https://datatracker.ietf.org/
doc/html/draft-ietf-6tisch-6top-sf0-05

[54] M. R. Palattella, T. Watteyne, Q. Wang, K. Muraoka, N. Accettura, D. Du-
jovne, L. A. Grieco, and T. Engel, “On-the-fly Bandwidth Reservation
for 6TiSCH Wireless Industrial Networks,” IEEE Sensors Journal, vol. 16,
no. 2, pp. 550–560, 2015.

[55] T. Chang, T. Watteyne, Q. Wang, and X. Vilajosana, “LLSF: Low Latency
Scheduling Function for 6TiSCH Networks,” in 2016 International Con-
ference on Distributed Computing in Sensor Systems (DCOSS), May 2016,
pp. 93–95.

https://rfc-editor.org/rfc/rfc6550.txt
https://rfc-editor.org/rfc/rfc6552.txt
https://rfc-editor.org/rfc/rfc4443.txt
https://rfc-editor.org/rfc/rfc768.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc7252.txt
https://rfc-editor.org/rfc/rfc8613.txt
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-sfx-01
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-sfx-01
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-sf0-05
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-6top-sf0-05

164 BIBLIOGRAPHY

[56] N. Accettura, M. R. Palattella, G. Boggia, L. A. Grieco, and M. Dohler,
“Decentralized Traffic Aware Scheduling for multi-hop Low Power Lossy
Networks in the Internet of Things,” in 2013 IEEE 14th International
Symposium on "A World of Wireless, Mobile and Multimedia Networks"
(WoWMoM), June 2013, pp. 1–6.

[57] E. Municio and S. Latré, “Decentralized Broadcast-based Scheduling for
Dense Multi-hop TSCH Networks,” in Proceedings of the Workshop on
Mobility in the Evolving Internet Architecture, 2016, pp. 19–24.

[58] R. Soua, P. Minet, and E. Livolant, “Wave: a Distributed Scheduling Algo-
rithm for Convergecast in IEEE 802.15.4e TSCH Networks,” Transactions
on Emerging Telecommunications Technologies, vol. 27, no. 4, pp. 557–575,
2016.

[59] T. P. Duy, T. Dinh, and Y. Kim, “Distributed Cell Selection for Scheduling
Function in 6TiSCH Networks,” Computer Standards & Interfaces, vol. 53,
pp. 80–88, 2017.

[60] V. Kotsiou, G. Z. Papadopoulos, P. Chatzimisios, and F. Theoleyre, “LDSF:
Low-latency Distributed Scheduling Function for Industrial Internet of
Things,” IEEE Internet of Things Journal, 2020.

[61] S. Anamalamudi, B. L. (Remy), M. Zhang, A. R. Sangi, C. E. Perkins, and
S. Anand, “Scheduling Function One (SF1): hop-by-hop Scheduling with
RSVP-TE in 6tisch Networks,” Internet Engineering Task Force, Internet-
Draft draft-satish-6tisch-6top-sf1-04, Oct. 2017, work in Progress.
[Online]. Available: https://datatracker.ietf.org/doc/html/draft-satish-
6tisch-6top-sf1-04

[62] A. Morell, X. Vilajosana, J. L. Vicario, and T. Watteyne, “Label
Switching over IEEE802.15.4e Networks,” Transactions on Emerging
Telecommunications Technologies, vol. 24, no. 5, pp. 458–475, 2013.
[Online]. Available: http://dx.doi.org/10.1002/ett.2650

[63] F. Theoleyre and G. Z. Papadopoulos, “Experimental Validation of a
Distributed Self-Configured 6TiSCH with Traffic Isolation in Low Power
Lossy Networks,” in Proceedings of the 19th ACM International Conference
on Modeling, Analysis and Simulation of Wireless and Mobile Systems, ser.
MSWiM ’16. New York, NY, USA: ACM, 2016, pp. 102–110. [Online].
Available: http://doi.acm.org/10.1145/2988287.2989133

[64] S. Oh, D. Hwang, K.-H. Kim, and K. Kim, “Escalator: An Autonomous
Scheduling Scheme for Convergecast in TSCH,” Sensors, vol. 18, no. 4, p.
1209, 2018.

