
This item is the archived peer-reviewed author-version of:

Hierarchical temporal memory and recurrent neural networks for time series prediction : an empirical
validation and reduction to multilayer perceptions

Reference:
Struye Jakob, Latré Steven.- Hierarchical temporal memory and recurrent neural networks for time series prediction : an empirical validation and reduction to
multilayer perceptions
Neurocomputing: an international journal - ISSN 0925-2312 - 396(2020), p. 291-301
Full text (Publisher's DOI): https://doi.org/10.1016/J.NEUCOM.2018.09.098
To cite this reference: https://hdl.handle.net/10067/1610740151162165141

Institutional repository IRUA

https://repository.uantwerpen.be

Hierarchical Temporal Memory and

Recurrent Neural Networks for Time Series Prediction:

An Empirical Validation and

Reduction to Multilayer Perceptrons

Jakob Struye, Steven Latré

University of Antwerp - imec, IDLab
Middelheimlaan 1, 2020 Antwerp, Belgium

Abstract

Recurrent Neural Networks such as Long Short-Term Memory (LSTM) and
Gated Recurrent Units (GRUs) are often deployed as neural network-based
predictors for time series data. Recently, Hierarchical Temporal Memory
(HTM), a machine learning technology attempting to simulate the human
brain’s neocortex, has been proposed as another approach to time series
data prediction. While HTM has gained a lot of attention, little is known
about the actual performance compared to the more common RNNs. The
only performance comparison between the two, performed at the company
behind HTM, shows they perform similarly. In this article, we present a
more in-depth performance comparison, involving more extensive hyperpa-
rameter tuning and evaluation on more scenarios. Surprisingly, our results
show that both LSTM and GRUs can outperform HTM by over 30 % at
lower runtime. Furthermore, we show that HTM requires explicitly times-
tamped data to recognize daily and weekly patterns, while LSTM only needs
the raw sequential data to predict such time series accurately. Finally, our
experiments indicate that the temporally aware components of all consid-
ered predictors contribute nothing to the prediction accuracy. We further
strengthen this claim by presenting equally or better performing Multilayer
Perceptrons conceptually similar to the HTM and LSTM, disregarding their
temporal aspects.

Keywords: HTM, LSTM, GRU, Time series prediction

Preprint submitted to Neurocomputing August 26, 2019

1. Introduction

Time series forecasting is a vital activity in many different fields. It
can help predict the weather [1], foresee demand for different products or
resources [2] and help governments in taking measures against imminent
traffic congestion [3]. In its most essential form, a time series is a set of
observations V , with each vt ∈ V observed at time t [4]. The goal of time
series forecasting is then, given V up to time n, to predict future data point
vn+h where h is the horizon or how far into the future predictions are to
be made. Inputs X and outputs Y of a predictive system are often defined
as X = {xt : xt = vt, t ∈ [0 . . N]} and Y = {yt : yt = vt+h, t ∈ [0 . . N]}
where N = |V | − h− 1. Among the many predictive systems available, Re-
current Neural Networks (RNNs), which feature memory retaining aspects
of previous inputs, and specifically their subtypes Long Short-Term Memory
(LSTM) and Gated Recurrent Units (GRUs) have gained significant traction
in time series prediction. Another predictive system attaining more popular-
ity is Hierarchical Temporal Memory (HTM), based on current insights into
the human brain’s workings. Current understanding of its performance in
this field is however limited, as the only published evaluation of its predictive
capabilities is in a comparative study performed by Numenta, the company
behind HTM, in Y. Cui et al. [5, 6]. Using one dataset, they show compa-
rable performance between HTM and LSTM for time series forecasting. In
this article, we investigate these performance claims and attempt to improve
the performance of both predictors.

The main contribution of this article is twofold. First, we provide an
elaborate and in-depth qualitative and quantitative performance comparison
of HTM, LSTM and GRU. Compared to the state of the art, this perfor-
mance comparison differs in three ways to make it much more realistic and
relevant:

1. Extensive hyperparameter tuning optimizes performance
2. Several new scenarios and input data configurations are considered
3. We also evaluate a GRU predictor

Second, we propose and evaluate two new Multilayer Perceptron (MLP) pre-
dictors. They are inspired by the LSTM and HTM predictors, while disre-
garding their temporally aware components, leading to a significantly simpler
design. We investigate whether these simplifications retain the predictive ca-
pabilities of their originals.

2

The remainder of this article is structured as follows. Section 2 explores
related work on time series prediction. In Section 3, we provide an overview
of MLP, RNN and HTM theory and how they apply to time series prediction.
Section 4 covers our experimental setup, with results provided in Section 5.
In Section 6, we investigate how to reduce both LSTM and HTM predictors
to MLPs. In Section 7, we evaluate whether the best performing predictors
are robust to a global trend in the time series. Finally, Section 8 concludes
this article.

2. Related Work

Time series prediction has been an active field of research for decades. In
this section, we provide a brief overview, focusing on more recent advances.
Historically common forecasting methods are linear regression [7], Autore-
gressive Moving Average (ARMA) [4, 8] and the Kalman filter [9–11]. In
addition to these linear models, a wide array of machine learning tools is
often applied to predict more complex time series. This includes Support
Vector Machines (SVMs) [12–14] and numerous Artificial Neural Networks
(ANNs) such as MLPs [15], Deep Belief Networks (DBNs) [16, 17], Echo-State
Networks (ESNs) [18–20] and Extreme Learning Machines (ELMs) [21–23].
To cope with uncertain and vague datasets, ANN-based models have recently
been extended for fuzzy time series [24, 25]. Apart from fuzzy input data,
fuzzy set theory has also been applied to neural network weights, improv-
ing noise tolerance and overall performance [26, 27]. Other recently proposed
predictors include those capable of dealing with irregularly spaced time series,
based on either Convolutional Neural Networks (CNNs) [28] or RNNs [29].
Lately, these RNNs, and specifically LSTM and GRUs, have been gaining
considerable traction in time series prediction [30–33]. Historically, concerns
about overparameterization and overfitting of ANN predictors have often
been raised [34–36] and simpler models have been shown to outperform neural
networks [37, 38]. More recent literature on neural network-based forecasting
rarely mentions these worries as potential deal-breakers however. We theorize
that recent advances in neural network regularization, with dropout [39, 40]
at the forefront, have largely addressed these concerns.
One final forecasting method that is gaining more attention is based on HTM,
a neuroscience-based machine learning approach developed at machine intel-
ligence company Numenta [41]. While Numenta has shown how HTM can be

3

used as a pure time series predictor, research has so far been focused more on
the related fields of anomaly detection [42–44] and pattern recognition [45].
In those fields, HTM is shown to be a competent tool. We cover the detailed
workings of RNNs and HTM and how they can be applied to time series
prediction in Sections 3.2 and 3.3.

3. Machine Learning for Prediction

In this article, we focus on machine learning-based approaches to time
series prediction. Specifically, one contribution of this article is to provide
an evaluation of MLPs [46], RNNs including LSTM [47] and GRUs [48], and
HTM [49] in the domain of time series prediction. Therefore, this section
provides an overview of these technologies and of how they are applied to
time series prediction. We focus on the core concepts of the technologies and
refer the reader to the works referenced above for more details.

3.1. Multilayer Perceptrons
An MLP is a basic ANN consisting of multiple sequential fully connected

layers, each containing a number of neurons, all connected to every neuron in
the previous layer. Given a matrix X representing the values in the previous
layer, the fully connected layer’s values are computed as WX + b, with W
a weight matrix and b a bias vector. We will omit this bias vector in the
remainder of this article for simplicity. During its learning process, the MLP
is fed inputs and their expected outputs, and continuously tweaks its weight
matrices to reduce the gap between the expected outputs and the final layer’s
actual outputs. How to tweak the weights is determined through backprop-
agation, a process where, starting from the final layer, each layer’s weights’
derivatives are computed. These derivatives indicate in which direction the
weights should be tweaked to optimally improve the outputs’ accuracy. MLPs
have been shown to be effective in time series prediction [50, 51].

3.2. Recurrent Neural Networks
RNNs are commonly used as an architecture for modeling, learning and

predicting temporal data. An RNN considers inputs within a context, deter-
mined by previously received inputs [52]. These networks thus need memory
to retain (aspects of) previously received inputs. The classical RNN achieves
this by maintaining a state s, updated at every time step using the formula

st = f(W

[
xt
st−1

]
) (1)

4

where W =
[
Win Wrec

]
is a weight matrix consisting of input weights Win

and recurrent weights Wrec, and f is a nonlinear function. These weights W
must be trained to attain a well-performing network. As the gradient of a
time step is dependent on future time steps, regular backpropagation cannot
be applied at every time step. An intuitive solution is to logically unroll
the recurrent layer into a separate layer for each time step, all sharing their
weights, and apply backpropagation to this unrolled representation. This is
called Backpropagation Through Time (BPTT). A major issue with BPTT
for classical RNNs is the phenomenon of vanishing gradients, meaning gradi-
ents approach zero, effectively halting learning [53]. Repeated multiplication
with the same recurrent weight matrix Wrec in the unrolled network lies at
the root of this issue. Avoiding it therefore requires modifications to the
RNN structure. The following sections describe two such solutions.

