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Abstract

The paper considers a definition of Through-The-Cycle (TTC) as independent from
an economic state that can result into a time-varying TTC Default Probability
(PD). A Top-Down approach is proposed to transform Hybrid PDs into TTC PDs
with the use of a Point-In-Time (PIT)ness parameter as an additional parameter to
the Vasicek Model which expresses the dependency of a Hybrid PD on a common
factor. The proposed framework aims to explain fluctuations in Observed Default
Frequency (ODF) and modeled default frequency time series. A novel approach is
considered that defines ODF to be analogous to an aggregated PIT PD stemming
from a perfect foresight model which is not available to the modeller but can be
assumed backwards in time for calibration purposes. An elaborate segmentation
framework is considered to understand differences in both the Vasicek correlation
and PITness parameter for a portfolio of obligors that can be applied to both retail
and non-retail portfolios.
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1 Introduction and overview

A robust Probability of Default (PD) calibration framework is expected to explain
fluctuations in observed and modeled default frequency. In our framework it is
considered that internal ratings and PDs are of a hybrid nature: they are neither
perfectly Point-In-Time (PIT) nor Through-The-Cycle (TTC) (IRTF, 2016; Aguais
et al., 2008). Since financial institutions are required to follow the Vasicek (1987)
model for capital calculations, past and future fluctuations are expected to be ex-
plained by both systematic and idiosyncratic movements. The former expresses
default risk due to dependence on a common factor, while the latter is specific to a
given credit risk profile. Hence, idiosyncratic fluctuations are considered indepen-
dent from the common factor and therefore considered to be the TTC component,
which leads to a congruous definition for TTC adopted in this paper. Although the
debate about the statistical meaning of TTC is still ongoing (see for instance Mayer
and Sauer (2017) for a recent review of various definitions), the proposed frame-
work builds on the premise that a TTC PD is a PD that is unaffected by a common
factor. Often the central tendency is used to represent the average economic condi-
tion, however in practice such an average contains many biases which are discussed
further on in the paper.

First, a formula is introduced that calibrates the Vasicek formula through a re-
gression of internal Observed Default Frequency (ODF) timeseries and an external
timeseries which represent the common factor. The creation of ODF timeseries
requires clustering internal data into homogeneous groups that share the same sen-
sitivity towards a common factor. Instead of using the common rating segment
approach (Kupiec, 2009), each cluster is allowed to contain a mixture of different
idiosyncratic dependencies. The latter reduces the chance of having no default
observations which would be the case if we were clustering low idiosyncratic risk
profiles. An important part in the derivation of our formulae is that we consider
ODF to be analogous to PIT PD. Such a simplification is considered useful for the
calibration of Vasicek correlation and PITness. However, the simplification can only
be applied backwards in time and does not allow us to construct TTC PDs at the
current reporting period. Instead, only an aggregated TTC PD at the moment of
the ODF calculation is available. The need to construct TTC PDs for the current
reporting period on a more granular level is addressed in the third section where we
assume the availability of internal Hybrid PD timeseries. Furthermore, a non-linear
and linear regression between ODF and Hybrid PD timeseries is introduced. The
regression calibrates the PITnes for a group of obligors sharing the same sensitivity
to a scaled economic factor, i.e. the common factor scaled by Vasicek correlation.
Note that the linear regression approach assumes that Vasicek correlation is already
known. Therefore, we foresee in our framework that Vasicek correlation is calibrated
prior to calibrating PITness.

The above techniques require segmenting a portfolio of obligors in homogeneous
groups with respect to a common factor and the sensitivity of PD towards that com-
mon factor. The reasoning for the need of segments and an example of an heuristic
framework are expressed through a Top-Down approach. Our approach argues for
a linear regression to calibrate the Vasicek correlation and PITness parameter in
order to reduce the data requirements and simplify the statistical approach to cal-
ibrate TTC PD. Although historically the credit risk exercise assumes that rating
grades are available and they are the starting point to differentiate idiosyncratic
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risk between obligors (Aguais et al., 2008), the expectation in our framework is
that in a modern setting there is less reliance on internal or external rating grades.
As with recent publications of the European Banking Authority (EBA, see for in-
stance EBA/RTS/2018/04 (2018); EBA/GL/2019/03 (2019)), it is argued for the
use of risk factor models to express differences in idiosyncratic risk through credit
risk drivers. In case of model development it will be easier to construct Hybrid
PDs backwards in time compared to rerating obligors to collect historical internal
ratings.

The methods behind the proposed calibration framework are explained through-
out sections 2 and 3. Both sections assume that the Asymptotic Single-Risk Factor
(ASRF) model (Vasicek, 1987; Gordy, 2003) remains a good model to define TTC
PD albeit some of its assumptions such as the absence of serial correlation are con-
sidered improbable and addressed. Unlike in Kupiec (2009), Yang (2013), among
others, we recognize that the TTC PD may vary over time due to changes in id-
iosyncratic risk, as argued by Rubtsov and Petrov (2016). Instead of using rating
grades such as in Rubtsov and Petrov (2016), it is considered that TTC PD can
be expressed across different dimensions and not solely the rating grade. Therefore,
a TTC rating grade is not required to express the idiosyncratic risk. Instead, a
Hybrid PD is transformed into a TTC PD that will be time-varying due to changes
in idiosyncratic risk of a given obligor. In contrast, Rubtsov and Petrov (2016) as-
sume the TTC component to be constant while the intervals for mapping distance to
default (DD) to rating grades are assumed time-varying. In case of a time-varying
TTC PD, we argue that it may be deceiving to apply Ordinary Least Squares (OLS)
directly.

