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Abstract

The seemingly unrelated regression (SUR) model is a generalization of a linear

regression model consisting of more than one equation, where the error terms of these

equations are contemporaneously correlated. The standard Feasible Generalized

Linear Squares (FGLS) estimator is efficient as it takes into account the covariance

structure of the errors, but it is also very sensitive to outliers. The robust SUR

estimator of Bilodeau & Duchesne (2000) can accommodate outliers, but it is hard

to compute. First we propose a fast algorithm, FastSUR, for its computation and

show its good performance in a simulation study. We then provide diagnostics

for outlier detection and illustrate them on a real data set from economics. Next

we apply our FastSUR algorithm in the framework of stochastic loss reserving for

general insurance. We focus on the General Multivariate Chain Ladder (GMCL)

model that employs SUR to estimate its parameters. Consequently, this multivariate

stochastic reserving method takes into account the contemporaneous correlations

among run-off triangles and allows structural connections between these triangles.

We plug in our FastSUR algorithm into the GMCL model to obtain a robust version.

Keywords: Seemingly Unrelated Regression; Feasible Generalized Least Squares;

S-estimator; Outlier; Claims Reserving.
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1 Introduction

Many studies in econometrics, insurance and finance are based on regression models con-

taining more than one equation. Unconsidered factors that influence the error term in one

equation often also influence the error terms in other equations. Ignoring this dependence

structure of the error terms and estimating these equations separately using ordinary least

squares (OLS) leads to inefficient estimates. Therefore, Zellner (1962) proposed the Seem-

ingly Unrelated Regressions (SUR) model that is composed of several regression equations

that are linked by the fact that their error terms are contemporaneously correlated. This

system of structurally related equations is simultaneously estimated with a generalized

least squares (GLS) estimator that takes the covariance structure of the error terms into

account. An extensive summary of the literature dealing with the SUR model and its

various extensions can be found in the book of Srivastava & Giles (1987) and the chapter

by Fiebig (2001).

The SUR models have found considerable use in many applications in econometrics,

finance and insurance. For example, Carrieri & Majerbi (1996), Angbazo & Narayanan

(2006) and Williams (2013) studied the effects of financial crises and shocks on the insur-

ance industry, banks and stock markets whereas Kaul (1987) and Dincer & Wang (2011)

examined relationships between income and consumption, inflation and stock markets,

ethnic diversity and economic growth. In this paper we illustrate the SUR model on

studying the relation between the Foreign Direct Investment (FDI) by multinational cor-

porations and several macroeconomic variables. Data are available for six countries over

the period 1981-2012. This yields m = 6 regression blocks, each with n = 32 observations.

Since there is a possible existence of common factors (such as economy-wide or worldwide

shocks) that influence all countries at the same time, cross-correlations between the error

terms may exist. This motivates the use of the SUR model for fitting this system of equa-

tions. As another application we consider claims reserving in general insurance, which is a

major actuarial issue. Recently the multivariate reserving approach has received extensive

attention, see e.g. Merz & Wüthrich (2009), Shi & Frees (2011), De Jong (2012), Happ

& Wüthrich (2013), Shi (2014). We will focus on the general multivariate chain ladder

model of Zhang (2010), where the parameters are estimated using SUR.

Since the common GLS estimation procedure for the SUR model is based on the

classical covariance matrix and OLS estimation, the method as a whole is very sensitive

to outliers. Outliers are observations that differ from the majority of the data and it is

well known that they can have a large impact on classical statistical methods. Therefore,

robust alternatives have already been presented in the literature. Koenker & Portnoy
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(1990) proposed a robust version of the SUR model based on M-estimators. Since this

procedure is not affine equivariant and does not take full account of the multivariate

nature of the problem, Bilodeau & Duchesne (2000) introduced a method based on S-

estimators. S-estimators were introduced for regression by Rousseeuw & Yohai (1984),

whereas Davies (1987) and Lopuhaä (1989) studied S-estimators for multivariate location

and scatter. The robust SUR method of Bilodeau & Duchesne (2000) combines both types

of S-estimators, which results in an estimator that is regression and affine equivariant and

is able to detect multivariate outliers.

First we resume the SUR model and the standard GLS estimators in Section 2. Sec-

tion 3 describes the robust SUR method of Bilodeau & Duchesne (2000) and proposes a

new algorithm for its computation. We then show its good performance in a simulation

study (Section 4). In Section 5 we provide a diagnostic tool to detect outlying observa-

tions, and illustrate it on a data set from macroeconomics. Section 6 elaborates on the use

of the robust SUR method in the context of stochastic loss reserving, whereas Section 7

provides some directions for further research.