3.2.1. Long Short-Term Memory

The most well-known RNN modification is LSTM. Originally proposed
in 1997 by Hochreiter & Schmidhuber [54], the LSTM architecture explicitly
addresses the issue of vanishing gradients through a gating mechanism [55,
56]. Figure 1 shows the LSTM structure, based on the following formulas:

it = σ(Wi · (xt;ht−1)) (input gate) (2)

ft = σ(Wf · (xt;ht−1)) (forget gate) (3)

ot = σ(Wo · (xt;ht−1)) (output gate) (4)

gt = tanh(Wg · (xt;ht−1)) (candidate values) (5)

ct = ft � ct−1 + it � gt (cell state) (6)

ht = ot � tanh(ct) (hidden state = output) (7)

The gating mechanism controls how much of the state flows through the
system through pointwise multiplication. The input gate controls which in-
formation of the new input is added to the cell state, the forget gate controls
which parts of the cell state to retain, and the output gate controls which
parts of the new cell state to use as output. A combination of fully opened
forget gates and fully closed input gates can maintain an unchanged state
indefinitely. When new info does get incorporated into the state, this is done
through a constant error carousel [57], in Equation 6. New information is
simply added to the state, avoiding the repeating multiplications that lead
to vanishing gradients.

5

Figure 1: The inner workings of the LSTM cell given input xt and previous hidden and
cell states ct-1 and ht-1. Rectangles are neural layers, applying backpropagation to their
weights. Ovals are simple activation functions without learning. Circles represent point-
wise operations. Merging lines concatenate, while splitting lines copy.

3.2.2. Gated Recurrent Unit

The LSTM structure is rather complicated, and features a large number
of trainable weights, meaning training is a fairly slow process. Multiple mod-
ifications leading to simpler models with fewer weights have been proposed,
the most notable being GRU [48]. GRU no longer differentiates between cell
state and hidden state and instead considers the full cell state as output.
This eliminates the need for an output gate, leading to 25 % fewer trainable
weights. Additionally, the input and forget gates are merged into an update
gate, while a new reset gate is introduced to control which information from
the previous state is incorporated into the candidate values. The following
formulas, visualized in Figure 2, define a GRU:

zt = σ(Wz · (xt;ht−1)) (update gate) (8)

rt = σ(Wr · (xt;ht−1)) (reset gate) (9)

gt = tanh(Wg · (xt; (rt � ht−1))) (candidate values) (10)

ht = (1− zt)� ht−1 + zt � gt (state = output) (11)

GRU still avoids vanishing gradients through its use of gates and the constant
error carousel in Equation 11. GRU has been shown to perform comparably
to the LSTM, with neither consistently outperforming the other [58].

3.3. Hierarchical Temporal Memory

HTM is a technology based on a theory of the working of the biological
neocortex [59]. The neocortex is a part of the brain unique to mammals,
involved in higher functions such as sensory perception, conscious movement
and thought, and language. It accounts for over 75 % of the human brain’s
mass [60]. The principles of biological neurons, synapses and dendrites lie at

6

Figure 2: The inner workings of the GRU cell given input xt and previous state ht-1, using
the same symbols as Figure 1.

Figure 3: (Partial) SDRs assigned by a scalar encoder with m = 5 for the integers 1, 3
and 6, showing overlap between 1 and 3 and between 3 and 6 but not between 1 and 6

the core of HTM [41]. Furthermore, all data in HTM theory is represented
using Sparse Distributed Representations (SDRs), a binary data type with
relatively few active bits (i.e., with value 1) [61]. This follows the principle
that in the brain, only a small percentage of the vast amount of neurons are
active at any time.
HTM can function as a time series predictor. The HTM predictor consists
of four components, of which the two middle ones comprise the core HTM
system. This section provides an overview of all four components.

3.3.1. Encoders

HTM requires inputs in the form of fixed-length SDRs. As most data is
by default not represented in this way, we need encoders to convert the data.
A well-designed encoder assigns an SDR to each data point, such that two
data points’ similarity is proportional to the number of overlapping active
bits in their SDR representations. Many simple encoding schemes have been
proposed [62], mostly for data types where the concept of similarity between
data points is clearly defined, such as numbers and locations. For example,
integers between 0 and 100 could be encoded through a sliding window of
m active bits over an array of length n (with n � m), such that adjacent

7

1 2

: on/active
: off/inactive

2 1 2 1 ...

...

Inactive proximal synapse
(permanence < threshold)

Active proximal synapse
(permanence >= threshold)

Proximal dendrite segment

Spatial Pooler

Input (SDR)
Input bit

Minicolumn

Figure 4: The input SDR connects to the spatial pooler’s minicolumns through proximal
synapses. Only the active synapses, whose permanence values exceed some threshold, can
carry a signal. Based on this input, with 5 on bits shown, 4 of the minicolumns receive an
input signal. All minicolumns are ranked on number of inputs received and the top k%
become active. For simplicity, some bits, minicolumns and synapses are omitted.

integers are assigned partially overlapping windows. Figure 3 illustrates such
a scalar encoder. More complex encoders, such as for words and by extension
text, have also been proposed [63]. For other types of data, such as audio,
no general encoders exist as of yet, to the best of our knowledge.

3.3.2. Spatial Pooler

After being encoded as SDRs, the inputs reach the spatial pooler. This
component again outputs SDRs, now of a more strictly defined format. Most
importantly, the spatial pooler guarantees a fixed sparsity of all SDRs [64].
This sparsity k is often set to 2 %, while encoders’ outputs may exhibit
sparsities of up to 35 % [49]. The spatial pooler achieves this as follows.
It consists of a number (by default 2048) of minicolumns, each connected
to a randomly chosen fraction (by default 0.5) of bits in the input SDR.
Such connections are called proximal synapses, and the set of a minicolumn’s
proximal synapses form its proximal dendrite segment. Each of these synapses
carries a randomly initialized permanence value between 0 and 1, and only
those synapses with a permanence over some threshold (by default 0.5) are
enabled, meaning they can carry a signal. Given an input, each minicolumn
is assigned a score equal to the number of active bits in the input connected
through enabled synapses. The top k percent (by default 2 %) of minicolumns
ranked by descending score are activated, achieving fixed sparsity. Activated

8

minicolumns are then tuned to recognize similar inputs through classical
Hebbian learning [65]: permanences of synapses to active bits are increased
and the other permanences are decreased. Figure 4 summarizes the spatial
pooler’s behavior through an example.
Overall, the spatial pooler converts input SDRs to fixed-sparsity SDRs, while
adapting to changing patterns in the input without losing information on
similarity between data points.

3.3.3. Temporal Memory

The SDRs generated by the spatial pooler do not contain any temporal
information; an input’s SDR does not depend directly on the specific sequence
of inputs preceding it. The next HTM component, the temporal memory,
aims to reveal exactly these temporal patterns. It acts as an extension to the
spatial pooler, subdividing each of its minicolumns into a fixed number of
neurons. A minicolumn being active is then equivalent to one or more of its
neurons being active. Similar to proximal synapses between minicolumns and
input, distal synapses grow between neurons. These synapses are bundled
into distal dendrite segments. As opposed to the proximal dendrite segment,
of which exactly one exists per minicolumn, multiple distal dendrite segments
may exist per neuron. When a neuron activates upon an input, it propagates
a signal across all distal synapses on all of its segments. If the number of
such signals a neuron receives on one segment exceeds some configurable
threshold, it enters a predictive state. This indicates that the neuron expects
to become active upon the next input. Each time a minicolumn activates,
only its neurons in a predictive state activate. If there are none, all neurons
activate instead —the minicolumn bursts. When a predictive neuron receives
a new input, the synapses on its segments are reinforced through Hebbian
learning, analogous to the proximal synapses. For any such segments with
few synapses, new synapses grow to a randomly chosen subset of neurons that
were active in the previous step. Overall, the activation of neurons within a
minicolumn indicates in which context the minicolumn was activated.

3.3.4. SDR Classifier

Finally, the SDR classifier receives the set of activated neurons from the
temporal memory and predicts the likelihood of each possible input occurring
the next step. This classifier is simply a single fully connected neural network
layer with a softmax activation function and cross-entropy loss function. The
softmax activation function squashes its inputs I so that they sum to 1.

