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Abstract 

 

The purpose of this paper is to study optimal congestion taxes in a time 

allocation framework. This makes it possible to distinguish taxes on inputs in the 

production of car trips and taxes on transport as an activity. Moreover, the model 

allows us to consider the implications of treating transport as a demand, derived from 

other activities. We extend several well known tax rules from the public finance 

literature and carefully interpret the implications for the optimal tax treatment of 

passenger transport services. The main findings of the paper are the following. First, if 

governments are limited to taxing market inputs into transport trip production, the 

time allocation framework (i) provides an argument for taxing congestion below 

marginal external cost, (ii) implies a favourable tax treatment for time-saving devices 

such as GPS, and (iii) provides a previously unnoticed argument for public transport 

subsidies. Second, if the government has access to perfect road pricing that directly 

taxes transport as an activity, all previous results disappear. Third, in the absence of 

perfect road pricing, the activity-specific congestion attracted by employment centres, 

by shopping centres or by large sports and cultural events should be corrected via 

higher taxes on market inputs in these activities (e.g., entry tickets, parking fees, etc.). 
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1. Introduction 

 

In this paper, we consider optimal taxes for passenger transport services in a 

time allocation framework, allowing for potential substitution between market inputs 

and time in the production of trips. We first derive optimal tax rules under the 

assumption that the government cannot directly tax car transport, but only has access 

to taxes on the market inputs into car trip production (gasoline, maintenance, etc.). We 

then compare the results with optimal tax rules when the government does have the 

possibility to impose direct taxes on car transport via, e.g., a system of road pricing. 

To facilitate the interpretation of our findings, we relate the optimal tax expressions to 

several well known tax rules that have shaped economists’ thinking about optimal 

commodity taxes, including the Diamond-Mirrlees (1971a,b) efficiency theorem, 

Ramsey (1927) taxation and the Corlett-Hague (1953) rule. Moreover, the time 

allocation framework allows us to study the implications of treating transport demand 

as a derived demand from other activities. The derived-demand nature of transport is 

often emphasized, but the relevant implications for the optimal taxation of congestion 

have not formally been analyzed.   

In the sixties, a series of seminal papers and monographs -- including, among 

others, Walters (1961), Mohrung and Harwitz (1962), Strotz (1965), Marchand (1968) 

and Vickrey (1969) -- initiated a large literature on congestion pricing. This literature 

has been extended in several directions. For example, a variety of second best 

considerations were incorporated into the analysis (e.g., Verhoef, Nijkamp and 

Rietveld (1996), Small and Yan (2001)), the implications of the interaction of 

transport policies with the labour market for congestion tolls were explicitly 

recognized (Parry and Bento (2001), Van Dender (2003)), and the consequences of 

agglomeration economies for congestion policies were carefully studied (see, e.g., 

Safirova (2002)). Moreover, several authors emphasized the importance of congestion 

for trip scheduling decisions by road users and investigated the implications of 

schedule delay for congestion policies (Small (1982), Arnott, de Palma and Lindsey 

(1993)). Finally, the role of other pricing instruments has received considerable 

attention, in case optimal road tolls can for some reason not be implemented 

(Fullerton and Mohr (2003), Parry and Small (2005), De Borger and Mayeres (2007)). 

Although the literature surveyed above has greatly increased our 

understanding of the congestion problem and how to deal with it, it has not considered 
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the problem within a formal time allocation framework. The purpose of the current 

paper is to reconsider the problem of optimal congestion taxes within the time 

allocation setting originally developed by Becker (1965), and recently embedded in an 

optimal tax framework by Kleven (2000, 2004). We have two specific reasons for 

doing so. First, existing models of optimal congestion taxes typically assume that the 

time it takes to make a particular car trip depends on congestion levels but that, 

conditional on traffic levels, travel time is exogenous to the individual road user (see, 

among many others, Verhoef, Nijkamp and Rietveld (1996), Mayeres and Proost 

(1997), Parry and Bento (2001)). However, recent technological developments 

suggest the existence of additional substitution possibilities between money and time. 

Indeed, drivers can invest in time-saving devices such as GPS and ATIS; spending on 

these market inputs reduces the time it takes to make a trip. Moreover, Verhoef and 

Rouwendal (2004) have questioned the exogeneity of the traditional speed-flow 

relation on other grounds. They argue that, if one interprets travel speed as ‘average’ 

speed over an entire trip, drivers do have the opportunity to optimally select speed at 

given traffic flows. The available empirical evidence in fact widely supports the 

existence of a trade-off between time and monetary spending. For example, fuel use 

has been empirically found to be directly related to speed over quite a relevant range 

(see, e.g. Rouwendal (1996)). Furthermore, Fosgerau (2005) reports that, conditional 

on traffic levels, drivers with better cars drive faster. In addition, it is well known that 

people spend time looking for a parking spot in order to save on parking costs 

(Anderson and De Palma (2004)). Although the importance of these substitution 

possibilities between money and time deserves further empirical analysis, the question 

arises whether such potential substitution has implications for the optimal tax 

treatment of passenger transport, given the presence of road congestion
1
.  

A second reason for reconsidering congestion taxes in a time allocation 

framework is that, although all introductory textbooks on transport economics (see, 

e.g., Button (1993)) start out by emphasizing the derived nature of transport demand, 

existing models have not formally exploited this derived-demand nature. They either 

treat transport demand as a final demand (e.g., Verhoef et al. (1996)), or they assume 

                                                 
1
 Nielsen (2007) does use a time allocation framework to study optimal taxes in the presence of 

externalities. However, he assumes fixed proportions between time and commodity inputs in the 

production of all activities and focuses on atmospheric externalities that do not affect time use. 

Moreover, he does not study the distinction between taxing market inputs and direct taxes on transport 

as an activity. Finally, he does not analyze the implications of treating transport as derived from 

activities.  
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perfect complementarity with labour supply (e.g., Parry and Bento (2001)). The 

Becker-Kleven time allocation framework is the ideal vehicle to deal with transport as 

derived from various activities, and to study the role of taxes on transport and on other 

market inputs in transport-using activities under different assumptions on the nature of 

congestion (e.g., is it the joint consequence of multiple activities, or is it activity-

specific?) and on the available tax instruments (e.g., is an activity-specific congestion 

toll possible or not?). As we will show, taking account of the derived-demand nature 

of transport has a number of highly intuitive implications that, although probably not 

surprising to specialists in the field, have never formally been derived before.    

The main findings of this paper are easily summarized as follows. First, if 

governments are limited to taxing market inputs (such as gasoline, car maintenance, 

car accessories, etc.) into the production of car trips, the time allocation framework 

provides an argument for taxing congestion below the marginal external congestion 

cost. It also implies a favourable tax treatment for time-saving devices such as GPS 

and it suggests reducing public transport fares. Second, however, all these results 

disappear if road pricing is available. Market inputs in transport production should 

then neither be taxed nor subsidized. The intuition is that the road toll does not distort 

the choice of time versus commodity inputs in trip production, so that the extra 

stimulus of lower taxes on time-saving devices disappears. Similarly, the argument in 

favour of lower public transport fares disappears. We will argue that these findings 

are easily understood by reconsidering several famous results in the public economics 

literature in a household production framework, and allowing for congestion. Third, 

we show that explicitly treating transport demand as derived from activities implies a 

useful role for taxes on other market inputs in transport-using activities whenever 

optimal activity-specific congestion tolls are not possible. Not surprisingly, the tax 

structure raises taxes on inputs of activities that generate a lot of transport. The results 

imply, in the absence of perfect road pricing, partially correcting the congestion 

attracted by employment centres, by shopping centres or by large sports and cultural 

events via higher taxes on market inputs in these activities (e.g., parking, entry tickets, 

etc.). 

The paper has several obvious limitations. First, the focus on time allocation 

and congestion implies that we ignore other externalities, such as pollution and 

accident risks. Environmental pollution could be easily introduced but does not affect 

the findings of the current paper. Ignoring accident risks is not entirely innocuous, 
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however, as it is well known that accident risk and congestion are not unrelated (see, 

e.g., Verhoef and Rouwendal (2004)). Moreover, insurance against accident risks 

raises issues of moral hazard, in the sense that drivers may take less care in avoiding 

accidents and the associated damage than they would in the absence of insurance. 

Moral hazard has clear implications for the optimal tax treatment of driving that are 

ignored in the current paper. For example, since driving cannot be taxed directly, 

Arnott and Stiglitz (1986) suggest taxing complements and subsidizing substitutes to 

driving to cope with moral hazard. They argue in favour of taxing gasoline and cars 

(to reduce driving), subsidizing maintenance (to make driving less risky) and, 

assuming that moral hazard is less pronounced for other modes than for car use, 

subsidizing alternative modes. Second, the time allocation framework we use 

throughout the paper is a direct extension of Becker (1965) and Kleven (2000, 2004), 

despite the criticism of, e.g., Boadway and Gahvari (2006) and Gahvari (2007)
2
. 

