
This item is the archived peer-reviewed author-version of:

Optimal experimental design in the presence of nested factors

Reference:
Goos Peter, Jones Bradley.- Optimal experimental design in the presence of nested factors
Technometrics : a journal of statistics for the physical, chemical, and engineering sciences - ISSN 0040-1706 - Alexandria, Amer statistical assoc, 2019, 12 p. 
Full text (Publisher's DOI): https://doi.org/10.1080/00401706.2018.1562986 
To cite this reference: https://hdl.handle.net/10067/1603940151162165141

Institutional repository IRUA

https://repository.uantwerpen.be


Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=utch20

Technometrics

ISSN: 0040-1706 (Print) 1537-2723 (Online) Journal homepage: https://www.tandfonline.com/loi/utch20

Optimal Experimental Design in the Presence of
Nested Factors

Peter Goos & Bradley Jones

To cite this article: Peter Goos & Bradley Jones (2019): Optimal Experimental Design in the
Presence of Nested Factors, Technometrics, DOI: 10.1080/00401706.2018.1562986

To link to this article:  https://doi.org/10.1080/00401706.2018.1562986

View supplementary material 

Accepted author version posted online: 24
Jan 2019.

Submit your article to this journal 

Article views: 11

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=utch20
https://www.tandfonline.com/loi/utch20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00401706.2018.1562986
https://doi.org/10.1080/00401706.2018.1562986
https://www.tandfonline.com/doi/suppl/10.1080/00401706.2018.1562986
https://www.tandfonline.com/doi/suppl/10.1080/00401706.2018.1562986
https://www.tandfonline.com/action/authorSubmission?journalCode=utch20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=utch20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2018.1562986&domain=pdf&date_stamp=2019-01-24
http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2018.1562986&domain=pdf&date_stamp=2019-01-24


 

Optimal Experimental Design in the Presence of 
Nested Factors 

 

Peter Goos 

Faculty of Bioscience Engineering and Leuven Statistics Research Centre 

 

KU Leuven 

Faculty of Applied Economics and StatUa Center for Statistics 

Universiteit Antwerpen 

 

Bradley Jones 

SAS Institute 

 

Abstract–A common occurrence in practical design of experiments is that one 

factor, called a nested factor, can only be varied for some but not all the levels of a 
categorical factor, called a branching factor. In this case, it is possible, but inefficient, 
to proceed by performing two experiments. One experiment would be run at the 
level(s) of the branching factor that allow for varying the second, nested, factor. The 
other experiment would only include the other level(s) of the branching factor. It is 
preferable to perform one experiment that allows for assessing the effects of both 
factors. Clearly, the effect of the nested factor then is conditional on the levels of the 
branching factor for which it can be varied. For example, consider an experiment 
comparing the performance of two machines where one machine has a switch that is 
missing for the other machine. The investigator wants to compare the two machines 
but also wants to understand the effect of flipping the switch. The main effect of the 
switch is conditional on the machine. This article describes several example 
situations involving branching factors and nested factors. We provide a model that is 
sensible for each situation, present a general method for constructing appropriate 
models, and show how to generate optimal designs given these models. 
Supplementary materials for this article are available online. 

Keywords: branching factor, conditional main effect, coordinate-exchange 

algorithm, D-optimal design, nested factor, point-exchange algorithm, shared 

factor, sliding levels. 

1 Introduction 

For many experiments, certain factors are only relevant for given levels of 

another factor. Hung et al. (2009) call these factors nested factors. They call 

factors within which other factors are nested branching factors, and all other 
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factors are shared factors. Branching factors are categorical, while nested and 

shared factors are either quantitative or categorical. For example, consider an 

experiment intended to compare the performance of two machines at different 

speeds, where one machine has a switch that is missing for the other 

machine. Besides quantifying the effect of speed, the investigator wants to 

compare the two machines as well as understand the effect of flipping the 

switch. In that case, the machine is a two-level branching factor, while the 

switch is a two-level nested factor. The nested factor only exists at one of the 

branching factor’s levels. The third factor, speed, is a shared factor. In this 

example, the main effect of the switch is conditional on the machine. 

Recently, several papers have been published on the subject of conditional 

main effects. A conditional main effect is the main effect of one factor while 

fixing the level of another factor. Wu (2015) introduces conditional main 

effects as a way of circumventing the confounding of two-factor interactions in 

resolution IV fractional factorial designs. Su and Wu (2017) provide a set rules 

for finding an adequate set of conditional main effects in the analysis of 

fractional factorial designs. They also provide three illustrative examples. Mak 

and Wu (2018) extend the work on model selection for conditional main 

effects to observational studies. The concept of a conditional main effect is 

similar to that of a simple (main) effect in the context of multi-way analysis of 

variance, which is defined as the effect of one factor within one level of a 

second factor. In analysis of variance, simple effects are generally estimated 

after discovering a significant interaction effect, and facilitate the 

understanding of the nature of the interaction. A key feature of the work of 

Wu (2015), Su and Wu (2017) and Mak and Wu (2018) is that their use of 

conditional main effects is a means to build better models for given data sets. 

It is not inspired by the existence of branching factors and nested factors. 

In this article, we also consider conditional main effects. However, a major 

distinction between our work and that of Wu (2015), Su and Wu (2017) and 

Mak and Wu (2018) is that we focus on the design of experiments where it is 

known a priori which conditional main effects should be included in the model, 

due to the fact that it is known a priori which factors are nested within a 
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branching factor. We also go beyond conditional main effects and deal with 

conditional quadratic effects and conditional interaction effects. The relevance 

of our work is supported by experiments discussed in the literature. Hung 

et al. (2009), for example, discuss a computer experiment involving a two-

level branching factor, with two nested factors. The nested factors only exist 

for one level of the branching factor. In addition to the branching factor and 

the two nested factors, the experiment also involved six shared factors. 

Schoen et al. (2011) discuss an experiment involving a two-level branching 

factor and a nested factor, whose levels depend on the level of the branching 

factor. Finally, Palmers et al. (2016) discuss an experiment involving a 

branching factor, two nested factors and conditional main effects, quadratic 

effects and interaction effects. 

We illustrate the need for a generic method to cope with conditional effects of 

any kind with several real-world examples. The first example concerns a 

chicken feed experiment. The second example involves an extraction 

experiment in the pharmaceutical industry. The third example is the magnetic 

bead experiment in Decrop et al. (2016, 2017). 

The rest of this article is organized as follows. In Section 2, we consider a 

small proof-of-concept example, provide D-optimal designs for different 

numbers of runs and compare their efficiencies with those of replicated 2 × 2 

factorial designs. In Section 3, we present a generic method to build suitable 

statistical models for any number of branching factors, nested factors and 

shared factors, involving conditional main effects, conditional quadratic effects 

and conditional interaction effects. In Section 4, we discuss the chicken feed 

experiment, the extraction experiment and the magnetic bead experiment in 

detail. In Section 5, we explain how to generate D-optimal designs. More 

specifically, we explain that point-exchange algorithms can be used and we 

present a modified coordinate-exchange algorithm to deal with branching 

factors and nested factors. In Section 6, we compare D-optimal designs to 

standard designs for two of the examples in Su and Wu (2017), assuming that 

the relevance of certain conditional main effects is known in advance due to 

the nature of the physical system under investigation. We do this to show that, 
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if a conditional main effect can be identified in advance, then it pays to use 

this information when generating the experimental design. We conclude with a 

discussion in Section 7. 

