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Abstract 

In this paper we study relative duality theory, with respect to an idempotent kernel functor 
o over some commutative ring R and prove that a-dualizing R-modules are not only locally 
injective, but (somewhat surprisingly) globally injective. Using a relative version of completion, 
we show that the endomorphism ring of a cr-dualizing module coincides with the completion of 
R with respect to CT. In the final part of the paper we consider relative Gorenstein rings, giving an 
explicit calculation of their generalized local cohomology groups. 

Introduction 

In this paper, we solve some of the problems that remained open in [4]. Indeed, in 

the first section, we come back to relative duality theory, and after a careful examina- 

tion of the functorial aspects involved, we prove that o-dualizing modules are not only 

locally injective, as was pointed out in [4], but actually happen to be injective (a fact, 

which in the relative context is rather unexpected!). Moreover, the local structure of 

c-dualizing modules already being determined in [3,4], we give in Proposition 2.4 

a complete global description of these. 

In the present text, we also briefly consider a relative version of completion (we 

hope to come back to this in more detail elsewhere). We show that the endomorphism 

ring of a a-dualizing module is the completion of R with respect to cr, cf. Lemma 3.2 

and apply this to introduce a relative version of Matlis duality [9]. 

In the final part of the paper, we restrict to (relative) Gorenstein rings. After an 

explicit calculation of their generalized local cohomology, cf. Lemma 3.7 and Lemma 

3.14, which strengthens similar statements in [S, 61, we calculate the relative Matlis 
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dual of the “highest” generalized local cohomology group of a g-complete o-Goren- 

stein ring and show that it is a well-determined torsion ideal of R, up to isomorphism 

(generalizing related results in [S, 61). 

Throughout, we will assume the reader to be familiar with the fundamentals of 

abstract localization theory, such as expounded in [4,7, 111, for example. However, 

for the reader’s convenience, we will briefly recollect here some of the most relevant 

definitions and features of this theory. 

1. Locally noetherian rings and localization 

Recall that an idempotent kernel functor in R-mod is a left exact subfunctor 0 of the 

identity, with the property that o(M/o(M) = 0, for any R-module M. Any idempotent 

kernel functor B defines a torsion class T,, consisting of all a-torsion R-modules M, 
i.e., with o(M) = M and a torsionfree class F, consisting of all cr-torsionfree R- 

modules, i.e., with o(M) = 0. It is well known that each of these classes completely 

determines CJ. Whereas the class F, is always closed under taking injective hulls, this is 

not necessarily valid for the class T,. If it is, then we call c stable. Note that over 

a noetherian (commutative) ring, every idempotent kernel functor is stable. 

To CJ, we may also associate the so-called Gabriel filter L(o). It consists of all ideals 

I of R, such that R/I ET, and uniquely determines r~, since for every ME R-mod 

and any x E M, we have x E oM if and only if there exists some I E L(a), with Ix = 0. 

If p is a prime ideal of R, then either R/p ET, or R/p EF,, i.e., c determines a 

partition (Z(a), K(a)) of Spec(R), where Z(a) = L(o) n Spec(R) and K(a) = 

{P E Spec(R) I R/P SF,). 
To any idempotent kernel functor B in R-mod, we may associate a localization 

functor Q,. This functor maps o-isomorphisms, i.e., morphisms in R-mod with kernel 

and cokernel in T,, to isomorphisms in R-mod, and satisfies some obvious universal 

properties, cf. [7, 111. For any R-module M there is a canonical o-isomorphism 

jC: M + Q6(M), the so-called localization map. We say that M is a-closed if the 

associated localization map j, is an isomorphism in R-mod, and we denote by 

(R, o)-mod the full subcategory of R-mod, consisting of all a-closed R-modules. As an 

example, let dR,P be defined by letting aRip M consist of all x EM such that sx = 0 for 

some s E R\p, and this for all ME R-mod. The associated localization functor is then 

just the usual localization functor (-), at the prime ideal p, while (R, o&-mod is just 

R,-mod. 
We will say that the ring R is a-noetherian if Q,(R) is a noetherian object of 

(R, o)-mod. In this paper, we will always restrict to o-noetherian rings; we indicate 

below a short survey of their most significant features, referring to the literature for 

more details. 