2 Classical SUR

In general the SUR model comprises m linear equations (also called blocks), each of which

is assumed to satisfy the Gauss-Markov conditions. Each block contains an equal number

n of observations, hence the system can be written as
y1 = X1β1 + ε1

...

ym = Xmβm + εm

(1)

where yj = (y1j, y2j, . . . , ynj)
′ is the n×1 response vector of the jth block, Xj is the n×pj

matrix of explanatory variables, βj is the pj × 1 vector of regression parameters while εj

corresponds to the n × 1 error vector which satisfies E(εj) = 0 and Cov(εj) = σjjIn

(for all j = 1, ...,m). Here, In denotes the n × n identity matrix. Note that each block

has its own dependent variable and potentially different sets of exogenous explanatory

variables. We further assume for each j that rank(Xj) = pj 6 n to avoid singular

solutions. These seemingly unrelated regression blocks are linked through their zero mean

error structure. It is namely assumed that the error vectors are contemporaneously but

not serially correlated herein. This means that for given observations i and l, across the

3



regression equations j and k, it holds that

E(εijεik) = σjk for all i = 1, 2, . . . , n

E(εijεlj) = 0 when i 6= l

E(εijεlk) = 0 when j 6= k, i 6= l

The system of m seemingly unrelated regression equations (1) can be stacked in two

equivalent compact matrix forms. First, we can express it as a multiple linear regression

model:

y = Xβ + ε (2)

where y = (y′1, . . . , y
′
m)′ is the nm× 1 response vector,

X =


X1 0 · · · 0

0 X2 · · · 0
...

...
. . .

...

0 0 · · · Xm


is the nm× p structured design matrix, with p =

∑m
j=1 pj, β = (β′1, . . . , β

′
m)′ is the p× 1

parameter vector and ε = (ε′1, . . . , ε
′
m)′ is the error vector with

Cov(ε) = Σ⊗ In =


σ11 σ12 · · · σ1m

σ21 σ22 · · · σ2m
...

...
. . .

...

σm1 σm2 · · · σmm

⊗ In =


σ11In σ12In · · · σ1mIn

σ21In σ22In · · · σ2mIn
...

...
. . .

...

σm1In σm2In · · · σmmIn

 .

Note that σjj is the variance of the error term in the jth equation, whereas σjk is the

covariance between the error terms in equation j and the error terms in equation k.

Another formulation of the SUR model uses the multivariate linear regression model:

Y = X̃B + E (3)

where Y = (y1, . . . , ym) is the n×m response matrix, X̃ = [X1, . . . ,Xm] the n×p design

matrix,

B =


β1 0 · · · 0

0 β2 · · · 0
...

...
. . .

...

0 0 · · · βm

 = diag(β1, β2, . . . , βm) (4)

the structured p × m parameter matrix and E = (ε1, . . . , εm) the error matrix with

Cov(E) = In ⊗ Σ. Equivalently we can write the error matrix as E = Y − X̃B =
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(e1, . . . , en)′ with ei the m-dimensional vector containing the errors of the ith observation

in each block.

Each equation in (1) could be estimated separately using the OLS estimator but

this would ignore the covariance structure of the errors. A more efficient estimator is

obtained as the GLS estimator with weight matrix W = Cov(ε). As Σ is typically

unknown, a Feasible GLS (FGLS) estimator is preferred that replaces the unknown W

with a consistent estimate. The FGLS estimator is an iterative two-step procedure that

uses estimates for β to estimate Σ, which is then used to improve the regression estimates

β̂. To start, each equation is estimated by OLS, yielding β̂j. Then iteratively:

• The residuals ε̂j = yj −Xjβ̂j from the m equations are used to estimate the error

covariance matrix Ŵ = Σ̂⊗ In with Σ̂ = 1
n
(ε̂1, · · · , ε̂m)′(ε̂1, · · · , ε̂m).

• New estimates of β are obtained as

β̂ = (X ′Ŵ−1X)−1X ′Ŵ−1y = (X ′(Σ̂−1 ⊗ In)X)−1X ′(Σ̂−1 ⊗ In)y.

The estimated covariance matrix of β̂ is given by Cov(β̂) = (X ′Ŵ−1X)−1.

3 Robust SUR

3.1 The robust SUR method

We first recall the definition of the S-estimator of the SUR model, as introduced in

Bilodeau & Duchesne (2000): it is defined as the couple (B̂, Σ̂) which minimizes |S|
under the condition

1

n

n∑
i=1

ρ
(√

ei(B)′S−1ei(B)
)

= b (5)

over all (B,S) with B = diag(b1, . . . , bm) ∈ Rp×m, bj ∈ Rpj×1 for all j = 1, . . . ,m, ei(B)′

the ith row of Y − X̃B, and S an m × m symmetric positive definite (SPD) matrix.

In order to obtain a robust estimator which is consistent and asymptotically normal, ρ

should satisfy the following conditions:

(C1) ρ is symmetric around zero and twice continuously differentiable

(C2) ρ(0) = 0 and ρ is strictly increasing on [0, c0] and constant on [c0,∞[ for some

c0 > 0.