Section 3 focuses on the estimation of the PITness parameter in the Carlehed
and Petrov (2012) framework with the same assumption of a time-varying TTC PD.
Unlike the pairwise estimation proposed by Carlehed and Petrov (2012), much like
in the previous section, a more stable regression approach is adopted. When using
the proposed regression technique on Hybrid PDs, it becomes clear that Vasicek
correlation should be estimated before determining a TTC PD. The transformation
formulae from ODF and Hybrid PD to a TTC PD are illustrated in Appendix A.

In Section 4 we explain the proposed Top-Down approach in detail with the
introduction of a heuristic segmentation framework. As a first step, a portfolio of
obligors is divided into pools of shared dependency on a common systematic factor.
These segments can be further divided by idiosyncratic elements to identify obligors’
Hybrid PDs that share the same PITness. Both segments can be determined by
evaluating the quality of a differenced probit regression.

Section 5 gives a practical example of how to transform an index into a common
factor suited for probit regressions. In addition, the Top-Down framework’s six step
approach to calibrate a TTC PD is clarified for the provided example.

The concepts touched upon in this paper are further illustrated with an analysis
of a simulated synthetic portfolio in Section 6. A simulation is provided where
Hybrid PD is aggregated for a group of obligors; in practice, this could be useful
if the PD is not modeled at the obligor level but at a higher aggregation level.
Different modeling scenarios are set to point out the modeling fallacies that are
often encountered when calibrating a TTC PD.
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2 Vasicek correlation estimation

Our proposed Vasicek calibration technique starts with an ODF time series. ODF
is considered analogous to an aggregated arithmetic average of PIT PD for a PD
model with perfect foresight since ODF contains all available information of both
idiosyncratic and systematic risk components. In practice no such model is available
however the theoretical notion can be achieved backwards in time.

The calculation of ODF is segmentation specific and depends on how obligors are
pooled. The importance of segmentation in a Top-Down PD approach is elaborately
explained in Section 4. For now, the premise is that obligors are pooled in such a
way that they share the same sensitivity to a single common factor Z. In case
that obligor specific PDs are required, then a PD model needs to be introduced.
Transforming PDs into TTC PDs is investigated in Section 3.

The long-run average of ODF is often regarded as a TTC PD. It is argued
that when considered over a long period, the systematic effect averages close to
zero (Aguais et al., 2008). However, defining the appropriate period of reference
for calculating such an average is often challenging, e.g. multiple business cycles in
the historical data can over or underestimate the average PD which is considered
a biased estimate. Furthermore, the assumption of a constant TTC PD for a pool
of obligors is not realistic in practice. In fact, the idiosyncratic risk of a portfolio
can vary over time, e.g. due to in- and outflows of obligors or due to decisions
taken by the bank, such as modifications of lending conditions or policies (FCA,
2018)[IFPRU §4.6.8].

We consider a probit regression between ODF and a common factor Z to calcu-
late an aggregated TTC PD since we assume the relationship between the two to be
constant over time, noted as Vasicek correlation ρ, and therefore more robust than
calculating a time-varying TTC PD as an average ODF. The probit function, de-
noted as N−1(·), is the inverse of the cumulative distribution function (CDF) of the
standard normal distribution. A portfolio TTC PD N(Bt) at time t is the inverse
probit function of the arithmetic mean of n obligors’ specific TTC PD N(Bi

t) at that
time, where Bi

t is often referred to in a Merton (1974) framework as the distance
to default which expresses the idiosyncratic risk of a specific obligor i. Hence for a
group of obligors

N(Bt) :=

∑n
i=1N(Bi

t)

n
.

It is considered a market practice to first calibrate a TTC PD in the Pillar-1
Basel models, i.e. IRB set up, before calibrating the asset correlation that is usually
calculated in a Pillar-2 Basel model, i.e. economic capital exercise. The idea that
TTC PD can only be calculated after calibrating the Vasicek correlation reverses
the conventional order of the credit risk exercise in the Basel capital requirements
process. Hence, we emphasize the impact of the Top-Down approach on the entire
Credit Risk exercise performed by financial institutions.

We elaborate on the work of Kupiec (2009) and Yang (2013) who rely on ordinary
least squares (OLS) regression to estimate coefficients β0,t and β1 in

N−1 (ODFt) =
Bt − Zt

√
ρ√

1− ρ
= β0,t + β1Zt. (1)

From β1 = −
√
ρ/

√
1− ρ and β0,t = Bt/

√
1− ρ approximations for the Vasicek
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correlation ρ, but also TTC PD N(Bt) are derived:

ρ ≈ β2
1/(1 + β2

1) N(Bt) ≈ N(β0,t
√
1− ρ).

OLS however cannot accommodate for a time-varying TTC PD. Figure 1a illus-
trates a time-varying TTC PD and autocorrelated common factor Z. Given the
assumption that a stable relation over time between Zt and ODFt exists then the
time dependency of Bt implies time dependent intercepts for (1). This effect is
illustrated in Figure 1b. Direct application of OLS may clearly result in a poor
correlation estimate.
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Figure 1: Illustration of time-varying TTC PD and its effect on the estimated Vasicek correlation.
(1a) Observed Default Frequency (ODF) and time dependent through-the-cycle (TTC) PD on
the left axis. The common factor (Z) is shown on the right axis. (1b) Time dependent intercepts
in the derived relation between Z and ODF cf. the regression in (1). Direct application of OLS
does not capture the correct Vasicek correlation (constant slope).

