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INTRODUCTION

The paper is concerned with the representational properties of certain
algebras, studied by Smith in [Sm], R ;= ClA, B, H] with defining
relations HA — AH = A, HB — BH = —B, AB — BA = f(H ), where f(x)
is a polynomial in C[x]. When f(x) has degree one, R, = U(sl(2, C)). In
loc. cit. it has been investigated how these algebras, for different f(x), are
similar to, as well as different from, U(sl(2, C)). It has been established
there that the algebras R, are Noetherian domains of Gelfand—Kirillov
dimension 3 and their finite dimensional modules may be studied by using
a theory of Verma modules, highest weight modules, and a BGG
(Bernstein—Gelfand—Gelfand) category &. For general f(x) the category
of finite dimensional R -modules is not semisimple. In this paper we
further the investigation of the BGG-category #. The new phenomena in
the study of finite dimensional representations, compared to the case of
UGsl(2, ©)), stem from the following facts: (a) the length of a Verma
module V(A) can be larger than 2, (b) there may exist non-split self-exten-
sions of finite dimensional simple modules. From [Sm] we recall that the
connected component of # is equivalent to the category of all finite
dimensional A-modules, mod-A4, for some finite dimensional BGG-algebra
A in the sense of [I] (or a quasi-hereditary algebra in the sense of [CPS]).
Here we will provide the precise structure of 4 by giving a quiver with
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relations. Contrary to the U(sI(2, C))-case, the representation type of A is
infinite in general. Considering the category ¢, of finite dimensional
R;-modules in &, we see that the connected components of &, may be of
infinite representation type too; however, we may obtain the correspond-
ing algebras by quivers with relations and the algebras are finite dimen-
sional self-injective C-algebras. Furthermore, we determine when a non-
split extension of a finite dimensional simple module by itself does exist
and we provide a detailed investigation of the extensions between different
highest weight modules. In the final section we establish that there are
“enough” projective objects in the category mod-R, of all finite dimen-
sional R -modules; i.e., there exists for every M € mod-R, a projective
cover P — M in mod-R,.

1. PRELIMINARIES

Fix f(x) € C[x] and write R for R s as defined above. We use notation
as in [Sm]. A lot of the structure of the finite dimensional simple R-mod-
ules may be expressed in terms of U(x) determined up to a constant by the
following relation.

LL Ux+D-Ukxk—-j+D=fD)+flx—D+ - +flx —j+ 1), for
J € N.If M is a left R-module then for ¥ € C we define the » weight-space
of Mtobe M, = {m € M, Hn = vm}. We say that M is a highest weight
module if there exists v € C such that we have

2. M =RM,
3. If M, # Othen v — u € N U {0}.

If v € C satisfies (HW) for M then v is unique as such and we call » the
highest weight of M. When we write v > u we will mean v — u € N U {0}.
The subalgebra of R generated by H and A is isomorphic to U(<#), the
enveloping algebra of the Borel subalgebra & of sl(2, C) (we shall write
sl(2) for sl(2, C) from here on). For A € C we write C, for the one-dimen-
sional U(#)-module annihilated by H — A and A. The Verma-module of
highest weight A is V(A) = R ® ;; ,C,. We write 1 ® C, = C,, where v, is
the highest weight vector of V(A). Clearly, each B/v, has weight A — j and
V(A = @ {V(N),_;, j € NU {0}} with dimg V(A),_; = 1forall j e NU
{0}. The action of A on a weight vector increases its weight by 1.

1.2. The submodules of V(A) are precisely
{C[B]B/u,,U(A + 1) —U(A —j+ 1) = 0for j € NJ.

Therefore we obtain the following properties in a rather straightforward
way.
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1.3. The module V(A) is universal and the length of ¥(A) equals the
number of distinct j € N{0} such that U(A + 1) = U(A —j + 1).

1.4. For A, v € C we have

1. dimg Hom p(V(v), F(A) < 1

2. Hom(V(v), ¥(A)) = C if and only if v= A —j with j € NU{0}
and UA+ D —UA—j+ 1D =0,ie, UA+1)=Ur+ 1)

3. Every submodule of V(A) has the form V(v) for some v.

LS. If A, v, u € C and V() is a submodule of V(») and V() then:

1. When A > v then U(A + 1) = U(v + 1) and V(») is a submodule
of V(A).

2. When v > A then U(v + 1) = U(x + 1) and V(A) is a submodule
of V(v).

It follows from the foregoing that top V(A) is a simple R-module, say
L(A) = top V(). We arrive at the following.

1.6. Any finite dimensional simple R-module is isomorphic to one of the
L(A) and L(X) = V(A)/B/V(A), where j € N is minimal such that U(A +
1) =UA —j + 1)

We define the BGG-category & as the category consisting of the objects
that are the R-modules M satisfying:

1. The module M is the sum of its H-weight spaces (BGG)
2. For all m € M, dim (C[A]m) < =
3. M is a finitely generated R-module.

It is clear that the Verma V(A), as well as the simple modules L()), are

in @. The category @ can be decomposed in its connected components and
the simple objects in a minimal connected component are given as follows.

L.7. Let A # v in C, then Extj(L(»), L(A) # 0 if and only if U(A + 1) =
U(v + 1) and either:

(@QA—rveNor
b)rv-reN.