These authors make the useful distinction between ‘labour substitutes’ (goods for 

which consumption time yields negative utility) and ‘leisure substitutes’ (time yields 

positive utility). They argue that the Becker-Kleven model implicitly assumes that all 

taxed commodities are labour substitutes, and that the optimal tax rules look quite 

different if goods happen to be leisure substitutes
3
. However, for the large majority of 

trips people do consider the time spent in transport as unpleasant, so that this 

restriction seems rather innocuous for our purposes. Moreover, the Becker-Kleven 

activity approach is especially attractive from another perspective, highly relevant for 

this paper: unlike the Boadway-Gahvari model, it allows for substitution in the 

production of transport activities, and it provides a simple and direct way to study 

transport demand as derived from the demand for particular other activities. A third 

important limitation of this paper is the set of tax instruments considered. Throughout 

the paper, we follow the standard Ramsey approach. This implies that we exclude 

                                                 
2
 Gahvari and Yang (1993) were the first to derive optimal tax rules in a model that explicitly takes into 

account that the consumption of many goods requires time. Assuming exogenously given time 

requirements for each of the consumption goods, they reconsider a number of well known tax results 

previously studied in the public economics literature (e.g., the optimality of uniform taxes, the Corlett 

and Hague (1953) rule, etc.). In an apparently independent effort, Kleven (2004) directly built upon the 

seminal paper by Becker (1965). He assumed consumers care about activities rather than goods, and 

allowed for possible substitution between commodities and time in the production of activities. If no 

substitution is allowed, the two models can be shown to be equivalent (Gahvari (2007)). 
3 Assuming fixed proportions, they show that goods for which consumption time is unpleasant should 

be taxed at a higher rate.     
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lump-sum taxes (such as head taxes) and focus on linear commodity taxes
4
. 

Moreover, we ignore heterogeneity and distributive concerns. Finally, there are no 

income taxes in the model
5
. 

To keep the analysis as transparent as possible, we study the role of the time 

dimension of transport trips for optimal taxes and the implications of transport as 

derived from other activities sequentially. The structure of the paper is therefore the 

following. In Section 2 we present the simplest version of the time allocation model. 

Transport is viewed as an activity that requires time and commodity inputs and that 

generates a congestion externality. It is assumed that the government is restricted to 

taxing market inputs. Section 3 reconsiders the optimal commodity tax structure when 

the government does have the instruments to tax the transport activity directly, 

through a system of road pricing. In Section 4 we formulate a model that treats 

transport demand as derived from other activities, and we discuss the implications for 

dealing with congestion. Finally, Section 5 concludes.  

 

2. Time allocation, congestion and optimal taxation of market goods 

 

 

In this section, we consider optimal taxation of market goods in the presence 

of congestion externalities, using the Becker-Kleven time allocation framework. 

Transport is treated as an activity that requires both commodity inputs (fuel, 

maintenance, etc.) and time, and it causes congestion. Throughout this section, we 

                                                 
4
 Although it is not obvious to exclude head taxes on informational grounds, we follow the traditional 

Ramsey literature and focus on distortionary commodity taxes only. Further restricting the analysis to 

linear taxes seems plausible. Nonlinear commodity taxes would  induce consumers to arbitrage, i.e., 

those with low marginal prices could buy in bulk and resell to those with higher marginal prices. 

Moreover, implementing nonlinear commodity taxes would require detailed information on individual 

consumption of goods. Although this may not be impossible to obtain for some goods – including both 

non-transport goods (e.g., electricity consumption) and some transport services (e.g., information on 

individual car kilometres) – for most commodities only anonymous aggregate transactions are 

observable.   
5
 The study of optimal commodity taxes with heterogeneous users and distributive concerns was 

initiated in the seminal paper by Diamond (1975); see Gahvari (2007) for an extension to a time 

allocation framework. Integrating indirect and direct taxation, Atkinson and Stiglitz (1976) argued that 

differential commodity taxes are not needed in the presence of an optimal nonlinear income tax 

provided commodities are weakly separable from leisure in utility. Recently, it has been shown that this 

result holds even if the income tax is not optimal (see, most forcefully, Kaplow (2006)). The author 

therefore argues that nonlinear income taxation (focusing on the trade off between redistribution and 

labour supply distortions) can be isolated from commodity taxation (focusing on distortions due to 

relative commodity prices); for further discussion on this ‘new’ view on optimal taxation, see Kaplow 

(2004, 2006). If the weak separability assumption between regular commodities and leisure does not 

hold, there still is a role for differentiated commodity taxes (see, e.g., Cremer, Pestieau and Rochet 

(2001)). 
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assume that it is not feasible to tax activities directly; only the market inputs in 

activity production can be taxed.  

For pedagogic reasons, we start in subsection 2.1 with a basic setup that 

assumes there is just one market input and one time input in the production of car 

trips. Optimal tax rules for this case are derived and interpreted in subsection 2.2. The 

extension to multiple car inputs is then discussed in subsection 2.3. We relate the 

results to several classic findings from the optimal tax literature, and we interpret the 

policy implications for the optimal taxation of passenger transport services. Although 

the derivations required to show our results are not difficult, to save space we relegate 

them to appendices.   

 

2.1. Congestion, time allocation and optimal taxation: the basic model 

 

The set-up of the most basic version of the model is as follows. Let the 

consumer be interested in (n+2) activities. There are n regular consumptive activities 

iZ  (i=1,2,….,n), activity cZ is car transport, expressed, e.g., in kilometres travelled. 

Finally, 0Z is pure leisure. Preferences are described by the direct utility function 

0 1( , ,......, , )n cu Z Z Z Z     (1)  

Leisure is assumed not to require market goods; hence, 0Z is directly expressed in 

time units. It remains untaxed
 6

. Following the original papers by Becker (1965) and 

DeSerpa (1971), we specify the production of activities from market goods and time 

as follows: 

( , ), 1,2,....,

( , )

i i i i

c c c c

Z Z X T i n

Z Z X T
 

                                                 
6
 Note that the assumption that leisure remains untaxed is not just an innocuous normalization issue; it 

imposes an important constraint on the available tax instruments (see, e.g., Dixit and Munk (1977) and 

Munk (1980); for a recent survey on the implications of various different normalizations for optimal 

commodity taxes, see Munk (2006)). Indeed, if all commodities are taxable, the optimal tax structure is 

just a uniform tax on all commodities. Since this is the equivalent of a lump-sum tax, the tax structure 

is first-best. This result, in a slightly adapted version, carries over to the time allocation model 

considered here. The optimal tax structure in the absence of pure leisure is to make taxes, as a 

percentage of the generalized price (that is the monetary price plus the time cost of consuming the 

good), uniform for all activities (see Boadway and Gahvari (2006), Gahvari (2007), Kleven (2004)). 

The presence of untaxed leisure does imply a role for differential taxes on the remaining taxed goods. 

As noted above, under some strong and unrealistic restrictions on the structure of preferences, optimal 

commodity taxes remain uniform even in the presence of untaxed leisure. For further details and 

discussion see, among others, Sandmo (1974), Atkinson and Stiglitz (1976), Deaton (1981), Besley and 

Jewitt (1995), and Gahvari (2007).   
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Assuming that all activities i=1,2,….,n  and c are produced under constant returns to 

scale we have 

, , 1,2,....,

,

i i i i i i

c c c c c c

X x Z T t Z i n

X x Z T t Z
 

where the ix and it are the unit requirements of market goods and time per unit of 

activity iZ . Note that they depend on input prices, unless production is fixed 

proportions, see below.  

 The consumer faces both a budget and a time constraint. They are given by, 

respectively: 

1

n

i i c c W

i

p X p X wT y     (2) 

0

1

n

i c W

i

Z T T T T     (3) 

where the ip ’s are unit prices of the respective market goods, WT  is working time, w 

is the wage rate and y is non-wage income
7
. 

An advantage of Becker’s formulation is that the constant returns to scale 

assumption allows the consumption and activity production decisions to be separated. 

The production decisions involve minimizing, for each activity, the unit costs of 

production; consumption decisions then follow from maximizing utility, where the 

budget restriction is defined in terms of generalized prices and income.  

Consider the production decision. Minimizing unit costs for all regular 

activities iZ  (i=1,…..n) 

,
. . ( , ) 1

i i

i i i i i i
x t

Min p x wt s t Z x t  

leads to the optimal input use of goods and time, denoted ( , ), ( , )i i i ix p w t p w , 

respectively. The optimal generalized price of activity i is given by  

( , ) ( , ) ( , )i i i i i i iQ p w p x p w wt p w    (4) 

Moreover, Shephard’s lemma applies to the unit cost function:  

                                                 
7
 Solving the utility maximization problem subject to the two constraints immediately implies that the 

resource value of time equals the wage (Becker (1965)). Note that there is a large literature on the value 

of time, indicating that time values deviate from the wage rate in more realistic settings (see the survey 

by Jara-Diaz (2008), among many others). Moreover, the resource value does not equal the value of an 

exogenous reduction in travel time (see, e.g., De Donnea (1971), Jara-Diaz (2008), Calfee and Winston 

(1998)). The point made in this paper is unaffected by assuming more realistic time values. 
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( , ) ( , )
( , ); ( , )i i i i

i i i i

i

Q p w Q p w
x p w t p w

p w
  (5) 

Next consider car transport trips. They are also produced using market and 

time inputs and, as argued in the introduction, there are good reasons to allow for 

some substitution possibilities. Fixed proportions are, therefore, treated as a special 

case. Car trips differ from other activities, however, in that (assuming fixed road 

capacity) the overall demand for transport activity cZ by all N consumers causes 

congestion. Total demand is denoted:  

cE NZ      (6) 

As is standard in the transport economics literature, an individual consumer takes the 

traffic level E as given when making decisions. Cost minimizing behaviour, 

conditional on the traffic level, then yields the optimal input choice of goods and time 

per unit of transport (kilometre or trip) as follows:   

      ( , ; ), ( , ; )c c c cx p w E t p w E  

The generalized price of transport is given by:  

( , ; ) ( , ; ) ( , ; )c c c c c c cQ p w E p x p w E wt p w E   (7) 

Shephard’s lemma yields  

( , ; ) ( , ; )
( , ; ); ( , ; )c c c c

c c c c

c

Q p w E Q p w E
x p w E t p w E

p w
  (8) 

Note that congestion raises the generalised price of transport, so 
( , ; )

0c cQ p w E

E
.  