5



The constant b can be computed as EF0 [ρ(|e|)] where e ∼ F0. As such, F0 = Nm(0, Im)

ensures consistency at the model with normal errors. For ρ one often chooses the function

ρ(x) =

{
x2

2
− x4

2c2
+ x6

6c4
for |x| 6 c

c2

6
for |x| > c

where c is an appropriate tuning constant (Rousseeuw & Yohai 1984). The derivative of

this function is known as Tukey’s bisquare function:

ρ′(x) = ψ(x) =

 x
(

1−
(
x
c

)2)2
for |x| 6 c

0 for |x| > c.

We will use this ρ-function throughout the paper. For fixed b, the value of the tuning

constant c determines the breakdown value, see Van Aelst & Willems (2005). For high-

dimensional regressors, one could also consider other ρ-functions that downweight outliers

more appropriately (Rocke 1996).

In addition to the minimization condition mentioned above the robust SUR estimators

of β and Σ also satisfy the following equations (Bilodeau & Duchesne 2000):

β = (X ′(Σ−1 ⊗D)X)−1X ′(Σ−1 ⊗D)y (6)

Σ = m(Y − X̃B)′D(Y − X̃B)/
n∑
i=1

v(di) (7)

where d2i = e′iΣ
−1ei and D = diag(w(di)), for w(u) = ρ′(u)/u and v(u) = ρ′(u)u−ρ(u)+b.

3.2 The FastSUR algorithm

S-estimators have good robustness properties, but they are computationally expensive.

The original resampling algorithm of Rousseeuw & Yohai (1984) was first improved by the

SURREAL algorithm of Ruppert (1992). Next, a better performance was achieved by the

FastS algorithm of Salibian-Barrera & Yohai (2006) for regression and Salibian-Barrera

et al. (2006) for multivariate location and scatter. This is currently the most popular

algorithm and is e.g. included in the R packages robustbase and rrcov, and the FSDA

Matlab toolbox (Riani et al. 2012).

For the computation of the robust SUR method (5), Bilodeau & Duchesne (2000)

adapted the SURREAL algorithm of Ruppert (1992). Here we propose the FastSUR

algorithm, which implements the ideas of the FastS algorithm into the robust SUR esti-

mator.
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First, the S in (5) is written as σ2Γ with |Γ| = 1 and σ = |S|1/2m, so that the

equivalent objective is to find the triplet (B̂, Γ̂, σ̂) that minimizes σ under the restriction

1

n

n∑
i=1

ρ

(√
ei(B)′Γ−1ei(B)

σ

)
= b

over all (B,Γ, σ) where B = diag(β1, . . . , βm) ∈ Rp×m, Γ is an m × m SPD matrix

with |Γ| = 1 and σ is a positive scalar. The robust SUR estimates are then given by

(B̂, Σ̂ = σ̂2Γ̂).

The algorithm starts with N initial estimates (B̂
(0)

1 , Γ̂
(0)

1 , σ̂
(0)
1 ), . . . , (B̂

(0)

N , Γ̂
(0)

N , σ̂
(0)
N )

obtained as follows:

(a) Choose a random subsample of max(p1, . . . , pm) integers from the first n integers.

(b) Calculate OLS on the corresponding rows of Y and X̃, giving B̂
(0)
l . If this subset

yields a singular solution in a block, randomly increase the number of observations

in that block, until a nonsingular OLS solution is obtained.

(c) Compute the robust covariance matrix of the residuals by their one-step M-estimator

(Maronna et al. 2006, pag. 197):

– Set the initial covariance matrix Σ̂(0) = diag(mad(Y − X̃B̂
(0)
l ))2 where the

median absolute deviation (mad) is computed on each column of the residual

matrix.

– Compute the robust distances di =

√
ei(B̂

(0)
l )′(Σ̂(0))−1ei(B̂

(0)
l ).

– Update the initial covariance matrix: Σ̂
(0)
l = 1

n

∑n
i=1w(di)ei(B̂

(0)
l )ei(B̂

(0)
l )′.

Then we set Γ̂
(0)
l = |Σ̂(0)

l |−1/mΣ̂
(0)
l and σ̂

(0)
l = medni=1

√
ei(B̂

(0)
l )′(Γ̂

(0)
l )−1ei(B̂

(0)
l ) for all

l = 1, . . . , N . Next, those estimates are refined by performing k so-called I-steps, resulting

in

(B̂
(k)

1 , Γ̂
(k)

1 , σ̂
(k)
1 ), . . . , (B̂

(k)

N , Γ̂
(k)

N , σ̂
(k)
N ).