2 A proof-of-concept example 

Suppose we wish to compare the performance of a newer and an older 

machine, where the newer has a dial controlling the level of a quantitative 

factor. To this end, we can perform an experiment with two factors, the 

machine and the quantitative factor. The machine is the branching factor and 

the quantitative factor is the nested factor. Given that the quantitative factor 

can only be studied for the new machine, its effect is conditional on the new 

machine being used. Assuming that the dial factor’s effect is linear, a useful 

model is 

0 1 2 ,Y z zx        (1) 

where z is an indicator variable taking the value 1 if the new machine is used 

and the value 0 otherwise, and x is the setting of the quantitative factor. The 

symbols Y, ε and βi represent the response, the error term and the regression 

coefficients in this model and all subsequent ones. A key feature of the model 

in Equation (1) is that the nested factor, x, only enters the model through its 

interaction term with the indicator variable z, which provides information on 

the level of the branching factor. 

Figure 1 visualizes the design problem in the proof-of-concept example. The 

indicator variable z takes the value 1 when the new machine is used. In that 

case, the dial factor needs to be set to a value from the [ 1, 1]   interval. 

A design strategy that might be considered is to spend half of the 

experimental resources on the older machine and other half of the resources 

on the newer machine. For the older machine, the second factor is irrelevant, 

since it does not have a dial. For the second machine, the dial factor could be 

set to a low level half the time and to a high level the other half of the time. 

This results in the design in Table 1. 
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The design strategy shown in Table 1 is equivalent to starting from a multiply 

replicated 22 factorial design, and ignoring the level of the second factor either 

when the first factor is at its low level or when the first factor is at its high level. 

While this strategy is simple and results in independent estimates of β0, β1 

and β2, it leads to a standard error for β2 which is substantially higher than that 

for β1. This is shown in the left panel of Table 2, labeled 
22r  , for two 

replicates (r = 2), three replicates (r = 3) and four replicates (r = 4). Note that 

the standard errors in the table are relative to the standard deviation of ε. 

Generally, we prefer all factor effects to be estimated as precisely as possible, 

in an omnibus sense. One possibility to lower the standard error for β2 is to 

create optimal experimental designs for the model in Equation (1). 

Optimal experimental designs ensure either precise model estimation or 

precise predictions. The first commercially available kinds of optimal designs 

were D-optimal designs, which focus on precise model estimation and 

minimize the generalized variance of the estimates of the regression 

coefficients. There are several alternative definitions of the D-optimality 

criterion. In this paper, we use the determinant of the information matrix, 

which summarizes all information on the regression coefficients contained 

within the experiment, as the D-optimality criterion. A design that maximizes 

that criterion is D-optimal. Another criterion that focuses on precise model 

estimation is the A-optimality criterion, which aims to minimize the average 

variance of the parameter estimates. In this article, we report the 

performances of the various designs using D- and A-efficiencies. D- and A-

efficiencies lie between 0 and 1, and quantify how well designs perform 

relative to a theoretically optimal design that is orthogonal and yields 

maximum information on each model parameter. Note that such a 

theoretically optimal design never exists for designs with nested factors. As a 

result, reported efficiencies represent a loose lower bound on the true 

efficiency. Detailed technical information concerning the D- and A-optimality 

criteria can be found in Atkinson et al. (2007) and Goos and Jones (2011). In 

this article, we compute D-optimal designs and compare them to standard 

benchmark designs in terms of D- and A-efficiency. 
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The top part of Table 2 contrasts the D-optimal designs involving 8, 12 and 16 

runs for the model in Equation (1) with the designs based on the replicated 22 

factorial design. More specifically, the table shows the three feasible test 

combinations along with the number of times they appear in the D-optimal 

experimental designs and in the benchmark designs. 

The most striking feature of the D-optimal designs is that the two machines 

are not used equally often. Whenever the number of runs is a multiple of 3, 

there is only one D-optimal design: the old machine then appears in one third 

of the runs, while the new machine appears in the other two thirds of the runs. 

Half of the runs involving the new machine require the dial to be set at its low 

level, while the other half require the dial to be set at its high level. This is 

demonstrated by the 12-run D-optimal design in Table 2. When the number of 

runs is not a multiple of 3, the D-optimal design will be as close to being 

balanced as possible, and there will generally be more than one D-optimal 

design. 

Since 8 and 16 are not divisible by 3, it is not possible to use each test 

combination equally often. Which test combination is used the most/least 

often does not impact the D-optimality of the design. However, an intuitively 

appealing option is to ensure that the low and high levels of the dial factor are 

equireplicated. Table 2 shows two 8-run D-optimal designs as well as two 16-

run D-optimal designs, one in which the low and high levels of the dial factor 

are equireplicated and one in which they are not. We labeled the two 

alternatives I and II in Table 2. 

The standard errors resulting from the D-optimal designs are displayed in the 

bottom-right panel of Table 2. Comparing the standard errors in the left and 

right panels of the table shows that the standard error for β2 improves 

substantially when a D-optimal design is used, while the standard errors for β0 

and β1 increase. The last two lines of Table 2 compare the D- and A-

efficiencies of all design options, and show that the D-efficiencies of the D-

optimal designs are superior to those of the alternative designs and that the 
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A-efficiencies of the D-optimal designs are larger than or equal to those of the 

alternative designs. 

That the old and the new machine are not used equally often by the D-optimal 

design may seem counterintuitive. To understand why it is desirable to use 

the new machine more often, one must realize that the only runs providing 

information about the dial factor’s conditional main effect are those employing 

the new machine. The D-optimal design trades a small loss in the precision of 

the estimate of the machine effect for an appreciable gain in the precision of 

the estimate of the dial factor’s effect. 

In the event a quadratic effect of the dial factor is anticipated, the a priori 

model becomes 

2

0 1 2 3 ,Y d zx zx          (2) 

and the D-optimal designs change as well. For the model involving the 

quadratic dial factor effect, ideally, a quarter of the runs use the old machine, 

while three quarters of the runs involve the new machine. One third of the 

runs with the new machine require setting the dial factor to its low level. 

Another third of the runs with the new machine require setting the dial factor 

to its high level, and the final third of the runs with the new machine require 

setting the dial factor to its middle level. Whenever the number of runs is not a 

multiple of four, the four test combinations of the D-optimal design need to be 

as equireplicated as possible. 

3 Model building 

In the proof-of-concept example in the previous section, there was one two-

level categorical branching factor. However, in some experiments, the 

branching factor is a categorical factor with more than two levels. Sometimes, 

investigators are concerned about potential curvature in the effects of the 

nested factors, which necessitates the estimation of multiple conditional 

quadratic effects. We also encountered experiments in which a nested factor 

may have two-way interactions with other nested factors or with shared 
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factors, which gives rise to conditional interaction effects. Finally, we also 

came across scenarios in which, rather than the existence, it is the range of a 

nested factor which depends on the level of a branching factor. 

It is often challenging to write down a suitable, identifiable model for 

experiments with branching factors, nested factors and shared factors. Yet, 

specifying an identifiable model is a key requirement for constructing an 

optimal experimental design. This is because the information matrix 

corresponding to a non-identifiable model is always singular, regardless of the 

experimental design chosen. 