We propose to circumvent this issue by considering the formal derivative of (1)
with respect to time t. To that end, let us write

∂

∂t
N−1 [ODFt] =

∂

∂t
β0,t + β1

∂

∂t
Zt := β1

∂

∂t
Zt + εt. (2)

What remains in the term εt depends entirely on the stochastic nature of Bt. This
term is quite flexible in the way it accommodates different assumptions for the
stochastic dynamics of Bt. In the simplest case, Bt is constant and εt = 0 vanishes.
If Bt is piece-wise constant, then εt = 0 everywhere except at a finite number of
breakpoints. When Bt is a Brownian motion, then εt is Gaussian white noise and in
case of an additional trend, then εt is white noise with a non-zero mean. Of course
more complex stochastic processes can be envisaged for Bt, e.g. a stochastic process
with discontinuous paths that would be more sensitive towards the size of the time
step, but that is beyond the scope of this paper.

Approximate numerical values for the main components of (2) can be obtained
from discrete difference quotients. In the simplest non-trivial case where Bt follows
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a Brownian motion, the slope β1 can then be estimated from (2) and OLS without
intercept as

∆N−1(ODF )

∆t
= β1

∆Z

∆t
. (3)

An intercept may still be included if there is a trend in Bt. Moreover, aside from
stabilizing the slope estimate β1, differencing has the additional benefit of removing
first degree autocorrelation. A linear regression with a random intercept is consid-
ered in the generalized mixed linear model framework. Saefken et al. (2014) provide
a general framework on how to estimate the coefficients in case distributions differ
from the normal distribution.

Once the slope β1 is reliably estimated in this way, and thus also ρ is obtained,
then the TTC PD at time t can be determined from equation (1) as

N (Bt) = N
[√

ρZt +
√

1− ρN−1 (ODFt)
]

(4)

A time-varying TTC PD is also considered by Rubtsov and Petrov (2016), where
Bt is assumed to be normally distributed and ρ is determined through moment
equations of ODFt and a Zt expressed through fluctuations of ODFt. Furthermore,
the authors explain how their TTC PD approach requires TTC ratings that are
achieved via stochastic thresholds for the distance to default within a given rating
grade. Compared to their approach, our proposed solution in (2) accounts for a
much broader dynamics of Bt which can be observed and tested. In addition, the
estimation of ρ is dependent on the relationship between ODFt and an external Zt

as intended in most credit risk frameworks.

3 Point-in-Time-ness calibration

In the previous section, the effect of Z on ODF is expressed through Vasicek corre-
lation. Within this section we expand the model with a PITness parameter in order
to investigate the effect of Z on a Hybrid PD and how to obtain a TTC PD from
a Hybrid PD. The type of underlying PD model for a given obligor is irrelevant at
this point. However, it becomes significant for segmentation purposes as shown in
Section 4.

A financial institution should understand where its models lie on the PIT/TTC
spectrum (FCA, 2018)[IFPRU §4.6.3]. To that end, Carlehed and Petrov (2012)
consider the following Hybrid PD model.

pα,t = N

(

Bt −
√
ραZt√

1− ρα2

)

, (5)

where 0 ≤ α ≤ 1 denotes the degree of PITness of the PD model. When α = 1, then
the PD model is truly PIT and when α = 0 then it is truly TTC. From equation (5),
one obtains the TTC PD expressed in function of the Hybrid PD as

N(Bt) = N
[√

ραZt +
√

1− ρα2N−1(pα,t)
]

. (6)

Equations (5) and (6) can be applied at single obligor level or on an aggregated
level of multiple obligors. When modelling with ODF as the perfect foresight PIT
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PD then α = 1 and we obtain the following formula for TTC PD.

N(Bt) = N
[√

ρZt +
√

1− ρN−1 (p1,t)
]

= N
[√

ρZt +
√

1− ρN−1 (ODFt)
] (7)

Here p1,t is a PIT PD with perfect foresight that for a pool of obligors equals the
observed ODFt as seen in Section 2. For 0 < α < 1, let pα,t = Hybrid PDt obtained
from a given PD model at time t. Equating both TTC PD expressions (6) and (7)
then gives

√
ρZt +

√

1− ρN−1(ODFt) =
√
ραZt +

√

1− ρα2N−1(Hybrid PDt),

which relates Hybrid PDt and Zt to the PIT ODFt in a non-linear fashion with
respect to α as

N−1(ODFt) =
(α− 1)

√
ρZt +

√

1− ρα2N−1(Hybrid PDt)
√

1− ρ
. (8)

Equation (8) is useful when the aim is to re-use Hybrid Basel PDs to obtain PIT
PD estimates for IFRS9. It can also be used to calibrate α through a non-linear
regression where Zt and probit Hybrid PDt explain probit ODFt.

However, provided that ρ has already been determined, as is the case in Section 2,
we propose a much simpler approach. When ρ is known, then equation (5) readily
implies

N−1 (Hybrid PDt) =
Bt −

√
ραZt√

1− ρα2
= γ0,t + γ1Zt, (9)

where γ1 = −
√
ρα/

√
1− ρα2 and γ0,t = Bt/

√
1− ρα2. Much like in equation (1),

OLS can be employed to estimate values for the coefficients γ0,t and γ1 from which
approximations for α and B are derived:

α ≈
√

γ21/
(

(1 + γ21)ρ
)

N(Bt) ≈ N(γ0,t
√

1− ρα2).