9

RNN HTM

Learning alg. Backprop. (through time) Hebbian

Network size Problem-dependent Usually fixed

Hyperparameters Optimizer, learning rate,
loss function, network
size/architecture, etc.

Encoder design, Hebbian
learning speed, boosting,
etc.

Online learning Initial training phase, oc-
casional retraining

Learns continuously while
predicting

Data types Numeric, categorical, text,
images, sound, etc.

SDR (requires encoder,
distance metric)

Temporal
aspect

Explicit state value Predictive neurons in tem-
poral memory

Table 1: General comparison of RNN and HTM

With cross-entropy loss, the difference between the predicted value Yj and
expected value Tj for every output contributes to the loss. The following
functions define the activation function and loss:

softmax(Ii) =
eIi∑|I|
k=1 e

Ik
(12)

lossce(Y) =

|Y |∑
j=1

−Yj log(Tj) (13)

As the classifier outputs class probabilities, it cannot directly generate a
prediction. The usual approach is to instead manually divide the output
space into disjoint buckets and to have the classifier predict which bucket the
future value will belong in.

3.3.5. Comparison to Neural Networks

As shown by the descriptions above, RNNs and HTM are two vastly
different technologies. We provide a brief general comparison in Table 1 and
a comparison focusing on time series prediction in Table 2

10

RNN HTM

№ of inputs One or more (explicit) One or more (as 1 SDR)

Preprocessing Normalization strategy Partitioning into buckets

Output format Exact value Classification into bucket

Table 2: Comparison of RNN and HTM for time series prediction

Recreate original
implementation

Modifications
remain?

Apply modification

Yes

No

Evaluate

Keep or discard

Final network

Evaluate

(a) Main workflow

Configurations
remain?

Load network

Yes

No

Evaluate

Apply configuration

Compare configurations

(b) Additional LSTM workflow

Figure 5: Workflow diagrams for time series predictor experiments. For each rectangular
”Evaluate” step, the results are reported in Section 5. The left diagram concerns mod-
ifications to the networks, while the right diagram pertains to configurations of how to
format the input data and present it to the network.

11

4. Experimental Setup

The original study by Cui et al. compared the predictive performance of
HTM to other well-known systems, including LSTM. It used the Trip Record
Data dataset on taxi rides published by the New York City Taxi and Limou-
sine Commission1, reduced to the number of taxi rides per 30 minutes over
the period of one year, starting from July 2014. For each data point, the
passenger count five steps into the future (i.e., 2.5 hours) was predicted.
This original study provided only an initial comparison and lacked a proper
LSTM tuning and configuration. As such we evaluate several variations and
extensions on the original experiments, including extensive LSTM hyperpa-
rameter tuning. In addition, we also consider a GRU predictor. Both the
original code and our experiments are publicly available2 3. In this section,
we summarize the original experiments along with our extensions. Figure 5
outlines the main workflow for the experiments.

4.1. Hierarchical Temporal Memory

The HTM predictor was configured as follows. Each data point consisted
of the number of passengers along with the day of the week ({d : d ∈ [0 . . 6]})
and time of day in minutes ({30m : m ∈ [0 . . 47]}), each encoded by a sep-
arate encoder. The passenger count, day and time encoders created SDRs
of sizes 109, 100 and 600, respectively, each with 29 on bits. We assume the
encoders were tuned manually for maximum performance. The concatenated
encoders’ outputs were then fed to the HTM with both the spatial pooler
and temporal memory enabled. For the SDR classifier, a separate encoder
provided target samples to the softmax layer. This additional encoder gen-
erated SDRs of only size 50, meaning it divided passenger counts into 22
equally sized buckets. For each of the 22 buckets, a moving average of the
actual passenger counts of data points classified in that bucket was main-
tained. Of all buckets, the one with the highest probability was selected as
the prediction. Before forecasting any results, a pretraining step fed the first
5000 inputs to the spatial pooler for 5 iterations, to start predicting with
already reinforced spatial pooler synapses.

1http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
2https://github.com/numenta/htmresearch/tree/master/projects/sequence_

prediction/continuous_sequence
3https://github.com/JakobStruye/timeseries-comparison

12

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://github.com/numenta/htmresearch/tree/master/projects/sequence_prediction/continuous_sequence
https://github.com/numenta/htmresearch/tree/master/projects/sequence_prediction/continuous_sequence
https://github.com/JakobStruye/timeseries-comparison

From these original experiments, it is unclear how significantly each com-
ponent of the predictor contributes to the overall performance. We investi-
gate whether the system can still generate accurate predictions when either
or both of the main HTM components are disabled. This will also provide
insight into how much of the overall performance is contributed by the clas-
sifier alone. Next we experiment with extending the pretraining step in an
attempt to improve overall performance.

4.2. Long Short-Term Memory

The performance of the HTM predictor was compared to that of other
sequence learning algorithms, of which LSTM performed best. This predictor
consisted of a simple neural network with one LSTM layer of 20 units followed
by a fully connected layer with linear activation function, providing the final
prediction as its single output. Input data consisted of the passenger counts
along with day of week and time of day data, each normalized to have a
mean of 0 and a standard deviation of 1. The model was retrained after
every week of data (i.e., 336 data points) with the 1000, 3000 or 6000 most
recent data points for 100 epochs. In the remainder of this section, we propose
modifications to this configuration and consider different ways of feeding the
input to the network.

4.2.1. Modifications

As Cui et al. used an outdated LSTM implementation, we updated this
in several ways to be compatible with the current state of the art. Most
importantly, we rely on the Adam optimizer [66], instead of the outdated
Rprop- algorithm. Additionally, we propose the following improvements to
the predictor:

• Train size: We lower the number of samples used per training step to
5000, as HTM pretraining also used the first 5000 samples.

• Re-feed on retrain: Manual inspection of the original results showed
that the error spikes considerably following every retrain. This revealed
a major issue with the original implementation: on each retrain, the
model is fully reinitialized, while prediction does not re-feed previous
samples. This means that, after a retrain at sample i, the predictor is
immediately fed sample i while still having a zero state. This eliminates
the state’s contribution to the prediction, resulting in underpredictions

13

May 11 2015 May 12 2015

5000

10000

15000

20000
Pa

ss
en

ge
rs

 p
er

 3
0

m
in

ut
es

Actual
Predicted

(a) Prediction without re-feeding

May 11 2015 May 12 2015

5000

10000

15000

20000

Pa
ss

en
ge

rs
 p

er
 3

0
m

in
ut

es

Actual
Predicted

(b) Prediction with re-feeding

Figure 6: In the original experiment (left), predictions were clearly erratic directly follow-
ing retraining (vertical line). By re-feeding all previous inputs after retraining (right), this
behavior disappears completely.

(or, once denormalized, predictions close to the mean). We can avoid
this easily by first re-feeding all previous samples after every retrain
step. Figure 6 illustrates this effect and its solution.

• MAE loss: we replace the Mean Squared Error (MSE) loss function
with a Mean Absolute Error (MAE) loss function, as the accuracy
measure is MAE-based

• No reinitialization: We do not reinitialize the network before re-
training. This means retraining starts from weights based on similar
data, instead of on random, small weights. As patterns stay relatively
consistent across the entire dataset, retraining starts at a lower loss.

• Retrain interval: We retrain less frequently, which lowers runtime
and may have an acceptable or even positive effect on accuracy.

4.2.2. Data Configurations

Next to the modifications proposed above, we also propose three different
configurations of how to present the input data to the predictor. First, we
feed each sample one at a time and make a prediction at every step. This is
the only configuration considered in the original study. This classic imple-
mentation of BPTT is extremely computationally expensive: with a training
set of size 5000, it requires feeding 5000 samples and updating the state 5000

14

times, then backpropagating the error over 5000 unrolled layers for a single
weight update. As a second configuration, we apply Truncated Backpropaga-
tion Through Time (TBPTT) [67], which greatly reduces the computational
requirements. After every k samples, the algorithm unrolls for l steps and
updates the weights [68]. Generally, this leads to both more numerous and
computationally cheaper weight updates per epoch. We expand each data
point to now contain a sliding lookback window of the previous l time steps
of each feature. We then apply TBPTT(k, l) for k = 1 and a configurable
l. As a third configuration, we again apply the TBPTT principle, but now
consider the different time steps of one feature as separate, parallel features.
While this removes the explicit temporal nature of the data by eliminating
the LSTM state entirely, skipping the l state updates per prediction should
improve runtime considerably. Depending on the impact on performance,
this could be a viable approach.