The first step required to build a suitable model is to identify the shared 

factors in the experiment and to write down the a priori model for these 

factors. This can be a main-effects model, a main-effects-plus-interactions 

model or a second-order response surface model. In this section, we assume 

there are s quantitative shared factors and that the interest is in their main 

effects, two-factor interaction effects and quadratic effects. The initial model 

then is 

1
2

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

,
s s s s

s i s i s ij s i s j s ii s i

i i j i i

Y x x x x    


    

        (3) 

where ( )s ix
 denotes the level of the ith shared factor and ( ) ( ),s i s ij 

 and ( )s ii
 

represent the main effects, two-factor interaction effects and quadratic effects, 

respectively, of the shared factors. In some experiments, such as in our proof-

of-concept example in Section 2 and the chicken feed experiment and the 

extraction experiment in Section 4, there are no shared factors, so that s = 0 

and the initial model only involves an intercept parameter β0. 

The second step is to identify the branching factors and the nesting 

relationships associated with them. At most one nesting relationship 

corresponds with each level of a branching factor. Each nesting relationship 

may involve one or more nested factors and gives rise to one indicator 

variable. An indicator variable corresponding to the ith level of a branching 

factor has the following functions: 
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 it should modify the model’s intercept in the event the ith level of the 

branching factor is selected; 

 it should create model terms for the conditional main effects of all 

nested factors associated with the ith level of the branching factor; 

 it may also create model terms for the conditional quadratic effects of 

all nested factors associated with the ith level of the branching factor; 

 it may also create model terms for the conditional interaction effects 

involving one or more nested factors associated with the ith level of the 

branching factor; 

 it should ensure that the conditional effects of the nested factors 

associated with the ith level of the branching factor are eliminated from 

the model in the event the ith level of the branching factor is not 

selected. 

The next step is to add the conditional effects of the nested factors to the 

initial model. A key insight here is that any nested factor should only enter the 

model by means of a cross-product with the associated indicator variable. The 

simplest terms to add are the conditional main effects and the conditional 

quadratic effects of the nested factors. If we denote the number of nesting 

relationships by κ and the λ nested factors associated with the kth nesting 

relationship by ( ) 1 ( ) 2 ( ), , ,n k n k n kx x x 
, then the model becomes 

1
2

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1

2

( ) ( ) ( ) ( )

1 1 1

,

s s s s

s i s i s ij s i s j s ii s i

i i j i i

k n ki n ki n kii n ki

k i i

Y x x x x

z x x
  

   

  



    

  

   

 
    

  

  

 (4) 

where zk is the indicator variable corresponding to the kth nesting relationship. 

If that variable takes the value 1, then the corresponding nested factors, 

( ) 1 ( ) 2 ( ), , ,n k n k n kx x x 
, appear in the model. If it takes the value 0, then the 

corresponding nested factors do not appear in the model. 

In the same fashion, interactions involving any two nested factors can be 

added. This requires the following extra term to enter the model: 
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1

( ) ( ) ( )

1 1 1

.k n kij n ki n kj

k i j i

z x x
  




   

   

In the event we want to allow for interactions involving the shared factors, on 

the one hand, and the nested factors, on the other hand, we also need to add 

the following term: 

( ) ( ) ( )

1 1 1

.
s

k sn kij s i n kj

k i j

z x x
 


  

   

Finally, to allow for branching level-specific intercepts, linear terms in the 

indicator variables, 

1

,k k

k

z





  

have to be added. There is one case in which we cannot add all linear terms 

in the indicator variables: if an l-level branching factor has l nesting 

relationships, then, to avoid collinearity, we should drop one of the l 

associated indicator variable terms from the model. An example of such a 

case is the extraction experiment discussed in the next section. 

In conclusion, a general model to deal with s shared factors, one or more 

branching factors involving κ nesting relationships, and λ nested factors 

corresponding to each nesting relationship, is given by 

1
2

0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1

1
2

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 1 1 1 1

( ) (

1 1 1

s s s s

k k s i s i s ij s i s j s ii s i

k i i j i i

k n ki n ki n kii n ki k n kij n ki n kj

k i i k i j i

s

k sn kij s

k i j

Y z x x x x

z x x z x x

z x



     

 

    

  





     



      

  

    

 
    



   

    

  ) ( ) .i n kjx 

 (5) 

A special feature of this model is that it encompasses a second-order 

response surface model in the s shared factors and the λ nested factors for 

each of the κ nesting relationships, as well as a second-order response 
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surface model in the s shared factors only for the scenario in which all 

indicator variables take the value zero. 

Obviously, this model can be adapted to include categorical shared factors, 

categorical nested factors, and/or higher-order effects of any quantitative 

shared or nested factors. Also, the model can be adapted to cope with a 

problem in which the number of nested factors differs across the κ nesting 

relationships. In any case, it should be clear that the model complexity 

increases rapidly with the number of shared factors and the number(s) of 

nested factors. This is due to the fact that our model allows the nested factors 

to have effects that are specific to the level of the branching factor with which 

they are associated. 

4 Practical examples 

In this section, we describe several problems we encountered in our 

consulting. All problems are substantially more complex than the proof-of-

concept example in Section 2. We discuss the kinds of regression models 

required to deal with the various complications, and break the models down to 

interpret them. Based on the models, it is then possible to compute optimal 

experimental designs. 

4.1 A chicken feed experiment 

4.1.1 Problem 

In a chicken feed experiment carried out at the Faculty of Bioscience 

Engineering of the KU Leuven in Belgium, the effect of adding one or the 

other of two proposed enzymes to the feed was studied. Each of the enzymes 

was used multiple times at each of three different doses (10 ppm, 100 ppm 

and 1000 ppm). The experiment also included multiple tests involving a 

control treatment, which did not use either enzyme. One research question 

was whether the enzymes improved the growth. A second research question 

was whether there was a dose effect, and a third question was whether the 

dose effect differed between the two enzymes. Clearly, in the chicken feed 
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experiment, the branching factor, enzyme, is categorical, and the nested 

factor, dose, is numeric. 

4.1.2 Model 

Answering the three research questions in the chicken feed experiment 

requires fitting a suitable model and performing appropriate significance tests. 

A sensible model might be 

2 2

0 1 1 2 2 11 1 21 2 12 1 22 2 ,Y z z z x z x z x z x                (6) 

where 

 z1 is an indicator variable taking the value 1 if enzyme 1 is used and 

the value 0 otherwise, 

 z2 is an indicator variable taking the value 1 if enzyme 2 is used and 

the value 0 otherwise, and 

 x is the logarithm of the dose in the event an enzyme is used (and can 

be set to any arbitrary value otherwise). 

The two enzyme options and the control treatment in the chicken feed 

experiment are visualized in Figure 2, along with the corresponding values for 

the two indicator variables z1 and z2 as well as the ranges for the log(dose) of 

the enzymes. 

This model reduces to 

0Y     

when no enzyme is used and 1 2 0z z 
. Due to the fact that 1 2 0z z 

, all 

products 
2

1 2 1, ,z x z x z x
 and 

2

2z x
 are zero regardless of the value of x. 