Of course, this approach omits the fact that the above TTC PD and the associated
intercept may be time-varying. In analogy to Section 2, differencing should be
applied to (9) when estimating α in this way. The latter is expected to be more
stable than the pairwise approach proposed by Carlehed and Petrov (2012).

Notice that the obtained α scales the given ρ, hence α quantifies the strength of
the Vasicek correlation with respect to Hybrid PD. Stated differently, α expresses
how much systematic risk remains in the Hybrid PD. As a result, the selection of Z
and the calibration of asset correlation and PITness can be used to transform any
obligor specific Hybrid PD into a TTC PD as illustrated in appendix A.

4 Top-Down Calibration

The TTC PD estimation approach introduced in Section 2 assumes a population of
homogeneous obligors such that the correlation between probit ODF and a common
factor Z is constant and maximal. It is mandatory that a proper choice of Z is
available. A modeler could introduce a composite Z, which weighs unique common
factors, e.g. country indices, in line with the portfolio composition. However, the
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composition of a portfolio is not expected to be constant, hence any assumptions
on portfolio composition increases model risk.

Rather than starting from a composite Z, we propose a Top-Down approach
embedded with a segmentation process to identify homogeneous sub-populations of
obligors with respect to systematic risk. For each segment, the ratio of defaulted
obligors over a period of time over the performing population at a given snapshot
t is referred to as ODFt, i.e. the observed default rate of a homogeneous segment
over a period of time.

A first segmentation level of a portfolio starts with the granularity of available
common factors, e.g. using macro or micro factors. A second level of segmentation
is determined by the type of factors considered that indicate to what type of cycles
obligors are sensitive to, e.g. business cycles or credit cycles. Finally, aligning those
common factor time series with respect to the associated ODF time series through
a time lag has a significant impact as well, which is illustrated in Section 6. Lagged
versions of the common factors ought to be included in the factor universe since
a factor can be a leading indicator of a cycle which is expected to be influenced
by the reason of default. Li and White (2009), for instance, argue that default
and bankruptcy frequency are independent. In the proposed framework such an
independence is translated to a requirement to split the population between default
observation from a days-past-due (DPD) trigger and defaults from a bankruptcy
trigger. The observed differences between the ODF time series associated to each
default flag are expected to be explained by the timing of the recognition of in-
solvency of an obligor. After all, defaults on loans are most commonly considered
to precede the request and acceptance of a bankruptcy declaration. Therefore, the
observed independence is expected to be explained in part by a different lag in the
associated Z time series.

After establishing different segmentation categories, the result of different probit
regressions should be used to evaluate the heuristic segmentation process and the
factor universe. Aside from statistical analysis, a thorough review of the underlying
data and definitions is also required. A good starting point is to compare internal
industry definitions to those of a common industry factor derived from external data
since they may differ.

Note that segmenting the population into subsets results into smaller sample
sizes and may cause periods without default observations. Such periods are not
suited for probit regression. Given that the time series of both ODF and a common
factor are sufficiently long, these periods, and their respective immediate neighbors
which account for their appearance in 2 periods due to differencing, can be removed
without impacting the quality of a regression. However, when evaluating different
regressions, it is important to use test statistics that are comparable, e.g. indepen-
dent from the number of observation points. Alternatively, in case there is not
enough data for obtaining ODFs, we expect market practitioners to enrich internal
data by adding representative external data.

In Section 3, a second probit regression is introduced where Z and the associ-
ated Vasicek correlation ρ are used to explain the variance of a Hybrid PD time
series. The PITness parameter α of regression (9) measures how much of the sys-
tematic component, as expressed in regression (1), is added to a TTC PD to obtain
the Hybrid PD. This PITness is diminished when Hybrid PDs are more idiosyn-
cratic. Therefore, the segmentation of the pool of obligors is continued along this
idiosyncratic dimension.
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Although Hybrid PDs that remain constant during consecutive periods indicate
more TTCness and less PITness from the proposed regression, having a constant
value is not the definition of TTC used in the Top-Down approach; therefore, when
analyzing the value of PITness the reason of a potentially low correlation factor
should be understood from a methodological point of view. Hence, as a first step
for the segmentation of the second regression, the source of constant Hybrid values
needs to be defined. Periods of constant Hybrid PDs can occur due to risk drivers’
values in the PD model that are not being updated. For instance, in the case of
corporate rating models, the impact of the updating frequency of financial state-
ments used to calculate the risk drivers can be reduced by aligning the sampling
frequency of both the Z and the Hybrid PD time series to the period of reference.
The frequency can be quarterly, semi-annual or annual, depending on the reporting
frequency of the obligor.

A related attention point is the presence of overrides. It is considered good
practice when a review of the ratings in the rating system happens at the same
frequency and timing of the obligor’s reporting period with a consistent override
framework. Should the override framework conflict with the TTC modeling phi-
losophy, it is advised to align the two. A good example of a conflict is an expert
opinion that is based on a forward looking view of the common factor used to eval-
uate the PITness of the rating. Often this forward looking view is incorporated in
pro-forma financial statements. The Hybrid PD, in such a case, will be translated
as less PIT according to the Carlehed and Petrov (2012) framework since this will
reduce the correlation between the time-series of the common factor with the Hybrid
PD. A forward looking view of the common factor that is incorporated in the rating
grade resulting into a lower α is not considered a weakness in the Carlehed and
Petrov (2012) methodology but it is rather a bad choice of incorporating a forward
looking view in a PD model. An expectation of future economic states is not an
idiosyncratic risk driver and should be reflected in scenario type of PD modeling.
Expert knowledge on future potential economic outcomes should be incorporated
in economic scenarios e.g. as used for IFRS 9.