An R-module M is said to be g-finitely generated, if there exists a finitely generated 

submodule N E M such that M/N is a-torsion. We will say that an R-module M is 
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a-noetherian if each of its submodules is a-finitely generated. If R is a-noetherian as an 

R-module, then we call R a a-noetherian ring. If a = 0, then we recover usual 

finiteness notions. Moreover, it is clear that torsion modules or noetherian resp. 

finitely generated modules are a-noetherian resp. a-finitely generated. It is also clear 

that if a _< z (i.e., T, c T,) and if A4 is a-finitely generated resp. a-noetherian, then it is 

also r-finitely generated resp. z-noetherian. 

Let N be a submodule of an R-module M; then M is a-noetherian (resp. a-finitely 

generated) if and only if N and M/N are a-noetherian (resp. a-finitely generated). One 

also easily verifies that an R-module M is a-noetherian resp. a-finitely generated if and 

only if M/aM or Q,(M) is. On the other hand, it is also clear that M is a-noetherian if 

and only if for every ascending chain Ml s M2 E ... of R-submodules of M, there 

exists a positive integer n such that M,/M, is a-torsion (or, equivalently, 

Q,(M,) = Qa(Mm)) for all m L n and that this is also equivalent to the fact that QO(M) 

be a noetherian object in (R, a)-mod, which reduces, for M = R, to the definition we 

gave above. 

If R is a-noetherian, then any idempotent kernel functor a in R-mod is completely 

determined by K(a) c Spec(R). Indeed, in this case an R-module M is a-torsion if and 

only if M, = 0 for any p E K(a). Moreover, a = A\pEC(alaR,p, where the infimum is 

taken in the obvious sense and where C(a) consists of all prime ideals p, which are 

maximal within K(a). We can then apply local-global arguments to solve problems in 

abstract localization theory by classical localization at prime ideals. 

Let a I r be a pair of idempotent kernel functors in R-mod, then we denote by 

Tzmfg the full subcategory of R-mod, which consists of all a-finitely generated r- 

torsion R-modules. 

Since R is a-noetherian, the idempotent kernel functor a is completely determined 

by C(a). It is easy to see that the set K(a)\C( a is closed under generalization and it ) 

determines unambiguously an idempotent kernel functor a1 in R-mod, with 

K(a’) = K(a)\C(a). We call a1 the first skeleton of a. For details and applications 

concerning this notion, we refer to [4, V, p. 1573. 

We conclude these preliminaries with some easy technical results, which will be 

used in the sections below. 

Lemma 1.1. Let a be an idempotent kernel jiunctor in R-mod. If 0 # M eTgifg is 

a-torsionfree, then there exists a chain 

(*) O=M,,SM~E...EM,=M 

of R-submodules, such that for each 1 I i I n, there is an isomorphism 

(MiIMi- l)Ia(Mi/Mi- I) = R/pi, 

for some pi E C(a). 
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Proof. By [4,111-4.4-J, there exists a chain (*) of R-submodules, such that for each 

1 I i I n, there is an isomorphism 

for some PiEK(a). But M ET,~ implies that pie Z(a’), and SO PiEC(G). Cl 

Lemma 1.2. Let (T be an idempotent kernelfunctor in R-mod. 

(I) UPEC(~), then QARh) = (R/P),. 
(2) For any p E C(o) there is a canonical isomorphism 

HomdRlp, W/P)) 2 Q,(W) s k(p). 