We write v 1 A if Exti(L(v), L(A)) # 0, and A — » € N. We write v ~ A
if there exist A,..., A, € C such that Ext}(L(v), L(A,)) # 0, ExtL(L(]A)),
LAY # 0,... Extp(L(A,), L(A) # 0. Let A be a maximal element with
respect to the relation 1 and let &, be the full subcategory of # consisting
of those objects having for their composition factors exactly those L(») for
which v ~ A, It is not hard to see that the categories @, are nothing but
the connected components of .

1.8. The number of simple R-modules in &, cannot exceed deg U(x). We
use Ext,.(~, ~) to denote the extensions that are again in &.
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2. THE STRUCTURE OF # AND @,

The study of the BGG-category & is now reduced to the study of U(x),
in view of (1.2) and (1.7), and the connected components &, =
&(A,,..., A,). Proposition 4.7. of [Sm] states that #, is equivalent to the
category mod-A4 of finite dimensional modules over a finite dimensional
C-algebra 4. We aim to describe A4 by giving a quiver with relations
defining A. From the representation theory of quivers with relations we
know that this task comes down to realizing all projective objects in &,. Let
us first look at extensions of Verma modules in @,.

2.1. LEMMA. Suppose that V(A,) and V(A,) are Verma modules in &,,
then dim. Ext . (V(A)), V(A,)) = 1 if and only if A; < A,; if not, then we
have dimq Ext (V(A)), V(A,)) = 0.

Proof. Let the exact sequence

(M):0 > V(a) 5 M5 v(a) -0

determine an element of Ext,(V(A)), V(A,)) and let v, w be the highest
weight vector of V(A,), V(A,) respectively. Select non-zero x, y € M such
that ¢(x) = v, ¢(w) = y. Since the action of 4 on M maps M, to M, |,
A, = A, would lead to Ax = 0. Moreover, since M is semisimple as a
ClH]-module we have AB'x = (BA + f(H)B' " 'x = -+ =(U(A, + 1) —
U, — i+ DB 'x, AB'y = (U(A, + 1) — U(A, —j + 1)B’" 'y, for any
i, j € N. Hence (M) splits and dim: End,(V(A,), V(A,)) = 0. On the
other hand if A, < A, then we put j = A, — A, € N (from (1.7)). Let
Ax = B’ 'y; then the following rules define a non-split (M): HB'x =
(A, — DB'x; HB'y = (A, —)B'y; AB'x=(UA + 1) - U, —i+ 1)
Bi"lx + B ly; AB'y = (U(A, + 1) — U(A, — i + 1)Bi"'y. But if (M)
is non-split then the extension defined by it is unique since we must have
Ax = cB’" 'y for some ¢ € C*. |

Now we go on to construct a sequence of cyclic R-modules M, in
@, = (A, ..., A,) such that for i = 1,...,n we have

M, =0M/M_,=V(A). (2.2)

n+1

We may start by M, ,, = 0 and M, = VV(A)). Let x, (resp. x,_,) be the
non-zero highest weight vector of M, = V(X)) resp. (V(A,_,)). We put
M, =M, ®V(A,_|) as a C-vector space and define an R-module
structure on it as follows. The action of B and H on M, _, is naturally
induced by their action on M, and V(A,_,); the action of 4 on M, _, is
the natural one on M, so we only have to define Ax, |, = x,. One easily
checks that M, _, becomes an R-module in the above way. So suppose we
have defined M, , and that M, , has a vector of weight A, , for a
generator; then set M, = M, ., ® 1/(A,) as a C-vectorspace and let x; be
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the non-zero highest weight vector of V(A;). Putting Ax; =x,,, and
defining the action of B and H on M, as those induced by the R-module
structures of M., and V(A,;) yields an R-module structure on M, satisfy-
ing the requirements of (2.2.). Since M, is cyclic, (2.2.) yields: top M, = top
V(A;) = L(A,) and there exists a surjective R-morphism «; : P(A;) = M,.
In view of the BGG-reciprocity principle, P(A;) has a Verma-module
filtration and one has: (P(A,): V()\j)) = [V()\j): L(A))]. From this it fol-
lows that the length of P(A;) equals the length of M, and therefore «;
must be bijective. From P(A;) = M, we then derive that P(A;) is isomor-
phic to the non-split extension of P(A,, ) by V(A)).

2.3. THEOREM. Suppose A € C is maximal with respect to 1T, then the
connected component @, = &(A,, ..., A,) is equivalent to the category mod-A
of finite dimensional A-modules, where the algebra A is defined by the
following quiver with relations:

g1 .2 as o

. W . W N

:\\—/ntl\u’/':‘i ------------- ; ‘\-’__/ ; k_—/.l
Ba-1 B2 By

Bn-2

T={a, | Bo-y By 1@yy — @3 By_2:---5 Bty — @, By}, where n is the
cardinality of {ve C, (A + 1) = U(v + 1), A — v & NUA{O}).

Proof. Let P(A,),..., P(A)) be the indecomposable projective objects
in @, where A, = A, A, > A,_, > --- > A,. Proposition 4.7 of {S] entails
that P(A;) has a Verma module filtration and satisfies the BGG reciproc-
ity principle: (P(A,):¥(4))) = (V(A;): L(A))). Therefore we obtain

(P(A,):V(A)) = (V(X,): L(A,)) = 1
[P(A) V(X)) =[V(A):L(A)] =0 fori<n-—1.

