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Highlights 

 The global modularity of the CBF network increases in MCI. 

 Episodic memory and patient contribution to global modularity inverse correlate.   

 Connectivity analysis based on SPECT confirms brain connectivity alterations in MCI. 
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Abstract 

Cerebral blood flow (CBF) SPECT is an interesting methodology to study brain connectivity 

in mild cognitive impairment (MCI) since it is accessible worldwide and can be used as a 

biomarker of neuronal injury in MCI. In CBF SPECT, connectivity is grounded in group-

based correlation networks. Therefore, topological metrics derived from the CBF correlation 

network cannot be used to support diagnosis and prognosis individually. However, methods to 

extract the individual patient contribution to topological metrics of group-based correlation 

networks were developed although not yet applied to MCI patients. Here, we investigate 

whether the episodic memory of 24 amnestic MCI patients correlates with individual patient 

contributions to topological metrics of the CBF correlation network. We first compared 

topological metrics of the MCI group network with the network corresponding to 26 controls. 

Metrics that showed significant differences were then used for the individual patient 

contribution analysis. We found that the global network modularity was increased while 

global efficiency decreased in the MCI network compared to the control. Most importantly, 

we found that episodic memory inversely correlates with the patient contribution to the global 

network modularity, which highlights the potential of this approach to develop a CBF 

connectivity-based biomarker at the individual level.    

 

Keywords: Cerebral blood flow; Single-photon emission computed tomography (SPECT); 

Brain connectivity; Mild cognitive impairment; Episodic memory; Global network 

modularity.   
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1. Introduction  

In recent years, neuroimaging studies have shown that brain connectivity is altered during the 

prodromal stage of mild cognitive impairment (MCI) of Alzheimer's disease (AD) (Brier et 

al., 2014; Buldú et al., 2011; Catricalà et al., 2015; Dai and He, 2014; Daianu et al., 2014; Jie 

et al., 2014; Pereira et al., 2016; Sanabria-Diaz et al., 2013; Seo et al., 2013; Son et al., 2015; 

Sun et al., 2014; Tijms et al., 2013; Wang et al., 2013). These findings are stimulating the 

study of MCI by neuroimaging analyses based on networks (Fornito and Bullmore, 2015).   

Diffusion tensor imaging (DTI) and functional MRI (fMRI) are commonly used to infer brain 

connectivity (Brier et al., 2014; Catricalà et al., 2015; Daianu et al., 2014; Jie et al., 2014; Sun 

et al. 2014; Wang et al., 2013). However, these modalities are not yet part of the standard 

medical care. In contrast, standard structural MRI (sMRI), FDG-PET and cerebral blood flow 

(CBF) SPECT are frequently already part of the clinical evaluation of MCI patients. In the 

context of the latter modalities, connectivity is a concept grounded in group-based correlation 

networks, whose topology is then analyzed using graph theory (Melie-García et al., 2013; 

Pereira et al., 2016; Son et al., 2015; Sanabria-Diaz et al., 2013; Seo et al., 2013).   

CBF SPECT is particularly interesting to study brain connectivity in MCI as it can be used as 

a biomarker of neuronal injury in MCI due to AD (Albert et al., 2011), equivalent to FDG-

PET but less expensive and more accessible worldwide (Quaranta et al., 2018; Sánchez-

Catasús et al., 2017). We previously demonstrated the feasibility of graph theoretical analysis 

of the CBF correlation (CBFcorr) network using SPECT (Melie-García et al., 2013; Sánchez-

Catasús et al., 2017). Preceding reports have also shown that CBF covariance networks 

derived from arterial spin labeling MRI data are consistent with fMRI derived networks 

(Liang et al., 2012; Viviani et al., 2011). Furthermore, previous studies suggest that brain 

regions with higher functional connectivity need a greater CBF supply (Liang et al., 2014; 
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Storti et al., 2017) and a tight coupling between CBF and brain functional topology (Liang et 

al., 2013).    

Unlike DTI and functional MRI techniques, topological network metrics derived from CBF 

SPECT (as FDG-PET and sMRI) are group-based, which does not allow its clinical use. 