4.2.3. Hyperparameter Tuning

For each of these three configurations, we perform extensive hyperpa-
rameter tuning for the number of hidden units, learning rate and, where
applicable, lookback window and batch size. We first evaluate 1000 to 10 000
randomly chosen hyperparameter combinations, then continue searching in
the vicinity of the best performing combination for another 100 to 1000 steps.
Each random combination is run with a fixed number of epochs. To reduce
runtime, the accuracy is calculated on samples 5500 up to 7500 only and
retraining is disabled. Note that random search is generally considered an
adequate choice for hyperparameter tuning at this scale [69, 70]. We se-
lect a perturbed version of the best performing combination to avoid overly
optimistic results due to using a hyperparameter combination performing
exceptionally well only for one fixed random seed.

4.3. Accuracy Measures

The performance of the predictors was evaluated using the Mean Absolute
Percent Error (MAPE) measure. Instead of using the regular MAPE formula

MAPE =
100

n

n−1∑
t=0

∣∣∣∣Tt − YtTt

∣∣∣∣ (14)

15

all MAPEs listed in the original article are calculated using the alternative
formula

MAPE = 100 ∗
∑n−1

t=0 |Tt − Yt|∑n−1
t=0 |Tt|

(15)

which is simply the MAE divided by the average target value. The regular
MAPE is known to penalize overestimating the target value more harshly
than underestimating it [71]. In addition, exceptionally small data points
lead to an exceptionally high Absolute Percent Error (APE) for those points.
Y. Cui et al. likely adopted the alternative formula to avoid these effects. In
the remainder of this article, all references to MAPE concern this alternative
formula.

To avoid confusion with the common MAPE formula, we chose to introduce
another accuracy measure: the Mean Absolute Scaled Error (MASE) [72]. As
this measure is directly proportional to the modified MAPE, our results can
still be compared directly to the original paper’s. The MASE expresses the
MAE of the predictor under analysis as a fraction of the MAE of a simple,
naive predictor. For a highly seasonal dataset such as the one considered
here, an obvious value to predict naively is the known value at the same
point in the previous iteration of the seasonal cycle. Specifically, we take the
measured value 24 hours (i.e., 48 data points) prior to the value to predict
as the naive prediction. We modify the range of the dataset such that points
for each t ∈ [−48 . . n− 1] are known, and define the MASE as

MASE =

∑n−1
t=0 |Tt − Yt|∑n−1

t=0 |Tt − Tt−s|
(16)

with s the length of the season (i.e., 48). A MASE of 1 means the analyzed
predictor performs on average equally well as the naive predictor, while a
MASE of 0.5 indicates its predictions are on average twice as close to the
target value as with the naive predictor. In addition to the MASE10 000 (i.e.,
the MASE starting from the 10 000th sample) as reported in the original
paper, we also report the MASE5500, as initial (pre)training only uses the
first 5000 samples. We foresee a buffer of 500 samples to accommodate for
MASE calculation and any changes in training set size due to mini-batch
learning. The MASE can easily be converted to the MAPE by multiplying it
with the naive predictor’s MAPE5500 of 18.2 % or MAPE10 000 of 17.8 %. We

16

also convert any accuracy measures taken from the original paper to MASE
using this formula.

5. Results

In this section, we investigate the impact of our proposed modifications
to the HTM and LSTM predictors, and evaluate the performance of a GRU
predictor. Finally, we measure the impact of removing day and time info
from the input.

5.1. Hierarchical Temporal Memory

Before starting our HTM experiments, we first note and fix a case of in-
formation bleeding in the original implementation. The classifier is always in
learning mode, meaning it learns from every sample it receives. As such, the
classifier will have learned info from sample k − 1 when predicting sample
k, while no info about samples past k − 5 (with default horizon 5) should
be known at that point. We address this by delaying classifier learning for
5 samples. The impact remains limited; the MASE10 000 increases from the
original 0.455 to 0.460. For the remainder of this article, we worked with this
fixed version of the system.

In these experiments, we repeat the HTM experiments using the original
approach by Cui et al., but disable parts of the network. As a baseline, we
run the experiment without any modifications. We then experiment with
different configurations of the predictor. Table 3 provides an overview of the
attained MASE. Unless specified otherwise, we only consider the MASE5500

in our results below. In addition, we report the runtime of all training and
forecasting combined. Our experiments use the same hyperparameters as the
original experiment. Attempts at hyperparameter tuning did not improve
performance, and HTM is claimed to not require hyperparameter tuning due
to insensitivity to its hyperparameter settings [49, 64].

We show that disabling the spatial pooler is not a viable approach: not
only does performance decrease considerably, the runtime also increases.
While removing the spatial pooler reduces total input size from 2048 to 800,
the number of active bits more than doubles: the spatial pooler guarantees
2 % (≈ 41) active bits while encoder output has 87. This indicates that the
temporal memory’s runtime increases linearly with the number of activated

17

SP TM Pretrain MASE5500 MASE10 000 Runtime (s)

3 3 5x, SP 0.515 0.460 276
7 3 5x, SP 0.777 0.719 511
3 7 5x, SP 0.478 0.417 72
7 7 5x, SP 0.695 0.660 24
3 3 10x, SP 0.530 0.475 315
3 3 5x, SP+TM 0.478 0.439 816
3 3 10x, SP+TM 0.483 0.446 1270

Table 3: Performance of the HTM predictor when disabling components in the network,
prolonging the pretraining step or also involving the Temporal Memory (TM) along with
the Spatial Pooler (SP) in it. The runtime was measured on 4 2.5 GHz cores

bits. Having both components disabled also performs poorly, while only
disabling the temporal memory actually improves performance and reduces
runtime significantly. Excluding pretraining, the runtime is almost 7 times
as low. This shows that, while the majority of the runtime is dedicated to
the temporal memory, it fails to contribute anything to the final result and
even worsens it. While this does not necessarily discredit the temporal mem-
ory’s capabilities for other applications, we at least pose that a rather simple
temporal dependency such as this time series does not require a complicated
mechanism such as temporal memory to uncover it.

Next we modify the pretraining step, where by default the first 5000
data points were fed to the spatial pooler 5 times. Incorporating the tem-
poral memory into pretraining provides a boost in performance at the cost
of additional runtime. This still fails to overtake the order-of-magnitude
faster spatial pooler-only configuration in accuracy. Increasing the number
of epochs in the pretrain step failed to further improve accuracy. Overall,
we were able to improve the HTM predictor’s performance by 7.2 % while
reducing its runtime by almost a factor 4.

5.2. Recurrent Neural Networks

In this section, we evaluate the effects of the modifications to the LSTM
predictor proposed in Section 4.2.1 and of the different configurations covered
in Section 4.2.2. We then compare the best performing LSTM predictor
to a similarly configured GRU predictor. As RNN performance appeared
sensitive to the initial random seed of the implementation, we perform each

18

experiment 10 times with different seeds, and report averaged results along
with standard deviations.

5.2.1. Modifications

Before modifying and tuning the LSTM implementation, we first recreate
the original configuration as closely as possible, using the original hyperpa-
rameters. As we replaced the outdated Rprop- optimizer, which features a
dynamic learning rate, with the Adam optimizer, we had to determine an
appropriate learning rate. Manual experimentation showed that a learning
rate of 0.1 lead to performance similar to the original optimizer. This ob-
tained an average MASE10 000 of 0.467, very close to the original 0.461.
Before attempting to improve the LSTM, we point out a case of information
bleeding here as well. The dataset is normalized to have a mean of 0 and
a standard deviation of 1 for each feature. As this is calculated across the
entire dataset, a data point’s normalized value may depend on future values.
We fix this by instead normalizing using the mean and standard deviation of
the first 5000 data points. This slightly increases the MASE10 000 to 0.475.
We apply this normalization in all future experiments.

We now apply the modifications consecutively, and present the resulting ac-
curacies in Table 4. These experiments show that all proposed improvements
are effective. Increasing the retrain interval to 1000 even had a positive effect
on accuracy, while increasing it further to 2500 only had a slight negative
impact. Considering the MASE10 000, we reduced the error by 24.4 % through
simple improvements only.

5.2.2. Data Configurations

Next we evaluate three different configurations of how to feed the data
to the predictor and perform hyperparameter tuning for each of them. We
perform tuning with fixed but manually determined epoch counts. Tables 5
and 6 provide overviews of respectively the tuned hyperparameters and their
attained performance.

We first investigate the continuous configuration, which picks up where
we left off in Section 5.2.1, retraining every 1000 samples. Hyperparameter
tuning resulted in another improvement of 1.6 %.
The lookback as timesteps or lb-ts configuration with hyperparameter lb sim-

19

Modification MASE5500 MASE10 000

Base - 0.475 (± 0.0100)
Train size 5000 0.499 (± 0.00944) 0.464 (± 0.0124)

Re-feed on retrain 0.459 (± 0.00830) 0.422 (± 0.0113)
MAE loss 0.451 (± 0.00972) 0.413 (± 0.00718)

No reinitialization 0.386 (± 0.00886) 0.373 (± 0.0111)
Retrain interval 1000 0.383 (± 0.00820) 0.359 (± 0.00834)
Retrain interval 2500 0.393 (± 0.00791) 0.365 (± 0.00686)

Table 4: Average error measures (± standard deviation) for all proposed modifications to
the LSTM predictor. The modifications are applied consecutively.