The jth I-step to refine the estimate (B̂
(j−1)
l , Γ̂

(j−1)
l , σ̂

(j−1)
l ) goes as follows:

1. Refine the scale: σ̂
(j)
l = σ̂

(j−1)
l

√
1
nb

∑n
i=1 ρ

(√
ei(B̂

(j−1)
l )′(Γ̂

(j−1)
l )−1ei(B̂

(j−1)
l )

σ̂
(j−1)
l

)
.

2. Use σ̂
(j)
l to compute weights w

(j)
i = ρ′(ui)

ui
with ui =

√
ei(B̂

(j−1)
l )′(Γ̂

(j−1)
l )−1ei(B̂

(j−1)
l )

σ̂
(j)
l

.
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3. Update B̂
(j−1)
l following equation (6): Let D = diag(w

(j)
i ) and

W = (σ
(j)
l )−2(Γ̂

(j−1)
l )−1 ⊗D, then β̂(j) = (X ′WX)−1X ′W y and

B̂
(j)
l = diag(β̂

(j)
1 , . . . , β̂

(j)
m ).

4. Update Σ̂ following equation (7): Σ̂
(j)
l = m(Y −X̃B̂

(j)
l )′D(Y −X̃B̂

(j)
l )/

∑n
i=1 v(ui),

which leads to the refinement Γ̂
(j)
l = |Σ̂(j)

l |−1/mΣ̂
(j)
l .

After performing k I-steps, the scale σ̂
(k)
l is improved for each (B̂

(k)
l , Γ̂

(k)
l , σ̂

(k)
l ) by itera-

tively solving

σ̂
(k+1)
l = σ̂

(k)
l

√√√√√ 1

nb

n∑
i=1

ρ


√
ei(B̂

(k)
l )′(Γ̂

(k)
l )−1ei(B̂

(k)
l )

σ̂
(k)
l

 (8)

until convergence while keeping B̂
(k)
l and Γ̂

(k)
l fixed. We keep the v refined estimates

(B̂
(∗)
1 , Γ̂

(∗)
1 , σ̂

(∗)
1 ), . . ., (B̂

(∗)
v , Γ̂

(∗)
v , σ̂

(∗)
v ) with the smallest fully iterated scales. Note that

not all scales σ̂
(k)
l , l = 1, . . . , N need to be computed by solving (8). The first v scales

σ̂
(k)
l , l = 1, . . . , v are always computed, but for l > v the lth scale is only computed if

1

n

n∑
i=1

ρ


√
ei(B̂

(k)
l )′(Γ̂

(k)
l )−1ei(B̂

(k)
l )

A

 < b

where A is the maximum of the v best scales that were fully iterated so far. The v

estimates (B̂
(∗)
1 , Γ̂

(∗)
1 , σ̂

(∗)
1 ), . . ., (B̂

(∗)
v , Γ̂

(∗)
v , σ̂

(∗)
v ) with the smallest scales need to be refined

until convergence using I-steps as described above, and the final estimate (B̂(F ), Γ̂(F ), σ̂(F ))

is the one with the smallest scale after full refinement. The final robust SUR estimates

are then B̂ = B̂(F ) (or equivalently β̂ = (β̂′1, . . . , β̂
′
m)′) and Σ̂ = (σ̂(F ))2Γ̂(F ).

Note that the number of subsets N , the number of I-steps k and the number of refined

estimates v can be chosen by the user. In our experience the settings N = 500, k = 2

and v = 5 (as in Salibian-Barrera & Yohai (2006)) work well for many data sizes and

contamination patterns, but using larger values for these parameters might be useful at

large data sets with potentially a high contamination level.

4 Simulation study

In this section we study the performance of our FastSUR algorithm on artificial data sets.

As a benchmark, we always compare our results with the FGLS algorithm, as computed

within the R package systemfit (Henningsen & Hamann 2007).
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We carried out an extensive simulation study on data sets of different dimension

and here we report the results of two settings, namely, A : n = 100, pj = 5,m = 8 and

B : n = 30, pj = 3,m = 4. For each simulation setting, we generated K = 100 data sets,

with fixed β and fixed Σ. Each block contains the same number of explanatory variables

pj. The values of βj are randomly drawn from a uniform distribution U([0, 10]) (although

we could equally well fix them to zero due to the regression equivariance of the estima-

tors). For generating the covariance matrix Σ we followed the methodology of Joe (2006),

taking [1, 4] as the range for the variances. For each data set, the independent variables

were generated from a (pj − 1)-variate standard normal distribution Npj−1(0, Ipj−1). We

considered two different distributions for the error terms ε = (ε′1, ε
′
2, . . . , ε

′
m)′. First, we

studied normal errors generated from Nnm(0,Σ⊗ In) and secondly we considered heavy

tailed errors following a Student distribution with 3 degrees of freedom, t3(0,Σ ⊗ In).

The response variables were then computed according to model (1).