Therefore, the value of x is arbitrary in the event no enzyme is used. The 

model reduces to 

2

0 1 11 12( )Y x x          

when enzyme 1 is used and 1 1z 
 and 2 0z 

, and to 
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2

0 2 21 22( )Y x x          

when enzyme 2 is used and 2 1z 
 and 1 0z 

. Splitting up the initial model this 

way makes clear that it allows for intercepts, main effects and quadratic 

effects that differ across the enzymes. Thus, we have enzyme-specific 

intercepts, main effects and quadratic effects. In other words, the intercepts, 

main effects and quadratic effects are conditional on the level of the branching 

factor enzyme. 

A key aspect of the model for the chicken feed experiment is that, while the 

branching factor has three levels (no enzyme, enzyme 1 and enzyme 2), there 

are only two nesting relationships. For this reason, we need two indicator 

variables z1 and z2. The first nested factor, the log(dose) of enzyme 1, enters 

the model through the cross-products 1z x
 and 

2

1z x
. The second nested factor, 

the log(dose) of enzyme 2, enters the model through the cross-products 2z x
 

and 
2

2z x
. The nested factor x, the log(dose), does not appear in the model on 

its own. 

4.1.3 Design 

If the (log) dose effect in the chicken feed experiment is linear instead of 

quadratic, then an appropriate model, having five regression coefficients, is 

0 1 1 2 2 11 1 21 2 .Y z z z x z x            

When the number of runs is a multiple of 5, the D-optimal design for this 

model uses the control treatment for one fifth of the runs, the first enzyme for 

two fifths of the runs, and the second enzyme for the remaining two fifths of 

the runs. So, the number of runs is not equally divided among the three levels 

(none, enzyme 1, enzyme 2) of the enzyme factor. Half of the runs with a 

given enzyme require the lowest dose to be used, while the other half of the 

runs require the largest dose to be used. So, the D-optimal design involves 

five test combinations, which should be replicated as evenly as possible. 

Whenever the number of runs is not a multiple of five, the D-optimality of the 
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design does not depend on which test combinations are replicated the most 

often. 

If a quadratic dose effect is anticipated, the model in Equation (6), involving 

seven regression coefficients, is appropriate. D-optimal designs for this model 

involve seven test combinations, one of which is the control treatment in 

which no enzyme is used. Three other test combinations use the first enzyme, 

with its three possible doses. The remaining three test combinations involve 

the second enzyme, with its three possible doses. Whenever the number of 

runs is a multiple of 7, each of the 7 test combination has to be used equally 

often in the D-optimal design. When the number of runs is not a multiple of 7, 

the numbers of replicates should be as close to being equal as possible. 

4.2 An extraction experiment 

4.2.1 Problem 

A Belgian pharmaceutical company conducted an experiment to optimize the 

yield and purity of an extraction process. Setting up the experiment and 

modeling the resulting data was complicated by the fact that the ranges and 

the effects of two quantitative factors depended on the levels of two 

categorical factors. This was due to the fact that there were two washing 

steps in the extraction process, each involving a buffer: 

 Two buffer types could be used for the first washing step. The buffer’s 

pH level could range from 6 to 8 for one buffer type, while it was 

restricted to a range from 7 to 8 for the second buffer type. 

 Four buffer types could be used for the second washing step. For 

buffer type 1, the pH level had to be in the range [3,4] . For buffer type 

2, the pH level had to be in the range [3,6] . For buffer type 3, the pH 

level had to be in the range [3.5,5.5] , and, for buffer type 4, it had to be 

in the range [5,6] . 

In this experiment, there are two branching factors (buffer type for washing 

step 1 and buffer type for washing step 2), two nested factors (the pH level for 

washing step 1 and the pH level for washing step 2), and six nesting 
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relationships in total. Two of the nesting relationships occur due to washing 

step 1, while the other four occur due to washing step 2. As a consequence, 

there is a nesting relationship and a nested factor for each level of the first 

branching factor and for each level of the second branching factor. This is 

different from the proof-of-concept example and from the chicken feed 

experiment, where there were fewer nesting relationships and nested factors 

than levels of the branching factor. 

This experimental scenario can be viewed as a special case of an experiment 

with sliding levels (Taguchi; 1987; Hamada and Wu; 1995; Cheng 

et al.; 2006). The term sliding levels has been used whenever the range of 

one quantitative factor, the nested factor, depends on the level of another 

factor, the branching factor. In all published work on the topic of sliding levels, 

the focus has been on scenarios in which the branching factor was 

quantitative. In the extraction experiment we consider here, there are two 

categorical branching factors, each with a nested factor whose range depends 

on the level of its categorical branching factor. For cases in which both the 

branching factor and the nested factor are quantitative, we prefer to define the 

experimental region using inequality constraints (see, for example, Chapter 5 

in Goos and Jones (2011)). 

4.2.2 Model 

Assuming the two washing steps have independent effects on the yield and 

the purity of the extraction, a sensible model for the data from the extraction 

experiment is 

4 2 4

0 012 12 02 2 1 1 1 2 2 2

2 1 1

,i i i i i i i i

i i i

Y z z z x z x     
  

         (7) 

where 

 1iz
 is an indicator variable taking the value 1 if the first washing step 

uses buffer type i and the value 0 otherwise, 
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 2iz
 is an indicator variable taking the value 1 if the second washing 

step uses buffer type i and the value 0 otherwise, 

 1ix
 is the pH level utilized in the first washing step in the event buffer 

type i is used (and 1ix
 can be set to any arbitrary value in the event 

buffer type i is not used in washing step 1), and 

 2ix
 is the pH level utilized in the second washing step in the event 

buffer type i is used (and 2ix
 can be set to any arbitrary value in the 

event buffer type i is not used in washing step 2). 

As there are two possible buffer types for washing step 1 and four possible 

ones for washing step 2, the model in Equation (7) describes the response in 

eight different scenarios. The two buffer type options for washing step 1 and 

the four options for washing step 2 are visualized in Figure 3a and 3b, 

respectively, along with the corresponding values for the indicator variables 

and the ranges for the pH level for each choice of buffer type. 

In the scenario where both washing steps utilize buffer type 1, 

11 21 12 22 23 241, 0z z z z z z     
, and the model simplifies to 

0 11 11 21 21 .Y x x        

In the scenario where the first washing step uses buffer type 1 and the second 

washing step uses buffer type i (with i > 1), then 11 2 1iz z 
, all remaining 

indicator variables are zero, and 

0 02 11 11 2 2 .i i iY x x          

In the scenario where the first washing step uses buffer type 2 and the second 

washing step uses buffer type 1, then 12 21 1z z 
, all other indicator variables 

are zero, and 

0 012 12 12 21 21 .Y x x          
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Finally, in the scenario where the first washing step uses buffer type 2 and the 

second washing step uses buffer type i (with i > 1), 12 2 1iz z 
, all remaining 

indicator variables are zero, and 

0 012 02 12 12 2 2 .i i iY x x            

As a result, the initial model involving four indicator variables allows for buffer-

specific intercepts and buffer-specific main effects of the pH level in the two 

washing steps. Thus, the model involves intercepts and main effects that are 

conditional on the level of the two categorical branching factors, namely the 

buffer type in washing step 1 (which has two levels) and the buffer type in 

washing step 2 (which has four levels). The model in Equation (7) is therefore 

consonant with Hamada and Wu (1995), who state that the effect of the 

nested factor is usually modeled separately at each level of the branching 

factor. 