Configuration LR Units Batch lb Epochs Epochs
(LSTM) (GRU)

Continuous 0.02 130 1 - 200;100 300;100
Lb-ts 0.003 200 128 50 200;60 300;90

Lb-ft (optimal) 0.0015 180 512 75 300;100 400;125
Lb-ft (fast) 0.003 40 1024 50 120;25 -

Table 5: The tuned hyperparameters for the GRU and LSTM predictors. We use different
epoch values for the GRU predictor as it learned slightly slower. The initial epoch value and
retrain epoch value are set separately, as retraining starts from an already trained network
instead of a randomly initialized network and thus requires fewer epochs to converge.
We consider feeding data continuously while applying BPTT, feeding data in lookback
windows while applying TBPTT, and a variation on this where the values in the lookback
window are considered as different features instead of different timesteps of the same
feature. For this final configuration we add a separate runtime-focused tuning for LSTM,
as the optimal tuning was rather slow.

Configuration MASE5500 MASE10 000 Runtime (s)

Continuous 0.377 (± 0.00489) 0.350 (± 0.00709) 2679
Lb-ts 0.376 (± 0.00709) 0.365 (± 0.00533) 17323

Lb-ft (optimal) 0.324 (± 0.00133) 0.304 (± 0.00146) 483
Lb-ft (fast) 0.331 (± 0.00386) 0.312 (± 0.00548) 50

Table 6: Average accuracy measures (± standard deviation) for all tuned configurations
using the LSTM predictor, along with their runtime in seconds.

20

Configuration MASE5500 MASE10 000 Runtime (s)

Continuous 0.377 (± 0.00685) 0.357 (± 0.00615) 3112
Lb-ts 0.381 (± 0.00936) 0.365 (± 0.0114) 19081
Lb-ft 0.331 (± 0.00153) 0.309 (± 0.00160) 601

Table 7: Average accuracy measures (± standard deviation) with the GRU predictor.

ulates TBPTT(1,lb), i.e., backpropagating for lb steps on every new sample.
It has no effect on accuracy compared to the previous configuration, but
mainly sees a drastic increase in runtime. Our implementation feeds each
input lb times. A more efficient implementation could reduce runtime, how-
ever this result shows that the accuracy would not benefit from it.
Finally, in the lookback as features or lb-ft configuration we consider the en-
tries in the lookback window as separate features instead of different time
steps of the same features. This performs exceptionally well, outperforming
even the best HTM predictor by 32.2 %. The HTM predictor however still
wins out in terms of runtime. We therefore repeat hyperparameter tuning
with intervals leading to low runtimes, finding a tuning that only sacrifices a
fraction of the accuracy in exchange for reducing the runtime to 50 seconds.
As such this configuration beats any HTM predictor in both runtime and
accuracy. We were able to reduce the runtime by an order of magnitude,
resulting in only a 2.2 % error increase.

Table 7 shows the performance of the GRU predictor. Except for the
epoch values, this uses the same hyperparameters as the LSTM predictor.
We did perform separate hyperparameter tuning for GRU but did not observe
any improvement in performance. GRU performance is very close to LSTM
performance, although runtime is slightly higher. The additional epochs
required for GRU to converge did not outweigh the lower per-epoch runtime
due to the lower weight count. There is no clear winner between the two
RNN implementations in this experiment.

5.3. Ignoring Day and Time

Next to the passenger count, the day of week and time of day serve as
additional input features in all experiments. As the main patterns in the
data are daily, these additional features essentially provide a hint to the pre-
dictor on where to find these patterns. In this section, we investigate how

21

well the optimal configurations of the different predictors perform when this
information is withheld. A predictor that still performs well in the absence
of this information is more versatile. We first attempt this on the spatial
pooler-only HTM predictor. It performs very poorly in this scenario, with
the MASE increasing from 0.478 to 1.93, meaning this predictor’s error is on
average almost twice as high as that of a naive predictor. Clearly, the HTM
predictor mainly relies on previous samples with similar day and time values
to form predictions and is largely unable to extract patterns from just the
passenger count feature.

Running the LSTM predictor using the passenger count as the single in-
put feature leads to an average MASE of 0.364. While this is a noticeable
decrease in performance from the 0.324 attained with all three features, it
still better than any HTM predictor’s performance with date and time info.
This shows that the LSTM predictor is still able to detect seasonal patterns
without any indications to the pattern’s period, making it a more generally
applicable predictor than the HTM predictor.

6. Reduction to Multilayer Perceptrons

In Section 5.2 we concluded that the LSTM performed best in the lookback
as features configuration, in which the recurrent state is wiped after every
step and therefore zero at the start of every step. In this section, we simplify
the LSTM to eliminate memory from its structure entirely. The resulting
network is an MLP. We then show that this idea is also applicable to the HTM
predictor, by proposing an MLP conceptually equivalent to the spatial pooler-
only HTM predictor. We implement and evaluate both MLP predictors. By
demonstrating these MLPs we further corroborate our claim regarding the
minimal contribution of the predictors’ temporal aspects. In addition, the
resulting MLPs may be viable predictors on their own given their accuracy,
runtime and architectural simplicity.

6.1. Reducing the LSTM

We simplify the LSTM formulas in Section 3.2.1 knowing the previous
state ct−1 will always be zero, meaning the forget gate ft can be eliminated.
Furthermore, the hidden state ht−1 is always zero as well, meaning each
W ·(xt;ht−1) simplifies to Win ·xt, where Win is the non-recurrent component

22

Figure 7: MLP equivalent of LSTM with all state eliminated. All elements are now
implemented using separate layers.

of W . As such the expanded calculation for the output becomes:

ht = σ(Wo,in · xt)� tanh(σ(Wi,in · xt)� tanh(Wc,in · xt)) (17)

This simplified formula contains no references to the previous state, and in
fact characterizes the simple MLP shown in Figure 7.

6.2. Reducing the HTM

Next we investigate whether we can design an MLP that is in concept
similar to the spatial pooler-only HTM. Its classifier, which was simply a fully
connected layer with softmax activation function, can simply be copied over
to the MLP model. Next we observe that the encoders and spatial pooler
together (to which we will refer as the HTM encoder) serve to convert the
3 input values to an SDR of size 2048 with 41 active bits. We can instead
express this SDR as the 41 indices of the active bits. We can thus replace
the HTM encoder with a fully connected encoding layer with 41 outputs
corresponding to the indices of the active bits. This would however lose
the periodicity of the day and time encoders: 30 minutes to midnight on
a Sunday would no longer be considered close to 30 minutes past midnight
on a Monday. We replace each of the periodic features by both a sine wave
and a cosine wave with periods equal to the feature’s period p. Using either
wave ensures that points near the beginning and the end of the period are
encoded similarly, while using both additionally ensures that no two points
are unintentionally encoded the same way:

sin(a) = sin(b) ∧ cos(a) = cos(b) ⇐⇒ ∃i ∈ Z : b = a+ ip (18)

Figure 8 illustrates this point: only using the cosine wave would encode 6
A.M. (0.25p) and 6 P.M. (0.75p) equally. We adopted this technique from a

23

0 p 0.25 p 0.5 p 0.75 p 1 p

sine
cosine

Figure 8: Encoding periodicity with sine and cosine waves

blog post by Ian London [73]. We can then feed these four waves along with
the (normalized) passenger counts to our encoding layer. To further level
the playing field between this layer and the HTM encoder, we limit each of
the 41 output values to 2048 possible values. We achieve this by using an
activation function with a known range and quantizing its output to one of
2048 possible values during the forward pass. During backpropagation we
do use the non-quantized values. This method is inspired by recent work in
binarized and quantized neural networks [74, 75]. Experimentation showed
that quantized tanh performed best in this case.