[65] M. Ramakrishna and J. Zobel, “Performance in Practice of String Hashing
Functions,” in Database Systems For Advanced Applications’ 97. World
Scientific, 1997, pp. 215–223.

https://datatracker.ietf.org/doc/html/draft-satish-6tisch-6top-sf1-04
https://datatracker.ietf.org/doc/html/draft-satish-6tisch-6top-sf1-04
http://dx.doi.org/10.1002/ett.2650
http://doi.acm.org/10.1145/2988287.2989133

BIBLIOGRAPHY 165

[66] T. Chang, M. VučiniĆ, X. V. Guillén, D. Dujovne, and T. Watteyne, “6TiSCH
Minimal Scheduling Function: Performance Evaluation,” Internet Tech-
nology Letters, p. e170, 2020.

[67] D. Hauweele, R.-A. Koutsiamanis, B. Quoitin, and G. Z. Papadopoulos,
“Pushing 6TiSCH Minimal Scheduling Function (MSF) to the Limits,” in
2020 IEEE Symposium on Computers and Communications (ISCC). IEEE,
2020, pp. 1–7.

[68] K. Muraoka, T. Watteyne, N. Accettura, X. Vilajosana, and K. S. Pister,
“Simple Distributed Scheduling with Collision Detection in TSCH Net-
works,” IEEE Sensors Journal, vol. 16, no. 15, pp. 5848–5849, 2016.

[69] P. Levis, T. H. Clausen, O. Gnawali, J. Hui, and J. Ko, “The
Trickle Algorithm,” RFC 6206, Mar. 2011. [Online]. Available:
https://rfc-editor.org/rfc/rfc6206.txt

[70] O. Gnawali and P. Levis, “The Minimum Rank with Hysteresis
Objective Function,” RFC 6719, Sep. 2012. [Online]. Available:
https://rfc-editor.org/rfc/rfc6719.txt

[71] D. Barthel, J. Vasseur, K. Pister, M. Kim, and N. Dejean, “Routing Metrics
Used for Path Calculation in Low-Power and Lossy Networks,” RFC 6551,
Mar. 2012. [Online]. Available: https://rfc-editor.org/rfc/rfc6551.txt

[72] T. Watteyne, X. Vilajosana, B. Kerkez, F. Chraim, K. Weekly, Q. Wang,
S. Glaser, and K. Pister, “OpenWSN: a Standards-based Low-power Wire-
less Development Environment,” Transactions on Emerging Telecommuni-
cations Technologies, vol. 23, no. 5, pp. 480–493, 2012.

[73] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki- a Lightweight and Flexible
Operating System for Tiny Networked Sensors,” in 29th annual IEEE
International Conference on Local Computer Networks. IEEE, 2004, pp.
455–462.

[74] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C. Schmidt, “RIOT
OS: Towards an OS for the Internet of Things,” in 2013 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
2013, pp. 79–80.

[75] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer et al., “TinyOS: An Operating System
for Sensor Networks,” in Ambient intelligence. Springer, 2005, pp. 115–
148.

[76] T. Chang, P. Tuset-Peiro, X. Vilajosana, and T. Watteyne, “OpenWSN &
OpenMote: Demo’ing a Complete Ecosystem for the Industrial Internet
of Things,” in 2016 13th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON). IEEE, 2016, pp. 1–3.

https://rfc-editor.org/rfc/rfc6206.txt
https://rfc-editor.org/rfc/rfc6719.txt
https://rfc-editor.org/rfc/rfc6551.txt

166 BIBLIOGRAPHY

[77] X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, “OpenMote: Open-
source Prototyping Platform for the Industrial IoT,” in International Con-
ference on Ad Hoc Networks. Springer, 2015, pp. 211–222.