Nevetherless, methods to extract individual patient information from group-based correlation 

networks were proposed (Batalle et al., 2013; Raj et al., 2010; Saggar et al., 2015; Tijms et al., 

2012; Zhou et al., 2011), but not yet applied to MCI patients. One of these methods stands out 

since it is relatively easy to implement it in clinical practice (Saggar et al., 2015). This method 

estimates an indirect measurement of a network metric for a single patient by extracting the 

patient contribution to that metric. The estimation is achieved by subtracting the metric of the 

network using control subjects only from the metric using control subjects plus the patient. To 

clarify whether this approach might be clinically useful, the association between individual 

patient contributions to network metrics and clinical characteristics of MCI patients need to be 

studied. It would be particularly important to examine the relationship with the decline in 

episodic memory, a hallmark component and major clinical symptom in patients that progress 

to AD dementia (Albert et al., 2011).   

In this study, we investigate whether the episodic memory of amnestic MCI patients 

correlates with the individual patient contributions to topological metrics of the CBFcorr 

network. Since the method for extracting the individual contribution was validated only for 

global metrics, we restricted the analysis to those metrics. To enable this analysis, we first 

compared metrics of the network corresponding to patients ºwith those of a network of 

cognitively healthy controls. In particular, we examined the global network modularity, since 

it has been shown to be more sensitive to the AD process compared to other metrics (Pereira 

et al., 2016). We also analyzed global and mean local efficiencies, which are typically used as 

metrics of network integration and segregation, respectively (Rubinov and Sporns, 2010).   
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2. Methods and materials 

2.1. Participants  

Twenty-four amnestic MCI patients and twenty-six clinically healthy control volunteers were 

studied, selected from one hundred subjects recruited over a two-year period and a one-year 

follow-up using the inclusion and exclusion criteria described below. Table 1 summarizes 

demographic and cognitive data in control and MCI groups. The Ethics Committee of the 

Center for Neurological Restoration of Havana, Cuba, approved the study. All participating 

subjects gave written informed consent according to the Helsinki Declaration.  

All participants were screened for a complete medical history, routine blood tests, cranial 

MRI, and clinical, neurological/psychiatric and neuropsychological examinations. Subjects 

were clinically diagnosed as MCI using the criteria based on the Clinical Dementia Rating 

Scale (CDR). CDR is one of the clinical scales frequently used for this purpose and suited to 

support amnestic MCI as it is strongly weighted towards memory evaluation (Morris, 1993). 

Patients were classified as MCI with CDR=0.5; while normal cognitive subjects with CDR= 

0. All MCI patients maintained independence in their daily living.    

Inclusion criteria were: 1) patients with memory complaints as the main cognitive symptom;  

2) subjects (patients and controls) with a complete neuropsychological evaluation; 3) subjects 

with limited (and treated) vascular risk factors, based upon clinical examination, blood tests, 

and magnetic resonance angiography (MRA) findings; 4) subjects without significant 

depression according to the Hamilton Depression Scale (score < 8) (Hamilton, 1960); 5) no 

prior or current treatment with acetylcholinesterase inhibitors; and 6) right-handedness. 

Exclusion criteria were: 1) significant medical conditions (i.e. advanced cardiac disease, 

poorly controlled diabetes and hypertension, other chronic diseases); 2) cerebrovascular 

disorders (transient ischemic attack or cerebral infarction), moderate or severe carotid stenosis 

by MRA findings, large white matter changes on MRI, hydrocephalus or intracranial mass; 3) 
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history of traumatic brain injury or another neurological disease; 4) psychiatric disorders, 

substance abuse or dependence; and 5) Mini-Mental State Examination (MMSE) (Folstein et 

al., 1975)  scores < 24.     

 

Table 1 Demographic and cognitive data in control and MCI groups.      

 Control (n=26) MCI (n=24) p value 

Demographic data    

Age (years) 60.9 ± 7.3 65 ± 7.1 0.06 
a
 

Gender (female/male) 13/13 14/10 0.58 
b
 

Years of education 13.6 ± 3.9 12.6 ± 4.5 0.3
 a
 

Cognitive data    

MMSE  29.3 ± 1.1 27.6 ± 1.1 10
-6

 

Rey complex fig. (delayed recall) 18.1 ± 5.2 9.9 ± 3.7 10
-6

 

Digit span (forward) 5.9 ± 1 5.7 ± 1.2 0.84 

Digit span (backward) 4.9 ± 0.9 4.7 ± 0.8 0.79 

Rey complex fig. (copy) 32.7 ± 4.4 31 ± 6.5 0.53 

Token test 33.5 ± 2 33.4 ± 2.5 0.19 

Verbal fluency 10 ± 2.9 9.5 ± 3.8 0.562 

Attentive matrices 44. 9 ± 9.7 44.1 ± 9.2 0.59 

Trail Making A 39.4 ± 4.7 41.9 ± 10.1 0.48 

Trail Making B 107.9 ± 14.5 107.1 ± 27.8 0.741 

Data shown as mean ± standard deviation. 
a
, Student t-tests for independent samples. 

b
, Chi-

square test.  Differences between groups for cognitive data were tested using ANCOVA, 

modeling group as a categorical independent variable and controlling for age, gender and 

years of education.     
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2.2. Cognitive function assessment 

A neuropsychological evaluation was performed by specific tests in five cognitive domains 

(memory, visuospatial ability, language, attention, and the executive function) to better 

characterize controls and MCI patients.  