The consumption decisions of consumers, substituting (3) in (2) and using (4) 

and (7), follow from the optimisation problem: 

  
0 1

0 1
, ..., ,

0

1

( , ,..., , )

. . ( , ) ( , ; )

n c

n c
Z Z Z Z

n

i i i c c c

i

Max u Z Z Z Z

s t Q p w Z Q p w E Z wZ wT y
 

This yields demands for all activities as functions of generalized prices: 

1 1( , ),...., ( , ), ( , ; ), , , 0,1,....,i n n c cZ Q p w Q p w Q p w E w wT y i n  

1 1( , ),...., ( , ), ( , ; ), ,c n n c cZ Q p w Q p w Q p w E w wT y  

The associated indirect utility function v(.) is: 

  1 1( , ),...., ( , ), ( , ; ), ,n n c cv Q p w Q p w Q p w E w wT y .  
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2.2. Optimal tax rules 

In this subsection, we report the optimal tax rules and carefully interpret the 

implications for the optimal taxation of passenger transport services. It is assumed that 

the government maximises the welfare of the standard individual subject to a budget 

restriction: 

1

1 1
,..., ,

( , ),...., ( , ), ( , , ), ,
n c

n n c c
p p p
Max v Q p w Q p w Q p w E w wT y  

1

. . ( ) ( , ) (.) ( ) ( , ) (.)
n

i i i i i c c c c c

i

s t p q x p w Z p q x p w Z R  

In this formulation, the demand for activities has been specified above, and R is 

required government revenue
8
.  The ( 1,...., )iq i n  and 

cq  are the pre-tax producer 

prices of the non-transport and the transport market inputs, respectively.   

The optimal tax rules are derived in Appendix 1. To interpret these rules let us, 

as is common in the optimal tax literature, start by assuming zero cross-elasticities 

between all activities i=1,….,n. In the standard commodity tax model this assumption 

yields the inverse elasticity rule, probably the best known version of the more general 

Ramsey (see Ramsey (1927)) rule
9
. This second-best tax rule implies that 

commodities should be taxed inversely proportional to the own price elasticity of 

demand. More price-sensitive commodities are to be taxed at relatively lower rates in 

order to minimize distortions: the deadweight loss (the loss in consumer surplus 

minus the tax revenue that goes to the government) of a given tax on such goods is 

much larger than for less price elastic goods.  

The equivalent of the inverse elasticity rules for the time allocation model with 

congestion can be written as follows (see Appendix 1): 

  
ˆ

j j

j j

j x jj j t

p q

p
  for all j  (9) 

ˆ

ˆ ˆ
c

c c c c

cc xc c

c x cc c t c c cc x c t

p q MECC

p p x
 (10) 

                                                 
8
 Note that we have normalized 1N  without loss of generality; it would drop out of the first-order 

conditions anyway. 
9
 With non-zero cross elasticities, the Ramsey rule argues for a tax structure that yields equal 

percentage reductions in the consumption of all taxed commodities. For more details see, for example, 

Diamond (1975) and Boadway and Gahvari (2006).   
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In these expressions, the ˆ
jj  (j=1,…,n; c) denote the own compensated elasticities of 

demand for activity j with respect to its generalized price, and ;
j j

j j j

x t

j j

p x wt

Q Q
 

(j=1,…,n;c) are the shares of market goods and time in the generalized price of j. 

Furthermore, j  is the substitution elasticity between commodity and time inputs in 

the production of activity j, and MECC is the marginal external cost of congestion 

associated with an increase in transport activity cZ . Finally,  is a parameter that 

reflects the difference between the net marginal social utility of income and the 

shadow price of the government’s budget restriction. The requirement for the 

government to raise a given revenue and the unavailability of a lump-sum tax 

instrument imply that the cost of funds exceeds the social value of income, so that 

<0. All parameters appearing in (9)-(10) are discussed in detail in Appendix 1. 

Interpretation of the tax rules is easy. The rule for non-transport market goods 

(9) is just a standard Ramsey tax rule adjusted for time allocation
10

. To see this, note 

that the time allocation model induces a distinction between the compensated price 

elasticities of activities with respect to their generalized prices (the ˆ
jj ) and the 

compensated demand elasticities of market inputs jX with respect to their market 

price jp . In Appendix 1 we show that: 

ˆ
ˆ

ˆ j j

j j

x jj j t

j j

X p

p X
 

Using this in expression (9) it becomes clear that, just like in the standard Ramsey tax 

model, the optimal tax rule implies taxes that are inversely proportional to the price 

elasticity of demand for the market good being taxed. However, the time allocation 

setting offers two further insights. First, (9) implies that, for given generalized price 

elasticities ˆ
jj , taxes are lower for market inputs into activity production that easily 

substitute for time (high j ). This substitution possibility makes the demand for the 

market input more elastic, hence the lower tax. Second, tax rule (9) plausibly suggests 

higher taxes on market goods that are used in highly time-intensive activities. This is 

easiest to see by assuming zero substitution between market inputs and time. It then 

                                                 
10

 This rule has also been derived in Kleven (2000), the working paper version of Kleven (2004). In the 

published version, he focuses on Leontief household production, not allowing substitution between 

money and time in activity production.  
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immediately follows that the tax is inversely proportional to the factor share of market 

goods. Noting that the factor shares sum to one, it immediately follows that a higher 

time input share raises the optimal tax. Conditional on a given activity elasticity ˆ
jj , 

more time-intensive production makes market commodity demand less elastic.  

The tax rule (10) for market inputs in the production of transport trips consists, 

as usual in the case of externalities (see, e.g., Bovenberg and Goulder (1996)), of a 

Ramsey component and a ‘Pigovian’ externality component. The former is the same 

as for the other activities. Compared to standard optimal tax models, the Pigovian 

component differs on two accounts. First, since the activity cZ causes congestion but 

only the market input cX can be taxed, it is the externality per unit of market input 

that is taxed. Second, if time and market goods are at least to some extent 

substitutable in transport trip production ( 0c ), then the Pigouvian component is 

below MECC. Only a fraction of the MECC per unit of market input is charged to 

consumers; this fraction will be smaller the larger the time-intensiveness of transport 

production and the larger the substitution possibilities. The intuition is again that, if 

market inputs can be substituted for time in producing transport trips, the lower tax on 

market goods stimulates the use of a less time-consuming technology in the 

production of transport trips. These time savings are welfare-improving.  

Next consider the case with non-zero cross elasticities. As argued extensively 

by, e.g., Munk (1980, 2006), the optimal tax structure is a compromise between, on 

the one hand, limiting the distortion in consumption of non-leisure activities and, on 

the other hand, discouraging the consumption of the untaxed activity. The tax rules 

obtained allow us to reflect on a wide range of relevant issues, including the taxation 

of transport as opposed to other activities, the optimal taxation of different transport 

modes, and taxation of different trip purposes (e.g., commuting, shopping, etc.) by the 

same mode. An appropriate instrument to illustrate the implications of assuming non-

zero elasticities is to derive the equivalent of the Corlett-Hague (1953) rule, which has 

been highly influential in the public economics literature for thinking about optimal 

tax design. The original rule was derived in a model with two standard goods plus 

leisure, and it strongly emphasized the role of the complementarity of goods with 

leisure for optimal tax rules.  

Consider, therefore, the time allocation model used above for the case where 

the consumer cares about leisure and two activities. The equivalent of the Corlett-
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Hague rule for our model with congestion is derived in Appendix 1, see expression 

(A1.9). For pedagogic reasons, however, it is instructive to first consider the 

implications in the absence of congestion. For two arbitrary activities (1,2), it follows 

from Appendix 1 that the adapted Corlett-Hague rule can then be written as:   

 

2

2 2

11

1

1 1
22 11 10 2

1

2 2

22 11 20 1
2

ˆ ˆ ˆ

ˆ ˆ ˆ

t

x x

xt

x

p q

p

p q

p

   (11) 

In this expression, the 
10 20
ˆ ˆ,  are the compensated cross price elasticities of demand 

for the two activities with respect to leisure, respectively.  

 The standard Corlett-Hague rule is obtained by assuming time inputs in 

activity production are zero (hence 
1 2 1 2

0; 1t t x x ). The rule then implies 

that the relative optimal taxes (as a fraction of final prices) only depend on the cross 

price elasticities of the goods with leisure. Therefore, goods that are more 

complementary with leisure should be taxed higher, and goods that are less 

complementary, or goods that substitute for leisure, should be taxed less. This has 

some obvious implications for the taxation of transport, even making abstraction of 

congestion. For example, interpret the first good as non-commuting transport and the 

second as commuting transport; the rule can then be interpreted as providing an 

argument for taxing commuting (a complement to labour, a substitute for leisure) at a 

lower rate than other travel purposes, such as pleasure trips, visits to friends or family, 

etc. Implementation would of course require distinguishing taxes on commuting 

versus other trip purposes; however, this is straightforward by providing income tax 

deductions for commuting. Empirical support for this tax differentiation according to 

trip purpose is given by, e.g., Van Dender (2003). 