[78] Crossbow. TelosB Data Sheet. [Online]. Available: https://www.willow.
co.uk/TelosB_Datasheet.pdf

[79] Nordic. nRF51822 System on Chip. [Online]. Available: https://www.
nordicsemi.com/Products/Low-power-short-range-wireless/nRF51822

[80] C. Adjih, E. Baccelli, E. Fleury, G. Harter, N. Mitton, T. Noel, R. Pissard-
Gibollet, F. Saint-Marcel, G. Schreiner, J. Vandaele et al., “FIT IoT-LAB: A
Large Scale Open Experimental IoT Testbed,” in 2015 IEEE 2nd World
Forum on Internet of Things (WF-IoT). IEEE, 2015, pp. 459–464.

[81] Contiki-NG. Contiki-NG, the OS for Next Generation IoT Devices.
[Online]. Available: https://www.contiki-ng.org/

[82] Zolertia. 6LoWPAN hardware solutions for Internet-of-Things applica-
tions. [Online]. Available: https://zolertia.io/

[83] E. Municio, G. Daneels, M. Vučinić, S. Latré, J. Famaey, Y. Tanaka,
K. Brun, K. Muraoka, X. Vilajosana, and T. Watteyne, “Simulating 6TiSCH
Networks,” Transactions on Emerging Telecommunications Technologies,
vol. 30, no. 3, p. e3494, 2019.

[84] T. Watteyne, P. Thubert, and C. Bormann, “On Forwarding 6LoWPAN
Fragments over a Multihop IPv6 Network,” Internet Engineering Task
Force, Internet-Draft draft-ietf-6lo-minimal-fragment-15, Mar. 2020,
work in Progress. [Online]. Available: https://datatracker.ietf.org/doc/
html/draft-ietf-6lo-minimal-fragment-15

[85] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level
Sensor Network Simulation with Cooja,” in Proceedings. 2006 31st IEEE
Conference on Local Computer Networks. IEEE, 2006, pp. 641–648.

[86] S. Duquennoy, A. Elsts, B. Al Nahas, and G. Oikonomo, “TSCH and 6TiSCH
for Contiki: Challenges, Design and Evaluation,” in 2017 13th Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS).
IEEE, 2017, pp. 11–18.

[87] A. Elsts, “TSCH-Sim: Scaling Up Simulations of TSCH and 6TiSCH Net-
works,” Sensors, vol. 20, no. 19, p. 5663, 2020.

[88] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Net-
work Simulations with the ns-3 Simulator,” SIGCOMM demonstration,
vol. 14, no. 14, p. 527, 2008.

https://www.willow.co.uk/TelosB_Datasheet.pdf
https://www.willow.co.uk/TelosB_Datasheet.pdf
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF51822
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF51822
https://www.contiki-ng.org/
https://zolertia.io/
https://datatracker.ietf.org/doc/html/draft-ietf-6lo-minimal-fragment-15
https://datatracker.ietf.org/doc/html/draft-ietf-6lo-minimal-fragment-15

BIBLIOGRAPHY 167

[89] A. Varga and R. Hornig, “An Overview of the OMNeT++ Simulation
Environment,” in Proceedings of the 1st international conference on Simu-
lation tools and techniques for communications, networks and systems &
workshops. ICST (Institute for Computer Sciences, Social-Informatics
and . . . , 2008, p. 60.

[90] P. Huang, L. Xiao, S. Soltani, M. W. Mutka, and N. Xi, “The Evolution of
MAC protocols in Wireless Sensor Networks: A Survey,” IEEE Communi-
cations Surveys Tutorials, vol. 15, no. 1, pp. 101–120, First 2013.

[91] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang, and K. S. J.
Pister, “A Realistic Energy Consumption Model for TSCH Networks,” IEEE
Sensors Journal, vol. 14, no. 2, pp. 482–489, Feb 2014.

[92] P. Tuset, X. Vilajosana, and T. Watteyne, “OpenMote+: a Range-Agile
Multi-Radio Mote,” in International Conference on Embedded Wireless
Systems and Networks (EWSN). Graz, Austria: ACM, Feb. 2016, pp.
333–334. [Online]. Available: https://hal.inria.fr/hal-01239662

[93] B. Van de Velde, G. Daneels, and E. Municio, “OpenWSN firmware,
CC2538 and CC1200 driver implementation,” https://github.com/imec-
idlab/openwsn-fw.