So P(A,) = V(A,). The structure of the composition factor of P(A)) is
indicated by the diagram
L(A,) = LA, 1) LX) = L(A)
(P(A 1) V(A) = (VX)) L(A, 1)) =1

(P(/\nfl):V(Anfl)) = [V(’\n—l):L(/\n~])] = 1
[P(A,_):V(A)] = [V(A):L(A,_)] =0 fori<n-1.
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Hence P(A,_,) is nothing but the non-split extension of V(A,) by V(A,_,)
in view of Lemma 2.1. The structure of the composition factors of P(A,_,)
is described by:

L(}'n 1)

LA, )/ \-L(Anz)
\.(/A“_l) - L)
7\

b
o,
.

L(A;')'\ /

L@A,)"

LA

L(A)

In general P(A,) is isomorphic to the non-split extension of P(A,, ) by
V(A,). In view of the construction of M; = P(A;), the structure of the
composition factors of P(A;) is visualized as

LA i+l) .

Lo‘n 1)

ot N RPN
/ .

osL(A))

By the usual quiver-techniques one may derive that A4 is given by the
quiver with relations as in Theorem 2.3. |}
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For A € N, the connected component @, of & in the case of U(sl(2))
corresponds to the case n = 2 in Theorem 2.3. We may describe the
category @, by its Auslander—Reiten quiver:

-A-2) @ P(-M-2) o

.4: \ VO VW./ \.svo.)
/ \ / \.u.m) L3y u—»z)-/ \ / \

I N AN
V(l)’\ o' SVQ)
S

P(-A-2)

=X

For n = 3 in Theorem 2.3 the connected component &, of & is again of
finite type; that is, there is only a finite number of isomorphism classes of
indecomposable R-modules in #,. However, when n > 4 the category &,
will be of infinite type.

24. EXAMPLE. Take f(x) =x(x —1)}x —2)---(x —n +1) — (x - 1)
(x —2)-(x—n)and Ulx) = (x — 1Xx — 2)---(x — n), then the Verma
modules of R, which are in @, _, are 1(0), ¥(1),...,V(n — 1) and so the
category @, _, is equivalent to mod-A as given in Theorem 2.3. This shows
that the situation of Theorem 2.3 can be realized by different f(x) for any
large n.

The final part of this section is devoted to the study of the full
subcategory &, of #, consisting of the finite dimensional R-modules in #.
Again @, decomposes into a direct sum of components. The full subcate-
gory of &, generated by the finite dimensional objects is denoted by @}
and this is nothing but a connected component of #,. Moreover, every
connected component of @, is clearly of the form &}

2.5. COROLLARY. With notation as above, @' is equivalent to the cate-
gory mod-B of finite dimensional B-modules where B is a finite dimensional
self-injective algebra given by the quiver:

tn-1 On.2

Bn-] B n-2 BZ

and I ={a, B,y By10,_ | — @ 2B, 2,---> B3y — @, By, Bray).

Proof. In &, = mod-A the only infinite dimensional simple R-module
is V(A;) = L(A,). Hence it follows that #} = mod-B, where B is the
quotient of 4 modulo the vertex 1 that corresponds to V(A,). Therefore B



WEIGHT MODULES 851

is indeed given by the quiver with relations 7/ as above. Now we may
visualize the structure of the projective B-modules Pg(A), i = 2,...,n, by
the following:

oLOY)
o(/kn) \OLO‘M)
/
/ A Y
L(ln-lz d o (kl o LX)

A

L0t )e .k()wnZ) '{"i /
\ / ) [ ] K
LAn-D® \ /.\:‘ s L0

L(XM3 1)\ / Lns1-i)

L(A-n+2 i
This is exactly the injective B-module Q(A,.,_,). 1

[ ] L()\.z)

In Corollary 2.5, the number of simple modules in #;' is equal to n — 1.
When n = 2,3, 4,5, all @& are of infinite type; when n > 6, @} becomes
of infinite type. The following is the Auslander—Reiten quiver of #;* when
n = s (the extreme left-hand side agrees with the extreme right one):

4 5432 4

,;’\/;\/\/\,s NEZANE
A N \ Ay ¢ ‘5\%2/4\ ;9./ 3
3 {‘J xz(.

.4 2 ‘
o4 o
0_4/3?: N §( 04} \ g N N it
AN AN AN A
3 WEAS 4 2 fam 4
43 43 43
a/8\4 533
- A A A

By (1.8), the number # of simple R-modules in &, is equal to or less
than deg U(x), so, if deg f(x) < 4, every connected component &} of @,
for R, is of finite type. This means that we may obtain a thorough
understanding about the finite dimensional R -modules in the BGG-cate-
gory # in the cases where deg f(x) < 4.
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3. SELF-EXTENSIONS OF FINITE DIMENSIONAL SIMPLE
MODULES OVER R

As pointed out in the Introduction the essential difficulty in classifying
the finite dimensional R-modules, rather than the U(sl(2))-case, resides in
the fact that non-split self-extensions of finite dimensional simple R-mod-
ules may exist in this case. Nevertheless a slightly more accurate investiga-
tion of these new phenomena allows us to obtain a fairly complete
description.

3.1. THEOREM. With notation as in Section 2, let L(A) be a finite
dimensional simple R-module and write dim¢ L(A) = d + 1:

(i) If x = A is a simple root of U(x + 1) — U(x — d) then we have dimg
Ext(L(A), L(A)) = 0.

(i) If x = A is a multiple root of U(x + 1) — U(x — d) then we have
dim¢ ExtR(L(A), L(A)) = 1.

Remark. (ii) Cf. Proposition 5.11. of [S]. (i) is a sharpened form of
Theorem 5.7. of [S]. We do include a proof of this fundamental result for
the reader’s convenience.