In case of a TTC rating framework, overrides should intend to consistently cap-
ture idiosyncratic credit risk elements that are not captured by the underlying rating
model. The importance of consistency in a rating methodology is discussed in detail
by Topp and Perl (2010). In case manual overrides are not consistent, it is advised
to use ratings from the rating model before overrides as a segmentation variable.

Because α is related to the underlying Hybrid PD model, it depends heavily
on the way that a Hybrid PD is constructed. Rating grades - given that they are
the final output to a PD model - are a good starting point for the second level
of segmentation. Note that rating grades are often introduced as a segmentation
variable for Vasicek correlation (e.g. Kupiec (2009) and Yang (2013)), while others,
such as Grundke (2008), have argued that correlation is constant but its strength is
different across rating grades. We take the approach of the latter where the strength
of correlation is coined PITness in the Top-Down approach.

Representing segmentation in a flow chart structure is standard for decision tree
learning techniques. Although the idea of using machine learning algorithms to
automate segmentation has been applied intensively to credit risk modeling (see
for instance Bijak and Thomas (2012) and the reference therein), in this paper a
heuristic approach is suggested. A segmentation based on a thorough review of
the data and definitions is preferred since it leads to a better understanding of the
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segmentation results. Therefore, it is proposed to apply the flow chart, as illustrated
in Figure 2, when evaluating segmentation variables. The flow chart can help to
establish heuristic requirements for both retail and non-retail portfolios to have
sufficient granularity in their modeling data for future TTC PD calibrations.

5 Worked example of a Top-Down Probability

of Default calibration

This paper deals with other practical considerations, aside from segmentation, that
introduce bias in the estimated Vasicek correlation and PITness calibration. Since
Vasicek correlation implies an instantaneous and negative correlation between ODF
and Z, we argue that Z should be properly derived in order to meet those assump-
tions. That is, in case Z is positively correlated with ODF then the sign of Z can be
reversed and lags should be introduced to align the time series of ODF with Z. This
alignment is expected to be reevaluated in case of a change in default definition,
e.g. IFRS 9 applies a 90 days past-due default definition while IRB for sovereign
exposures use a 180 day rule (EBA/GL/2016/07, 2016). When Z is a leading in-
dicator of ODF, then from equation (4) future values of ODF can be produced
without forecasting Z on the condition that a Hybrid PD can be modeled e.g. via a
rating transition matrix. As a result, the leading property could reduce model risk
for Lifetime Expected Credit Loss models in those cases where the forecast period
is short.

In a Vasicek (1987) framework, Z is conceptually linked to a latent standard nor-
malized asset return series. Hence, it is natural, although not required, to also start
from a return series for Z. For example, macro-economic variables are often already
expressed as Year on Year log changes to transform a time-series to a stationary
variable that has eliminated the effect of seasonality. A common normalization is
via a standard normal score1. Alternatively, a standard normal Z can be obtained
after applying to the returns x the composite function

(

N−1 ◦ F
)

(x) entailing the
probit function N−1(·) and F (·) which is either the empirical CDF or a fitted CDF
of x. A fitted CDF can be beneficial to extrapolate tail behavior in case of a small
sample size or when very few negative returns are observed. The latter is important
since negative returns are generally associated with high default rates. As only Z
explains the variation of ODF, the normalization of Z will have a crucial impact on
the estimation of Vasicek correlation, as shown in the subsequent example.

The impact of the chosen normalization is illustrated in Figure 3, where the
returns of the Eurostoxx index are used to derive a common factor. As a starting
point, the year-over-year (YoY) log-changes of the index from December 1986 until
December 2014 have been calculated. The normalized common factor Z, used to
simulate2 ODF through equation (1), is derived from the returns after application
of the probit function composed with the empirical CDF. The Vasicek correlation
is then estimated using regression (3), once using Z and once using Z̃, the common
factor obtained from the standard score of the returns. It is seen that the latter
overestimates the Vasicek correlation because Z̃ consistently overestimates upturns
and underestimates downturns.

1Carlehed and Petrov (2012) use the standard score to normalize bankruptcy frequency.
2ODF is simulated for the same synthetic portfolio as summarized in Table 1 of Section 6.
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Segmentation Hybrid PD Calculation of PiTness (α)

Updating scoring data By reporting frequency

Differences in model design, operations, definitions and calibration approach By rating process

Regression with
Each branch with the best

linear fit, for a given range

of economic state variable,

between Z and ODF is

further segmented to

regress Z with Hybrid PD

Regression with

Figure 2: Proposed segmentation approach when regressing ODF and Hybrid PD with a common factor.