In order to contaminate the data, we replaced the first 5%, 10% and 30% of ob-

servations in each block by bad leverage points, by replacing some predictor variables

with a random value from U([20, 30]) while keeping the response value unchanged. It is

well-known that these type of outliers, being both outlying in the space of the predictor

variables as in the errors, are considered the most influential type of outliers that often

cause the regression estimates to be highly biased (Rousseeuw & Leroy 1987). For each

simulation setting and each data set, we applied both FGLS and robust FastSUR. We

always used a breakdown value of 25%, except at those data sets with 30% contamination

where the breakdown value was set to 50%.

In order to measure the performance of the estimators, we evaluated their bias and

mean squared error:

Bias =

∣∣∣∣∣
∣∣∣∣∣ 1

K

K∑
k=1

β̂(k) − β

∣∣∣∣∣
∣∣∣∣∣

MSE =
1

K

K∑
k=1

∣∣∣∣∣∣β̂(k) − β
∣∣∣∣∣∣2

where β is the true regression vector, and β̂(k) is the FGLS or robust SUR estimate on

the kth sample.

The results are given in Table 1 for data setting A and in Table 2 for setting B. It can

be observed that for uncontaminated data sets, the FastSUR results are close to FGLS.

When there is contamination, the bias and MSE of FGLS explode, whereas the robust

FastSUR algorithm yields very satisfactory results that do not deviate much from the
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uncontaminated case. Only with a very large amount of outliers in each block, FastSUR

has a slightly increased bias and MSE.

Table 1: Simulation results for data setting A with 0%, 5%, 10% and 30% contamination,

and a normal or heavy-tailed error distribution.

Outliers 0% 5% 10% 30%

FGLS FastSUR FGLS FastSUR FGLS FastSUR FGLS FastSUR

Normal

Bias 0.212 0.212 15.203 0.241 23.084 0.223 33.599 0.259

MSE 3.145 3.176 358.724 3.565 884.582 3.529 1193.012 5.788

t3

Bias 0.305 0.301 16.537 0.292 24.247 0.313 32.463 0.782

MSE 9.405 9.545 359.924 6.918 906.993 7.577 1016.514 10.283

Table 2: Simulation results for data setting B with 0%, 5%, 10% and 30% contamination,

and a normal or heavy-tailed error distribution.

Outliers 0% 5% 10% 30%

FGLS FastSUR FGLS FastSUR FGLS FastSUR FGLS FastSUR

Normal

Bias 0.213 0.204 11.076 0.170 11.433 0.179 16.104 0.232

MSE 3.442 3.591 143.736 3.305 154.008 3.423 288.558 8.167

t3

Bias 0.376 0.393 11.084 0.311 11.415 0.348 16.116 2.176

MSE 8.642 8.744 144.803 7.669 156.985 8.198 274.167 10.892

We also ran more simulations in which the outliers were differently positioned in each

block, but the outcomes were always comparable to the results of Table 1 and 2. Whereas

FGLS collapses at data sets with outliers, FastSUR is more resistant to them.
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5 Outlier detection

Applying FastSUR on a real data set does not only result in robust parameter estimates,

it also provides diagnostics for outlier detection. First, based on the multiple regression

model (2), we can quantify the outlyingness of observations within one block by their stan-

dardized residual. For the ith observation of block j, it is equal to rij being the ith value

of the standardized residual vector rj = (yj −Xjβ̂j)/σ̂jj = (r1j, . . . , rnj)
′. Under gaussian

errors, an observation is typically considered to be outlying if its absolute standardized

residual exceeds 2.5.

Next, we can consider the multivariate regression model (3). The ith row in the data

matrices X and Y then corresponds with the measurements of the ith observation in

each block (i = 1, . . . , n). Consequently, the ith residual distance

ResDi =

√
ei(B̂)′Σ̂−1ei(B̂) (9)

can be used to detect outlying behavior of one of the n rows. Under normal errors, a

residual distance larger than
√
χ2
m,0.975 (the square root of the 0.975 quantile of the χ2

m

distribution) is flagged as being unusually large.

To illustrate these diagnostics, we study the Foreign Direct Investment (FDI) of six

countries (India, Indonesia, Columbia, Mexico, Turkey and Chile) over the period 1981-

2012. The countries constitute the m = 6 blocks in our SUR model, with measurements

of n = 32 years per country. FDI is considered to be the main source of economic

growth. Agiomirgianakis et al. (2003) referred that FDI is mostly defined as capital

flows resulting from the behavior of multinational companies (MNCs) and the factors to

affect the behavior of MNCs may also affect the magnitude and the direction of FDI.

As predictor variables we include several macroeconomic variables: the growth rate per

capita GPD, the rate of inflation measured by annual percentage change of consumer

prices, and the degree of openness which is computed as the sum of nominal export and

import divided by the nominal GDP. The data are collected from The World Bank, World

Development Indicators 1.