The Rey Complex Figure test (RCFT), delayed recall, was used to assess non-verbal episodic 

memory (Lezak, 1983). A recent study showed that non-verbal episodic memory measure is a 

good discriminator between AD and non-AD pathologies as well as between non-semantic 

primary progressive aphasias (Ramanan et al., 2016).  

The digit span was measured for short-term memory evaluation (Lezak, 1983). Visuospatial 

ability was assessed by the copy of the RCFT. Language domain was evaluated by the token 

test (Lezak ,1983) and a verbal fluency test (Mondini et al., 2005). The attentive matrices 

were used to assess attention (Spinnler and Tognoni, 1987) and trail making A and B tests for 

executive function evaluation (Lezak, 1983). Differences in cognitive variables between 

control and MCI groups were tested using ANCOVA, using group as a categorical 

independent variable and controlling for age, gender and years of education.    

Patients that progressed to dementia at one-year follow-up by meeting the NINDS/ADRDA 

criteria for probable AD (McKhann et al., 1984) were identified.  

2.3. SPECT imaging and construction of CBF correlation networks   

CBF SPECT was carried out with a double-head rectangular gamma camera (Sopha Medical 

Vision, France) equipped with ultra-high-resolution fan beam collimators and using a dose of 

555 MBq of 
99m

Tc-ethyl cysteinate dimer as CBF tracer. Details about the acquisition and 

preprocessing image parameters can be found elsewhere (Melie-García et al., 2013). SPECT 

imaging, neurological/psychiatric and neuropsychological examinations were all carried out 
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within a maximum interval of one month. The dataset is available at 

http://dx.doi.org/10.17632/3hkfsrsy6w.1 

For control and MCI groups, a CBF correlation (CBFcorr) network was constructed as a CBF 

association matrix as previously described (Melie-García et al., 2013). In short, 90 brain 

regions of interest (ROIs) were defined as network nodes using the AAL atlas (Tzourio-

Mazoyer et al., 2002). A linear regression was performed at every ROI to remove the effects 

of age, gender, age-gender interaction, and global values. Education level was not considered 

since no significant effect was shown in this parameter. Then, the Pearson’s correlation 

coefficients across subjects between all possible pairs of ROIs were calculated (network 

edges) and gathered in the interregional correlation matrix (Fig.1). 

Fig. 1. CBF association matrices constructed using CBF SPECT data for control and MCI 

groups. The color bar indicates the value of the Pearson’s correlation coefficient coming from 

the CBF co-variations across subjects among 90 anatomical brain regions (AAL atlas). 
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For the analysis, we excluded negative and self-correlations. Negative correlations were 

excluded since the approach used here to extract individual patient information (see 

subsection 2.6) was developed taking into account only positive correlations (Saggar et al., 

2015). 

For each CBF association matrix, binary adjacency matrices at different thresholds were then 

constructed (binary undirected graphs) to calculate networks topological metrics. The binary 

graph methodology was used as it is computationally simpler and it provides for 

straightforward interpretation (Rubinov and Sporns, 2010). To construct the binary graphs, 

the correlation coefficient was set to one (connection) if it was above a threshold and zero (no 

connection) otherwise. Since there is no single way to select the optimal threshold, we 

adopted one of the most used methods for thresholding the association matrix (De Vico 

Fallani et al., 2014, for a review). This method threshold the association matrix over a range 

of network densities and use the area under the curve (AUC) across the threshold range as a 

descriptor of a given network metric. A network density represents the proportion of supra-

threshold connections of all possible connections. To be confident that we were analyzing the 

data in a safe non-random (non-regular) range, a range of densities from 0.2 to 0.35, in steps 

of 0.01, was used (based on preliminary explorations of the data). Previous observations have 

found that when the density is too high or too low, the brain graph cannot be differentiated 

from a random or regular network, respectively (Achard and Bullmore, 2007).   

2.4. Network metrics 

In the following paragraphs, we define the global network metrics used in this study.  