6.3. Evaluation

We implemented and evaluated both MLP predictors. For the LSTM-
inspired predictor, we evaluated the prediction accuracy using the same op-
timal hyperparameters of the lookback as features LSTM experiment. Av-
eraged across 10 repetitions, the MLP reaches a MASE5500 of 0.324, and
MASE10 000 of 0.305, nearly identical to its source model’s 0.324 and 0.304,
indicating the best performing LSTM can indeed be reduced to an MLP. This
confirms that, at least for these simple seasonal time series, RNN memory
does not increase predictive capabilities. In addition, this MLP runs 37 %
faster.
Next we evaluate the HTM-inspired MLP predictor. After hyperparameter
tuning as in Section 4.2.3, we attained a MASE5500 of 0.444 and a MASE10 000

of 0.399. Compared to the best HTM results of 0.478 and 0.418, this shows
that our fully connected encoder significantly outperforms the HTM encoder.
While with a runtime of 515 seconds, this MLP predictor is 7 times slower,

24

2008 2009 2010 2011 2012 2013 2014 2015

0

20000

40000

60000

80000

100000

120000

Co
m

m
en

ts
 p

er
 h

ou
r

11/5/2012 12/5/2012 13/5/2012 14/5/2012 15/5/2012
0

10000

20000

30000

40000

50000

Co
m

m
en

ts
 p

er
 h

ou
r

Figure 9: The Reddit dataset contains both a daily seasonal pattern and a global trend.

careful hyperparameter tuning aimed at reducing runtime would likely re-
sult in an MLP outperforming the HTM with lower runtime. Such tuning
reduced a similar runtime by an order of magnitude in Section 5.2.2.

7. Robustness to Trend Information

The only dataset considered so far is trend-stationary, meaning its mean
remains stable throughout the entire sequence. Some time series do however
contain a clear global trend, leading to a changing mean and standard de-
viation over time. We apply our best performing predictors to such a time
series. This dataset contains the hourly number of publicly visible comments
posted on Reddit between October 15 2007 and May 31 2015. In this period,
the average number of comments per hour increased from a few hundred to
over fifty thousand. Figure 9 shows the data. This dataset, parsed from
publicly available data, has not been used before in the literature.

We first apply the lookback-as-features LSTM predictor and its MLP equiv-
alent to this dataset. We use the same hyperparameters as in Table 5. These
predictors perform poorly on this dataset, with a MASE5500 of 0.948 and
0.925. The normalization, configured using only the first 5000 samples, no
longer ensures an overall mean of 0 and a standard deviation of 1 due to the
global trend. We instead apply Adaptive Normalization (AN) [76], an ap-
proach which divides the dataset into Disjoint Sliding Windows (DSWs) and
normalizes each DSW separately. With this normalization, the LSTM and
MLP predictors perform equally well, with a MASE5500 of 0.311 and 0.310.

We then apply the HTM predictor and its MLP-based alternative to this

25

dataset. As the range of values is three times as wide as with the previous
dataset, we triple the number of buckets the predictor uses to 66. Without
any other modifications, the HTM attains a MASE5500 of 0.541. The HTM’s
performance does not suffer greatly from the global trend, as it constantly
adapts to the changing patterns in the input. The MLP variant did not per-
form as well on this dataset, as it struggled to adapt to the changing trend.
Even when retraining every 200 steps, it only attained a MASE5500 of 0.632.
It does however still outperform the regular LSTM without AN by 33.3 %,
indicating it does not fail entirely at adapting to the global trend.

8. Conclusions

In this article, we provide the first in-depth and independent study of
time series prediction performance of HTM, LSTM and GRU. In contrast to
previously published work [5], we show that, through hyperparameter tun-
ing and careful formatting of the data, the LSTM predictor outperforms
the HTM predictor by over 30 % at lower runtime. The GRU predictor is
slightly slower than its LSTM counterpart but performs similarly; their accu-
racy measures differ at by at most 1.3 %. In addition, we evaluate the effects
of different traits of time series on the predictors’ performance. For instance,
the HTM is unable to predict a seasonal pattern in the absence of features
indicating the pattern’s period (e.g., timestamps), while the LSTM still per-
forms reasonably well in this case. This indicates that HTM mainly bases
its predictions on these secondary features, rather than actually uncovering
underlying patterns in the time series. Next we show that the HTM predic-
tor still performs reasonably well on a non-stationary time series, despite a
noticeable decrease in performance. An unmodified LSTM fails to produce
any reasonable predictions in this scenario. Modifying only the normaliza-
tion algorithm leads to performance similar to the stationary case.

A more detailed study of these algorithms has also led to the design of concep-
tually similar but architecturally much simpler alternatives to both HTM and
LSTM using MLP predictors, performing at least as well on trend-stationary
data. As a result, we do not only disprove the claim that HTM slightly
outperforms LSTM in this application, but also show that both may be un-
necessarily intricate for this type of time series prediction. Overall, we were
unable to discover a case where using HTM for time series prediction would
be preferable to neural network-based approaches. Requiring encoders for all

26

input also severely restricts HTM’s applicability. Finally, we note that there
may be other fields where HTM is a more competitive tool. More research,
such as very recent work on its applicability to anomaly detection [42, 43] is
required to further investigate potential use cases of HTM.

Acknowledgements

This research did not receive any specific grant from funding agencies in
the public, commercial, or not-for-profit sectors.

[1] S.-M. Chen, J.-R. Hwang, Temperature prediction using fuzzy time se-
ries, IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics) 30 (2) (2000) 263–275. doi:10.1109/3477.836375.

[2] F. J. Nogales, J. Contreras, A. J. Conejo, R. Espinola, Forecasting next-
day electricity prices by time series models, IEEE Transactions on Power
Systems 17 (2) (2002) 342–348. doi:10.1109/TPWRS.2002.1007902.

[3] M. V. D. Voort, M. Dougherty, S. Watson, Combining kohonen maps
with arima time series models to forecast traffic flow, Transportation
Research Part C: Emerging Technologies 4 (5) (1996) 307 – 318. doi:

10.1016/S0968-090X(97)82903-8.

[4] P. J. Brockwell, R. A. Davis, Introduction to Time Series and Forecast-
ing, 2nd Edition, Springer, 2002.

[5] Y. Cui, C. Surpur, S. Ahmad, J. Hawkins, A comparative study of
htm and other neural network models for online sequence learning with
streaming data, in: International Joint Conference on Neural Networks
(IJCNN), 2016, pp. 1530–1538. doi:10.1109/IJCNN.2016.7727380.

[6] Y. Cui, S. Ahmad, J. Hawkins, Continuous online sequence learning with
an unsupervised neural network model, Neural Computation 28 (11)
(2016) 2474–2504. doi:10.1162/neco_a_00893.

[7] J. D. Hamilton, Time series analysis, Vol. 2, Princeton University Press,
1994.

[8] H. Yang, Z. Pan, Q. Tao, J. Qiu, Online learning for vector autore-
gressive moving-average time series prediction, Neurocomputing doi:

10.1016/j.neucom.2018.04.011.

27

http://dx.doi.org/10.1109/3477.836375
http://dx.doi.org/10.1109/TPWRS.2002.1007902
http://dx.doi.org/10.1016/S0968-090X(97)82903-8
http://dx.doi.org/10.1016/S0968-090X(97)82903-8
http://dx.doi.org/10.1109/IJCNN.2016.7727380
http://dx.doi.org/10.1162/neco_a_00893
http://dx.doi.org/10.1016/j.neucom.2018.04.011
http://dx.doi.org/10.1016/j.neucom.2018.04.011

[9] R. E. Kalman, A new approach to linear filtering and prediction prob-
lems, Journal of Basic Engineering 82 (1) (1960) 35–45. doi:10.1115/

1.3662552.

[10] S. Särkkä, A. Vehtari, J. Lampinen, Cats benchmark time series predic-
tion by kalman smoother with cross-validated noise density, Neurocom-
puting 70 (13) (2007) 2331 – 2341. doi:10.1016/j.neucom.2005.12.

132.

[11] R. Faragher, Understanding the basis of the kalman filter via a simple
and intuitive derivation [lecture notes], IEEE Signal Processing Maga-
zine 29 (5) (2012) 128–132. doi:10.1109/MSP.2012.2203621.

[12] K. R. Müller, A. J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen,
V. Vapnik, Predicting time series with support vector machines, in: Ar-
tificial Neural Networks — ICANN’97, Springer Berlin Heidelberg, 1997,
pp. 999–1004. doi:10.1007/BFb0020283.

[13] K. Kim, Financial time series forecasting using support vector ma-
chines, Neurocomputing 55 (1) (2003) 307 – 319. doi:10.1016/S0925-
2312(03)00372-2.

[14] Y. Bao, T. Xiong, Z. Hu, Multi-step-ahead time series prediction using
multiple-output support vector regression, Neurocomputing 129 (2014)
482 – 493. doi:10.1016/j.neucom.2013.09.010.

[15] G. Zhang, B. Patuwo, M. Y. Hu, A simulation study of artificial neu-
ral networks for nonlinear time-series forecasting, Computers & Op-
erations Research 28 (4) (2001) 381 – 396. doi:10.1016/S0305-

0548(99)00123-9.

[16] T. Kuremoto, S. Kimura, K. Kobayashi, M. Obayashi, Time series fore-
casting using a deep belief network with restricted boltzmann machines,
Neurocomputing 137 (2014) 47 – 56. doi:10.1016/j.neucom.2013.03.
047.