The relationship between FDI and its potential determinant variables has been a

prominent topic in the last two decades. In several studies SUR and panel models (Kok

& Ersoy 2009) were applied. The reason for using the SUR model is the possible existence

of common factors that influence all the countries at the same time and bring about the

cross correlations between the error terms.

1website:http://data.worldbank.org/data-catalog/world-development-indicators
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We apply both FLGS and FastSUR (with 50% breakdown value) on our data set and

compare the residuals by means of several outlier maps (Hubert et al. 2008). First, for each

country j we plot the FGLS standardized residuals rij versus the Mahalanobis distance

of the observed predictor variables MDij (for i = 1, . . . , n). The latter are computed as

MDij =
√

(xij − x̄j)′S−1j (xij − x̄j) (10)

with x̄j and Sj the mean and covariance matrix of Xj = (x1j, . . . , xnj)
′. If the predictor

variables are normally distributed, the squared Mahalanobis distances approximately have

a χ2
pj

distribution, hence we set the cutoff to
√
χ2
pj ,0.975

. For Indonesia this yields the

residual plot in Figure 1(a). The lines indicate the cutoff values for the residuals and

the Mahalanobis distances. Observations exceeding these cutoff values are considered to

be outliers according to the FGLS estimates. We see that for the years 1997, 2000 and

2012 the standardized residuals are slightly larger than expected, but the macroeconomic

predictor variables do not have abnormal values. These type of observations are called

vertical outliers. In 1998 the FDI can be well predicted, but the larger MD indicates

that the explanatory variables deviate from the other years. This observation is called a

good leverage point. Looking at the raw data for Indonesia we notice that all predictor

variables have an extreme value in 1998 (a negative growth rate of -14%, a huge inflation

rate of 75% and a degree of openness which is over 98%). Figure 1(b) shows the FastSUR

results. Here the vertical axis shows the standardized residuals based on the FastSUR

estimates, whereas the horizontal axis depicts the robust distances

RDij =
√

(xij − µ̂j)′Σ̂−1j (xij − µ̂j)

with µ̂j and Σ̂j the FastS estimates of the center and scatter of Xj. Now, the years 2001

and 2003 show up as very clear vertical outliers, and also in 2000 the fit is not very good.

In all these three years the FDI was negative. Furthermore, 1998 is indicated as a very

prominent good leverage point. Note that when we analyze solely the data from Indonesia

by means of OLS and robust S-regression, we obtain the residual plots of Figure 1(c) and

(d). In both cases the year 2003 is not detected as a vertical outlier.

The residual distance plot, showing all n residual distances (9), is depicted in Fig-

ure 2(a) for FGLS and (b) for robust SUR. Here, we notice a huge difference between

both estimates. Whereas the SUR estimates flag none of the years as outlying (although

there is an increasing trend), robust SUR finds that most of the recent years have a very

different behavior. This corresponds with the global financial and economic crisis period

which has a substantial effect on the emerging countries.
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Figure 1: Regression diagnostic plots of Indonesia based on (a) FGLS; (b) robust SUR;

(c) OLS and (d) robust S-regression.

6 Actuarial application

Stochastic claims reserving is a major actuarial problem in general insurance and with

the introduction of new regulatory guidelines for the insurance business there is a growing

awareness that modern statistical techniques should be used. Claims reserves are often the

largest position on the liability side of the balance sheet of a general insurance company.

We study claims that take months or years to emerge depending on the complexity of
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Figure 2: Residual distance plot based on (a) classical estimates; (b) robust estimates.

the damage. The delay in payment is, for example, due to long legal procedures or

difficulties in determining the size of the claims. Therefore, insurers have to build up

reserves enabling them to pay the outstanding claims and to meet claims arising in the

future on the written contracts. In this section, we describe how the reserve estimates

can be obtained using the SUR technique. Our FastSUR algorithm will then be plugged

in in this methodology and its good performance will be illustrated on a real data set.

6.1 Chain Ladder method

We assume that Cik (for 1 6 i 6 I and 1 6 k 6 K) are the cumulative claims amount of

accident year i and development year k. For representation of the data it is common to

use a run-off triangle as in Table 3.

The ultimate goal of claims reserving boils down to completing the triangle into a

square (or a rectangle if estimates are required pertaining to development years of which

no data are recorded at hand) since the total of the values found in the lower right triangle

equals the overall reserve R that will need to be paid in future. The Chain Ladder (CL)

method is the most popular method for estimating R. Many problems related with the

CL method have already been solved in literature, for example Mack (1999) included a tail

factor, whereas Kunkler (2006) and De Alba (2006) dealt with the presence of negative

values in the run-off triangle.