The global network modularity reflects the extent to which a network can be subdivided into 

modules (communities of nodes) with a maximal within-module and minimal between-

module connectivity. For the modularity analysis, we used the method developed by Newman 
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(Newman, 2004) to compare our results with previous studies that used this method in other 

neuroimaging modalities (Buldú et al., 2011; Brier et al., 2014; Catricalà et al., 2015; Daianu 

et al., 2014; de Haan et al., 2012; Pereira et al., 2016; Sun et al., 2014; Wang et al., 2013). The 

global modularity (Q) can be expressed as:     

  ∑      (∑          ) 
                                       (1) 

where k and l are individual modules in the set of modules M, and c is the proportion of 

existing connections between 2 modules.   

We also explored the modular structure in each CBFcorr network (control and MCI). The 

community of modules with highest maximized modularity value across all possible partitions 

was used as representative of the modular structure of each network. We used 1000 iterations 

to optimize modular structures quantification as implemented in the GAT toolbox (Hosseini et 

al., 2012).   

On the other hand, the global efficiency is a metric of network integration and reflects how 

efficiently the information can be exchanged over the network, considering a parallel system 

in which each node sends information concurrently along the network (i.e. how well 

connected are any pair of nodes) (Rubinov and Sporns, 2010). The global efficiency (Eglob) for 

a binary and undirected graph G is calculated as:  

     ( )  
 

 (   )
∑

 

   
       
     

                                             (2) 

where N represents the number of nodes and dij is the shortest path length between node i and 

node j in G. The shortest path length (distance) is the minimum number of edges between 

node i and j.  

Lastly, the local efficiency is a metric of network segregation and reflects the efficiency of the 

communication among the neighbors of each particular node (i.e. how well neighbors of a 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

12 
 

node are connected) (Rubinov and Sporns, 2010). The mean local efficiency is thus the 

average of local efficiency across all nodes in the network. The mean local efficiency (Eloc) 

for a binary and undirected graph G is calculated as: 

    ( )  
 

 
∑           

                                          (3) 

where Eloc,i, is the local efficiency for a node i and is defined as: 

       

∑          [    (  ) ]
  

            

     

   (    )
                             (4) 

where aij is the connection status between i and j: aij = 1 when link (i, j) exists (when i and j 

are neighbors); aij = 0 otherwise (aii = 0 for all i). ki is the degree of node i (number of links 

connected to node i).  

We also analyzed the characteristic path length, inversely related to Eglob, which topologically 

reflects the measure of the typical separation between two nodes; the clustering coefficient, 

directly related to Eloc, that reflects the inherent tendency to cluster nodes into strictly 

connected neighborhoods; and the small-worldness index which is a measure to what extent a 

network shows an optimal balance between segregation and integration. The detailed 

mathematical description of these network metrics can be found elsewhere (Rubinov and 

Sporns, 2010). 

The descriptors used for network metrics defined above, were: the AUC extracted from 

thresholding across the range of network densities described above and the metrics at the 

minimum density of 0.2.   

2.5. Network metrics comparison 

For testing the differences between networks (control and MCI) for each metric in every 

density, a nonparametric permutation t-test was used (1000 permutations). The permutation 

procedure was carried out using the GAT toolbox (Hosseini et al., 2012). This procedure 
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follows 6 steps: 1) during each permutation,  ROIs data of each subject are randomly 

reassigned to one of the two groups so that each randomized group has the same number of 

participants as the original ones; 2) the association matrix is calculated for each randomized 

group; 3) binary adjacency matrices at different densities are obtained by applying thresholds 

(in the range described in the subsection 2.3); 4) network metrics are estimated for all random 

networks in each density; 5) differences in network metrics between randomized groups, in 

each density, are obtained resulting in a permutation distribution of the difference under the 

null hypothesis; 6) the real difference between groups in network metrics (for each density) is 

placed in the corresponding permutation distribution and a p-value of two tails is calculated 

based on its percentile position. As critical values, the 95% confidence intervals (CI) of each 

network metric distribution were considered (two-tailed test of the null hypothesis at p < 

0.05).   

The metrics that showed significant differences in the MCI group network as compared to the 

control were then used for the individual patient contribution analysis.  

2.6. Individual patient contribution to network metrics and its relation to the episodic memory 

of MCI patients 

The methodology utilized to extract the individual contribution of each MCI patient was one 

of the approaches proposed by Saggar et al. (2015). This methodology is based on the add-

one-patient (AOP) approach and global network metrics. The AOP was adopted since it has 

the advantage that can be used in clinical practice, in contrast to the other method proposed by 

the authors based on the "leave-one-out" (LOO) approach.  