Proof of Theorem 3.1. (i) Let us start from the assumption that
Extg(L(A), L(A)) is non-zero and establish first that the non-split exten-
sion of L(A) by L(A) is necessarily a unique one. Let

(€):0 > L(A) 5> M5 L(x) >0

be a non-split exact sequence. Because L(A) has a decomposition into
H-weight spaces, the extension M has an H-primary decomposition. Set
M,_,={meM|(H-(—-i)m=0 for some k > 0}. Since the H-
weight space L(A), is one-dimensional, dim: M, = 2, and it is easily seen
that (H — A)2M, = 0. Therefore we may suppose that M, is generated by
two vectors x, and x, as a C-space basis, where x, = ¢(w), ¢(x)) = ¢,
such that v, w are the highest weight vectors of L(A). One easily obtains
that the actions of A (resp. B) on M map M; to M, (resp. M, to M;_)).
Since the exactness of (e) is compatible with H primary decomposition, we
obtain that Ax, = 0, Ax, = 0, B**'x, = 0,and BY"'x, = 0.If Hx, = Ax,,
of course, Hx, = Ax,, then any M, _, is generated by B'x, and B'x, as a
C-space basis. Moreover, HB'x; = (A — )B'x;, j = 1, 2, and

AB'x; = (BA + f(H)) B 'x; = (f(A) + f(A—1) + -
+f(A =i+ 1))B' x

= ((U(A+1) —UA—i+1))B" x,
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for j = 1, 2 by induction. This implies that the sequence (e} splits. So
Hx, # Ax,. However, 4((H — Mx;) = (H — Mv = 0; hence (H — A)x, =
cx, for some ¢ € C*. Up to replacing x, by a scalar multiple we may
assume that (H — A)x, = x,. Now it is easily seen that the extension (e) is
“unique” and M = R/I, where I = RA + RB?*! + R(H — M)~

The key observation is that g(H)x, = g(Mx, + g'(A)x, for any polyno-
mial g(x) € C[x] now (where g’ denotes the derivative of g). The H-
primary spaces M,_, of M are generated by B'x; and B'x, as a C-space
basis, when 0 < i < d;and M,_, = Owhen i > d +1. We see that B/* 'x =
0. However, AB?*'x, = (BA + f(H)B%x, + (BA + f(A — ))B%, +
f'(A — d)B“x,, by induction:

ABY x, = (f(A) +f(A = 1) + o=
+f(A = d))Bx, + (f'(N)
+f(A=1) + - +f (A —d))B%,
= (U(A + 1) = U(r — d))B’x,
+(U'(A + 1) = U'(A = d)) Bx,.
Therefore UA+ 1)~ U(A—-d)=0and UM+ 1) - UA~-d)=0;

i.e., x = Ais a root of U(x + 1) — U(x — d) of multiplicity larger than 1,
so (i) is proved.

Gi) If x = A is a root of U(x + 1) — U(x — d) of multiplicity larger
than 1, then it is straightforward to check that the non-split extension M is
well defined by the rules HB'x, = (A — i)B'x, + B'x,, HB'x, = (A — )
B'x,, and AB'x, = (UA+ 1)~ U =i+ DB 'x, + U'A+ D~
U(A—i+ DB 'x,, AB'x, =(UMX+ 1) — U(A —i + 1))B" 'x,; for
instance,

(HA — AH)B'x,
=H((UA+1) = U =i+ 1))B %, + (U'(A+1)
~U'(A—i+1))B 'x,) — A((A — i) B'x, + B'x,)
=(Ur+1) U -i+1))((A-i+1)B" 'x; + B 'x,)
+(U A+ ) =UA—=i+ D) A—i+1D)B 'x, — (A=)
X((U(A+ 1) = U(A =i+ 1))B"'x,
+(U'(A+1) —U'(A—i+1))B" 'x;)
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~(U(A+ 1) —U(A—i+1))B 'x,
=(U(r+1) - U(rA—i+1))B 'x,
HUA+1) —U(A—i+1)B ',
= AB'x,.
The proof of (i) just shows that dim¢ Extg(L(A), L(A) = 1. 1

Let L(A) be a simple R-module with dim¢ L(A) = 1. Let .#,,, denote
the full subcategory of mod-R whose objects are those finite dimensional
R-modules M such that any composition factor of M is isomorphic to
L(A). Let y(A) be the multiplicity of A as a root of U(x + 1) — Ulx — d).

3.2. LemMA. Let N.=R/I.1 =RA + RB*"' + R(H — \)":

(i) If 0 <r < r(A), then there exists a unique non-split extension

” ¥
(6):0 > N.= M,y = L(A) =0
Moreover, M,, , =N.,, =R/I ., I.,, =RA+ RB‘*' + RLH - 2",

r+12 fr+1

(ii) If r = r(A), then any extension 0 — N, — M — L(A) — 0 splits.

Proof. The structure of N, may be interpreted as follows: the (H -
(A —i))-primary space has {B'w,..., B'w,} for C-vector space basis and
the action of R on N, is defined by B‘*'w, = 0, Aw, = 0, and g(H)w, =
gw, + g'Ww,, + -+ +g" " Y(Ww, for i=1,...,r and any g(x) &
Clx]. We may assume that the (H — (A — i))-weight space of L(A) is
generated by {B'v}. If we have the non-split extension (e,), then the
(H — (A — i))-primary space of M, , has {B'x|, B'x,,..., B'x,, B'y} for a
C-space basis such that x; = ¢(w,)- ¢ (y) =v. We observe now the
following properties of the R-module M, , ;:

1. Since the exact sequence (e,) is exact on any (H — (A — i))-primary
space, and A maps (H — (A — i))-primary spaces to (H — (A — i) + 1)-
ones, B maps (H — (A — i))-primary spaces to (H — (A — i) — 1)-ones, it
follows that Ay = 0, B**'y = 0.