The model we specify here for the extraction experiment is similar to the 

models used for the proof-of-concept example and the chicken feed 

experiment in that the six nested factors (two for washing step 1 and four for 

washing step 2) enter the model through cross-products involving an indicator 

variable 1iz
 or 2iz

, depending on whether the nested factor is related to the 

first or to the second washing step. A difference between the model for the 

extraction experiment and the previous examples is that not all indicator 

variables are included in the model separately, to avoid collinearity. More 

specifically, one indicator variable term per branching factor should be 

dropped from the model. In our model, we dropped the terms 011 11z
 and 

021 21z
. Which indicator variable term is dropped for each branching factor is 

arbitrary, except that it impacts the interpretation of β0. The strategy in which 

one indicator variable term per branching factor has to be dropped from the 

model is necessary whenever the number of nesting relationships and nested 

factors equals the number of levels of the branching factor. 

4.2.3 Design 
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A 24-run D-optimal design for the model in Equation (7) is shown in Table 3. 

The D-optimal design uses each buffer type for the first washing step equally 

often, and it also uses each buffer type for the second washing step equally 

often. For any given buffer type, the low pH level and the high pH level are 

used the same number of times. Consequently, the D-optimal design exhibits 

certain kinds of balance in the buffer types and the pH levels. The eight 

combinations of buffer types from the two washing steps are not 

equireplicated in the 24-run design. This is different when we increase the 

number of runs to 32. Here, the D-optimal design has 32 unique runs, each of 

the eight buffer type combinations appears four times, and a 22 factorial 

design in the pH levels for the two washing steps is used for each 

combination. 

4.3 Magnetic bead experiment 

Decrop et al. (2016, 2017) describe a response surface experiment 

concerning the optical manipulation of magnetic beads. The experiment 

involved a two-level categorical factor (bead type), a seven-level categorical 

factor (surfactant) and three quantitative factors (ionic buffer strength, buffer 

pH and surfactant concentration). The seven levels of the surfactant factor 

were ‘None’, ‘Brij35’, ‘Pluronic-F68’, ‘Tween20’, ‘Tween40’, ‘Tween60’ and ‘

Tween80’. Obviously, the factor surfactant concentration is only relevant in 

the event the level of the surfactant factor differs from ‘None’. The 

investigators expected the effects of the surfactant concentration to depend 

on the type of surfactant. As they also expected surfactant concentration to be 

involved in two-way interactions with the factors bead type, ionic buffer 

strength and buffer pH, this experiment includes both conditional main effects 

and conditional quadratic effects of the nested factor, surfactant 

concentration, as well as conditional two-factor interaction effects involving it. 

In this experiment, the surfactant factor is a seven-level branching factor, 

defining six nesting relationships and six nested factors. For all experimental 

tests using a surfactant, the level of the nested factor, surfactant 

concentration, was in the range from 0.05% to 1%. The factors bead type, 
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ionic buffer strength and buffer pH are shared factors, when using the 

terminology of Hung et al. (2009). 

In the supplementary materials, we discuss a suitable model for the magnetic 

bead experiment. The model involves six indicator variables and 60 

regression coefficients. The model reduces to a second-order response 

surface model in the factors ionic buffer strength and buffer pH for any bead 

type in the event no surfactant is used. However, whenever a surfactant is 

used, the model reduces to a second-order response surface model in the 

factors ionic buffer strength, buffer pH and surfactant concentration for any 

bead type. 

5 Design construction 

5.1 Point-exchange algorithm 

As can be seen from Chapter 12 in Atkinson et al. (2007), many algorithms for 

computing optimal experimental designs use a candidate set of test 

combinations or design points. These algorithms are called point-exchange 

algorithms, because they iteratively improve the experimental design by 

exchanging its points with points from the candidate list. Many variations of 

such candidate-set-based point-exchange algorithms can be found in the 

literature (see, for example, Fedorov (1972), Cook and Nachtsheim (1980) 

and Atkinson and Donev (1989)). Atkinson et al. (2007) mention that usually a 

coarse grid in the experimental region is used as the set of candidate points. 

However, for problems involving constrained experimental regions, finer grids 

have substantial added value. Candidate-set-based point-exchange 

algorithms involve two steps. 

First, they create a starting design. It is common to do this by randomly 

selecting a few points from the candidate set and completing the starting 

design by sequentially adding the candidate to the design which generates 

the largest increase in D-optimality criterion value (Galil 

and Kiefer; 1980; Atkinson and Donev; 1989). 
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Given a starting design, candidate-set-based point-exchange algorithms 

proceed sequentially by considering the exchange of each point of the design 

by a point from the candidate set. The modified Fedorov point-exchange 

algorithm proposed by Cook and Nachtsheim (1980) does this in a first-

improvement fashion, meaning that, as soon as beneficial exchange of a 

certain design point and a candidate point is discovered, the algorithm 

proceeds to the next design point and seeks a beneficial exchange for that 

point. This approach saves computing time when compared to the original 

Fedorov exchange algorithm, which uses a best-improvement approach. In 

that approach, every design point is replaced by the candidate that produces 

the largest increase in D-optimality criterion value, rather than by the first 

candidate encountered during the search that produces an improved D-

optimality criterion. After cycling through the entire design in this manner, the 

algorithm returns to the first design point and continues to attempt exchanges 

between the candidate set and the design. This process continues until no 

more beneficial exchanges can be found during an entire cycle through the 

design or until a pre-specified number of iterations has taken place. 

Because there is no guarantee that a run of the point-exchange algorithm 

produces a D-optimal design, the algorithm is restarted many times, each time 

using a new random starting design. The design with the largest D-optimality 

criterion value encountered during all the iterations is eventually returned. 

5.2 Modified coordinate-exchange algorithm 

We adapted the coordinate-exchange algorithm of Meyer 

and Nachtsheim (1995) to deal with the presence of branching factors. As 

with the original algorithm, our modified coordinate-exchange algorithm 

involves two stages. First, it creates a feasible starting design. Next, the 

algorithm improves the starting design matrix coordinate by coordinate (i.e., 

the algorithm sequentially optimizes the individual settings of the factors, 

starting with the setting of the first factor in the first run and ending with the 

setting of the last factor in the last run), where the improvement is in terms of 

the D-optimality criterion value. Pseudo-code for creating the starting design 
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and for the improvement stage of our modified coordinate-exchange algorithm 

appears in the appendix. 

The original coordinate-exchange algorithm starts by constructing a 

completely random design and then sequentially considers each factor setting 

for each run of the experimental design. If switching a factor setting improves 

the D-optimality criterion value, the current design is updated with the new 

factor setting. After proceeding through the entire design run by run and factor 

setting by factor setting, the algorithm iterates through the entire design over 

and over until a maximum number of iterations is reached, or until no factor 

setting is modified in an entire iteration. At that point, one run of the 

coordinate-exchange algorithm is complete. 

Because, as with the point-exchange algorithm, there is no guarantee that a 

run of the coordinate-exchange algorithm produces a D-optimal design, the 

coordinate-exchange algorithm is also restarted many times, each time using 

a new random starting design. The design with the largest D-optimality 

criterion value encountered during all the iterations is eventually returned. 