1
1



✶
✾
✽
✻
✲✶
✷
✲✸
✶

✶
✾
✽
✼
✲✶
✷
✲✸
✶

✶
✾
✽
✽
✲✶
✷
✲✸
✵

✶
✾
✽
✾
✲✶
✷
✲✷
✾

✶
✾
✾
✵
✲✶
✷
✲✸
✶

✶
✾
✾
✶
✲✶
✷
✲✸
✶

✶
✾
✾
✷
✲✶
✷
✲✸
✶

✶
✾
✾
✸
✲✶
✷
✲✸
✶

✶
✾
✾
✹
✲✶
✷
✲✸
✵

✶
✾
✾
✺
✲✶
✷
✲✷
✾

✶
✾
✾
✻
✲✶
✷
✲✸
✶

✶
✾
✾
✼
✲✶
✷
✲✸
✶

✶
✾
✾
✽
✲✶
✷
✲✸
✶

✶
✾
✾
✾
✲✶
✷
✲✸
✶

✷
✵
✵
✵
✲✶
✷
✲✷
✾

✷
✵
✵
✶
✲✶
✷
✲✸
✶

✷
✵
✵
✷
✲✶
✷
✲✸
✶

✷
✵
✵
✸
✲✶
✷
✲✸
✶

✷
✵
✵
✹
✲✶
✷
✲✸
✶

✷
✵
✵
✺
✲✶
✷
✲✸
✵

✷
✵
✵
✻
✲✶
✷
✲✷
✾

✷
✵
✵
✼
✲✶
✷
✲✸
✶

✷
✵
✵
✽
✲✶
✷
✲✸
✶

✷
✵
✵
✾
✲✶
✷
✲✸
✶

✷
✵
✶
✵
✲✶
✷
✲✸
✶

✷
✵
✶
✶
✲✶
✷
✲✸
✵

✷
✵
✶
✷
✲✶
✷
✲✸
✶

✷
✵
✶
✸
✲✶
✷
✲✸
✶

✷
✵
✶
✹
✲✶
✷
✲✸
✶

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

❚✐♠❡

❖
❉
❋

❖❉❋ ✇✐t❤ ρ = 0.02

−4

−3

−2

−1

0

1

2

3

4

❊
✉
r♦
st
♦
①
①
r❡
t✉
r♥
s
❛
♥
❞
Z

❊✉r♦st♦①① r❡t✉r♥s ✲ ❨♦❨ ▲♦❣ ❝❤❛♥❣❡s

Z ❢r♦♠ ❈❉❋ ✇✐t❤ ❡st✐♠❛t❡❞ ρ = 0.019
Z ❢r♦♠ st❛♥❞❛r❞ s❝♦r❡ ✇✐t❤ ❡st✐♠❛t❡❞ ρ = 0.023

Figure 3: Calibration of ρ for a synthetic portfolio of obligors dependent on changes in the
returns of Eurstoxx Index.

The above Eurostoxx example is appropriate for a pool of Euro-zone large corpo-
rate obligors. A credit risk modeler can apply the following steps for the calibration
of the TTC PD which is in line with the proposed Top-Down framework:
1. The existence of external time series that include eurozone large corporate oblig-

ors, as defined by the modeler must be verified. As a result it may happen that
no granularity is available, e.g. no access to individual Western-European and
Eastern-European time series is available;

2. The available time series are retrieved by the modeler: for instance, the Eurostoxx
index and the MSCI Large Cap Index. Each time series is normalized into a
potential Z by applying to its YoY log changes the probit function composed
with their empirical CDF3;

3. The common factor universe is extended by introducing lags to each Z time series
with a maximum lag of up to two years;

4. Two monthly time series of ODF are calculated from mutually exclusive default
triggers, one for default events flagged by a days-past-due (DPD) trigger and the
other by an unlikeliness-to-pay trigger (UTP), such as application to bankruptcy.
For both time series, ODF is calculated on the total population of eurozone large
corporates4;

5. For each combination of ODF and Z time series, the Vasicek correlation is es-
timated using regression (3). For each default trigger, only Z associated to the
best linear fit is retained, determined by the coefficient of determination;

6. For each respective default trigger, the TTC PD is determined from equation (4)
using the calibrated Vasicek correlation parameter and the most recent ODF and
Z observations. The final TTC PD is then the sum of the two TTC PD estimates

3Should include, for instance, the dot-com bubble to capture the left side of the distribution’s tail.
4Removes the requirement to express a TTC PD for each sub-population since ODF is expressed as a

percentage of the total population.
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since the framework requires them to be independent time-series. This TTC PD
represents the aggregated default risk of the portfolio at the period of the last
ODF calculation, i.e. the probability of default regardless of the type of default.
In case a more granular PD is required and (or) a PD for the current reporting

period, Hybrid PDs can be transformed to more granular TTC PDs. Hence, the
PITness of Hybrid PDs needs to be determined. We may extend step 5 above by
further segmenting based on reporting frequency. In case two reporting frequencies
exist, quarterly and yearly, this will result in 4 segments, 2 for each Z. In case of
differences in the rating process influencing the hybrid nature of the associated PDs
this could be added further to the segmentation. Given the split between DPD and
UTP in step 6, the PD model should share the same segmentation so that there is
a Hybrid PD expressing ODF for DPD triggers and another Hybrid PD for UTP
triggers. It is important to note that a default observation cannot appertain to both
definitions, especially since it is expected that a UTP flag leads a DPD flag. Hence,
both triggers are expected to be mutually exclusive and exhaustive. After defining
all segments, the PITness α for each segment is determined based on the differ-
enced version of regression (9) using the previously calibrated Vasicek correlation
parameter and the associated Z. Analogous to the ODF example, the independence
between the Hybrid PD of a DPD case and a UTP case allows us to aggregate both
probabilities after transforming the Hybrid PD to its TTC component to express
the TTC PD of a specific obligor.