In practice, a general insurance company subdivides portfolios into several correlated

14



Table 3: Run-off triangle.
development year

accident year
1 2 · · · k · · · K − 1 K

1 C1,1 C1,2 · · · C1,k · · · C1,K−1 C1,K

2 C2,1 C2,2 · · · C2,k · · · C2,K−1
... · · · · · · · · · · · · · · ·
i Ci,1 Ci,2 · · · Ci,k
... · · · · · · · · ·
I CI,1

subportfolios, such that each subportfolio (which is represented by a run-off triangle) sat-

isfies certain homogeneity properties. However, the CL method applies to a single run-off

triangle and therefore neglects the contemporaneous correlations existing between sub-

portfolios. Since it is well-known that the CL predictions for the sum of several run-off

triangles in general differ from the sum of the Chain Ladder predictions for the single

run-off triangles (Aine 1994), the claims reserving problem is recently studied in a mul-

tivariate context (Braun 2004, Merz & Wüthrich 2007). Pröhl & Schmidt (2005) and

Schmidt (2006) introduced a Multivariate Chain Ladder (MCL) model, where the multi-

variate estimators take into account the dependence structure between the subportfolios

and which are optimal in terms of a classical optimality criterion. Merz & Wüthrich

(2008) provide a conditional mean squared error of prediction (MSEP) estimator for this

multivariate version, which is useful to quantify the uncertainties in the reserve estimates.

6.2 MCL in SUR framework

Zhang (2010) recently showed that the estimators in the MCL model can find their equiv-

alents in the SUR framework. We give a brief description of this General Multivariate

Chain Ladder (GMCL) model and refer to Zhang (2010) for more details. Assume that we

have m correlated run-off triangles with I accident and K development years (for simplic-

ity, we assume I = K) and that the claims from different accident years are independent.

Denote C̃i,k =
(
C

(1)
i,k , . . . , C

(m)
i,k

)′
as the vector of cumulative claims at accident year i and

development year k and consider the following model structure for development period k

(i.e. from development year k to k + 1):

C̃i,k+1 = BkC̃i,k + εi,k for i = 1, . . . , I − k. (11)

Here Bk is the corresponding m×m development matrix that contains the development
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parameters βj = (βj1, . . . , βjm)′ for run-off triangle j 6 m in the jth row and εi,k are

symmetrically distributed errors. Therefore, the development of one run-off triangle in

development period k can depend on the claims in the other run-off triangles at develop-

ment year k. Moreover, it is assumed that

E(εi,k|Di,k) = 0 (12)

Cov(εi,k|Di,k) = diag(C̃i,k)
1/2 Σk diag(C̃i,k)

1/2 (13)

where Di,k =
{
C

(j)
i,k |i 6 k, j = 1, . . . ,m

}
is the set of claims for accident year i up to and

including development year k and Σk is a symmetric positive definite m×m matrix.

Zhang (2010) has rewritten the model structure for development period k (11) as the

following system of equations
y1

y2
...

ym

 =


X1 0 . . . 0

0 X2 . . . 0
...

...
. . .

...

0 0 . . . Xm



β1

β2
...

βm

+


ε1

ε2
...

εm

 (14)

where for j = 1, 2, . . . ,m and n = I − k it holds that

• yj = C
(j)
≤,k+1 is the n× 1 vector of all observed losses at development year k+ 1 from

the jth triangle

• Xj =
(
C

(1)
<,k, . . . , C

(m)
<,k

)
is the n×mmatrix of the first n observations at development

year k from each triangle (hence X1 = . . . = Xm)

• εj is the n× 1 vector of error terms in the jth equation.

From (12) and (13) it follows that

Cov(ε) = E(εε′) = diag(V )1/2(Σk ⊗ In)diag(V )1/2

where ε = (ε′1, . . . , ε
′
m)′ and V =

(
(C

(1)
<,k)

′, . . . , (C
(m)
<,k )′

)′
is the nm × 1 vector of the

first n observed claims at development year k. Pre-multiplying both sides of model (14)

by diag(V )−1/2 leads to a regression model whose error covariance matrix Cov(ε∗) is

consistent with the SUR assumption:

Cov(ε∗) = diag(V )−1/2 Cov(ε)diag(V )−1/2 = Σk ⊗ In.

After estimating the development parameters βj (j = 1, . . . ,m) using the FGLS estimation

procedure consecutively for all development periods k = 1, . . . , K − 1, the overall reserve

estimate R̂ (for m triangles simultaneously) can be obtained.
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In the univariate setting (m = 1) Verdonck et al. (2009) and Verdonck & Debruyne

(2011) have already demonstrated the sensitivity of the CL method to outliers. Even

one outlier can lead to a huge over- or underestimation of the overall reserve estimate.

Since the traditional SUR estimator is not robust, the corresponding GMCL estimates are

also unreliable in the presence of outliers. Note that robustness now even plays a more

important role, since an outlier in one of the run-off triangles may now also affect the

estimates of outstanding claim amounts of the other run-off triangles. When we plug in

our robust SUR algorithm in the GMCL model, we obtain robust reserve estimates and

diagnostics for outlier detection.