The AOP approach is defined as follows: the individual contribution of a given patient, to a 

given metric, is estimated by subtracting the metric of the network constructed using control 

subjects only from the metric using control subjects plus the patient. The patient contribution 

to a given metric is calculated as: 
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                             (                  )–         (        )                                          

The AUC value of each metric was used for the individual patient contribution estimation to 

avoid a dependency on a particular network density.   

To evaluate the association between the episodic memory (RCFT) and the individual patient 

contribution to a specific network metric, we used the non-parametric Kendall Tau rank 

correlation, which is more appropriate for small samples and much less sensitive to outliers 

compared with Spearman's correlation (Kendall, 1962). For significant p-values, we 

computed 95% percentile bootstrap CIs. 

In addition, we assessed the association between the episodic memory and the composite ROI 

index, which is a classical measure previously proposed for FDG-PET analysis in AD patients 

(Jagust et al., 2010) and compared effect sizes found by the two methodologies. This analysis 

allowed us to compare the connectivity-based approach proposed in this study and the well-

established methodology based on the composite ROI index. To enable this analysis, we first 

generated 1000 bootstrap samples of the two datasets and the corresponding tau coefficients. 

Then, the Pearson correlation coefficients were derived from the computed tau coefficients, 

with which Fisher's z transformations were calculated (Walker, 2003). To assess the effect 

size differences between the two methodologies, we computed the distribution of the 

difference of both bootstrap samples (absolute values of Fisher's z) and the corresponding 

95% percentile CI. A significant difference was considered if the CI did not contain the real 

observed difference.    

 As a supplementary analysis, we investigated whether the association found between the 

episodic memory and the individual subject contribution to the global network modularity 

(see results) was present for the control subjects as well using the LOO approach (Saggar et 
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al., 2015). We also explored the association between the individual contribution to network 

metrics and the MMSE at baseline and one-year follow-up.   

The association between the episodic memory and the individual patient contribution to a 

specific network metric (or the composite ROI index) and differences between groups in 

demographic and cognitive variables were analyzed using STATISTICA software (Stat Soft, 

Inc, version 8.0). The significance level was set at a p-value < 0.05.   

3. Results  

As shown in Table 1, episodic memory (RCFT delayed recall) and MMSE were significantly 

reduced in the MCI group as compared to the control group. As expected, other cognitive 

variables showed no significant differences between groups as only MCI patients with 

memory complaints as the main cognitive symptom were included. Three out of twenty-four 

MCI patients progressed to dementia, according to NINDS/ADRDA criteria for probable AD.  

On the other hand, network metric comparisons showed that the global modularity increased 

while the global efficiency/characteristic path length decreased/increased in the MCI group 

network as compared to the control (Figs. 2.a-2.c, Table 2). In contrast, the mean local 

efficiency, the clustering coefficient and the small-worldness index showed no significant 

difference (Figs. 2.d-2.f, Table 2).   
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Fig. 2. Differences in network metrics (global modularity, global efficiency, path length, 

mean local efficiency, clustering coefficient and small-worldness) when comparing the MCI 

group network with the control across a range of network densities. The comparison was 

performed using a nonparametric permutation t-test (1000 permutations) giving expected 

mean effects as well as 95% confidence intervals of the null hypothesis. 
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Table 2 Network metrics comparison. MCI versus Control.    

 Control MCI p-value Percentage of change 

Global modularity (AUC)  3.82E-02 5.13E-02   0.02* +35 

Global modularity (Min) 2.89E-01 3.96E-01    0.02* +37 

Global efficiency (AUC)  9.40E-02 9.22E-02   0.066 -1.9 

Global efficiency (Min) 5.75E-01 5.52E-01   0.04* -4 

Path length (AUC) 2.63E-01 2.74E-01 0.066 +4.2 

Path length (Min)  1.93 2.07 0.03* +7.3 

Mean local efficiency (AUC)  10.94E-02 11.41E-02 0.12 +4.3 

Mean local efficiency (Min) 7.14E-01 7.54E-01 0.1 +5.6 

Clustering coefficient (AUC) 7.16E-2 8.08E-02 0.30 +12.8 

Clustering coefficient (Min)  4.72E-01 5.46E-01 0.25 +15.7 

Small-worldness (AUC) 2.62E-1 2.73E-1 0.59 +4.2 

Small-worldness (Min) 2.03 2.11 0.65 +3.9 

AUC, area under curve across network density range; Min, minimum network density. 