 If we introduce time, but assume there is no substitution between inputs 

( 1 2, 0), we obtain the rule reported in, among others, Kleven (2004, Proposition 

4) and Boadway and Gahvari (2006, p. 1857). Noting that 1 ( 1,2)
j jx t j , the 

rule now implies (conditional on cross effects with leisure) that more time-intensive 

activities should be taxed at relatively higher rates. In a transport context, one 

interpretation is to have relatively high taxes on transport compared to many other 

activities, as transport is generally quite time-intensive. A second interpretation is to 
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treat the two activities as transport trips by two different transport modes. In that case, 

(11) suggests that the most time-intensive mode should be taxed higher. Loosely 

speaking, this could be interpreted as saying that fast modes should be taxed less than 

slow modes (of course, still making abstraction of external costs) so that, for example, 

car and rail should be taxed relatively less than bus. However, one should be careful 

with this interpretation: what matters is the factor share of time, not just the absolute 

time input.  

Introducing substitution between market goods and time in activity production 

(
1 20, 0 ) further implies (see (11)) to lower the relative tax on market goods 

that easily substitute for time. For example, assume that the existence of time saving 

devices in car transport allow substituting time and money by investing in GPS, etc., 

and that (because of fixed time schedules) such substitution is not possible for public 

transport, then this suggests lowering the relative tax on car transport.  

Finally, introducing congestion complicates the adapted Corlett-Hague rule 

substantially. It is given as (A1.9) in Appendix 1 for the case of two transport modes: 

activity 1 are trips by an uncongested public transport mode (say, rail), activity c are 

car trips. To interpret the rule and to isolate the implications of congestion most 

clearly, let us eliminate other complications: assume zero income effects, and assume 

the cost of funds equals the marginal utility of income. These assumptions imply 

0 . Moreover, assume no input substitution possibilities for rail transport, hence 

1
=0. In the standard model, these assumptions produce the first-best optimal tax 

structure in which the externality-generating good is taxed at marginal external cost, 

and all other commodity taxes (here rail) are zero. However, the time allocation model 

now yields the following (see Appendix 1):   

1 1
1

1

1
ˆ

cc c t

c

p q MECC

p Q
  

1 11 1 1

1
ˆ ˆ ˆ ˆc c

x cc c c

c c

p q MECC

p Q
 

where
1 111 1 1 11

ˆ ˆ ˆ ˆ ˆ 0
c cx x cc c c x c t . Assuming that rail and car 

transport are substitutes ( 1
ˆ 0c ), and using the definition of , it immediately 

follows that:  
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 1 1

1

0
p q

p
         c c

c c c

p q MECC

p p x
       (12) 

Consistent with previous findings, note that the market input in car transport is 

taxed at less than marginal external cost. Moreover, a direct consequence is that 

public transport is subsidized. The reason is that, if substitutability exists, taxing car 

inputs below external cost not only stimulates the production of transport in a less 

time-intensive way, but it also reduces the generalized price for car trips, raising 

demand and congestion. Given positive cross price effects, a standard second-best 

argument then suggests to correct this by reducing the public transport fare.  

It is useful to summarize the implications of the results discussed in this 

section for the optimal taxation of passenger transport modes. First, the time 

allocation framework obviously implies higher taxes on market goods that produce 

car trips to correct for congestion. More importantly, however, conditional on 

congestion, it suggests a more favourable tax treatment of car use as compared to the 

traditional framework. The existence of time-saving devices such as GPS or 

Advanced Traveller Information Systems (ATIS) implies potential substitution 

possibilities between money and time. This reduces both the Ramsey and the Pigovian 

components of the optimal tax rule, implying a lower tax. Second, interpreting the 

results in terms of the relative treatment of private and public transport, we also find 

relatively low taxes on car use, provided that the time cost share of car trips is lower 

than for public transport. Moreover, this effect is strengthened to the extent that 

substitution exists in the production of car trips, but not in public transport. Third, 

substitution possibilities also suggest public transport subsidies, because the inability 

to tax time inputs means that car transport is not charged the full marginal external 

cost. Fourth, the argument in favour of taxing commuting less than non-commuting 

transport clearly not only survives in a time allocation setting, it is actually 

strengthened to the extent that the time cost share of commuting is plausibly higher 

than for non-commuting trips. Finally, interpreting the results to compare the tax 

treatment of different public transport modes, the model gives arguments for taxing 

bus use higher than rail or metro use. Buses are slower and they cause more external 

costs than rail or metro.    

Two important remarks conclude this subsection. First, it has been argued that 

the importance of the share of the market inputs in the generalized price of activities 

(see, for example, (11)) gives the time allocation framework some informational 
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advantages over the standard commodity tax framework, making it easier to 

implement (see, e.g., Kleven (2004)). Under some specific conditions, the tax rules 

can be shown to depend only on factor shares, and elasticities are not even needed.
11

 

In terms of passenger transport taxation, this would be a great advantage, because the 

time cost shares for various transport services are much easier to determine based on 

observable information than, for example, various cross elasticities with leisure. 

Unfortunately, the argument is not compelling, because the conditions required to 

base optimal taxes on factor shares only are highly unrealistic, so that elasticity 

information is still needed in practice. Second, note that we assumed linear taxes, we 

ignored heterogeneity and distributive concerns. Even in the absence of congestion, 

introducing heterogeneity and allowing for nonlinear taxes does not lead to rules that 

are straightforward to interpret; moreover, as argued above, implementing nonlinear 

commodity taxes is not realistic on informational grounds. Allowing for distributive 

issues and heterogeneity (in earning ability) in a model of linear commodity taxes 

implies that, although the direct relation between time shares and optimal taxes has to 

be qualified, they continue to play a crucial role in the tax structure (see Gahvari 

(2007) for details).  

 

 

2.3. Extension to multiple car inputs 

 

The previous subsection suggested relatively low taxes on market inputs in 

transport if this induces time savings. We briefly extend the model to multiple car 

inputs. Not surprisingly, this immediately implies that time-saving devices, such as 

GPS, should be taxed at low rates, or even be subsidized.  

To show this, let cZ again be car trips, but assume that a car trip is produced 

using m market inputs such as the vehicle, fuel, maintenance, potential extras such as 

GPS, etc. Moreover, the trip requires time. We then have: 

1 2( , ,......., , )m

c c c c cZ X X X T  

where the ( 1,...., )l

cX l m  denote the various car inputs. Note that time is aggregated, 

the distinction between driving time, parking time, etc. is not explicitly made. It easily 

follows that the generalised price of a unit of transport activity can then be written as: 

                                                 
11

 For example, if leisure is separable in utility, and the subutility function of the regular activities is 

homothetic, then information on the factor shares and on the demand for leisure are sufficient to design 

the optimal tax structure (Kleven (2004), Gahvari (2007)).   
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1 2 1 2 1 2

1

( , ,..., , , ) ( , ,..., , , ) ( , ,..., , , )
m

m k k m m

c c c c c c c c c c c c c

k

Q p p p w E p x p p p w E wt p p p w E  

In Appendix 2, we derive the optimal tax rules for all market inputs j in regular 

activities and for the m market inputs into car trip production. The tax rule for 

commodity inputs in regular activities is obviously the same as in the previous 

subsection. The tax rules for the transport market inputs imply that, in general, inputs 

that are complementary to time are taxed at higher rates than inputs that are 

substitutes for time. To see this, assume for simplicity that there are just two market 

inputs. In Appendix 2, we then show the following result:  

 

1 1

11 221 1 1

2 2

11 22 2 22

1

1

c cc c c

c c c

c c cc c

c cc

p q t
w

p p x

tp q
w

p xp

    (13) 

This is a ‘Corlett-Hague type’ rule for the pricing of car inputs. Relative tax rates are 

largely driven by their effect on the time use per trip. To see the implications, let the 

first input be a time-saving device such as GPS. We then have 
1

0c

c

t

p
: making GPS 

more expensive reduces demand for this device and hence raises the time used in a 

standard transport trip. Assume for simplicity that the second input is neutral with 

respect to time (
2

0c

c

t

p
). Expression (13) then immediately implies that time-saving 

devices will be taxed at lower rates than other car inputs. If the time-saving effect is 

substantial, these devices can easily be subsidized in the optimal tax structure.   

 

3. Time allocation and road pricing  

 

 

In the previous section, we argued that the time allocation framework provides 

an argument (i) for taxing congestion below marginal external cost, (ii) for a 

favourable tax treatment of time-saving devices such as GPS, (iii) for reducing public 

transport fares. These results were based on the assumption that the government is 

limited to taxing market inputs into activities. In this section, we treat transport as an 

activity that can be directly taxed. Whereas direct taxation of activities seems 

infeasible for most other activities, in the case of transport it makes perfect sense in 

the future, when direct taxation of trips or kilometres travelled can be achieved 
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through systems of road pricing. Introducing road pricing is often preferred by 

economists over, e.g., fuel taxes, because only time-differentiated road tolls are 

efficient instruments to tackle congestion (Small and Verhoef (2007), De Borger and 

Proost (2001)): fuel taxes cannot differentiate between peak and off peak periods. In 

this paper, however, we do not focus on time-differentiation, but point out some 

differences between taxing transport inputs (fuel, etc.) and transport activities (road 

tolls) that follow from assuming a time-allocation framework.  

Suppose, therefore, that the government is not limited to taxing transport via 

the market inputs used, but that it can also directly tax the activity cZ . Denote the per 

kilometre tax by c . Budget and time restrictions now read   

1

n

i i c c c c W

i

p X p X Z wT y  

0

1

n

i c W

i

Z T T T T . 