Proof. (1) by [lo, Theorem 6.71 Q,(R/p) 2 &.&R/p),. On the other hand, if 

p # q EC(~), then obviously p EL(cT~,>,,) (since p and q are incomparable), so 

(R/p), = 0, since p(R/p) = 0 implies that R/p is torsion at q. It thus follows that 

QdW = Wp),, ~~ckd. 
(2) Clearly Hom,(R/p, E(R/p)) may be identified with the set Q of all qeE(R/p) 

with the property that pq = 0. Let q E Q; then, since E(R/p) is essential over R/p, there 

exists some r E R such that 0 # rq E R/p. In particular, r$ p. But then, L = Ann(q)$p 

and q E Q,(R/p), indeed. 

Conversely, if q EQ,(R/~) z k(p) and if L = (R/p: q), then t$~?, so there exists 

r E R\p which rq E R/p. But then prq = 0, so pq = 0, since k(p) has no p-torsion as 

R-module. Hence q E Q, which proves the assertion. I? 

2. Relative duality 

Throughout this text, R will always denote a commutative ring with unit and g an 

idempotent kernel functor in R-mod, with the property that R is a-noetherian. 

Let CJ i 7 be a pair of idempotent kernel functors in R-mod; denote by 

T: TTmfg + (R, o)-mod 

a contravariant functor. Thus for any M ET:‘~~, the R-module structure on T(M) is 

induced by the one on M. It has been proved in [4, V-2.21, that there exists a natural 

transformation 

cp : T --* Horn, (-, E)! 

where 

E = li2 T(R/I). 
IEL(T) 
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Moreover if T.TzSfg + (R, o)-mod is left exact and maps a-isomorphisms in Tzmfg to 7 . 
isomorphisms in (R, a)-mod, then the natural transformation 

cp: T+ Hom,(-, E) 

is a natural equivalence. 

Denote by 

( TFmfg, (R, g)-mod) 

the category of left exact additive contravariant functors 

T: TFmfg + (R, a)-mod, 

which map a-isomorphisms to isomorphisms. On the other hand, z induces, in the 

obvious way, an idempotent kernel functor ? in (R, o)-mod. Let Ti denote the full 

subcategory of (R, o)-mod consisting of the z-torsion R-modules. From [4, V, p. 1651, 

we have the following: 

Proposition 2.1. The categories 

(Tzmfg, (R, o)-mod) and Ti 

are equivalent by means of the functors 

VI: TN I& T(R/I) and v: N~Horn~(-, N). 
ItL(r) 

0 

Let E E T,b-fg. It has been pointed out in [4] that 

T = Hom,(-, E) : TFefg + (R, g)-mod 

is exact if, and only if, Coker(Hom,(R, E) + Hom,(K, E)) E T, for every ideal K of R. 

Using a “Baer-like” argument, one sees this to be equivalent to the analogous 

statement for a-finitely generated R-modules M’ L M. An R-module with these 

properties is said to be c-locally injective in (R, a)-mod. It is easy to see that if E is 

a-locally injective, then E, is an injective R,-module for any p EK(CJ) (where the 

terminology). On the other hand, since Q,,(R) is, in general, not a projective generator 

for (R, a)-mod-unless (R, o)-mod is a full module category-this does not imply such 

a module to be injective in (R, a)-mod or R-mod. We will see below, however, that the 

module E actually is injective, when the functor T is dualizing. 

For any P E C(g), let k(p) = R&R, = (R/P), = Q,(RIp). 
We then have the following proposition: 

Proposition 2.2. Assume that TE (Tg?=, R, o)-mod), the category of left exact con- 

travariant functors 

T: Tzifg + (R, a)-mod 
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which map o-isomorphisms to isomorphisms. Then the following conditions are equiva- 

lent: 

(1) For all M ~Tzi’~, it follows that T(M)ET~;‘~, and that the natural morphism 

Q&W+ TWO, 

derived from the natural transformation 

idl_mod -+ TT, 

is an isomorphism. 

(2) The finctor T is exact and for each p E C(a), we have 

T(RIP) g Qo(Rh). 