*
Significant difference. 

 

Based on the above findings, we used the global modularity and global efficiency for the 

individual patient contribution analysis. We found a significant negative correlation between 

the episodic memory and the individual patient contribution to the global modularity (Kendall 

Tau = -0.32; p= 0.02; CI: -0.69, -0.016) (Fig. 3.a). Unlike the global modularity, the global 

efficiency showed no correlation (Kendall Tau = -0.03; p= 0.81) (Fig. 3.b).  
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Fig. 3. Scatter plots of episodic memory scores of MCI patients and their individual 

contribution to the global network modularity (a) and to the global efficiency (b). The 

episodic memory shows a negative correlation with the patient contribution to the global 

network modularity (a). The three patients that progressed to probable AD dementia are 

plotted by triangles.    

 

We also observed that two out of three patients that progressed to probable AD dementia had 

some of the lowest values of episodic memory (RCFT score of 2 and 4, respectively) and also 

some of the highest values of individual contributions to the global modularity (0.08 and 0.19 

respectively) (Fig. 3.a). The third patient had a relatively high value of episodic memory 

compared with other MCI patients (RCFT score= 13) and an individual contribution to the 

global modularity of 0.02.   

At the same time, we found a significant positive correlation between the episodic memory 

and the composite ROI index (Kendall Tau = 0.31; p= 0.03; CI: 0.58, 0.043) (Fig. 4).  

Moreover, there were no significant differences in effect sizes using the composite ROI index 

and the individual patient contribution to the global modularity (observed difference for 

Fisher's z= 0.027; CI for the bootstrap distribution: -0.028, 0.029).  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19 
 

 

Fig. 4. Scatter plot of episodic memory scores of MCI patients and the composite ROI index.  

The three patients that progressed to probable AD dementia are plotted by triangles.    

 

The supplementary analysis showed no significant association between the episodic memory 

and the individual subject contribution to the global network modularity for control subjects 

using the LOO approach (Kendall Tau = -0.15; p= 0.27, Supplementary fig. S1). There was 

also no correlation between the MMSE and the individual patient contribution to the global 

modularity neither to the global efficiency, both at baseline and one-year follow-up 

(Supplementary Table S1).  

Modular structures: 

Five modules were identified in the control group network (Fig. 5, Supplementary Table S2). 

Although there were no perfect matches with known large-scale functional brain networks 

(Menon, 2015), control module I (22 ROIs) appears to represent visual networks since it 

comprised areas of the occipital lobe, inferior temporal, temporoparietal and limbic regions 

that are known to be part or strongly connected with visual pathways. This module also 

included lateral prefrontal regions associated with attentional networks. Control module IV 

(11 ROIs) resembled sensorimotor networks, mainly comprising the post and precentral 
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regions bilaterally. This module also included lateral prefrontal and occipital regions on the 

right side. Control module V (27 ROIs) included hippocampus and lateral temporal cortex 

bilaterally and left temporoparietal and medial prefrontal cortices and right precuneus, which 

seems to resemble a part of the default mode network (DMN). This module also included both 

amygdala and superior parietal and occipital regions of both hemispheres, and Wernicke's 

area (part of language network). Control module II (15 ROIs) resembled another part of the 

DMN, mostly including medial prefrontal. This module also comprised angular, 

supramarginal and parahippocampal gyri on the right side, which are part of the DMN as well. 

Control module III (15 ROIs) seems to represent another part of the DMN since it comprised 

the cingulate cortex, including the posterior cingulate bilaterally, and other medial prefrontal 

areas and inferior parietal cortex on the left side, including Broca's area (part of language 

network). This module also included the thalamus and caudate bilaterally and primary 

auditory cortex on the left side.   

 

 

Fig. 5. Modules identified in the control and MCI group-based correlation CBF networks. 

Modules are visualized using AUC values of nodal degree onto the cortical surfaces by the 

BrainNet Viewer package (http://www.nitrc.org/projects/bnv).  
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On the other hand, only four modules were identified in the MCI group network (Fig. 5, 

Supplementary Table S2). These four modules appear as reconfigurations of different parts of 

the five control modules. MCI module III (17 ROIs) was mostly a greater part of control 

module I (visual networks), but it also included small parts of control module III and IV. MCI 

module II (25 ROIs) was a regrouping of parts of control modules II-V, mainly seen as 

sensorimotor and small DMN fragments. MCI module I (16 ROIs) mainly included small 

parts of control modules I, II, and V (combined part of visual networks and small DMN 

fragments). MCI module IV (32 ROIs) was the biggest and mainly consisted of regrouping 

parts of control modules II, III, and V, delineating better an important part of the medial 

segment of the DMN as a single module.   