[17] F. Shen, J. Chao, J. Zhao, Forecasting exchange rate using deep belief
networks and conjugate gradient method, Neurocomputing 167 (2015)
243 – 253. doi:10.1016/j.neucom.2015.04.071.

28

http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1016/j.neucom.2005.12.132
http://dx.doi.org/10.1016/j.neucom.2005.12.132
http://dx.doi.org/10.1109/MSP.2012.2203621
http://dx.doi.org/10.1007/BFb0020283
http://dx.doi.org/10.1016/S0925-2312(03)00372-2
http://dx.doi.org/10.1016/S0925-2312(03)00372-2
http://dx.doi.org/10.1016/j.neucom.2013.09.010
http://dx.doi.org/10.1016/S0305-0548(99)00123-9
http://dx.doi.org/10.1016/S0305-0548(99)00123-9
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1016/j.neucom.2013.03.047
http://dx.doi.org/10.1016/j.neucom.2015.04.071

[18] C. Sheng, J. Zhao, Y. Liu, W. Wang, Prediction for noisy nonlinear time
series by echo state network based on dual estimation, Neurocomputing
82 (2012) 186 – 195. doi:10.1016/j.neucom.2011.11.021.

[19] C. Yang, J. Qiao, H. Han, L. Wang, Design of polynomial echo state
networks for time series prediction, Neurocomputing 290 (2018) 148 –
160. doi:10.1016/j.neucom.2018.02.036.

[20] S. Zhong, X. Xie, L. Lin, F. Wang, Genetic algorithm optimized double-
reservoir echo state network for multi-regime time series prediction, Neu-
rocomputing 238 (2017) 191 – 204. doi:10.1016/j.neucom.2017.01.

053.

[21] Y. Lan, Y. C. Soh, G.-B. Huang, Ensemble of online sequential extreme
learning machine, Neurocomputing 72 (13) (2009) 3391 – 3395. doi:

10.1016/j.neucom.2009.02.013.

[22] J. Xue, S. Zhou, Q. Liu, X. Liu, J. Yin, Financial time series prediction
using `2,1rf-elm, Neurocomputing 277 (2018) 176 – 186. doi:10.1016/

j.neucom.2017.04.076.

[23] X. Wang, M. Han, Online sequential extreme learning machine with
kernels for nonstationary time series prediction, Neurocomputing 145
(2014) 90 – 97. doi:10.1016/j.neucom.2014.05.068.

[24] P. Singh, Rainfall and financial forecasting using fuzzy time series and
neural networks based model, International Journal of Machine Learn-
ing and Cybernetics 9 (3) (2018) 491–506. doi:10.1007/s13042-016-

0548-5.

[25] O. C. Yolcu, H.-K. Lam, A combined robust fuzzy time series method
for prediction of time series, Neurocomputing 247 (2017) 87 – 101. doi:
10.1016/j.neucom.2017.03.037.

[26] F. Gaxiola, P. Melin, F. Valdez, O. Castillo, Interval type-2 fuzzy
weight adjustment for backpropagation neural networks with applica-
tion in time series prediction, Information Sciences 260 (2014) 1 – 14.
doi:10.1016/j.ins.2013.11.006.

[27] F. Gaxiola, P. Melin, F. Valdez, O. Castillo, Generalized type-2 fuzzy
weight adjustment for backpropagation neural networks in time series

29

http://dx.doi.org/10.1016/j.neucom.2011.11.021
http://dx.doi.org/10.1016/j.neucom.2018.02.036
http://dx.doi.org/10.1016/j.neucom.2017.01.053
http://dx.doi.org/10.1016/j.neucom.2017.01.053
http://dx.doi.org/10.1016/j.neucom.2009.02.013
http://dx.doi.org/10.1016/j.neucom.2009.02.013
http://dx.doi.org/10.1016/j.neucom.2017.04.076
http://dx.doi.org/10.1016/j.neucom.2017.04.076
http://dx.doi.org/10.1016/j.neucom.2014.05.068
http://dx.doi.org/10.1007/s13042-016-0548-5
http://dx.doi.org/10.1007/s13042-016-0548-5
http://dx.doi.org/10.1016/j.neucom.2017.03.037
http://dx.doi.org/10.1016/j.neucom.2017.03.037
http://dx.doi.org/10.1016/j.ins.2013.11.006

prediction, Information Sciences 325 (2015) 159 – 174. doi:10.1016/

j.ins.2015.07.020.

[28] M. Binkowski, G. Marti, P. Donnat, Autoregressive convolutional neu-
ral networks for asynchronous time series, in: Proceedings of the 35th
International Conference on Machine Learning, Vol. 80, PMLR, 2018,
pp. 579–588.

[29] Z. Che, S. Purushotham, G. Li, B. Jiang, Y. Liu, Hierarchical deep gen-
erative models for multi-rate multivariate time series, in: Proceedings of
the 35th International Conference on Machine Learning, Vol. 80, PMLR,
2018, pp. 783–792.

[30] Z. Zhao, W. Chen, X. Wu, P. C. Y. Chen, J. Liu, Lstm network: a
deep learning approach for short-term traffic forecast, IET Intelligent
Transport Systems 11 (2) (2017) 68–75. doi:10.1049/iet-its.2016.

0208.

[31] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese,
Social lstm: Human trajectory prediction in crowded spaces, in: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 961–971. doi:10.1109/CVPR.2016.110.

[32] B. Liu, C. Fu, A. Bielefield, Y. Q. Liu, Forecasting of chinese primary
energy consumption in 2021 with gru artificial neural network, Energies
10 (10). doi:10.3390/en10101453.

[33] L. Kuan, Z. Yan, W. Xin, C. Yan, P. Xiangkun, S. Wenxue, J. Zhe,
Z. Yong, X. Nan, Z. Xin, Short-term electricity load forecasting method
based on multilayered self-normalizing gru network, in: IEEE Confer-
ence on Energy Internet and Energy System Integration (EI2), 2017, pp.
1–5. doi:10.1109/EI2.2017.8245330.

[34] G. Zhang, B. E. Patuwo, M. Y. Hu, Forecasting with artificial neural
networks: The state of the art, International Journal of Forecasting
14 (1) (1998) 35 – 62. doi:10.1016/S0169-2070(97)00044-7.

[35] I. V. Tetko, D. J. Livingstone, A. I. Luik, Neural network studies. 1.
comparison of overfitting and overtraining, Journal of Chemical Infor-
mation and Computer Sciences 35 (5) (1995) 826–833. doi:10.1021/

ci00027a006.

30

http://dx.doi.org/10.1016/j.ins.2015.07.020
http://dx.doi.org/10.1016/j.ins.2015.07.020
http://dx.doi.org/10.1049/iet-its.2016.0208
http://dx.doi.org/10.1049/iet-its.2016.0208
http://dx.doi.org/10.1109/CVPR.2016.110
http://dx.doi.org/10.3390/en10101453
http://dx.doi.org/10.1109/EI2.2017.8245330
http://dx.doi.org/10.1016/S0169-2070(97)00044-7
http://dx.doi.org/10.1021/ci00027a006
http://dx.doi.org/10.1021/ci00027a006

[36] S. Lawrence, C. L. Giles, Overfitting and neural networks: conjugate
gradient and backpropagation, in: Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks, Vol. 1, 2000,
pp. 114–119. doi:10.1109/IJCNN.2000.857823.

[37] A. J. Conejo, J. Contreras, R. Esṕınola, M. A. Plazas, Forecasting
electricity prices for a day-ahead pool-based electric energy market,
International Journal of Forecasting 21 (3) (2005) 435 – 462. doi:

10.1016/j.ijforecast.2004.12.005.

[38] G. Tkacz, Neural network forecasting of canadian gdp growth, Inter-
national Journal of Forecasting 17 (1) (2001) 57 – 69. doi:10.1016/

S0169-2070(00)00063-7.

[39] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: A simple way to prevent neural networks from overfitting, The
Journal of Machine Learning Research 15 (1) (2014) 1929–1958.

[40] V. Pham, T. Bluche, C. Kermorvant, J. Louradour, Dropout improves
recurrent neural networks for handwriting recognition, in: 14th Inter-
national Conference on Frontiers in Handwriting Recognition, 2014, pp.
285–290. doi:10.1109/ICFHR.2014.55.

[41] J. Hawkins, S. Ahmad, Why neurons have thousands of synapses, a
theory of sequence memory in neocortex, Frontiers in Neural Circuits
10 (2016) 23. doi:10.3389/fncir.2016.00023.

[42] M. A. Rodriguez, R. Kotagiri, R. Buyya, Detecting performance anoma-
lies in scientific workflows using hierarchical temporal memory, Future
Generation Computer Systemsdoi:10.1016/j.future.2018.05.014.