[94] Wireshark Foundation, “Wireshark,” https://www.wireshark.org.

[95] D. D. Guglielmo, B. A. Nahas, S. Duquennoy, T. Voigt, and G. Anastasi,
“Analysis and Experimental Evaluation of IEEE 802.15.4e TSCH CSMA-CA
Algorithm,” IEEE Transactions on Vehicular Technology, vol. 66, no. 2, pp.
1573–1588, Feb 2017.

[96] G. Z. Papadopoulos, A. Mavromatis, X. Fafoutis, N. Montavont,
R. Piechocki, T. Tryfonas, and G. Oikonomou, “Guard Time Optimisa-
tion and Adaptation for Energy Efficient Multi-hop TSCH Networks,” in
2016 IEEE 3rd World Forum on Internet of Things (WF-IoT), Dec 2016, pp.
301–306.

[97] I. Juc, O. Alphand, R. Guizzetti, M. Favre, and A. Duda, “Energy Con-
sumption and Performance of IEEE 802.15.4e TSCH and DSME,” in 2016
IEEE Wireless Communications and Networking Conference, April 2016,
pp. 1–7.

[98] S. Labs, “User Manual, Starter Kit EFM32GG-STK3700,”
https://www.silabs.com/documents/public/user-guides/efm32gg-
stk3700-ug.pdf, 2013.

[99] ——, “Simplicity Studio 4,” https://www.silabs.com/products/
development-tools/software/simplicity-studio, 2017.

https://hal.inria.fr/hal-01239662
https://github.com/imec-idlab/openwsn-fw
https://github.com/imec-idlab/openwsn-fw
https://www.wireshark.org
https://www.silabs.com/documents/public/user-guides/efm32gg-stk3700-ug.pdf
https://www.silabs.com/documents/public/user-guides/efm32gg-stk3700-ug.pdf
https://www.silabs.com/products/development-tools/software/simplicity-studio
https://www.silabs.com/products/development-tools/software/simplicity-studio

168 BIBLIOGRAPHY

[100] K. Technologies, “N6700 Modular Power System Family Data Sheet,”
http://literature.cdn.keysight.com/litweb/pdf/5989-6319EN.pdf, 2016.

[101] M. Series, “Guidelines for Evaluation of Radio Interface Technologies for
IMT-Advanced,” Report ITU, no. 2135-1, 2009.

[102] I. Gurobi Optimization, “Gurobi Optimizer Reference Manual,” 2016.
[Online]. Available: http://www.gurobi.com

[103] M. Raza, N. Aslam, H. Le-Minh, S. Hussain, Y. Cao, and N. M. Khan, “A
Critical Analysis of Research Potential, Challenges, and Future Directives
in Industrial Wireless Sensor Networks,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 39–95, 2017.

[104] C.-S. Sum, M.-T. Zhou, F. Kojima, and H. Harada, “Experimental Per-
formance Evaluation of Multihop IEEE 802.15. 4/4g/4e Smart Utility
Networks in Outdoor Environment,” Wireless Communications and Mobile
Computing, vol. 2017, 2017.

[105] J. Muñoz, E. Riou, X. Vilajosana, P. Muhlethaler, and T. Watteyne,
“Overview of IEEE802.15.4g OFDM and its Applicability to Smart Building
Applications,” in 2018 Wireless Days (WD). IEEE, 2018, pp. 123–130.

[106] P. Tuset-Peiró, F. Vazquez-Gallego, J. Munoz, T. Watteyne, J. Alonso-Zarate,
and X. Vilajosana, “Experimental Interference Robustness Evaluation of
IEEE 802.15. 4-2015 OQPSK-DSSS and SUN-OFDM Physical Layers for
Industrial Communications,” Electronics, vol. 8, no. 9, p. 1045, 2019.