Proof. Let us first prove that (1) implies (2). It already follows from [4, V-4.21 that T is 

exact. On the other hand, if p E C(G), then T(R/p) g T(k(p)). Moreover, since T(M) 

inherits the R-module structure of M for any ME Tsifg, it is easy to see that T(R/p) is 

a k(p)-vectorspace. By hypothesis, T(R/p) belongs to Tzifg, so, in particular, it is 

a-finitely generated. Since T maps g-isomorhisms to isomorphisms, we may as well 

assume that T(R/p) is finitely generated as an R-module, hence also as a k(p)- 

vectorspace. Assume T(R/p) = k(p)“, for some positive integer n. Then, up to isomor- 

phism, 

k(n) = Q&VP) = TTUVP) = W(p)") = TV+))" = MV2. 

So n = 1 and T(R/p) z Q,(R/p). 

Conversely, let us prove that (2) implies (1). If M E Tzifg, then Q,,(M) ET:;“. But the 

canonical map M + Q,(M) is a o-isomorphism, so T(M) z T(Q,(M)), and we may as 

well assume that M is a-closed. By Lemma 1.1, we may find a chain 

O=MO~M1~...~M,=M 

of R-modules, such that for each 1 I i I n, there exists an isomorphism 

(MiIMi- i)Ig(MiIMi- 1) E R/nit 

for some pi~C(O). Since T is exact, for each i, we obtain an exact sequence 

0 + Q,(R,/‘pi) z T(Mi/Mi- 1) * T(Mi) + T(Mi- 1) + 0 

in (R, a)-mod and, by induction, T(M) is o-finitely generated and o’-torsion. 

Next, for M = R/p, with p E C(g), clearly TT(R/p) z Q,(R/p). On the other hand, 

any exact sequence 

O-+M’+M+M”+O 

in (R, o)-mod, with objects belonging to Tzifg induces an exact sequence 

0 + TT(M’) + TT(M) -+ TT(M”) + 0 
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together with canonical morphisms between the former and the latter exact sequences. 

If these canonical morphisms are isomorphisms for M’ and M”, then so is the 

canonical morphism M + TT(A4). In particular, using a chain as above, an easy 

induction argument shows M -+ TT(M) to be an isomorphism for any ME Tzifg. This 

finishes the proof. 0 

Definition 2.3. A functor TE (Tzifg, (R, a)-mod) satisfying the equivalent conditions 

of Proposition 2.2 is said to be o-dualizing. A o’-torsion R-module E such that 

Hom,(-, E) is a a-dualizing functor is called a o-dualizing R-module. 

From Proposition 2.2, it follows immediately that a a-dualizing R-module E is an 

internal injective object in (R, g)-mod, hence an injective R-module by [12]. In fact, we 

may even show 

Proposition 2.4. Let E be a o-closed o’-torsion R-module. Then the following assertions 
are equivalent: 

(1) E is a-dualizing. 

(2) E = & .ccb,E(R/p) up to non-canonical isomorphism. 

Proof. Let us first prove that (1) implies (2). Let E be a-dualizing R-module and 

denote by F the injective hull of E. Since E is a-torsionfree, so is F, hence every 

indecomposable component of F is of the form E(R/p) for some p E K(a). On the other 

hand, since E is also al-torsion, it follows that these p necessarily belong to C(a). So, 
F = @&-(UjE(R/p)np, for some non-negative integers nP. 

Pick qEC(a). From [lo] (see also proof of [4, VI-3.5]), it follows that F, = E(E,), 
the injective hull of E, in R,-mod. Since E is a-dualizing, E, is a dualizing R,-module, 

hence F, = E, = E(R,/qR,) = E@(q)). It follows that 

F, = @ -WhP = W/q)? = EMq)P, 
PEC(U) > q 

whence nq = 1, and since this holds for all q E C(a), it follows that F = &C(o) E(R/p) 
Denote by i: E -F = @Ps,-(oj E(R/p) the canonical inclusion. Then, for any 