[43] J. Wu, W. Zeng, F. Yan, Hierarchical temporal memory method for
time-series-based anomaly detection, Neurocomputing 273 (2018) 535 –
546. doi:10.1016/j.neucom.2017.08.026.

[44] Z. Hasani, Robust anomaly detection algorithms for real-time big data:
Comparison of algorithms, in: 6th Mediterranean Conference on Em-
bedded Computing (MECO), 2017, pp. 1–6. doi:10.1109/MECO.2017.
7977130.

31

http://dx.doi.org/10.1109/IJCNN.2000.857823
http://dx.doi.org/10.1016/j.ijforecast.2004.12.005
http://dx.doi.org/10.1016/j.ijforecast.2004.12.005
http://dx.doi.org/10.1016/S0169-2070(00)00063-7
http://dx.doi.org/10.1016/S0169-2070(00)00063-7
http://dx.doi.org/10.1109/ICFHR.2014.55
http://dx.doi.org/10.3389/fncir.2016.00023
http://dx.doi.org/10.1016/j.future.2018.05.014
http://dx.doi.org/10.1016/j.neucom.2017.08.026
http://dx.doi.org/10.1109/MECO.2017.7977130
http://dx.doi.org/10.1109/MECO.2017.7977130

[45] O. Krestinskaya, T. Ibrayev, A. P. James, Hierarchical temporal mem-
ory features with memristor logic circuits for pattern recognition, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 37 (6) (2018) 1143–1156. doi:10.1109/TCAD.2017.2748024.

[46] M. Gardner, S. Dorling, Artificial neural networks (the multilayer per-
ceptron) —a review of applications in the atmospheric sciences, Atmo-
spheric Environment 32 (14) (1998) 2627 – 2636. doi:10.1016/S1352-
2310(97)00447-0.

[47] A. Graves, Generating sequences with recurrent neural networks, CoRR
abs/1308.0850. arXiv:1308.0850.

[48] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, Y. Bengio, Learning phrase representations using rnn
encoder–decoder for statistical machine translation, in: Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing (EMNLP), Association for Computational Linguistics, 2014, pp.
1724–1734. doi:10.3115/v1/D14-1179.

[49] J. Hawkins, S. Ahmad, S. Purdy, A. Lavin, Biological and machine in-
telligence (bami), initial online release 0.4 (2016).
URL https://numenta.com/resources/biological-and-machine-

intelligence/

[50] I. Aizenberg, L. Sheremetov, L. Villa-Vargas, J. Martinez-Muñoz, Mul-
tilayer neural network with multi-valued neurons in time series fore-
casting of oil production, Neurocomputing 175 (2016) 980 – 989. doi:

10.1016/j.neucom.2015.06.092.

[51] S. Galeshchuk, Neural networks performance in exchange rate predic-
tion, Neurocomputing 172 (2016) 446 – 452. doi:10.1016/j.neucom.

2015.03.100.

[52] A. Graves, A. r. Mohamed, G. Hinton, Speech recognition with deep
recurrent neural networks, in: IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2013, pp. 6645–6649. doi:10.1109/
ICASSP.2013.6638947.

[53] R. Pascanu, T. Mikolov, Y. Bengio, Understanding the exploding gra-
dient problem, CoRR abs/1211.5063.

32

http://dx.doi.org/10.1109/TCAD.2017.2748024
http://dx.doi.org/10.1016/S1352-2310(97)00447-0
http://dx.doi.org/10.1016/S1352-2310(97)00447-0
http://arxiv.org/abs/1308.0850
http://dx.doi.org/10.3115/v1/D14-1179
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
http://dx.doi.org/10.1016/j.neucom.2015.06.092
http://dx.doi.org/10.1016/j.neucom.2015.06.092
http://dx.doi.org/10.1016/j.neucom.2015.03.100
http://dx.doi.org/10.1016/j.neucom.2015.03.100
http://dx.doi.org/10.1109/ICASSP.2013.6638947
http://dx.doi.org/10.1109/ICASSP.2013.6638947

[54] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Com-
putation 9 (8) (1997) 1735–1780. doi:10.1162/neco.1997.9.8.1735.

[55] R. Jozefowicz, W. Zaremba, I. Sutskever, An empirical exploration of
recurrent network architectures, in: Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning -
Volume 37, 2015, pp. 2342–2350.

[56] Y. Bengio, N. Boulanger-Lewandowski, R. Pascanu, Advances in op-
timizing recurrent networks, in: 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2013, pp. 8624–8628.
doi:10.1109/ICASSP.2013.6639349.

[57] F. A. Gers, J. A. Schmidhuber, F. A. Cummins, Learning to forget:
Continual prediction with lstm, Neural Comput. 12 (10) (2000) 2451–
2471. doi:10.1162/089976600300015015.

[58] J. Chung, Ç. Gülçehre, K. Cho, Y. Bengio, Empirical evaluation of gated
recurrent neural networks on sequence modeling, CoRR abs/1412.3555.
arXiv:1412.3555.

[59] J. Hawkins, S. Blakeslee, On intelligence: How a new understanding of
the brain will lead to the creation of truly intelligent machines, Macmil-
lan, 2007.

[60] M. S. Gazzaniga, Human: The science behind what makes us unique,
Ecco, 2008.

[61] S. Ahmad, J. Hawkins, How do neurons operate on sparse distributed
representations? a mathematical theory of sparsity, neurons and active
dendrites, arXiv preprint arXiv:1601.00720.

[62] S. Purdy, Encoding data for HTM systems, CoRR abs/1602.05925.
arXiv:1602.05925.

[63] F. D. S. Webber, Semantic folding theory and its application in semantic
fingerprinting, CoRR abs/1511.08855. arXiv:1511.08855.

[64] Y. Cui, S. Ahmad, J. Hawkins, The htm spatial pooler—a neocortical
algorithm for online sparse distributed coding, Frontiers in Computa-
tional Neuroscience 11 (2017) 111. doi:10.3389/fncom.2017.00111.

33

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/ICASSP.2013.6639349
http://dx.doi.org/10.1162/089976600300015015
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1601.00720
http://arxiv.org/abs/1602.05925
http://arxiv.org/abs/1511.08855
http://dx.doi.org/10.3389/fncom.2017.00111

[65] D. O. Hebb, The organization of behavior: A neuropsychological theory,
Wiley, 1949.

[66] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization,
CoRR arXiv:1412.6980.

[67] R. J. Williams, J. Peng, An efficient gradient-based algorithm for on-
line training of recurrent network trajectories, Neural Computation 2 (4)
(1990) 490–501. doi:10.1162/neco.1990.2.4.490.

[68] I. Sutskever, Training recurrent neural networks, University of Toronto,
Toronto, Ont., Canada.

[69] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimiza-
tion, Journal of Machine Learning Research 13 (Feb) (2012) 281–305.

[70] K. Greff, R. K. Srivastava, J. Koutńık, B. R. Steunebrink, J. Schmid-
huber, Lstm: A search space odyssey, IEEE Transactions on Neu-
ral Networks and Learning Systems 28 (10) (2017) 2222–2232. doi:

10.1109/TNNLS.2016.2582924.

[71] S. Makridakis, Accuracy measures: theoretical and practical concerns,
International Journal of Forecasting 9 (4) (1993) 527 – 529. doi:10.

1016/0169-2070(93)90079-3.

[72] R. J. Hyndman, A. B. Koehler, Another look at measures of forecast
accuracy, International Journal of Forecasting 22 (4) (2006) 679 – 688.
doi:10.1016/j.ijforecast.2006.03.001.

[73] I. London, Encoding cyclical continuous features - 24-hour time,
http://ianlondon.github.io/blog/encoding-cyclical-features-

24hour-time/, [Acccessed: 31 March 2018] (2016).

[74] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Bina-
rized neural networks, in: Advances in Neural Information Processing
Systems 29, Curran Associates, Inc., 2016, pp. 4107–4115.

[75] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, Quan-
tized neural networks: Training neural networks with low precision
weights and activations, CoRR arXiv:1609.07061.

34

http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1162/neco.1990.2.4.490
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1016/0169-2070(93)90079-3
http://dx.doi.org/10.1016/0169-2070(93)90079-3
http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/
http://ianlondon.github.io/blog/encoding-cyclical-features-24hour-time/
http://arxiv.org/abs/1609.07061

[76] E. Ogasawara, L. C. Martinez, D. de Oliveira, G. Zimbrão, G. L.
Pappa, M. Mattoso, Adaptive normalization: A novel data normal-
ization approach for non-stationary time series, in: The 2010 Interna-
tional Joint Conference on Neural Networks (IJCNN), 2010, pp. 1–8.
doi:10.1109/IJCNN.2010.5596746.

35

http://dx.doi.org/10.1109/IJCNN.2010.5596746