For non-transport goods, the analysis of the previous case (subsections 2.2) still 

applies; nothing changes. For car transport, the generalised price now equals: 

( , , , ) ( , , ) ( , , )c c c c c c c c cQ p w E p x p w E wt p w E  

 

            In Appendix 3 we show that, again assuming zero cross-price elasticities 

between activities: 

j j

j j

j x jj j t

p q

p
     (14) 

c cp q   c c

cc

MECC Q       (15) 

Interpretation is straightforward. The tax rules for market inputs in activities other 

than transport are the same as before, see (9). As transport is concerned, note that 

inputs in car trip production remain untaxed, and only the direct tax on the activity is 

used to control congestion.  

That inputs in car production remain untaxed is not surprising; it follows 

from appropriate reinterpretation of the Diamond-Mirrlees (1971a,b) efficiency 

theorem. This was originally derived in a setting with strict separation of consumption 

decisions (by households) and production decisions (by firms) and showed that, if all 

commodities are taxable, second best optimal taxation retains production efficiency, 
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so that taxes on inputs in production are not needed. One implication for the transport 

sector was that, in the absence of externalities, freight transport should remain 

untaxed. In the household production framework used in this paper, we similarly have 

separation between household production and consumption decisions; the possibility 

to tax the consumption activity directly implies that the input tax becomes 

unnecessary. Moreover, the Pigouvian component of the optimal road toll is now just 

the MECC. This contrasts with the results of the previous section, where we found a 

Pigovian tax component below MECC. The lower input tax reduced the use of market 

inputs and raised the relative use of time. However, the road toll 
c
does not generate 

the extra distortion on the time allocation of the consumer and is, therefore, more 

efficient.  

Of course, the advantage of road pricing identified here comes additional to 

previous arguments in favour of road pricing given in the literature. For example, a 

time-differentiated toll is more efficient than a fuel tax because the latter cannot 

differentiate between peak and off peak; similarly, it can be differentiated by link on a 

network. Moreover, with a fuel tax the cost per kilometre varies with fuel efficiency, 

whereas congestion does not.   

 The policy implications of the different results in Sections 2 and 3 may be 

quite relevant. In the previous section, we found that considerations of time allocation 

provided an extra argument for lower fares for public transport; moreover, they 

implied an argument in favour of subsidies for time-saving equipment (GPS, ATIS, 

etc.). Both arguments disappear if road pricing is available. Market inputs should 

neither be taxed nor subsidized, including time-saving devices such as GPS. Subsidy 

arguments for time-saving devices only make sense when road pricing, for whatever 

reason, is not a feasible policy instrument. The intuition is that a road toll does not 

distort the choice of time versus commodity inputs in trip production, so that the extra 

stimulus of lower taxes on time-savings disappears.  

  

4. Transport as derived demand: optimal taxation and activity-specific 

congestion 

 

 

Transport is one of the most obvious examples of a derived demand (Button 

(1993)). Road and public transport users demand transport services because they are 
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interested in particular activities such as shopping, going to work, visiting friends, 

attending cultural attractions or sport events, etc. Despite this obvious observation, 

models dealing with optimal taxation of transport externalities typically treat transport 

as a final demand.  

In this section, we use the Becker-Kleven activity approach and ask whether 

the derived-demand nature has any implications for the optimal tax treatment of 

congestion. Note that it is not at all obvious that it does. For example, if congestion is 

the joint consequence of demands for a variety of different activities but an optimal 

road toll is available, there is no reason to expect tax rules to differ in any substantial 

way from the standard rules obtained for a model with multiple trip purposes (for such 

a model, see Van Dender (2003)). Similarly, if congestion is activity-specific 

(because, e.g., transport demands associated with shopping, working, etc. use different 

parts of the network, or they take place at different times of the day) but activity-

specific tolls are possible, the  derived-demand nature of transport again does not 

seem to have strong implications
12

. Finally, treating transport as an input into the 

production of activities bears quite some resemblance to the treatment of freight 

transport (an input in production), and it is well known that optimal congestion tolls 

reflect marginal external cost if perfect tolling instruments are available (see, e.g., 

Calthrop et al (2007))
13

.   

The derived demand nature of transport does make a difference in cases where 

no perfect toll instrument is available to tackle congestion. For example, consider 

situations where congestion is activity-specific. This may be quite realistic in practice. 

For example, think of shopping as an activity. Since shopping is often concentrated at 

large shopping centres, the activity leads to activity-specific congestion: shoppers 

driving towards the large shopping malls cause congestion in the neighbourhood of 

these malls, and the time losses are imposed on other shoppers. Similar stories can be 

told in the case of agglomeration of the workforce at employment centres, traffic 

related to concerts and sport manifestations, etc. Activity-specific tolls are not often 

                                                 
12

 In the first case, one easily shows that congestion is captured by the road toll, and that the commodity 

tax rules are independent of externalities. In the second case, one finds standard congestion tax rules 

where the Pigouvian component reflects activity-specific marginal external cost, and commodity input 

taxes are again independent of externalities. Formal proofs are available from the author. 
13

 If no perfect tolling instrument is available, then combinations of taxes or subsidies on other inputs 

combined with an output tax on the freight-using outputs can be welfare-optimal (Fullerton and Mohr 

(2003)). Of course, in the current paper, the equivalent of output taxes (taxes on final activities such as 

shopping) is not feasible, but taxes or subsidies on inputs in the production of activities are. 
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possible in such cases: at best, transport is taxed using an optimal uniform toll that 

does not differentiate between activities; at worst, a suboptimal toll or fuel tax exists 

that is rather vaguely related to external congestion costs. In what follows, we use the 

activity-based approach of this paper to show that in such cases there may be a useful 

role for taxes on the other market inputs into these activities to correct for congestion. 

Although the results to be derived are highly intuitive, they cannot be derived in a 

standard setting that treats transport as a final demand.  

We consider the simplest possible setup to derive our results. We limit the 

analysis to leisure and two activities; nothing is gained by considering more. Both 

activities require car transport as an input. Let  

1 1 1 1 1 1 1 1 1 1 1 1 1 1( , , ), ; ;Z Z X T C X x Z T t Z C c Z  

2 2 2 2 2 2 2 2 2 2 2 2 2 2( , , ), ; ;Z Z X T C X x Z T t Z C c Z  

where 
iC  is the total use of car transport in the production of activity i, and ic  is the 

number of kilometres needed per unit of activity i. Of course, , ,i i ix t c  depend on input 

prices if we allow for possible substitution between inputs. We do assume in this 

section (to focus clearly on the issue of derived demand) that transport itself is 

produced in fixed proportions, so that the distinction between commodity taxes and 

activity taxes that we discussed in the previous section can be avoided.  

The transport tax per kilometre is denoted c . Note that it is assumed to be 

uniform, i.e., it is not activity-specific. However, we do allow for the possibility that 

congestion is activity-specific; it may be generated by the traffic associated with a 

given activity and impose time losses only on other participants in this activity:  

1 1 1 1 2 2 2 2;E NC Nc Z E NC Nc Z   (16) 

This seems a reasonable description of at least some activities; people going to 

shopping centres cause local congestion there, but do not interact with people 

attending an evening concert, and vice versa. It follows that the generalized price of 

one unit of car transport is also activity-specific; it is given by: 

( , , , ) ( ) ( )i

c c c i c c i c i cP p w E p x E wt E   (17) 

The unit cost of iZ can be obtained from 

, ,
( , , , ) . . 1

i i i

i

i i i c c c i i i
x t c
Min p x wt P p w E c s t Z  

This leads to the cost minimizing input uses  



 

 

 

21 

( , , ), ( , , ), ( , , )i i i

i i c i i c i i cx p w P t p w P c p w P   (18) 

and the generalized unit price of activity i: 

   ( , , )i

i i cQ p w P .    (19) 

For later reference, note that by Shephard’s lemma and the definition of the 

generalized transport price: 

; ; ;i i i i c
i i i i

c i i i

Q Q Q Q Q
c x t c

p w E E
.  (20) 

Finally, consumer behaviour produces activity demands  

1 2

1 1 2 2( , , ), ( , , ),i c cZ Q p w P Q p w P wT y   

and indirect utility:  

1 2

1 1 2 2( , , ), ( , , ),c cv Q p w P Q p w P wT y  

 

The optimal tax problem can be formulated as:
14

 

1 2

1 2

1 1 2 2
, ,

( , , ), ( , , ),
c

c c
p p
Max v Q p w P Q p w P wT y  

1 1 1 1 2 2 2 2

1 1 2 2

. . ( ) (.)* . ( ) (.)* .

* (.) (.) (.) (.)c

s t p q x Z p q x Z

c Z c Z R
 

The tax rules are derived in Appendix 4. The general results are complex; however, 

the most important insights can be obtained by focusing on the case where 0 . We 

find the following rules: 

 
1

1

1
1 1

11

1 11 1
1 21 1

1 11

(1 )( )

c
c cx

c x xx

c P

p xp q
MECC MECC

p P
  (21) 

 
2

2

2
2 2

22

2 22 2
2 12 2

2 22

( )

c
c cx

c x xx

c P

p xp q
MECC MECC

p P
  (22) 

 1 2( ) (1 )( )c MECC MECC     (23) 

 

In these expressions, 0 1. Moreover,  
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 The government has in principle four instruments to control congestion and generate revenues, viz. , 

1 2, , ,c cp p p . However, given our assumptions, it is obvious that with the toll c available, there is 

no need to tax car inputs, hence 0c cp q . 
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,
i i

i

i i c i
x c

i i

p x P c

Q Q
 

are the cost shares of market goods and transport in the generalized price of activity i. 