Our modified coordinate-exchange algorithm follows all these basic steps. Our 

modification of the algorithm only affects what happens when a branching 

factor or a nested factor is encountered, both in the construction of the 

starting design and in the improvement phase. 

In both of its steps, our modified coordinate-exchange algorithm distinguishes 

between branching factors, nested factors and shared factors. To create a 

starting design, the algorithm randomly selects a level for any branching factor 

for each run. In the event a level has been selected with which one or more 

nested factors are associated, a random level is also selected for each of 

these nested factors. 

In the improvement phase, the modified coordinate-exchange algorithm first 

considers the branching factors and checks whether changing their levels 

results in a more efficient design. A complication in this process is that 

changing a branching factor’s level to a level with which one or more nested 
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factors are associated requires considering the levels of these nested factors 

as well. For simplicity of explanation, we assume that every branching factor 

has two levels and gives rise to one nesting relationship. Level 0 of a 

branching factor represents the level corresponding to which there are no 

nested factors. Level 1 represents the level corresponding to which there is at 

least one nested factor. 

If the current level of a branching factor is zero, then the algorithm switches 

the level to one. At the same time, the algorithm optimizes the level of all the 

associated nested factors. If the D-optimality criterion value improves as a 

result of all these changes, the level of one for the branching factor and the 

optimized levels of the associated nested factors are retained. 

If the current level of a branching factor is one, then the algorithm evaluates 

the effect of changing the level to zero. If this change improves the D-

optimality criterion value, the zero level is retained for the branching factor. 

Since the nested factors corresponding to the branching factor only appear in 

the model in product with the branching factor, their levels need not change 

as the cross-products involving these factors will be zero due to the zero level 

for the branching factor. 

When the modified coordinate-exchange algorithm encounters a nested 

factor, it optimizes the setting of that factor if its associated branching factor 

has level 1 and skips the factor when its associated branching factor has level 

0. 

5.3 Algorithm comparison 

Both point-exchange and coordinate-exchange algorithms have strengths and 

weaknesses. One strength of candidate-set-based point-exchange algorithms 

is their simple implementation once a candidate set is provided. For problems 

with few factors, generating an appropriate candidate set is not demanding, 

even given the special characteristics of designs with nested factors. For 

example, the chicken feed experiment with quadratic dose effects only 

requires a candidate set of seven design points: three for the low, high and 
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middle dose for each of the two enzymes, plus one additional design point 

corresponding to the control treatment. 

Candidate-set-based point-exchange algorithms have weaknesses as well. 

From the standpoint of the user, the requirement to produce a candidate set, 

especially for problems with many factors and multiple nesting relationships, 

may be tedious and error prone. As the number of factors increases, the size 

of the candidate set grows as the product of the numbers of levels of the 

factors. This means that the time a candidate-set-based point-exchange 

algorithm takes to reach completion is exponential in the number of factors. 

For the small numbers of factors we consider in this paper, computing time 

issues are not a practical concern. However, if there are many factors each 

having many levels, computing time issues could dominate other 

considerations. 

While a candidate-set-based point-exchange algorithm needs not be modified 

to deal with nested factors, we do need to modify the coordinate-exchange 

algorithm to account for the special requirements posed by nested factors. 

One consequence of the required modifications is that the term coordinate 

exchange becomes a bit of a misnomer. This is because, when considering a 

branching factor, the algorithm may need to change the value of both the 

branching factor and one or more associated nested factors (and thus multiple 

coordinates) simultaneously. Our modified coordinate-exchange algorithm 

therefore bears some similarities with the mixture coordinate-exchange 

algorithm of Piepel et al. (2005) and the split-plot and split-split-plot 

coordinate-exchange algorithms of Jones and Goos (2007, 2009), where 

changing one coordinate also implies changes in at least one other 

coordinate. 

One of the strengths of the coordinate-exchange algorithm is that it does not 

require a candidate set. It is also unnecessary to discretize the range of 

continuous factors, since a one-dimensional continuous optimization algorithm 

such as the one from Brent (1973) can be used to determine optimal values 

for the levels of the continuous factors. Modern coordinate-exchange 
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algorithms implementing this approach have been used by Jones 

and Goos (2012), Ruseckaite et al. (2017) and Huang et al. (2019). The use 

of a continuous optimizer is especially useful if there are factors that are 

ingredients of a mixture (Goos et al.; 2016) or if there are linear or nonlinear 

constraints on the experimental region (Goos and Jones; 2011). The time the 

coordinate-exchange algorithm takes to reach completion is proportional to 

the sum of the numbers of levels of the factors rather than the product. This 

makes the coordinate-exchange computationally feasible even when there are 

dozens or even hundreds of factors. 

For the problems studied here, candidate-set-based point-exchange and 

coordinate-exchange algorithms found designs with the same D-optimality 

criterion value, within seconds. However, several years’ experience indicates 

that, for a fixed allotted computed time, the coordinate-exchange algorithm 

provides more efficient designs than a point-exchange algorithm. This 

advantage increases with the number of factors considered. 

Recently, to avoid the problems inherent to using a candidate set, Huang 

et al. (2019) proposed a candidate-set-free point-exchange algorithm to 

optimally design experiments for non-linear models. Given a random starting 

design, the candidate-set-free algorithm uses a multi-dimensional continuous 

optimizer, such as the Nelder-Mead or quasi-Newton method, to move current 

design points to better positions. This avoids the need to discretize the 

continuous factors. Huang et al. (2019) state that their new algorithm is 

especially useful for non-linear regression models. This is because, in the 

absence of constraints on the factor levels, a candidate set with equally 

spaced levels will permit the construction of a design that is either optimal or 

very close to optimal for linear models, provided the number of runs is 

sufficiently large. Modifying the algorithm of Huang et al. (2019) to deal with 

branching factors and nested factors could be done in a way similar to the 

way in which we modified the coordinate-exchange algorithm. 

6 Screening designs involving conditional main effects 
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Su and Wu (2017) discuss a novel approach to analyzing data from fractional 

factorial two-level screening designs. A key aspect of the approach is that it 

avoids traditional two-factor interaction effects. Instead, it uses conditional 

main effects. Clearly, this kind of effect is exactly the kind of effect that occurs 

in the practical examples previously discussed. As Su and Wu (2017) were 

interested in analysis rather than design, they re-analyzed three data sets 

published in Montgomery (1991) without discussing how the interest in 

conditional main effects affects the design of experiments. Therefore, in this 

section, we create D-optimal designs for two of the examples in Su 

and Wu (2017), assuming the interest is in main effects of some factors and 

conditional main effects of other factors. 

6.1 Injection molding experiment 

The injection molding experiment involved six factors, A,…,F, and used a 
6 2

IV2 

 

design. Su and Wu (2017) identified a model involving a significant conditional 

main effect for factor A. That main effect occurred at the high level of factor B. 