q E C(a), this induces a monomorphism i g : E(k(q)) c E(k(q)), which then actually is an 

isomorphism, since E(k(q)) is an indecomposable injective R,-module. Since both 

E and F are a-closed, i is an isomorphism. Conversely, let us show that 

E = &,cc~,E(R/p) is a-dualizing. It is clear that T = Hom,(-, E) is exact and maps 

a-isomorphisms to isomorphisms in (R, a)-mod. By Proposition 2.2, it thus remains to 

prove that T(R/p) g Q,,(R/p), for all p E C(a). But, by the previous Lemma, and using 

the fact that for any p # qEC(a) the R-module E(R/q) is torsion at p, it follows that 

W/P) = HomdRlp, E) = HomdRh, JWIP)) = k(p) = Q,(Rh). •I 
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Example 2.5. Pick a Krull domain R with field of fractions K and let 0 be associated 

to the height-one primes, i.e., K(o) = X”‘(R) u (0). Then R is o-noetherian and cr is 

stable, cf. [ll, X111-4.6, X111-5.81. Now, C’ = Us,,-,, whose associated localization 

functor is just localization at the non-zero elements of R (i.e., Q,I(R) = K). Since, cf. 

[ 11, X111-5.31 

E(RIR) = @{R/R, I P EX’~‘(R)) = @{E(RIp) I P ~x”‘(R)j, 

we have that E(K/R) is o-dualizing. 

3. Duality and completion 

In this section, E denotes a a-dualizing R-module. 

Definition 3.1. Let R be a c-noetherian ring with CJ a stable idempotent kernel functor. 

We define the a-completion of R as 

R” = l&n Q,(R/I). 
IEL(0’) 

In particular, R” is o-closed and the canonical morphism R + R” extends to a mor- 

phism QO(R) + R”. 

Lemma 3.2. Let R be a o-noetherian ring with CT a stable idempotent kernel jiunctor. If 

E is a a-dualizing R-module, then 

R” 2 End,(E). 

Proof. 

R” = l&n Q,(R/I) 1 l@ HomR(HomR(R/I, E), E) 
IEL(cr’) IEL(cT’) 

z Horn, 
( 

lim HomR(R/I, E), E 
I&‘) 

z Hom,(al(E), E) = End,(E). 0 

Definition 3.3. Let R be a a-noetherian ring with o a stable idempotent kernel functor. 

We will say that R is o-complete if the canonical morphism Q,(R) + R” is an 

isomorphism. We denote by D the functor Hom,((, E) in R-mod; clearly D coincides 

with T on Tsif’. 

Definition 3.4. We denote by TumfC the full subcategory of R-mod, consisting of 

all a-finitely cogenerated, i.e. E-finitely cogenerated R-modules, where E = 

C&W E(R/p). It automatically follows that the modules in TbmfC are ol-torsion. 
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Lemma 3.5. Let R be a a-noetherian a-complete ring with CJ a stable idempotent kernel 

functor. 

(1) Zf M E Tumfg, then D(M) E TuefC. 
(2) If M E TuefC, then D(M) E Taefg. 

Proof. (1) If M is a o-finitely generated R-module, then there exists an exact sequence 

0 + N + M + M/N + 0 with N finitely generated and M/N o-torsion. Applying the 

functor HomR(-, E) we obtain the exact sequence 

0 + HomR(M/N, E) + HomR(M, E) --* Hom,(N, E) + 0. 

Since Hom,(M/N, E) = 0, we obtain Hom,(M, E) E HomR(N, E), and so we may 

assume that M is finitely generated. If M is finitely generated, there exists an exact 

sequence R” -+ M + 0 and so we have the exact sequence 

0 -+ Hom,(M, E) -+ HomR(R”, E) 

where 

HomR(R”, E) E (Hom,(R, E))” g E”, 

and so D(M) = Hom,(M, E)ET”-‘“. 