6.3 Real example

To study the performance of the robust GMCL estimator, we focus on the real example

that is presented in Zhang (2010). The studied portfolio from Schedule P of General

Accident Insurance Company (published by NAIC) consists of three run-off triangles that

are given in Table 4, 5 and 6.

Table 4: Cumulative paid triangle from Personal Auto.

1 2 3 4 5 6 7 8 9 10

1 101125 209921 266618 305107 327850 340669 348430 351193 353353 353584

2 102541 203213 260677 303182 328932 340948 347333 349813 350523

3 114932 227704 298120 345542 367760 377999 383611 385224

4 114452 227761 301072 340669 359979 369248 373325

5 115597 243611 315215 354490 372376 382738

6 127760 259416 326975 365780 386725

7 135616 262294 327086 367357

8 127177 244249 317972

9 128631 246803

10 126288

Similar as in Zhang (2010), we fit the multivariate GMCL model for development

years 1-7 and the univariate CL model for development years 8-10 (since the gain of

increasing model complexity after year 7 is minor). Applying the classical and the robust

methods on the original data yields respectively an overall reserve estimate of 1 049 664

and 1 052 546, which is very close to each other. When we multiply for example claim C
(1)
2,2

by 10, then the classical and robust overall reserve estimate equals respectively 825 530 and

1 048 768. When there is a significant difference between the classical and robust overall

17



Table 5: Cumulative incurred triangle from Personal Auto.

1 2 3 4 5 6 7 8 9 10

1 325423 336426 346061 347726 350995 353598 354797 355025 354986 355363

2 323627 339267 344507 349295 351038 351583 352050 352231 352193

3 358410 386330 385684 384699 387678 387954 388540 389436

4 405319 396641 391833 384819 380914 380163 379706

5 434065 429311 422181 409322 394154 392802

6 417178 422307 413486 406711 406503

7 398929 398787 398020 400540

8 378754 361097 369328

9 351081 335507

10 329236

Table 6: Cumulative paid triangle from Commercial Auto.

1 2 3 4 5 6 7 8 9 10

1 19827 44449 61205 77398 88079 95695 99853 104789 105427 106690

2 22331 48480 68789 92356 104958 112399 115638 117415 118571

3 22533 44484 65691 88435 102044 112672 115973 118359

4 23128 51328 81542 98063 113149 121515 124347

5 25053 57220 84607 104936 117663 126180

6 30136 64767 92288 108835 121326

7 34764 69125 91354 111987

8 31803 63471 92439

9 40559 77667

10 46285

reserve estimate, then it is highly recommended to examine the data more closely and to

study the most influential observations. When plotting the residual distances obtained

with the classical and robust GMCL, we see from Figure 3 that only the robust version

succeeds in detecting the outlier. Let us now multiply C
(1)
2,2 and C

(2)
2,2 by 1.2 and divide C

(3)
2,2

by 1.2. The overall reserve estimates for the classical and robust GMCL method equals

respectively 1 036 407 and 1 048 768. Although this (multivariate) outlier configuration

does not have a very large impact on the overall reserve estimates, the robust GMCL

method still succeeds in detecting the atypical observation as we can see in Figure 4. Also

here the non-robust GMCL does not indicate any anomaly.
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Figure 3: Residual distance plot for the first contamination based on (a) classical GMCL

estimates; (b) robust GMCL estimates.
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Figure 4: Residual distance plot for the second contamination based on (a) classical

GMCL estimates; (b) robust GMCL estimates.
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7 Conclusion and outlook

Our new algorithm for robust SUR provides robust parameter estimates and useful outlier

diagnostics, as illustrated on two real data sets. Several extensions are interesting to study.

Robust inference might be obtained using the robust bootstrap as in Van Aelst & Willems

(2005). This would provide standard errors of the robust point estimates, and hence a

fast approach towards robust model selection. High collinearity among the predictor

variables could be alleviated by applying a robust PCA method to the predictor variables

as in Hubert & Verboven (2003) or by generalizing the robust PLS method of Hubert &

Vanden Branden (2003). When the set of predictor variables includes categorical ones, the

algorithm might need many more random subsets than the current N = 500. Techniques

as in Hubert & Rousseeuw (1996) or Maronna & Yohai (2000) could be extended towards

this setting. Also the use of multivariate τ -estimators could be considered, by combining

ideas from Maronna & Yohai (1997) and Salibian-Barrera et al. (2008).

Applied to the framework of stochastic loss reserving for general insurance we obtain

robust estimates in the GMCL model. The proposed methodology is helpful to build up

a more realistic reserve, certainly when used in addition to the classical GMCL estimates.

Another advantage of the SUR model in the claims reserving context is that is also allows

structural connections among triangles and hence allows to construct flexible models. In

the classical approach, this is already described and illustrated in Zhang (2010). Studying

this using the robust GMCL model could also be an interesting topic for future research.
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