2. Assume that Hy = Ay +t, t =bx, + b,x, + - +bx,, b €C.

The action of A on B'y is determined by that of H on B'y since
AB — BA = f(H). Therefore we conclude that ¢ # 0 since the extension
(e,) is non-split. Moreover, up to applying a sequence of elementary linear
transformations, we may conclude that the action of H on the space

generator by {y, x,..., x,} has the Jordan form:
A -1 0
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Here we may assume that Hy =y +x,, Hx;, = Ax, + x,,...,Hx, | =
Ax, |, +x,, Hx, = Ax,.

3. Since B?*'y = 0 and, because of (2), we obtain (by induction):
ABUly = (F) +f(A =D+ = +fA —dDBYy + (f(ND) + f(A-1)
+ 4 A= adDBY%x, + (FON) + N = 1)+ -+ = )
Bix, = (Ux + 1) — UXx — d)B% + (U(A + 1) — U'(x — d)B,
+ (U (A + 1) — U(A = d)B%%, = 0, so we must have U(A + 1) —
Urx-d)=0, U+ D) -UUKA-d)=0,...,U(xA+1) - UV
(A —d)=0;ie, x=Ais a root of Ulx + 1) — U(x — d) of multiplicity
> r. This implies (i) and Gi). |

3.3. PROPOSITION. Let dim. L(A) =d + 1. Every indecomposable R-
module in #, ,, is uniserial and its length is less or equal to r(A).

Proof. Let M be an indecomposable R-module in .4 ,,. If the length
of M < 1 or 2, the statements hold according to Theorem 3.2; hence we
may assume that there exists a non-split sequence

0> @M >M->L(A) —0,

® 3

i

where every M, is isomorphic to some N, as in Lemma 3.2. Since

Exto(L(AD) - @7, M) = d, Extg(L(A), M,), we have the commuta-
tive diagram

0> M, =N L)) -0
la l [

0> @~ M ->M->L(N) —0
L ! I

0> M, >N LK) -0

1

where ¢ is the canonical injection and p is the canonical projection. By
the indecomposability of M, it is clear that M = N, and m = 1. Therefore
the structure of M is described as in Lemma 3.2. |

Actually we have proved that .#; ,, is equivalent to the category of
finite dimensional modules over C[x]/(x™).

4. EXTENSION BETWEEN HIGHEST WEIGHT MODULES

The category mod-R of finite dimensional R-modules may be decom-
posed as a direct sum of connected components and every connected
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component of mod-R is generated by some suitable connected component
@} of #,; we denote this connect component corresponding to &} by
mod*-R. Moreover, the simple R-modules L(A,),...,L(A,) in &} also
constitute the class of all simple objects of mod*-R. Our philosophy is to
study the structure of Mod*-R by specializing to mod*-R for the different
dominant weights A.

Since any highest weight module is necessarily a quotient of a Verma
module, it follows from Section 1 that a highest weight module is necessar-
ily uniserial; hence we denote it by H,(A;) and represent it pictorially as
L(A) — L(A;_ ) — - —=L(A;_;). Obviously H(A,) is finite dimensional
exactly when i —j > 2. If we denote dim. L(A;) by d; as before, then
A — A, =d,.

In this section we aim to compute dimg Ext (H,(A,), H(A,)) and to
obtain the precise construction for the non-split extensions of H,(A,) by
H,(A). Our first task is to characterize when dim¢ Ext,(H,((A), H(A)) is
1, or 0.

4.1. PROPOSITION. With notation as above, dim¢ Ext ,(H/(A,), H(A)) =
1 whenever A; > A, and X;_; > A _,;, and O otherwise.

Proof. Assume that M € & appears as a non-split extension given by
the exact sequence

¥
(h):0 > H(A) > M5 H(A) - 0.

Let v, w be highest weight vectors for H{A;) and H/(A,), respectively.
Then there exist x, y € M such that M = C[B]x + C[B]y (direct sum as
C-spaces), ¢(v) = x and ¢(y) = w. Since M is C[ H }-semisimple, the fact
that (k) is non-split must be forced by the nature of the action of A on M.
Since Ax = p(Av) = ¢(0) = 0, the only choice is to put 0 # Ay € eH(A).
Since the exactness of (4) is compatible with the decomposition into
primary C[ H ]-modules, it follows: Ay = cB* *+"1x, c € C*, A\, — A, 1 =
0, whence A; > A,. Without loss of generality, we may take ¢ = 1 here. On
the other hand, B4 4«1+ "ty = Bditdiit+diy — (, and

ABdk+dk,l+"-+dk,,y
= (U(N + 1) = UM = (dg +dy_y + - +d = 1))
XBdk+dk— JAtd, ,_1y + Bdk+...+,1,(,‘+/\,—).k—lx
= (UM +1) — U — (M= X2 — 1)
5 BA Ak - 1‘1y + Br A ,,,—lx

= (U(Ak + 1) - U(/\kAIAl + 1))BAk’)‘k——171*1y + Bt\,*/\k ' l—lx‘
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So BY M1 7lx=0; hence A, — A,y —12A —A_;_;. Then
Ai_j-1 > Ay y; hence A,_; > A,_,. We have proved that if Ext ,(H,(A,),
H(A;))) # 0, then dim¢ Ext (H/(A), H(A) = 1and A, > A, A, > Ay
If A, > Ay, A_; > A,_,, then the exact sequence (h) given above is well
defined. |

4.2. PROPOSITION.  Let H(A;) and H(),) be two highest weight modules
in mod*-R, and A; > Ay, A;_; > A, _y; then

i

dim¢ Exte( H(A,), H{(A)) = 2.