 

4. Discussion  

In this study, we investigated whether the episodic memory of amnestic MCI patients is 

associated with the individual patient contributions to topological metrics of the group-based 

CBF SPECT correlation network using the add-one-patient (AOP) approach. We found that 

the individual patient contribution to the global network modularity inversely correlates with 

episodic memory, which highlights the potential of this approach to develop a CBF 

connectivity-based biomarker at the individual level for MCI patients.  

The increase in the global modularity in the MCI network suggests more abnormal 

organization in the patients with a higher individual contribution to this metric. This would be 

counterintuitive if the global modularity only depended on the number of modules (more 

modules might suggest more adaptability of the network in case one of the modules is 

damaged). However, the global modularity also depends on two other factors: within-module 

and between-module connectivity (subsection 2.4, equation 1). That the number of modules 

decreased in the MCI network, whereas the global modularity increased, could be explained 
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by the decrease in the between-module connectivity (consistent with a lower global efficiency, 

Fig. 2.b) and the increase in the within-module connectivity (see the tendency to a higher 

mean local efficiency in Fig. 2.d). Thus, the MCI network seems to be reconfigured in such a 

way that in a smaller number of less interconnected modules more nodes are regrouped.     

This interpretation is in agreement with a recent study that utilized group-based correlation 

networks derived from sMRI (Pereira et al., 2016). The authors found that the global 

modularity was increased in larger groups of amnestic MCI patients (early and late onset 

samples) that progressed to AD dementia. Similar to our results, they also found that the 

number of modules decreased in MCI groups, “suggesting that their whole-brain networks 

were fragmented into a few large, isolated components” (Pereira et al., 2016). de Haan et al. 

(2012) reported comparable findings in low frequencies (delta and theta) bands using resting-

state MEG data in AD patients with mild to moderate dementia. Furthermore, two other 

studies also showed that the global modularity increases in amnestic MCI patients, one using 

DTI (Daianu et al., 2014) and another by fMRI during a memory task (Catricalà et al., 2015). 

Interestingly, the biggest module identified in the MCI network suggests a regrouping of brain 

regions that partially resembles the medial segment of the DMN (MCI module IV in Fig. 5). 

As discussed above, the reconfiguration of the MCI network and the increase in global 

modularity are related. Therefore, the patients that contributed more to the network 

reconfiguration were also the ones that contribute more (as a tendency) to the increase in 

global modularity and, in turn, those with less episodic memory (Fig. 3.a). Thus, considering 

the overlap of the episodic memory network and the DMN (Rugg and Vilberg, 2013) which is 

a target of the AD process (Villain et al., 2012), the regrouping of brain regions around the 

DMN might explain the negative correlation found between the episodic memory and the 

individual patient contribution to the global modularity. Consequently, the network 

reconfiguration might reflect the effects of the pathological process. This interpretation is in 
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line with a recent connectivity study in multiple sclerosis (MS) patients using resting-state 

fMRI data (Gamboa et al., 2014). The authors also observed that cognitive function in MS 

patients negatively correlates with the global modularity. 

The lack of association between episodic memory and the individual subject contribution to 

the global modularity found in healthy controls is consistent with the link between the 

network reconfiguration (apparently related to the pathological process) and the increase in 

global modularity in the MCI group explained above. Alternatively, it might be due to the 

sample size since a trend toward a negative correlation, similar to MCI group, was also 

observed.    

On the other hand, it would be expected that when a patient is added to the control network, 

the global modularity would increase in the resulting network. However, the contribution was 

negative in a subgroup patient (Fig. 3.a). This is probably due to two factors: 1) the sample 

size of control and MCI subjects. In larger samples, the proportion of patients with a negative 

contribution would decrease because the variability of both groups would be less. 