[107] P. Tuset-Peiró, F. Adelantado, X. Vilajosana, and R. D. Gomes, “Reliability
through Modulation Diversity: Can Combining Multiple IEEE 802.15.
4-2015 SUN Modulations Improve PDR?” in 2020 IEEE Symposium on
Computers and Communications (ISCC). IEEE, 2020, pp. 1–6.

[108] P. H. Gomes, T. Watteyne, and B. Krishnamachari, “MABO-TSCH: Multi-
hop and Blacklist-based Optimized Time Synchronized Channel Hopping,”
Transactions on Emerging Telecommunications Technologies, vol. 29, no. 7,
p. e3223, 2018.

[109] R.-A. Koutsiamanis, G. Papadopoulos, T. L. Jenschke, P. Thubert, and
N. Montavont, “Meet the PAREO Functions: Towards Reliable and Avail-
able Wireless Networks,” in IEEE International Conference on Communica-
tions (ICC), 2020.

[110] P. Thubert and G. Papadopoulos, “Reliable and Available Wireless
Problem Statement,” Internet Engineering Task Force, Internet-
Draft draft-pthubert-raw-problem-statement-04, Oct. 2019, work in
Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-pthubert-raw-problem-statement-04

http://literature.cdn.keysight.com/litweb/pdf/5989-6319EN.pdf
http://www.gurobi.com
https://datatracker.ietf.org/doc/html/draft-pthubert-raw-problem-statement-04
https://datatracker.ietf.org/doc/html/draft-pthubert-raw-problem-statement-04

BIBLIOGRAPHY 169

[111] M. Brachmann, S. Duquennoy, N. Tsiftes, and T. Voigt, “IEEE 802.15.4
TSCH in Sub-GHz: Design Considerations and Multi-band Support,” in
2019 IEEE 44th Conference on Local Computer Networks (LCN). IEEE,
2019, pp. 42–50.

[112] R. Elsas, J. Hoebeke, D. Van Leemput, A. Shahid, G. Daneels, J. Famaey,
and E. De Poorter, “Intra-Network Interference Robustness: An Empirical
Evaluation of IEEE 802.15.4-2015 SUN-OFDM,” Electronics, vol. 9,
no. 10, 2020. [Online]. Available: https://www.mdpi.com/2079-
9292/9/10/1691

[113] C. M. Grinstead and J. L. Snell, Introduction to Probability. American
Mathematical Soc., 2012.

[114] S. C. Ergen and P. Varaiya, “TDMA Scheduling Algorithms for Wireless
Sensor Networks,” Wireless networks, vol. 16, no. 4, pp. 985–997, 2010.

[115] D. S. Johnson, J. K. Lenstra, and A. R. Kan, “The Complexity of the
Network Design Problem,” Networks, vol. 8, no. 4, pp. 279–285, 1978.

[116] J. H. Holland, “Genetic Algorithms,” Scientific American, vol. 267, no. 1,
pp. 66–73, 1992.

[117] M. Ojo, S. Giordano, G. Portaluri, and D. Adami, “Throughput Maximiza-
tion Scheduling Algorithm in TSCH Networks with Deadline Constraints,”
in 2017 IEEE Globecom Workshops (GC Wkshps). IEEE, 2017, pp. 1–6.

[118] M. Mitchell, An Introduction to Genetic Algorithms. MIT press, 1998.

[119] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné,
“DEAP: Evolutionary Algorithms Made Easy,” Journal of Machine Learning
Research, vol. 13, pp. 2171–2175, jul 2012.

[120] B. Bellekens, L. Tian, P. Boer, M. Weyn, and J. Famaey, “Outdoor IEEE
802.11ah Range Characterization using Validated Propagation Models,”
in GLOBECOM 2017-2017 IEEE Global Communications Conference. IEEE,
2017, pp. 1–6.

[121] M. Lacage and T. R. Henderson, “Yet Another Network Simulator,” in
Proceeding from the 2006 workshop on ns-2: the IP network simulator.
ACM, 2006, p. 12.

[122] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH: Deter-
ministic IP-enabled Industrial Internet (of Things),” IEEE Communications
Magazine, vol. 52, no. 12, pp. 36–41, December 2014.