Finally,  

         , , ,
i i

i i i ii i i i i c i c
xx cx xc cci i

i i i i c i c i

x p c p x P c P

p x p c P x P c
 

are own and cross price elasticities of input demands (market inputs x and car 

transport c) in the production of a given activity i.  

Interpretation of the tax rules (21)-(22)-(23) is as follows. First, not 

surprisingly, the optimal toll (23) is a weighted average of the two marginal external 

costs, the weight depending in a complex way on various elasticities (see Appendix 

4). Second, however, (21)-(22) suggest that due to the absence of activity-specific 

congestion tolls, the optimal taxes on commodity inputs in activities (e.g., 

commodities at shopping centres, tickets at theatres or sports events, etc.) do play a 

role in dealing with congestion. To see the implications, make the mild assumption 

that the cross effects of transport demand with respect to the price of other commodity 

inputs in an activity (the 1

cx , 2

cx ) are not too highly positive, so that the numerators of 

(21)-(22) are negative. Further arbitrarily assume that 1 2MECC MECC ; i.e., the first 

activity attracts much more transport and generates more congestion. Then 

expressions (21)-(22) immediately imply:  

1 1

1

0
p q

p
;  2 2

2

0
p q

p
   

In other words, the tax structure will take account of heavy congestion attracted by the 

first activity by making market inputs into this activity more expensive; the opposite 

holds for the market input in the second activity. This makes sense: the optimal 

uniform road toll implies that congestion associated with the first activity is taxed too 

low, congestion at the second activity is over-taxed.  

In practice, the results suggest that, in the absence of perfect toll instruments, 

the congestion generated by particular activities (congestion which typically occurs at 

very specific points in time and space) is corrected via, for example, high parking fees 

at shopping and employment centres, higher taxes on shops at shopping malls, higher 

taxes on ticket prices at concert halls and sports stadiums, etc. Doing so raises the 

generalized activity price, reduces demand and, hence, reduces congestion. Note that 
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the above results were derived for a setting where 0 . However, incorporating 

budgetary considerations (and hence Ramsey terms will appear, see Appendix 4) does 

not change the above insights: the message is that taxes on other market inputs in 

congestion-prone activities are actively used to correct for congestion externalities.  

Finally, market input taxes will play an even more explicit role if for some 

reason (political or otherwise) the uniform tax on transport is not optimal. Assume, 

e.g., that the transport tax is fixed at a suboptimal level c . The tax structure of the 

inputs in transport-using activities will then be used to further ‘correct’ for the 

suboptimal congestion tax. To see this, assume again there are only two activities and, 

as before, let cross-elasticities be zero to facilitate the interpretation. Simple algebra 

shows the relative taxes on the commodity inputs in both activities to be as follows 

(Appendix 4): 

1

1

1
11 1

111

1 11 1

1

1 11
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x xx

MECC c P

P p xp q

p
   (24) 

2

2

2
22 2

222

2 22 2

2
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c cx

c

x xx

MECC c P

P p xp q

p
   (25) 

 The intuition is obvious. Assume the transport tax is below marginal 

external cost for both activities. The tax structure will then charge higher taxes on 

market inputs into activities that generate much transport or on inputs that easily 

substitute for transport. For example, the tax structure raises the tax 1 1p q  on the 

first activity to the extent that 
1c
is large (transport is a large share of total activity 

cost), or that have a large downward effect on transport use ( 1

cx <0 and large in 

absolute value). 

The results of this section suggest tackling the congestion generated by 

particular activities by raising taxes on market inputs into these activities. This could 

imply, for example, high parking fees at shopping and employment centres, at cultural 

and sports manifestations, etc. Doing so raises the generalized activity price, reduces 

demand and, hence, reduces congestion. Provided that a substantial fraction of visitors 

come by car (if not, this policy may be less desirable because they do not discriminate 
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between users of different modes), it could also mean relatively high taxes on shops at 

shopping malls, higher taxes on ticket prices at concert halls and sports stadiums, etc.  

 

 

5. Conclusions 

 

 

The purpose of this paper was to study the optimal tax treatment of congestion 

in a formal time allocation setting. By extending several well known optimal tax rules 

we derived the following results. First, assuming that the government is restricted to 

taxing market inputs into transport trip production (fuel, maintenance, etc.), the time 

allocation framework provides an argument for taxing congestion below marginal 

external cost. The Pigouvian tax element is below marginal external cost and is a 

declining function of the importance of time in trip production and of the substitution 

possibilities between market goods and time. Market goods that substitute for time 

(such as, e.g., GPS and some ATIS technology) should be taxed at a lower rate than 

other inputs (such as fuel), or even be subsidized. Moreover, substitution possibilities 

between time and market goods in the production of car trips also provide an 

argument for subsidizing public transport. Second, however, in case the government 

can use road pricing to directly tax transport, we show that the Pigouvian tax 

component equals marginal external cost. In line with maintaining household 

production efficiency, it is no longer optimal to subsidize time-saving equipment, and 

the argument for reducing public transport fares disappears. Intuitively, the road toll 

does not distort the choice of time versus commodity inputs in trip production, so that 

the extra stimulus of lower taxes on time-saving devices or on public transport is no 

longer needed. Third, we show that explicitly treating transport demand as derived 

from activities implies a useful role for taxes on other market inputs in transport-using 

activities whenever optimal activity-specific congestion tolls are not possible. Among 

others, the results imply, in the absence of perfect road pricing, partially correcting the 

congestion attracted by employments centres, by shopping centres or by large sports 

and cultural events partially via higher taxes on market inputs in these activities (e.g., 

parking, entry tickets, etc.). 
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Appendix 1 

 

Consider the problem: 

1

1 1
,..., ,

( , ),...., ( , ), ( , , ), ,
n c

n n c c
p p p
Max v Q p w Q p w Q p w E w wT y  

1

. . ( ) ( , ) (.) ( ) ( , ) (.)
n

i i i i i c c c c c

i

s t p q x p w Z p q x p w Z R  

The first-order condition for an arbitrary market input price jp  in a non-transport 

activity can be written as:  

1

1

( ) ( ) ( )

( ) ( ) 0

j c

j j c j

n
j j ji c

i i i j j j j c c c

i j j j j j

n
i c c c c

i i i c c c c

i c c j

Q Qv v dE

Q p Q E dp

Q x QZ Z
p q x p q x Z p q x

Q p p Q p

Z Q Z Q x dE
p q x p q x Z

Q E Q E E dp

  (A1.1) 

where is the shadow price of the government’s budget constraint. 

To simplify this expression, it is instructive to first look at the externality in 

more detail. Consider the effect of an increase in an arbitrary price jp (j=1,2,…,n; c) 

on the traffic level E. Differentiating  

cE NZ  

and using the demand function for car transport we easily derive: 

1

jc

j j

j

QZ
N

Q pdE

dp
                                 (A1.2)   

where c c

c

Z Q
N

Q E
is the feedback effect of congestion on demand (see Sandmo 

(2000), Mayeres and Proost (1997)). Note that the feedback effect dampens the direct 

effect of a price change whenever  is negative: more congestion increases the 

generalised price of car transport which itself reduces demand for transport and, 

therefore, congestion. 

Without loss of generality, we have normalized N=1. Using Roy’s identity, 

Shephard’s lemma (5), and (A1.2), the condition (A1.1) can be rewritten as: 
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1

( ) ( ) ( )

0

n
ji c

j j i i i j j j j j c c c j

i j j j

c
j

j

xZ Z
Z x p q x x p q x Z p q x x

Q p Q

Z
MECC x

Q

 (A1.3) 

where is the private marginal utility of income, and MECC is the full marginal 

external cost of an increase in activity cZ . It is given by: 

1

1 1
( ) ( )( )

1

n
c i c c c c

i i i c c c c

ic c c

MECC

Q Z Q Z Q xv
p q x p q x Z

Q E Q E Q E E

 

Note that this is a very general definition, capturing budgetary and feedback effects of 

increases in transport flows. Congestion does not only have a direct welfare effect 

(i.e., it raises the generalised price of transport and, therefore, reduces utility), but it 

also induces changes in tax revenues (the generalised price change of transport affects 

all demand functions and all tax revenues). Moreover, the definition of the MECC 

takes into account the demand feedback. Finally, utility effects are transformed into 

monetary terms by dividing by the shadow price of the budget constraint. 

Rearranging (A1.3), and dividing by j jZ x , yields 

1

1 1 1
( ) ( ) ( )

n
ji c

i i i j j c c c

i j j j j c j j

xZ ZMECC
p q x p q p q x

Q Z p x x Q Z
 

Finally, use the Slutsky equation to transform price effects in compensated terms. 