Proof. Suppose that v and w are the highest weight vectors of H/(A,)
and H/(A,), respectively. In view of Proposition 4.1, we have the non-split-
ting extension

1 ¥
(h):0 = H(A) 5 M, > H/(A) =0

defined by M, = C[Blx, + C[Bly,, direct sum as C-spaces). ¢,(v) = x,,
¥ (y,) = w; the action of H on M is semisimple; i.e., Hx; = A, x;, Hy, =
A, y;. The action of A4 is induced by Ax, = 0, Ay, = ¢,B* *'x,,¢c, € C*;
this is well defined. On the other hand, we may define the non-split
extension as

¥
(h,):0 = H(A) 3 My 5 H(A) -0,

M, = C[B]x, + C[B]y, (direct sum as C-space), ¢,(v) = x,, ¥,(y,) = w.
The action of A is induced by Ax, = 0, Ay, = 0; however, the action of H
is defined by Hx, = A,;x,, Hy, = A, y, + ¢, B% *x,, ¢, € C*. Because
ABAk_)‘kflflyz
=ABd"+d“'+'”+d""y2
=(U(A+ 1) = U — (dy +dyy + o +dy )~ 1))
x Bd,(+d,‘,,+---+d,‘;,f1y2
(U (N +1) = U (A, — (d +dyoy + 0 +d,_ = 1))
X Béitdio i+ i bh ALy
= (U(M +1) = U(Ayoy + 1)) BN M7y,
+ (U (A + 1) = U (A, + 1)BY My,
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and, for A;_; > A _j, then A, _; ;> A\, then A, — A, — 12, -
A;_;j_y; hence B M-y, = 0. It follows that U(A, — 1) — U(A,_,_, +
1) = 0. So we obtain HB* *+-+-1y, = 0. From this we see that (h,) is well
defined. Clearly (h,) and (h,) are C-independent in Extz(FH,(A,), H(A)).
We want next to know what is (k,) + (&;) in Extp(H(A,), H(A)). Let
A:H(A) — H(A) ® H(A,) be the R-map defined by A(w) = (w, w)
and V: H,(A) @ H(A) — H(})) defined by V(a,v, a,v) = (a; + a,)v,
a; € C. We have the following commutative diagram:

(%) (v)

0 > H{A) ® H(A) —> M, ® My —> H(A,) ® H(A,) -0
I

v ¢
0> H(A) - N - H(A) ® H(r) -0
I T 1a
¢
0—>  H(A) - M Lo H{(A) -0

The third row (h) just corresponds to (k) + (h,) in Extg(H,(A,),
H;(A)). It is routine to check that (/) is defined by the following rules M =
CfB]x + C[B]y (direct sum as C-spaces). ¢(v) = x-(y) =w. Ax = 0,
Ay = ¢ B¥ % 'x, and Hx = Ax, Hy = A,y + ;B *x. Clearly if
M = C[Blx + C[Bly, ¢(v) =x, ¢(y) = w is an extension of H,(A,) by
H{A), the actions of 4 and H on M must have this form. This finishes
the proof of the proposition. |

4.3. PROPOSITION.  Let H{(A,) and H(),) be two highest weight modules
in mod*-R:

L If A > A and A = A, then dimg Ext (H(X), H(})) = 1.
2. If /\‘- > Ak’ Ai*j < I\k*I’ then dimqj EX“’R(HI(A’()’ HJ(AI)) = 0.

Proof. 1. Assume that
¢ (4
(h):0 = H(\) > M- H())—0

is an exact sequence. Take v, w to be the highest weight vectors of H(A;)
and H,(A,), respectively; then there exist x, y € M such that M = C[B ix +
CIBly (direct sum as C-spaces), ¢{(v) = x, ¥(y) = w, and Ax = 0, Hx =
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A;x. Assume that Hy = A,y + {;B* *«x and Ay =t,B* *+~!x, Because
B* *-1-1y = () we also have

ABM ity = (UM + 1) = U(Ag_y_, + 1))BR Aty
+H(U(M+ D) —U(No) + 1)

XBA Aty 4 IZB'\."M—I-I*lx

Since Ay, =2 A_jand A, 2 A, wehave A, — A, — 1 <A —

Aioj o — 1, B¥ "7y # 0. So we must have

LU (A + 1) U (Ao, + 1)) +1,=0. (*)

Thus, HB)"‘M)"‘”",V = ,\kv!ilBM*)‘k«l—zy + ¢, BN AMThT Moy =
(BN Mg If A= Ay, then BN iy = BATAoix = 0, the ac-
tion of H is well defined and the solution space of (*) is one-dimensional,
so we have dim¢ Extg(H/(A)-H{(A) = 1.

2.0If A, < M-y them A, — A, <A, — A_;_; — 1 and
B*~*-i-ix # (. We must have ¢, = 0 and from Eq. (*) in the proof of 1; it
follows that (h) splits.