For this reason, we calculated a D-optimal design for a model involving (i) the 

conditional main effect of A for the high level of factor B and (ii) the 

(unconditional) main effects of factors B,…,F. In this example, the factor B is 

the branching factor, while the factor A is the nested factor and factors C, D, E 

and F are shared factors. There is only one nesting relationship. Using the 

indicator variable approach we outlined in Section 3, the model can be written 

as 

0 1 A 2 3 C 4 D 5 E 6 F ,Y zx z x x x x                

where z is an indicator variable taking the value 1 if factor B acts at its high 

level and the value 0 otherwise, and A C D E, , ,x x x x
 and Fx

 represent the levels 

of factors A, C, D, E and F. We contrasted the performance of our D-optimal 

design with that of the 
6 2

IV2 

 design. The D-optimal design as well as the 
6 2

IV2 

 

design are shown in Table 4. 
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The D-optimal design in Table 4 involves 4 runs at the low level of factor B 

and 12 runs at the high level of that factor. The latter runs allow us to quantify 

the conditional main effect of factor A. In the D-optimal design, there are 6 

runs at the high level of factor A and 6 runs at the low level. In the remaining 

factors, C, D, E and F, the D-optimal design forms an orthogonal design. The 

standard error for the main effects of these factors is 0.25, whereas the 

standard errors for the intercept, the main effect of factor B and the 

conditional main effect of factor A are 0.289. The average variance of the 

estimates therefore is 0.0714, which corresponds to an A-efficiency of 87.5%. 

The D-efficiency of the D-optimal design is 92.11%. The column labeled ‘D-

opt.’ in Table 5 provides an overview of these results. 

For the model involving the conditional main effect of factor A rather than the 

usual unconditional main effect, the 
6 2

IV2 

 design results in standard errors of 

0.25 for the intercept and the main effects of the factors B to F, and a 

standard error of 0.354 for the conditional main effect of factor A. The average 

variance of the estimates therefore is also 0.0714. The D-efficiency of the 
6 2

IV2 

 

design is 90.57%. So, in this case, the D-optimal design outperforms the 

standard design in terms of D-efficiency, but not in terms of average variance 

of the parameter estimates. The results for the 
6 2

IV2 

 design are shown in the 

last column of Table 5. 

6.2 Aluminum experiment 

The aluminum experiment involved six factors (A,…,F) and used a 
6 2

IV2 

 

design as well. Su and Wu (2017) found two active conditional main effects: 

the factor E had a significant conditional main effect when factor B acted at its 

high level, and the factor F had a significant conditional main effect when 

factor A was at its high level. Therefore, we calculated a D-optimal design for 

a model involving (i) the conditional main effect of E for the high level of factor 

B, (ii) the conditional main effect of F for the high level of factor A, and (iii) the 

(unconditional) main effects of factors A,…,D. In this example, the factors A 

and B are branching factors, while the factors E and F are nested factors and 

the factors C and D are shared factors. There are two nesting relationships. 
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Using the indicator variable approach we outlined in Section 3, the model for 

the aluminum experiment can be written as 

0 1 A 2 B 3 C 4 D 5 B E 6 A F ,Y z z x x z x z x                

where Az
 is an indicator variable taking the value 1 if factor A acts at its high 

level and the value 0 otherwise, Bz
 is an indicator variable taking the value 1 

if factor B acts at its high level and the value 0 otherwise, and C D E, ,x x x
, and 

Fx
 represent the levels of factors C, D, E and F. We contrasted the 

performance of our D-optimal design for this model with that of the 
6 2

IV2 

 

design. The D-optimal design as well as the 
6 2

IV2 

 design are shown in Table 6. 

The D-optimal design in Table 6 involves 4 runs at the low level of factor A 

(and 12 runs at its high level) as well as 6 runs at the low level of B (and 10 

runs at its high level). Consequently, 12 of the 16 runs allow the conditional 

main effect of factor F to be studied and 10 of the 16 runs provide information 

concerning the conditional main effect of factor E. The standard errors and the 

D- and A-efficiencies are listed in Table 7, along with the corresponding 

values produced by the 
6 2

IV2 

 design. The table shows that the conditional 

main effects of the factors E and F are estimated more precisely from the D-

optimal design than from the standard design, and that the main effects of the 

factors A and B are estimated more precisely using the standard design. On 

average, however, the variance of the parameter estimates is smaller for the 

D-optimal design than for the standard design. This results in a better A-

efficiency for the D-optimal design than for the standard design. Also, the D-

efficiency of the D-optimal design is better than that of the 
6 2

IV2 

 design. 

7 Discussion 

This paper provides a method for incorporating nested factors in designed 

experiments. These are factors that are meaningful only for certain levels of 

another factor or have ranges and effects that depend on the level of another 

factor. We call the factor within which other factors are nested branching 

factors. In this work, we discuss the modeling of data from experiments 
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involving these kinds of factors as well as the optimal design of such 

experiments. 

We applied our optimal design approach to a proof-of-concept example and to 

two examples in Su and Wu (2017), and we discuss three recent experiments 

in bioscience engineering. The examples in Su and Wu (2017) involved a re-

analysis of several experimental data sets where conditional main effects 

turned out to be useful descriptions. Our optimal designs for two of these 

examples involve pretending that the conditional main effects that Su 

and Wu (2017) found were a result of the structure of the process and could 

be anticipated. For their examples, of course, this is not the case. Our point 

was to show that, if one did have a system that allowed for identifying such 

possibilities, an optimal design with the same number of runs can yield more 

efficient parameter estimates. 

We have given several examples of scenarios we have encountered in 

practice. This was to try to help practitioners to identify these kinds of 

problems, and to demonstrate how indicator variables can be used to build 

suitable regression models. One of our examples involved ‘sliding levels’, 

which are ranges of factors that depend on the levels of other factors. The 

resulting design can be viewed as a nested design (Montgomery; 1991), but 

with fixed factor levels rather than randomly selected factor levels (Hamada 

and Wu; 1995). 

Our algorithm for finding optimal designs for models with conditional effects is 

available in JMP Scripting Language. The Custom Design tool in JMP can 

also generate these designs through a clever use of its ability to specify 

disallowed factor level combinations. 

Further research in this direction would be to find optimal designs for mixture 

experiments where the number of ingredients in each formulation is limited to 

a proper subset of the total number of potential ingredients. Another useful 

extension of our work would be to account for heterogeneous variances in the 

responses. This is because different levels of a branching factor may give rise 
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to unequal variances. For instance, the proof-of-concept example in Section 2 

compares an old and a new machine. It is conceivable that the run-to-run 

variation for the new machine is substantially smaller than that for the old 

machine. This can be taken into account by generating optimal designs based 

on the weighted least squares estimator instead of the ordinary least squares 

one. 

Supplementary materials 

 Magnetic bead experiment: Full description of the magnetic bead 

experiment, including the model and the definitions of the indicator 

variables. 

 Illustration of the modified coordinate-exchange algorithm: A detailed 

description of how the modified coordinate-exchange algorithm works 

when optimizing a 4-run experimental design for the proof-of-concept 

example in Section 2. 