Nevertheless, the sample size of controls also has a limit (close to n = 100) as the absolute 

individual contribution tends asymptotically to zero as the sample size increases for the AOP 

approach (Saggar et al., 2015); and 2) the magnitude of the difference between groups for 

each network metric also counts. For instance, in the case of global efficiency, where the 

difference between groups (in the opposite direction) was less as compared with global 

modularity (Fig.2), the proportion of patients with a positive contribution was much higher 

(Fig. 3.b). However, the influence of these two factors would not change the association found 

between the episodic memory and the individual patient contribution to global modularity, 

since this only depends on the absolute value of the individual contribution using the AOP 

approach (Saggar et al., 2015).  
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We also found no association between the individual patient contribution to the global 

modularity (neither to the global efficiency) and MMSE at baseline and one-year follow-up 

(Supplementary material). These findings could be explained by the fact that the changes in 

MMSE are less specific than the episodic memory decline in MCI patients that progress to 

AD dementia. Although the MMSE is useful to verify longitudinal intra-individual changes of 

global cognitive function, its sensitivity is low for MCI (Tombaugh and McIntyre, 1992).    

In contrast to our results, other studies have found that the global modularity decreases in 

patients with amnestic MCI by using fMRI (Brier et al., 2014; Sun et al., 2014; Wang, et al., 

2013) and MEG (Buldú et al., 2011). Although this discrepancy may be due to 

methodological differences, or sample composition, it is more likely that this discrepancy 

reflects the different biological processes that are assessed by each modality, or even within a 

modality (Dai and He, 2014; Tijms et al., 2013 for reviews). To illustrate this, de Haan et al. 

(2012) not only found an increase in global modularity in the low frequencies (delta and theta 

bands), as discussed above, but also found that the global modularity decreases in the high 

frequencies (beta and gamma bands). The similarity with our results in the low frequencies 

and the opposite in the high frequencies bands could be explained by the correlation 

previously observed between the CBF and the low frequencies of the cerebral electrical 

activity, but not with the high frequencies (Menon et al., 1980). Similarly, two earlier reviews 

have suggested that diverging findings across neuroimaging modalities are because different 

modalities measure different aspects of brain connectivity (Dai and He, 2014; Tijms et al., 

2013). Even more, a recent study has shown that the change in the brain network topology 

could be non-monotonic as the AD progresses (Kim et al., 2015), implying that the network 

topology could show even opposite results between two different time-points.   

Whereas global modularity increased, we also observed that network integration was 

decreased in the MCI network, as indicated by the reduction in the global efficiency. This is 
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consistent with the majority of literature where different neuroimaging modalities have 

consistently found a decrease in network integration in MCI (Dai and He, 2014; Tijms et al., 

2013 for reviews), which has been interpreted as a result of brain connectivity loss. Unlike the 

global modularity, we found no significant correlation between the episodic memory and the 

global efficiency. Perhaps the global efficiency is more associated with the global cognitive 

function in more advanced stages of the disease, which is in line with previous studies that 

found a negative correlation between the characteristic path length, inversely related to the 

global efficiency, and the MMSE in patients with AD dementia (Dai and He, 2014; Tijms et 

al., 2013 for reviews).  

Lastly, it was observed that the effect size of the connectivity-based metric proposed in this 

study was comparable to the metric based on the composite ROI index (Jagust et al., 2010). 

However, to determine whether the global modularity is a good predictor of progression to 

AD dementia in MCI patients, longitudinal studies (with 2 or more years follow-up) in larger 

patient samples are required and outcomes should be compared with classical predictors of 

AD dementia. In this sense, the present investigation could be considered a pilot study that 

needs further validation. 

This study has limitations. First, the methodology applied for extracting the individual patient 

contribution was based on global network metrics. It is possible that a methodology based on 

network metrics at the regional level (yet to be validated) could capture a stronger relationship 

with episodic memory in MCI patients since the network for the episodic memory involves 

specific brain regions (Rugg and Vilberg, 2013). Second, although our patients fulfilled 

clinical criteria for MCI due to AD, some of the suggested explanations need further 

validation in MCI patients with confirmed AD pathology. Finally, graph theoretical analysis 

of the CBF correlation network has limitations that were discussed in our previous article (e.g. 

the use of Pearson’s correlation instead of partial correlation; choice of parcellation scheme; 
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possible variability of results with different sample sizes) (Melie-García et al., 2013).  

Nevertheless, the effects of these limitations on the individual-level analysis may be small. 

For example, Saggar et al. (2015) found that the absolute individual contribution to global 

network metrics stabilizes around n=25-30 (for the control group) using the AOP approach.   

In conclusion, our findings suggest that episodic memory in MCI patients inversely correlates 

with the patient contribution to the global modularity of the CBF network, which warrants 

further research to develop a CBF connectivity-based biomarker at the individual level. 

Furthermore, this study confirms previous findings by other neuroimaging modalities that 

brain connectivity is altered in MCI.    
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