(2) If M is a o-finitely cogenerated R-module, then there exists an exact sequence 

0 + M + E”. Applying the functor Hom,(-, E), we obtain the exact sequence 

Hom,(E”, E) + Hom,(M, E) + 0, 

where HomR(E”, E) g (Hom,(E, E))” g (R”)” g Q,(R)“. So, D(M) = Hom,(M, E) is 

o-finitely generated, indeed. 0 

Let us denote by Tusfg resp. ‘TbMfC the full subcategories Tamfg n (R, o)-mod resp. 

TuMfC n (R, o)-mod of (R, i)-mod. Then we have the following result: 

Theorem 3.6 (Relative Matlis duality). Assume that R is a a-noetherian a-complete 

ring with o a stable idempotent kernel functor. Then D defines a natural equivalence 

between the categories Tumfg and TuMfc. 

Proof. Given M E TbMfC, there exists a short exact sequence 0 + M + E” -+ C + 0. 

Applying DD to this sequence yields a commutative diagram 

0-M-En-C-0 

%.f 1 (PE” 
1 

0 - DD(M)- DD(E”) - 
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where ‘pc : C -+ DD(C) is defined by cpc(c)(f) =f(c) for all fed. Since E is an 

injective cogenerator in (R, a)-mod, it follows that cpc is a monomorphism, whenever 

C is not o-torsion. Since 

DD(E) = Hom,(Hom,(E, E), E) g Hom,(Qa(R), E) = E, 

it follows that (Pi” is an isomorphism, hence that cpw is an isomorphism. If C is 

o-torsion, then 

M g Q,(M) 2 Q,(E”) E D&Y’) g DD(M) 

since D(C) = 0. Moreover, the above isomorphisms are natural. 

Given MeTuMfC, since D(M) g D(Q,(M)) we may assume that M is finitely gener- 

ated, so there exists an exact sequence 

O+K+Q,(R)“+M+O 

Apply D to this exact sequence; its exactness yields an exact sequence 

0 + D(M) -+ D(Qo(R)“) + D(K) + 0 

and subsequently an exact diagram 

O-K p QcrU-9 .M-0 

O-:&K) 
I (PQ.W 

1 

- WQ,W)- 

But here 

~NQ,(W”) = HomdHomdQ,W, EL El 

= HomR(E”, E) = Q,(R)“, 

so (P~,(~,” is an isomorphism and so (Pi is a (natural) isomorphism too. 0 

An easy (but long) adaptation of the proof of Lemma 7.4 in [6] yields the following 

stronger version: 

Lemma 3.7. Let (R, m) be a local Gorenstein ring of dimension n, let E = E(R/m), and 

let 5 be a non-trivial idempotent kernel functor on R-mod. Then 

H;(R) = E 1 u Ann,(p’j’). 0 
psZ(r) i 

ht(p)=n- 1 

Definition 3.8. Let z and z’ be two idempotent kernel functors. The set U of all 

idempotent kernel functors K satisfying z A K 5 z’ has a unique maximal element 

called the pseudocomplement of 5 relative to z’ and denoted by (7’: 7); see [7, p. 2781. 
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Lemma 3.9. Let R be a o-noetherian ring and let z be an idempotent kernelfinctor such 

that CJ~ I z. Ifzz = (cl : 2) then 

Z(r,*) = {p E Spec(R) I V(p) n Z(z) c Z(d)}. 

Proof. Let p E Z(z,*). If q E V(p) n Z(z), then q E Z(z,*) n Z(z) and so q E Z(d). 
Conversely, let p E Spec(R) such that Z(CJ,) n Z(z) = V(p) n Z(z) c Z(d). By 

maximality gP I z,* and thus p E Z(z,*). ci 

Corollary 3.10 Let R be a o-noetherian ring and let T be an idempotent kernel jiunctor 

such that o1 < z. Then 

~(~3 = n WR,,), 
P~K(,J’)\K(~) 