This leads to:  

1

ˆ1 1 1
( ) ( ) ( )

n
ji c

i i i j j c c c

i j j j j c j j

xZ ZMECC
p q x p q p q x

Q Z p x x Q Z
         (A1.4) 

 

In this expression, ˆ
iZ  refers to compensated demands, and 

1

( ) ( )
I

i c
i i i c c c

i c

Z ZMECC
p q x p q x

y x y
 

is a parameter, the same in all tax expressions, that reflects the difference between the 

marginal social utility of income, corrected for external costs, and the shadow price of 

the government budget constraint. For the marginal social utility we refer to, among 

others, Diamond (1975)). 
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A completely analogous procedure applies to the first order condition for the 

price of market goods used in transport production 
cp . We find: 

1

ˆ ˆ1 1 1
( ) ( ) ( )

n
i c c

i i i c c c c c

i c c c c c c c

Z x ZMECC
p q x p q p q x

Q Z p x x Q Z
          (A1.5) 

Assuming zero cross-elasticities between all activities we can rewrite the resulting 

expressions as: 

ˆ 1
( ) ( )

j j j j j j j

j j

j j j j j j

p q Z p q x p
p x

p Q Z p p x
              for all  j   (A1.6) 

ˆ 1
( ) ( )

c c

c c c c c c
c c

c c c c c c

MECC
p q

x Z p q x p
p x

p Q Z p p x
             (A1.7) 

 

Now denote the own compensated elasticity of demand for activity j with respect to 

its generalized price as: 

ˆ
ˆ j j

jj

j j

Z Q

Q Z
                    (A1.8) 

Furthermore, let the share of market goods and time in the generalized price of j be 

given by, respectively: 

;
j j

j j j

x t

j j

p x wt

Q Q
                  (A1.9) 

Finally, following Kleven (2004), note that the price elasticity of input demand can be 

expressed in terms of the substitution elasticity between commodity and time input 

j  and the generalised cost share of time as follows: 

j

j j

j t

j j

x p

p x
.                 (A1.10) 

Substituting these results into (A1.6)-(A1.7) and rearranging, we find the rules (9)-

(10) discussed in the paper. Finally, differentiating j j jX x Z  with respect to jp  and 

using (A1.8), (A1.9) and (A1.10), it immediately follows that the compensated 

elasticity with respect to the market good can be written as:  

 
ˆ

ˆ
ˆ j j

j j

x jj j t

j j

X p

p X
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The next step is to derive the Corlett-Hague rule for this model. To do so, 

assume there are just two activities and leisure, and let cross-elasticities be nonzero. 

Assume that the two activities are activity 1 and car transport c. Using (A1.4) and 

(A1.5) for the case of these two goods, we can write the resulting two-equation 

system as follows: 

1 1

1

1 1
11 1 1 1

1

1 1
1

1

ˆ ˆ ˆ

ˆ ˆ ˆ

c

c c

c c
x t x c c

c c

c c
x c x cc c t cc

c c

p qp q MECC

p p Q

p qp q MECC

p p Q

            (A1.11) 

Now solve the system by Cramer’s rule, and use the homogeneity of compensated 

demands; this implies 
11 1 10 1 0
ˆ ˆ ˆ ˆ ˆ ˆ0; 0c c cc c

, where 
10 0
ˆ ˆ, c

 are the 

compensated cross elasticities between the two goods and leisure, respectively. 

Finally, divide the first percentage tax by the second to find: 

1

1 1 1 1

1

1 1
11 10 1

1

11 0 1 11 1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )

c

c c

c

t

x cc c c c t

x c

c c
t

x cc c cc x t x c c
c

x c

MECCp q
Qp

p q MECC
p Q

 

                    (A1.12) 

 

This is the Corlett-Hague equivalent for our model with time allocation, substitution 

between market inputs and time in activity production, and externalities. The standard 

Corlett-Hague rule immediately follows as a special case. Ignore time allocation 

issues (hence 
1

0
ct t , 

1
1

cx x ), and assume there are no externalities. For 

further interpretation, we refer to the main body of the paper.    

Finally, assume zero income effects, and assume the cost of funds equals the 

marginal utility of income. These assumptions imply 0 . Furthermore, assume 

zero substitution in rail trip production. Solving (A1.11) then yields the following 

optimal tax rules:   

1 1
1

1

1
ˆ

cc t c

c

p q MECC

p Q
  

1 11 1 1

1
ˆ ˆ ˆ ˆc c

x cc c c

c c

p q MECC

p Q
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where 
1 111 1 1 11

ˆ ˆ ˆ ˆ ˆ 0
c cx x cc c c x c t .  

 

Appendix 2: Extension to multiple car inputs 

 

Consider the case of multiple inputs in transport production. The problem 

determining optimal taxes can be written as: 

1

1

1 1
,..., ,

( , ),...., ( , ), ( ,....., , , ), ,
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m

n n c C C
p p p
Max v Q p w Q p w Q p p w E w wT y  
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k k k m
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where

1

1 1(.) ( , ),...., ( , ), ( ,..., , , ), , , 1,2,...., ;m

i i n n c C CZ Z Q p w Q p w Q p p w E w wT y i n c  

The generalised price of a unit of transport activity can be written as: 

1 2 1 2 1 2

1

( , ,..., , , ) ( , ,..., , , ) ( , ,..., , , )
m

m k k m m

C C C C C C C C C C C C C

k

Q p p p w E p x p p p w E wt p p p w E  

Going through exactly the same derivations as in Appendix 1, it follows that 

the first-order conditions with respect to commodity input prices jp (j=1,2,….n) and 

car input prices l

Cp  (l=1,2,…,m) can be written as, respectively
15

: 

 

1 1

ˆ ˆ1 1 1
( ) ( ) ( )

n m
j k k ki c

i i i j j C C C

i kj j j j j j

xZ Z
p q x p q p q x MECC

Q Z p x Q Z
 

for all j 

1 1 1

ˆ ˆ1 1 1
( ) ( ) ( )

kn m m
k k k k ki C c

i i i C C C C Cl l
i k kc c C C c c

Z x Z
p q x p q p q x MECC

Q Z p x Q Z
 

        

   for all l  

 

Assuming zero cross-elasticities between activities and slightly rearranging yields: 

ˆ 1
( ) ( )

j j j j j j j

j j

j j j j j j

p q x p p q Z
p x j

p p x p Q Z
   

                                                 
15

 Note that the definition of MECC as well as the definition of slightly differs from the definitions in 

Appendix 1, due to the different tax instruments. In order not to overburden the text with different 

notation, we keep notation the same, despite the slightly different formulation of these concepts. The 

same remark holds for the following appendices as well.  
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1 1

ˆ1 1
( ) ( )

km m
k k k k kC c
C C C C Cl l

k kC C c c

x Z
p q p q x MECC l

p x Q Z
      

Obviously, the condition for taxes on market inputs into regular activities j is 

identical to (A1.6) above. To interpret the rule for car transport inputs, assume for 

simplicity that there are just two commodity inputs. Solving the first-order condition 

for the two car input taxes by Cramer’s rule and rearranging yields, after simple 

algebra:  

2 21 1

22 21 1 11

2 2 1 1

2 11 12 2 2

c c c cc c

c cc

c c c c c c

c c c

p xp q

p xp

p q p x

p p x

 

In these expressions,  

i j
c c c
ij j i

c c

x p

p x
 

Now use the homogeneity of the input demand functions into car trip production; this 

implies: 

         

1 2
1 2

1 1 1

1 2
1 2

2 2 2

c c c
c c

c c c

c c c
c c

c c c

x x t
p p w

p p p

x x t
p p w

p p p

  

Substituting and rearranging finally yields (13): 

1 1

11 221 1 1

2 2

11 22 2 22

1

1

c cc c c
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c c cc c
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p q t
w

p p x

tp q
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Appendix 3: The case of road pricing 

 

Denote the per kilometre tax by c . Budget and time restrictions now read   

1

n

i i c c c c W

i

p X p X Z wT y  

0

1

n

i c W

i

Z T T T T  
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For non-transport goods, the analysis of the previous case (subsection 2.2) still 

applies; nothing changes. For car transport, the generalised price now equals: 

( , , , ) ( , , ) ( , , )c c c c c c c c cQ p w E p x p w E wt p w E  

The consumer’s problem can be reformulated as 

0 1

0 1
, ..., ,

0

1

( , ,..., , )

. . ( , ) ( , , , )

n c

n c
Z Z Z Z

n

i i i c c c c

i

Max u Z Z Z Z

s t Q p w Z Q p w E Z wZ wT y
 

This yields activity demand functions: 

1 1( , ),...., ( , ), ( , , , ), ,i n n c c cZ Q p w Q p w Q p w E w wT y        i=0,....n 

1 1( , ),...., ( , ), ( , , , ), ,c n n c c cZ Q p w Q p w Q p w E w wT y          

The indirect utility function reads: 

      1 1( , ),...., ( , ), ( , , , ), ,n n c c cv Q p w Q p w Q p w E w wT y . 

 

The government’s problem is to solve 

1

1 1
,..., , ,
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Using the same simple derivations as in Appendix 1, we find that the first-order 

conditions with respect to commodity inputs ( 1,..., )jp j n  in regular non-transport 

activities, the price of transport commodity input cp , and the road toll c  are given 

by, respectively: 

1

ˆ ˆ1 1 1
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n
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For zero cross elasticities, this produces the results in the main body of the paper.   

 

 

 

Appendix 4: Transport as derived from other activities 

 

1. Optimal uniform road toll 

As argued in the main body of the paper, we restrict the analysis to two 

transport-using activities. The optimal tax problem can be formulated as: 

1 2

1 2

1 1 2 2
, ,

( , , ), ( , , ),
c

c c
p p
Max v Q p w P Q p w P wT y  

1 1 1 1 2 2 2 2

1 1 2 2

. . ( ) (.)* . ( ) (.)* .

* (.) (.) (.) (.)c

s t p q x Z p q x Z

c Z c Z R
 

where  

 ( , , , ) ( ) ( )i

c c c i c c i c i cP p w E p x E wt E   

are the generalized prices per kilometre of transport associated with activity i (i=1,2). 