For the interested reader, both the above and subsequent simulations are avail-
able in R code as supplementary material on the publisher’s website.

6 Simulation

The subsequent simulation aims to introduce the reader further to the practicalities
of the proposed estimation methodology with some concrete examples and illustra-
tions.

In total 1000 different realizations of a single common factor Z are created.
First, a highly autocorrelated asset return time series is constructed through a
standard normal bivariate. From this time series a standard normal Z is derived
from application of the probit function composed with its empirical CDF. For each
Z realization, ODF and Hybrid PD values are then simulated for a portfolio of 5000
entities. To simplify the simulation, we consider the portfolio’s composition to be
constant and assume that at every time step an entity can be either in default or
performing independent of its previous states: that is, no assumption of a recovery
period is made. At time t, an obligor i then defaults when its normalized asset return
value Zt

√
ρ+ Y i

t

√
1− ρ drops below its normalized default threshold Bi

t. Here ρ is
given and Y i

t is simulated through a random standard normal and represents the
idiosyncratic contribution to the normalized asset return. Also Bi

t is given and is
derived from the TTC PD segment to which the obligor belongs. The parameters
used for the simulation are summarized in Table 1. The simulated portfolio consists
of three different TTC PD segments or risk profiles having the same dependency
towards Z. Hence, the portfolio TTC PD is a composite of different TTC PDs. Also,
a structural break is introduced to these segments in the middle of the observation
period. The TTC PD of each segment and, consequently, the portfolio TTC PD is
increased by 5% (absolute) in the second half of the observation period, mimicking
an increased risk profile. Finally, to generate Hybrid PD values, equation (8) is
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used. Hence, Z and the simulated ODF values are used directly without the need
to introduce a rating framework.

Number of simulations 1000
Time period (Months) 120
Lead period of Z on ODF (Months) 3
Autocorrelation asset returns, Z 90%
Vasicek correlation (ρ) 2%
Degree of PITness (α) 50%
Number of TTC PD segments 3
TTC PD per segment* 1.2%; 5.6%; 10.0%
Entities per segments 833; 2500; 1667
Total entities of the portfolio 5000
Expected Portfolio ODF* 6.3%

Table 1: Simulation parameters. The * indicates the base case, before a structural break of
+5% is added to the TTC PD per segment.

A representative relation between ODF, Hybrid PD and Z is illustrated in Fig-
ure 4a with an example of one of the common factors. The associated input data
for regressions (1) and (9) is shown in Figure 4b. Note that the structural break is
clearly visible for both ODF and Hybrid PD. Nevertheless, differencing is applied
for each respective estimation.
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Figure 4: Illustration of a time-varying TTC PD and its effect on the estimation of the Vasicek
correlation and PITness. (4a) An example of a realization of Z with simulated ODF and Hybrid
PD. (4b) The structural break introduced to the ODF is clearly visible.

The graph in Figure 5 shows the simulated ODF distributions on a portfolio level
per observation period with a boxplot. That is, each timestep has a boxplot that
shows the distribution of portfolio ODF at that time for all of the 1000 realizations
of Z. The boxplot midline is the median ODF, with the upper and lower limits of
the box being the third and first quartiles respectively. The whiskers extend up to
1.5 times the interquartile range from the top (bottom) of the box. Notice that the
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structural break introduced in the ODF values is again very visible near the middle
of the observation period.
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Figure 5: Boxplot of simulated portfolio ODF distributions per observation period

In order to evaluate the advantage of our suggested regression approach and
selection criteria, five different scenarios are introduced when estimating Vasicek
correlation and PITness. These scenarios are summarized in Table 2.

Sc. The modeler uses ..

1. A suitable common factor (denoted by Z(2), similar to the actual Z(1) except for a structural
break), but does not introduce a lag (τ = 0).

2. A wrong common factor (denoted by Z(3) highly correlated with Z(2)) and does not introduce a
lag (τ = 0).

3. A suitable common factor (again Z(2)) and introduces the correct lag (τ = 3)
4. A wrong common factor (again Z(3)) but introduces the correct lag (τ = 3).
5. The actual common factor (denoted by Z(1), sharing the structural break with ODF) and intro-

duces the correct lag (τ = 3)

Table 2: Different simulation scenarios (Sc.).

The graph in Figure 6a shows the distribution of the estimated Vasicek correla-
tions ρ per scenario for all simulations. From the results it is interesting to observe
that identifying the correct lag (τ = 3) is a necessary condition to quantify the
actual Vasicek correlation of 2%. It is, of course, not a sufficient condition, because
even though the wrong common factor Z(3) is very dependent on the suitable com-
mon factor Z(2) (Z(3) shares a correlation of 70% with Z(2)) in scenario 4, hardly
any correlation is detected using this common factor.