Proof. Let q EZ(T,*), then there is p ~K(cr’)\K(z) such that q E p. Since p$ K(z), 

we have p EZ(Z), and thus p E V(q) n Z(z) L Z(cr’), so p$K(al) which is a con- 

tradiction. Thus we have shown Z(z:) s npsK(a,),K(r)Z(~R,p). Conversely, if 

q E npsK~~‘~\K~r~Z(%p) we have q gp for each p eK(o’)\K(z). For any 

p’ E V(q) n Z(z) we have q E p’ and p E Z(z), so p’$Z(z). If p’$Z(o’), then p’ E K(cJ’) 

and q G/P’ which is a contradiction. 0 

Example 3.11. If R is local, which maximal ideal m, then Z(a,,,) = 
(p E Spec(R) ( p $nt} = 8, K(cJ~,,,,) = Spec(R) and C(G~,,,) = {m}. Moreover, 

Z(a,) = {p E Spec(R)) m G p} = {m} z K(a,) = Spec(R)\{m}, so DA,~ = u,, cf. 

[4, v-1.21. 

If z is an idempotent kernel functor in R-mod, then for z:~,,,, = (0, : z) we have 

Z(r Z&J = {P E Wc(W I UP) n Zb) c {m> >, 
cf. [6]. 

Definition 3.12. We say that M has o-dimension n, if the Krull dimension of M, is 

equal to n for all p EC(a). 

If o-dim(M) = n, then a-dim(Qb(M)) = n, since for all p EC(U) we have 

M, = Qo(M)p. 
We will call R a o-locally Gorenstein ring if and only if it is o-noetherian and if R, is 

a local Gorenstein ring for every p EK(~). 

Example 3.13. Let R be a Krull domain and let d be the idempotent kernel functor in 

R-mod associated to the height-one prime ideals of R, then R has o-dimension one and 

R is certainly o-locally Gorenstein, since R, is a discrete valuation ring for p E X”‘(R) 

(and a field, if p = (0)). 
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Lemma 3.14. Let R be a o-Gorenstein ring with a-dimension n and assume CJ to be 

stable. Let z be a non-trivial idempotent kernelfunctor on R-mod such that o1 I o. Then 

JT, o(R) = Q,(EIC- ‘(E)) 

where 

T”,-‘(M) = 1 Tp4). 
~eK(o)‘,K(r) 
ht(p)=n- 1 

Proof. We may assume R = QB(R). Since R is o-Gorenstein and the o-dimension 

R is n, by [4, VI-3.341 the Cousin complex is an injective resolution of Q,,(R) 

(R, o)-mod and its length is n: 

O+ R+ C:(R)+ ... + C;-‘(R) d”-’ -C:(R) + 0. 

By [4, VI-3.9, 3.8, 3.231, we have that 

and by [4, V-4.151 this is a a-dualizing R-module. Then 

C:(R) = @ E(R/p) = E. 
peC(o) 

Therefore C”,(R) is o’-torsion and so r-torsion. We will use this injective resolution 

obtain 

of 

in 

to 

H:,.(R) g R”?(R) = Q,H”,(R), 

where Z is the idempotent kernel functor induced by r in (R, o)-mod. In particular we 

obtain the following exact sequence: 

z(C:-‘(R)) --f z(C”,(R)) = E -+ H:,.(R) + 0. 

It is possible to interpret z(Cz-l(R)) as follows. By [4, VI-3.231 

C:-‘(R) z @ H$i,1(Rp,) 
PEK(@ 

ht(p)=n- 1 

but if p E Z(r), then T(H;;,~ (R,)) = I!&,1 (R,) and if p E K(z), then r(HiRi (R,)) = 0 and 

then 

T(Cn,-l(R)) g @ H;i,l(Rp) = @ ff;i,l(R~) 
peK(o)‘,KW 
ht(p)=np 1 

peK(4 n Z(r) 
ht(p)=n- 1 
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and there exists an exact sequence 
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It is easy to prove that Im(d”-‘) s zZ_ l(E), then there exists an epimorphism 

H:,.(R) = Coker(d”-‘) + E/T:-‘(E) -+ 0 

and a morphism 

H:,,(R)+ Qc@/C1(E)). 