Demands for activities are: 

1 2

1 1 2 2( , , ), ( , , ),i c cZ Q p w P Q p w P wT y  for i=1,2 

 

 The first order condition with respect to 1p can be written as, using Roy’s 

identity and Shephard’s lemma: 

1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1 1

1

1 1 1 1 1
1 1 1 1 1 1 1 1 11 1

1 1 1 1 1

( ) ( )

1
( ) 0c

c c

Z x Z c
Z x p q x x Z c x Z

cQ p Q p

PZ x Z c dEv
c p q x c Z c c Z

cQ Q P Q P E dp

(A4.1) 

We have immediately assumed zero cross elasticities between activities for simplicity. 

As always, is the shadow price of the government’s budget constraint.  

 Since congestion is activity-specific by assumption, let us reconsider the 

effect of an increase in 1p on the traffic level 1E . Differentiating  

1 1 2

1 1 1 1 1 1 1 1 1 2 2( , , ) ( , , ), ( , , ),c c cE NC Nc Z N c p w P Z Q p w P Q p w P wT y  

we easily derive: 
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dp E Q P P
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where 
1
 is the feedback effect of congestion on demand for transport associated with 

activity one. Using this result, (A4.1) can be rewritten as: 

1
1 1 1 1 1( ) ( ) ( ) 0

1 1 1 1 1 1 1 1 1
1 1 1 1 1

Z Q x Z c
Z x p q x Z MECC c x Z

cQ p p Q p
 

                      (A4.2) 

where 
1MECC  is the full marginal external cost of an increase in transport demand 

1C  associated with activity 
1Z . It is defined as: 

1

1

1

1 1

1
1 11 1 1 1 1 1( )

1 1 1 1 1 11 1 1 1 1
1 1 1c

MECC

PZ Q x Z Q cQv cp q x Z c Z
cQ P Q Q EP P P P

c c c c

        

                      (A4.3) 

Assuming zero income effects, rearranging (A4.2) and dividing by 
1 1Z x , 

yields after similar transformations as in Appendix 1: 

1 1 1

1 1
1 1 11 11 1 1

11 11 111 1

1 1 1 1 1

c c c
x xx c cx c cx

c c

c P c Pp q MECC

p P p x P p x
  (A4.4) 

Here
1 1

1

11 1

1 1

, c
x c

P cp x

Q Q
are the cost shares of market goods and transport in the 

generalized price of the first activity, respectively, and  

 1 11 1 1 1

1 1 1 1

,xx cx

x p c p

p x p c
 

are the own and cross price elasticities of input demands in the first activity.  

 By complete analogy, we have the first order conditions with respect to 2p :  

2 2 2

2 2
2 2 22 22 2 2

22 22 222 2

2 2 2 2 2

c c c
x xx c cx c cx

c c

c P c Pp q MECC

p P p x P p x
 

                     (A4.5) 

where the definition of the marginal external cost of congestion associated with 

activity two 2MECC is defined analogous to (A4.3); similarly, the feedback for 

transport associated with activity two 2 is defined in a similar way as for 1 .  

 Finally, consider the first-order condition for c . It can be written as, using 

Roy’s identity and Shephard’s lemma: 
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1 1 2 2

1 21 2

1 21 2

1 2
1 2( )

1 1 2 2
1 2

1 1 2 2( ) ( )
1 1 1 1 2 2 2 2

1 2

1 1 2 2
1 1 2 2

1 2

c c

c c

c c

P PdE dE
c cZ c Z c Z c Z c

E d E d

Z x Z x
p q x c Z p q x c Z

Q P Q P

Z c Z c
c c Z c c Z

c Q P Q P

1 1

2 2

1
1 1 1 1 1( )

1 1 1 1 1 11 1
1 1 1

2
2 2 2 2 2( ) 0

2 2 2 2 2 22 2
2 2 2

c

c

PZ x Z c dE
cp q x c Z c c Z

cQ Q E dP P
c c

PZ x Z c dE
cp q x c Z c c Z

cQ Q E dP P
c c  

 

Working out the effect of tolls on congestion, we have: 

 

1 1 2 2
1 1 1 2 2 21 2

1 21 2

1 2

;
1 1

c c

c c

Z c Z c
c c Z c c Z

Q P Q PdE dE

d d
 

 

Using these results and the definition of the activity specific marginal external 

congestion costs ((A4.3) and its equivalent for 2MECC ) we have, after simple 

algebra: 

 

 

1 2

1 2

1 2

1 21 1 1 1 2 2 2 2
11 1 22 11 2

1 1 2 2

1 2

11 1 22 11 2

1 21 2
11 1 22 11 2

(1 )

(1 )

(1 )

x xc x xc

c c

c c
c cc c cc

c c

c cc c cc

c c

p q p x p q p x
s s

p P c p P c

s s
P P

MECC MECC
s s

P P

    (A4.6) 

 

where 1 1
1

1 1 2 2

c Z
s

c Z c Z
is the share of activity one in total transport demand.  
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Next we turn to the solution of system (A4.4-A4.5-A4.6)
 16

. To solve, it will be 

convenient to replace the third equation (A4.6) by ((A4.6))-
1s *(A4.4)-

2s *(A4.5)). 

The resulting three-equation system can equivalently be written in matrix notation as 

follows: 

1 1

2 2

1 2 1 2

1 2 1 2

1

1 1 1

11 111

1 1

2

2 2 2

22 222

2 2

1 2 1 2 21 1

1 1 1 2

1 2 1

1
0

1
0

(1 )
(1 )

c

x xx c cx

c

c

x xx c cx

c

xx xx cx cc cx

c c

x x c c

xc xc cc

c c x x

c P

P p x

c P

P p x

s s
s s

P P

1 1

1

2 2

2

c

p q

p

p q

p
=

1

2

1 2

1 2

1
1 11

111

1 1

2
2 22

222

2 2

1 1 2 21 1
1 21 2

(1 )

c
c cx

c

c
c cx

c

c c

cc cx cc cx

x c x c

c PMECC

P p x

c PMECC

P p x

s s
MECC MECC

P P

 

 

The system has, therefore, the following structure: 

1 1

1
1 1 1 1

2 2
2 2 2 2

2

1 2 1 2 1 1 2 2

0

0

c

p q

p
d a a MECC

p q
d a a MECC

p
e e b b b MECC b MECC

 

where the meaning of the notation is obvious. The solution is given by: 

                                                 
16

 A few preliminary results immediately follow from this system of equations. First, in the presence of 

lump-sum taxes and activity-specific congestion tolls, setting all commodity taxes equal to zero and 

having the transport taxes equal to the respective marginal external costs solves the first-order 

conditions. Intuitively, since the transport tax directly taxes transport activity and not transport market 

inputs, there is no need to deviate from marginal cost pricing. Second, the tax rules for transport and 

the transport requiring goods are linearly dependent if there were no substitution possibilities between 

inputs into the production of the different transport requiring goods. The intuition is simple: if there is 

no input substitution then the externality can be taxed directly via the transport tax, or it can be taxed 

via commodity input taxes.  
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1 1
2 1 2 2 2 1 1 2 1 2 2 2 2

1

1
( ) ( ) ( ) ( )

p q
d b b e a a MECC MECC a d b a e

p

 

2 2
1 1 2 1 2 1 2 1 2 1 1 1 1

2

1
( ) ( ) ( ) ( )

p q
d b b e a a MECC MECC a d b a e

p

 

1 2 2 1 1 2 1 1 1 1 2 1 2 2 2 2

1
( ) ( ) ( ) ( )c e d e d MECC d d b a e MECC d d b a e

 

where 
2 1 1 1 1 1 2 2 2 2( ) ( )d d b a e d d b e a .  

To simplify, define  as follows: 

 2 1 1 1 1( )d d b a e
, so 1 2 2 2 2( )

1
d d b a e

 

It follows: 

1 1 1
2 1 2 2 2 1 1 2

1 1

1
( ) ( ) (1 )( )

p q a
d b b e a a MECC MECC

p d
  

2 2 2
1 1 2 1 2 1 2 1

2 2

1
( ) ( ) ( )

p q a
d b b e a a MECC MECC

p d
 

1 2 2 1 1 2

1
( ) (1 )( )c e d e d MECC MECC  

 

Finally, let there be a lump sum instrument and zero income effects so that 

0 , and use the definition of the terms 
1 2 1 2, , ,a a d d . Then we can write the tax rules 

as: 

1

1

1
1 1

11

1 11 1
1 21 1

1 11

(1 )( )

c
c cx

c x xx

c P

p xp q
MECC MECC

p P
 

2

2

2
2 2

22

2 22 2
2 12 2

2 22

( )

c
c cx

c x xx

c P

p xp q
MECC MECC

p P
 

1 2( ) (1 )( )c MECC MECC  

These are the expressions discussed in the paper. 

 

2. Suboptimal uniform road toll 
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Finally, assume the transport tax is fixed at a suboptimal level c . As before, 

let cross-elasticities be zero to facilitate the interpretation. The first order conditions 

with respect to 
1 2,p p  are given by (A4.4)-(A4.5), but adjusted for the exogenous toll 

level:  

1 1

1
1 11 11 1

11 111

1 1 1

c c
x xx c cx

c

MECC c Pp q

p P p x
 

2 2

2
2 22 22 2

22 222

2 2 2

c c
x xx c cx

c

MECC c Pp q

p P p x
 

We immediately have: 

1

1

1
11 1

111

1 11 1

1

1 11

c c
c cx

c

x xx

MECC c P

P p xp q

p
 

2

2

2
22 2

222

2 22 2

2

2 22

c c
c cx

c

x xx

MECC c P

P p xp q

p
    