4.4. PROPOSITION. Let H(X)) and H(A,) be the two highest weight
modules in mod*-R. If A, < A, then dim¢ Ext (H(A), H(A)) = 0.
Proof. As in the proof of Proposition 4.3, it is now very easy to see that
Ax =0, Ay = 0, Hx = A;x, Hy = A,y; this means that the sequence (h)
splits. Il
It remains to consider the case A, = A,.
4.5. PROPOSITION.  Let H{(A,)) and H(),) be two highest weight modules,
and suppose A; = A, then
(i) when A;_; > Ay, dime Extp(H/(A), H(A)) = 1;
(ii) when A;_; = A, _, then dim¢ Exto(H/(A,), H(A)) = 1 if and only
FUN+D=UN_;_ +Dand U\, + D =U,_; ,+1
(iii) when A;_; < A, dim¢ Extg(H{(A), H(A,) = 0.
Proof. (i) Assume that
¢ ¢
(h):0 - Hj()‘i) - M- H(x) —0
is an exact sequence. Take v, w to be the highest weight vectors of H/(A,)

and H(A,), respectively. Then there exist x, y € M such that
M = C[Blx +C[B]ly (direct sum as C-spaces), ¢(v) = x, y(y) = w; then
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Ax = 0, Hx = A;x. Since A, = A, we may assume that Hy = A,y + cx and
Ay = 0. Because B* *+-i-1y = 0, Hence,
ABM A iy = (U(A + 1) + U(Ap_,_ + 1))BM A 71y
+ (U (A + 1) + U (A_y_y + 1) BM Ao
HBM M-y = CBM Meeto1y,
oA >Np Ao 0> N A=A <A — Ay — 1, then
BM Ay = 0; of course, BM A1y =0, Ua, + 1) — U(A_,_, +

1) = 0. Hence AB* *«-i-1y =0, HBM~*« 11y = (0, and the actions of 4
and H on M are well defined.

(i) The proof of (ii) is completely similar to that of Theorem 3.2.

(lli) If )\‘-_j < Ak*l then /\i 1 < Ak*l*]’ Ak - Ak*l*l S /\i - )‘i*j*l
— 1,80 BM X-1-1x # 0; then ¢ = 0. This implies that dim Ext(H,(A,).
H)» =0 1§

The statements of this section may now be summed up by Table 1.

-j—

5. EXISTENCE OF ENOUGH PROJECTIVES IN MOD-R

As pointed out before, finite dimensional R-modules need not be
semisimple in general for the rings we are considering here. In the
foregoing sections we did obtain a fairly satisfactory description of exten-
sions of finite dimensional simple and highest weight R-modules. What is
missing in such a description for the whole of mod-R is the complete
knowledge concerning the projective objects in mod-R. A step in this
direction should be to establish, just like Bernstein, Gelfand, and Gelfand
did for the category @, that there are enough projective modules in mod-R

TABLE 1
dimg Ext o(H, (X)), H(A)

@ A > A A A 2
)‘i~) - )‘k—l 1

Aij < Ay 0

b A=A, Ao > Ay 1
Aoj=ho UG+ D=UW_;_+1D 1
U+ D# U + 1D 0

Aeej < Aees 0

© A <A 0
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in the sense that every M € mod-R has a projective cover P — M. Any
M € mod-R may be decomposed as M= @ .- M, ={xeM, (H -
o )ix = 0 for some g € N} by the classical Jordan theorem. For x € M,
let us introduce the “depth” of x as D(x) = min{g, (H — ¢ )?x = 0} and
the depth of M as D(M) = max{D(x), x € H,, o€ W(M)}, where
W(M) = {0 € C, M, # 0}. Since M is finite dimensional we have D(M)
< oo,

For the rings R, we are considering there does exist a nice upperbound
for D(M) in terms of deg, f(x). The consequent theorem is the key result
of this section; we will give the proof after giving a fundamental iemma of
independent interest.

5.1. THEOREM. For any M € mod-R, D(M) < (deg f(x))*.

First let us point out that we may reduce the problem of proving the
theorem to the consideration of M € mod*-R for any dominant weight A.
A vector x € M, is then a highest weight vector if Ax = 0.

5.2. LeMMA. If x € M, is a highest weight vector, then D(x) < (deg
Ji62) 8

Proof. Let L(A,), L(Ay), ..., L(A) Ay < A3 < -+ <A, = A,
be the all simple objects in mod*-R. Since H(H — o)?® 'x =
o(H — ¢)?®~ %, we obtain A(H — )P~ 1x = 0. Since there exists an
R-homomorphism F(A;) » M for some A;, mapping the highest weight
vector of V(A,) to (H — o)P™~!x, we must have o = A;. Without loss of
generality in the following proof, we only deal with the o= A, = A. Set:
xg=x, xy=(H = A)xq,..., Xpy = (H = AP x,, these vectors
are C-linearly independent. We have deduced earlier that there exist A;;,
1 < i, < n, such that B* *ix, = 0, but B*» *n~'x, # 0. Therefore,

0 =ABM *ax,
= (UA, + 1) = U(A, = (A, — &) + 1)) BM Al
+H{U(A, + 1) = U(A, = (X)) + 1)) BM Ay oo
+(UPHOTDA, + 1) —UPODA — (A, —A) +1))
X B a7 xp -

If B*»"*"'x; | #0but B* " 'x, =0, then j, > 0 and

0 if j >,

/ Nonzero ifj<j — 1.

B)‘"\'l-lx- — {
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It is easily seen that B 2i~ly ,...,B""""f’x _, are C-linearly inde-
y 0 Ji—1 y
pendent; hence

U(A, + 1) =U(A, = (A, — X)) + 1)
=U'(r, +1) = U,()\n - (’\n o )‘iu) + 1)
= eee — U(jl—l)()\n + 1) — U(j‘il)()‘n - (/\n - Ail) + 1)
=0.