To prove that this morphism is an isomorphism in (R, a)-mod it is sufficient to prove 

that for every p E C(a) 

K,,(R),+ Qc4It-'@)), 

is an isomorphism in R-mod. We have 

K,.(R), g H:(,,(R,) 

by [4, V-4.121. If we use Lemma 3.7, we find 

KdR,) = W(P)) c 
qRpsZ(r(p)) 

ht(qR,) =n - 1 

= W(P)) c 

qR,EZ(r(p)) 
ht(qR,)=n-1 

u Ann E(k&q(j)R ) P 
i 

GR~(E(QP))) 
> 

= -W(p))lb(p)“- ‘(-W(p)))), 

where 

Z(P)“- ‘W+(p))) = C %p(E(k(P)). 
&EZ(r(p)) 

ht(qR,) = n - 1 

On the other hand, 

QdW:-1 W), = WC'(W, = E,K-'(E),, 

but 

z:- l(E), = 1 z;(E), = 1 GR,(EJ 
qsWo)\K(r) qRpeW(p)) 
ht(q)=n- 1 ht(qR,) =n- 1 

= +.‘I’- ’ W’dr4)), 
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QoWC1 (E)), = E(~(P))/~(P)"-'(E(~(P))), 

and the result follows. 0 

Theorem 3.15. Let R be a a-Gorenstein o-complete ring with o-dimension n and assume 

cs to be stable. Let z be a non-trivial idempotent kernel functor on R-mod such that 

o1 I z. Then 

D@?.(R)) = C(R). 

Proof. We may assume R = Q,(R) and put K = D(H:,.(R)). We have 

K= 

= 

= 

E 

Hmdff:, .(RL El 

HomR(Q,(EICIW), El 

HomR(E/rz-i(E), E) 

Hom,(E, E) = R” = QO(R) = R. 

So K may be viewed as an ideal of R and is z-closed, since E is r-closed. Let us consider 

the exact sequence 

O+ I = r;-‘(E) + E+Hf,,(R)+ 0 

in (R, o)-mod. We obtain another sequence 

0 + K = D(H:,,(R)) --f R = D(E) + D(Z) + 0, 

which is exact in both (R, o)-mod, and R-mod. Now, there is an isomorphism 

D(I) g R/K, and so 

K = Ann(R/K) = Ann(D(1)). 

Let us prove Ann(D(1)) = Ann(l). Indeed, clearly Ann(l) c Ann(D(Z)). Converse- 

ly, if r E Ann(D(Z)), then for eachfE D(I), we have rf= 0. So, in particular ri = 0, where 

i:I+ E is the inclusion, hence 0 = ri(Z) = i(rZ) = rl. It follows that 

K = Ann(rz- ‘(E)), and since 

z;-‘(E)= c z;(E), 
peK(a)\K(r) 
ht(p)=nm 1 

we get 

K= n 
psK(o)\K(r) 

Ann(W)) = ptKC,K(r) 7 P’j’ 

ht(p)=n- 1 ht(p)=n-1 
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as is easily verified by applying Matlis duality, for example. It is easy to see that 

{v~K(o)\K(z) I ht(p) = n - l} = {p eK(d)\K(z) (ht(p) = n - l} 

since K(d) = K(a)\C(a) = K(o)\{p EK(a) 1 ht(p) = n). 

Finally, we claim that K = t:(R), since a~ K if aR, G pjR, for all j and each 

p~K(a)\K(z) with ht(p) = n - 1. By the previous remark, this is equivalent to 

aR, G n jp’Rp for all p E K(z) with ht(p) = n - 1, i.e., to aR, = 0 for each of these. 

Now, concluding, this amounts to 

Ann(a)E n W.R\p) 
~.x(o’)\K(i) 

ht(p)=n- 1 

i.e., to air,*, indeed. 0 
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