[123] M. Woehrle, M. Bor, and K. Langendoen, “868 mhz: a noiseless environ-
ment, but no free lunch for protocol design,” in 2012 Ninth International
Conference on Networked Sensing (INSS). IEEE, 2012, pp. 1–8.

https://www.mdpi.com/2079-9292/9/10/1691
https://www.mdpi.com/2079-9292/9/10/1691

170 BIBLIOGRAPHY

[124] M. Saelens, J. Hoebeke, A. Shahid, and E. De Poorter, “Impact of EU
Duty Cycle and Transmission Power Limitations for Sub-GHz LPWAN
SRDs: An Overview and Future Challenges,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, no. 1, p. 219, 2019.

[125] Wireless Testlab and OfficeLab. [Online]. Available: https://doc.ilabt.
imec.be/ilabt/wilab/

Creative Commons

https://doc.ilabt.imec.be/ilabt/wilab/
https://doc.ilabt.imec.be/ilabt/wilab/

	Samenvatting
	Abstract
	Acknowledgements
	List of Acronyms
	Introduction
	Context
	Problem Statement
	Research Contributions
	Outline
	Publications
	A1: Publications in international indexed journals
	Publications (to be) submitted in international journals indexed by the Web of Science
	Conference proceedings indexed by the Web of Science
	Other international conference proceedings

	6TiSCH: Wireless Industrial Networks
	Context
	TSCH
	PHY Layers

	6TiSCH
	Overview
	6top Protocol
	Scheduling Functions
	RPL
	6TiSCH Implementations & Hardware
	6TiSCH Simulation

	TSCH Energy Modeling
	Introduction
	Background and Related Work
	OpenMote Hardware
	OpenWSN
	TSCH Energy Modeling

	TSCH Energy Model
	TSCH Time Slots
	TSCH Energy Consumption Model
	Different Hardware Support

	Measurements
	Methodology
	Time Slot State Durations
	Device State Current Consumption

	Evaluation
	Slot Charge Consumption
	Slotframe Charge Consumption
	Energy Model Comparison
	Frequency Band Consumption Comparison

	Conclusion

	Recurrent Low-Latency TSCH Scheduling
	Introduction
	Background and Related Work
	6P
	Related Scheduling Approaches

	Recurrent Low-Latency Scheduling
	Motivation
	Problem formulation

	Recurrent Low-Latency Scheduling Function
	General Overview
	Example
	Scheduling Function Description
	Anticipating Packet Loss
	Preventing Schedule Collisions
	Queue Housekeeping using eLLSF
	6P Integration

	Improved ReSF
	Fast Collision Solving
	Improved Collision Avoidance
	Supporting Sporadic Traffic

	Evaluation
	Original ReSF Evaluation
	Improved ReSF Evaluation

	Conclusion

	Analysing Slot Bonding for Adaptive Physical Layers in TSCH
	Introduction
	Related Work
	TSCH Slot and Channel Bonding
	Problem Formulation
	Delivered Packets Calculation
	Radio On Time Calculation
	TSCH Slot Bonding Problem Formulation

	A Heuristic Approach
	Genetic Algorithm
	Feasibility Heuristic
	Time Complexity Analysis

	Evaluation
	Experiment Methodology & Setup
	GA Validation
	Slot Bonding Scalability
	Adaptive PHYs
	Allocation Analysis

	Conclusion

	Parent and PHY Selection in TSCH Slot Bonding Networks
	Introduction
	Related Work
	Heuristic Parent and PHY Selection
	RPL Parent Selection
	Motivation
	Heuristic
	RPL Integration

	Slot Bonding Implementation
	Platform
	PHYs
	Timing Values

	Evaluation
	Experiment Methodology & Setup
	Simulator Results
	Testbed Results

	Conclusion

	Conclusion
	Summary and Contributions
	Future Work

	Appendices
	TSCH Energy Modeling Results
	Introduction
	Time Slot States
	Time Slot State Durations
	Slot Measurements and Model Comparison