Hence x = A, is a root of U(x + 1) = u(X — (A, — A;) + 1) having multi-
plicity j,. Because B* *a7'x, =0, we know that B »Aatly, =0 and
there exists A, , i, > i, + 1, such that B *zx; = 0,but B %271y, # 0.

Therefore,

0= ABA"_)"zxj]

= (UA, + 1) = U(A, = (A, = &) + 1)) B>y,

I
HU (A + 1) = U (A, = (A = A) + 1)) B Ml 4
+(U‘D("’*fl*”(/\n +1) = UPOITD(N — (A, = A) + 1))

A=A, —1
X B 2 Xpixy-1-

If BM~*aly, | # 0, B2y, =0, then j, > j, and

B Ay = L
/ nonzero ifj<j,— 1.

{0 if > jy.
Hence x = A, is a root of U(x 1) — Ulx — (A, A ) + 1) having mul-
tiplicity j, — j,. Since B**2"'x, =0, hence "B x;, =0 etc. In
general we obtain that x = A, is a root of U(x + 1) — U(x - (A - A)+
1) having multiplicity j, — j,_,- Of course j, ~j,_, < deg(U(x 1) -
Ux—-(r, = A+ D < degf(x). Because j, >j,_,> - >j; >0 it
follows that j, > D(x) and then D(x) <j, —j,_\ +jo-1 —Jn-2 + " +h
—ji +j; < ndeg f(x) < (deg f(x))* (since n < deg f(x)). |

Let M’ be the submodule of M generated by x and let M" be the
submodule generated by {(H — o)y |y € M'}). It is easily seen that
M'/M" is indecomposable in &. Put M(#, x) = M'/M", then we have
the following.
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5.3. LEMMA. The length of M(&, x) < deg f(x).

Proof. Write IM(#, x) for the length of M(#, x). No confusion arises
if we write x also for the canonical image of x in M(#, x). Assume that
B™Mx #0, Bm"'x =0 and A™:x # 0, A™*'x =0 then {B™wux,
B™~lx, ... Bx, x, Ax,..., A" x, A™x} is a C-basis of M(&#, x).
Therefore, every non-zero weight space of M(#, x) is one-dimensional,
the multiplicity of any L(A;) occurring as a composition factor of M(#, x)
in any given composition series of it is at most 1. Therefore IM(2,
x) <n—1<deg f(x).

Now we are ready to prove Theorem 5.1.

5.4. Proof of Theorem 5.1. We shall prove that D(x) < IM(#, x) (deg
f(x)* by induction. First, if IM(#, x,) = 1; assume that A™x # 0 and
A™*'x = 0, since A™x and x generate each other in M(&, x) we may
without loss of generality take A™x instead of x, this means that we may
restrict to the case where x is a highest weight vector. In view of Lemma
5.1, D(x) < (deg f(x))*. Second, for x € M, with A™x # 0and A™*'x =
0, let N be the submodule of M generated by 4A”x. Then D(x) < D(X) +
D(N), where x is the canonical image of x in M/N. Now IM/N(@,
¥) < IM(#, x) — 1, by the induction assumption. D(X) < IM/N(&Z, x)
(deg f(x))*; hence D(x) < IM/N(#, x) (deg f(x)? + D(N) in view of
Lemma 5.2. D(x) < (IM(&, x) — 1) (deg f(x))* + (deg f(x))* < IM(&, x)
(deg f(x))?, so according to Lemma 5.2. we have that D(x) < (deg
fxn. 1

It is likely that there may exist better bounds for D(X )}!

5.5. THEOREM. Let M € mod*-R, then there exist a projective object
P € mod*-R and a surjective map P — M.

Proof. Because all simple objects of mod*-R are exactly the
L(A,),..., L(A,), there exists a k € N such that A*x = 0 and B*x = 0 for
any x € M (note that k only depends on A, not on M ). Take I(A;) =
RB* + R(H — A)Wee/»’ 4 R4k and Q(A;) = R/I(A,); put
g =1 € Q(A,).Clearly Q(A,) € mod*-R. Since g is of weight A,, so is o(g)
for any ¢ € Homzx(Q(A,), M). Because B*M = A*M =0 and D(M) <
(deg f(x))?, the map Homg(Q(A,), M) — M, defined by ¢ — ¢(q) is
surjective. On the other hand, if ¢ # 0 then ¢(g) # 0 because g generates
Q(A)). Thus Homk(Q(},), M) — M, is an isomorphism; this means that
the functors M — Hom(Q(A,), M) and M — M, , are isomorphic. How-
ever, M — M, is exact on mod" R; this implies that Q(A,) is projective in
mod*-R. Because M is a finite dimensional R-module in mod*-R, M is
generated by a finite number of elements of weights A,, A;,..., A,. Set
Q= @], 0()) then any M € mod*-R is a homomorphic image of a
direct sum of a finite number of copies of Q. |
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A standard technique in the representation theory of Artinian rings
leads to the following corollary; its proof is similar to the proof included in

[S].

5.6. COROLLARY. Any indecomposable projective object P in mod*-R has
a unique maximal submodule rad(P). This provides us with a one-to-one
correspondence between indecomposable projective objects and simple objects
L(A),i=2,...,n, in mod*-R.

5.7. Problem. Let T(A;) be the projective cover of LA,), the existence of
which is ensured by the foregoing results. What is the precise structure of
T(A)?
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