Before calculating the PITness, which relies on the estimated Vasicek correlation
ρ, it is imperative to assess the quality of the initial regression. A standard way
of evaluating the quality of a linear regression is by calculating the coefficient of
determination or R squared, as in Eisenhauer (2003). As illustrated in Figure 7a,
this statistic clearly favors the use of the correct common factor together with the
correct lag. Also, the effect of a common factor that shares the same structural
break with ODF (scenario 5) clearly improves the quality of the fit. Note that the
statistic decreases as the actual ρ becomes smaller. Hence, when using R squared
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Figure 6: Boxplot of estimated ρ (Figure 6a) and α (Figure 6b) per scenario.

as an evaluation method for selecting the best fit, one also aims for the Z having
the largest ρ. In our simulation, the actual scenario (number 5) was selected in the
majority of cases (alternatively, scenario 3 was selected). As pointed out previously,
in case no good linear fits have been found, it may be needed to revisit the data,
segmentation and original selection of common factors. Equally important is to
verify that the residuals are no longer autocorrelated. Autocorrelation tests should
be used to determine whether OLS is appropriate. The graph in Figure 7b shows the
autocorrelation of the residuals after estimating ρ from differenced time series with
respect to each scenario. The simulation indicates no consistent autocorrelation in
the residuals that is significant for the best fits.
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Figure 7: Boxplot of R squared (in 7a) and residual autocorrelation (in 7b) after estimating ρ
per scenario.

Next, the PITness α is determined using the estimated Vasicek correlation. The
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distribution of the obtained values is shown in Figure 6b per scenario. Note that
only scenarios 3 and 5 are relevant. Both result in values close to the actual α value
of 50%. The other scenarios are merely shown for illustration and they would have
been rejected at a previous stage because of their poor performance when regressing
with ODF.

7 Conclusion

In this paper, we argue that an internal ODF and Hybrid PD time series together
with a representative external time series are sufficient to calibrate a TTC PD. In our
framework, a TTC PD is defined as a time-varying PD independent of a systematic
factor, therefore expressing only idiosyncratic risk. A Top-Down approach to a
TTC PD calibration is proposed that calibrates a TTC PD for a group of obligors
sharing the same dependency towards a common factor in six steps. Note that
the hypothesis of a constant dependency towards a common factor - a constant
correlation parameter - is a strong assumption, albeit considered more robust than
expecting TTC PD to be constant.

In order to expand the framework for obligor specifc TTC PDs and (or) current
reporting period PDs, we explain how a systematic risk component can be excluded
from Hybrid PD values with the introduction of a PITness parameter. A second
linear regression between a differenced time series of probit Hybrid PD and a dif-
ferenced time series of the selected Z of step five, used in the Vasicek correlation
calibration, can derive a PITness parameter. Excluding the systematic component
from Hybrid PD values is shown to be analogous to how Vasicek correlation is used
to exclude the systematic risk component from ODF.

A heuristic segmentation framework is introduced since Z, Vasicek correlation
and PITness of a portfolio of obligors are not expected to be jointly consistent across
segments. Therefore, the importance of segmentation variables is discussed at length
for the two proposed linear probit regressions. Vasicek correlation is expected to
vary depending on the granularity and type of segmentation variables. Further-
more, segmentation variables influencing the lag with ODF for a given common
factor should be added to the list of segmentation variables for a group of obligors
before calculating ODF time series for a given segment. The segmentation continues
for the second regression from which PITness can be derived from Hybrid PDs by
first evaluating different sources of constant Hybrid PD values. In addition, dif-
ferent segmentation variables are to be included that continue separating segments
according to different PITness behavior. These segmentation variables are variables
that indicate different idiosyncratic elements of the PD model that influence the
strength of Vasicek correlation for a Hybrid PD. The latter explains the need to in-
troduce rating grades as a segmentation level for the second linear regression, even
though it is often introduced for the derivation of Vasicek correlation.

In addition to introducing a robust calibration method and segmentation frame-
work, practical modeling considerations are discussed. Since the framework assumes
that only a common factor can explain systematic components it is important to
understand the dynamics of the underlying idiosyncratic components. For instance,
the frequency of the financial statements should match the frequency of the return
calculations of the external time series and the overrides framework needs to be
aligned with the calibration methodology of TTC PD.

Further, the common factor needs to be carefully analyzed and understood in
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order to be considered eligible for calibrating purposes. Therefore, to normalize
the external time series a quantile transformation is proposed and in case sufficient
observation points are available the use of the empirical CDF is advocated. It is
shown by simulation that the coefficient of determination is an effective method
to compare the fit of different regressions and explained that such a statistic will
favor high Vasicek correlation estimates. Note that in the selection process of the
common factor including appropriate lags is as important as selecting the proper
external time series itself as shown by simulation. The framework can result into
many segments and, hence, smaller samples for which periods of a zero default ob-
servation can be observed. The modeler will need to eliminate such observations
from the regression. We need enough data points are needed to have statistical
reliance in the proposed regression technique, especially considering that one obser-
vation point will be lost due to the proposed differencing technique to account for
a time-varying TTC PD. A short discussion is included on the potential types of
stochastic processes that can explain the behavior of a time dependent TTC PD. It
would be insightful to explore this topic with real data before considering further
its theoretical implications.

The proposed framework is straightforward to implement with statistical soft-
ware as demonstrated in our simulation and has the additional advantage of aligning
the credit risk exercise because of its generic structure.
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A Illustration transformation formulae for ODF

and Hybrid PD

The transformation formulas applied in section 2 and 3 are illustrated in Figure 8
with a time series of ODF where ODF is consistently higher then its TTC value. In
such an example an average of ODF would overestimate its actual TTC parameter
regardless of the period of reference.
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Figure 8: Illustration of TTC PD and its distance to ODF and Hybrid PD.

Figure 8 illustrates clearly that the distance from a TTC PD estimate toward
a standard normal common factor can easily be expressed as a function of Hybrid
PD or ODF.
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