 JMP scripts: JMP scripts with implementations of the modified 

coordinate-exchange algorithm for the chicken feed, injection molding 

and aluminum examples in the paper. 
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Appendix: Pseudo-Code of the Modified Coordinate-Exchange 
Algorithm 

Our coordinate-exchange algorithm involves two stages. First, it creates a 

random experimental design with the desired structure. Next, it iteratively 

improves the starting design. This improvement is performed coordinate by 

coordinate for shared factors, but, for branching factors and nested factors, it 

is performed at the same time. To optimize the readability of the pseudo-code 

in this appendix, we assume that every branching factor has two levels and 
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gives rise to one nesting relationship. Level 0 of a branching factor represents 

the level corresponding to which there are no nested factors. Level 1 

represents the level corresponding to which there is at least one nested 

factor. We also assume that the nested factors and the shared factors are all 

quantitative, that they can take any level on the [ 1, 1]   interval and that there 

are no constraints on the levels of the factors. We denote the number of 

experimental runs by n and the total number of factors by m, and we let ‘

CurrentDet’ represent the D-optimality criterion value of the best experimental 

design encountered in the course of one run of our modified coordinate-

exchange algorithm. Finally, the improvement phase of the algorithm involves 

a boolean variable, named ‘Improvement’, which signals whether an 

improvement of the design has been achieved during one pass through the 

entire design. That variable can take two values: ‘Yes’ or ‘No’. At the start of 

the improvement phase, this boolean variable is initialized to the value ‘No’. 

Constructing a starting design 

1. For 1, ,i n   do 

(a) For 1, ,j m   do 

i. If factor j is a branching factor then set its level for run i to 

0 or 1 at random 

ii. Else set its level for run i to a randomly chosen value on 

the [ 1, 1]   interval 

2. CurrentDet ← D-criterion value of starting design 

3. If CurrentDet   0, return to Step 1. 

Improvement phase 

1. For 1, ,i n   do 

(a) For 1, ,j m   do 

i. If factor j is a branching factor then 

∙ If factor j’s current level is 0 at run i then 
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– Set factor j’s level at run i to 1 

– Determine the optimal level(s) for the 

corresponding nested factor(s) at run i 

– NewDet ← D-criterion value of the resulting 

design 

– If NewDet > CurrentDet 

* CurrentDet ← NewDet 

* Improvement ← ‘Yes’ 

* Set the nested factor(s) to their 

optimal level(s) at run i 

– Else set factor j’s level at run i back to 0 

∙ Else if factor j’s current level is 1 at run i then 

– Set factor j’s level at run i to 0 

– NewDet ← D-criterion value of the resulting 

design 

– If NewDet > CurrentDet 

* CurrentDet ← NewDet 

* Improvement ← ‘Yes’ 

– Else set factor j’s level at run i back to 1 

ii. Else if factor j is a shared factor or a nested factor the 

associated branching factor of which has level 1 

∙ Determine the optimal level for factor j at run i 
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∙ NewDet ← D-criterion value of the resulting design 

∙ If NewDet > CurrentDet 

– CurrentDet ← NewDet 

– Improvement ← ‘Yes’ 

– Set factor j to its optimal level at run i 

iii. Else if factor j is a nested factor the associated branching 

factor of which has level 0, go to the next factor 

2. If Improvement   ‘Yes’ then 

(a) Improvement ← ‘No’ 

(b) Return to Step 1 of the improvement phase 

3. Else report the current design and the value of CurrentDet 
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Fig. 1 Diagram showing the two machine options in the proof-of-concept 

example, the dial factor x for the new machine and the indicator variable z. 
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Fig. 2 Diagram showing the two enzyme options and the control treatment 

and the indicator variables required for the chicken feed experiment. 
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Fig. 3 Diagrams showing the buffer type options, the indicator variables 

required and the ranges for the pH level for each choice of buffer type. 

 

Table 1 Possible design strategy to deal with the two-factor example in 

Section 2. 

Run  Machine  Dial  z  x  

1  Old  N.A.  0  N.A. 

2  Old  N.A.  0  N.A.  
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Run  Machine  Dial  z  x  

⋮  ⋮  ⋮  ⋮  ⋮  

n/2 Old  N.A.  0  N.A.  

n∕2 + 1  New  Low  1  –1  

⋮  ⋮ ⋮ ⋮ ⋮ 

3n∕4  New  Low  1  –1  

3n∕4 + 1  New  High  1  + 1  

⋮  ⋮ ⋮ ⋮ ⋮ 

n  New  High  1  + 1  

     

Table 2 Alternative designs, standard errors of estimates as well as 

efficiencies for the two-factor proof-of-concept example in Section 2, 

assuming the model in Equation (1) is used. 

   22r   
D-optimal 

 Machine  Dial 

8 

runs  

12 

runs 

16 

runs 

8 

runs  

8 

runs 

12 

runs 

16 

runs 

16 

runs 

   r = 2  r = 3  r = 4  (I)  (II)   (I)  (II)  

Replicates  Old  N.A. 4  6  8  3  2  4  5  6  

 New  Low 2  3  4  3  3  4  6  5  

 New  High 2  3  4  2  3  4  5  5 

Diagnostics s.e.(β0)  0.354  0.289  0.250  0.368  0.408  0.306  0.270  0.258  

 s.e.(β1)  0.354  0.289  0.250  0.368  0.408  0.306  0.270  0.258  

 s.e.(β2)  0.500  0.408  0.354  0.456  0.408  0.354  0.303  0.316  

 D-eff.   79.37  79.37  79.37  82.55  82.55  83.99  83.68  83.68  

 A-eff.   75.00  75.00  75.00  78.26  75.00  80.00  78.95  80.36  

           

Table 3 24-run D-optimal design for the extraction experiment in Section 4.2. 
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Run Buffer Uncoded Coded 

 Type pH level pH level 

 Step 1 Step 2 Step 1  Step 2 Step1  Step 2 

1  1  1  6  3  –1  –1  

2  1  1  6  4  –1  +1 

3  1  1  8  3  +1  –1  

4  1  1  8  4  +1  +1 

5  1  2  6  6  –1  +1  

6  1  2  8  3  +1  –1 

7  1  3  6  5.5  –1  +1  

8  1  3  8  3.5  +1  –1 

9  1  3  8  5.5  +1  +1  

10  1  4  6  5  –1  –1 

11  1  4  6  6  –1  +1  

12  1  4  8  5  +1  –1  

13  2  1  7  4  –1  +1  

14  2  1  8  3  +1  –1  

15  2  2  7  3  –1  –1  

16  2  2  7  6  –1  +1  

17  2  2  8  3  +1  –1  

18  2  2  8  6  +1  +1  

19  2  3  7  3.5  –1  –1  

20  2  3  7  5.5  –1  +1  

21  2  3  8  3.5  +1  –1  

22  2  4  7  6  –1  +1  

23  2  4  8  5  +1  –1  

24  2  4  8  6  +1  +1  
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Table 4 D-optimal design and 
6 2

IV2 

 design for the injection molding 

experiment. 

Run D-optimal design 
6 2

IV2 

 design 

 A  B  C  D  E  F  A  B  C  D  E  F  

1  N.A.  –1 –1 –1 –1 –1 N.A.  –1 –1 –1 –1 –1 

2  N.A.  –1 –1 –1 +1 +1 N.A.  –1 –1 –1 +1 –1 

3  N.A.  –1 +1 +1 –1 –1 N.A.  –1 –1 +1 –1 +1 

4  N.A.  –1 +1 +1 +1 +1 N.A.  –1 –1 +1 +1 +1 

5  –1  +1 –1 –1 +1 +1 N.A.  –1 +1 –1 –1 +1 

6  –1  +1 –1 +1 –1 –1 N.A.  –1 +1 –1 +1 +1 

7  –1  +1 –1 +1 +1 –1 N.A.  –1 +1 +1 –1 –1 

8  –1  +1 +1 –1 –1 –1 N.A.  –1 +1 +1 +1 –1 

9  –1  +1 +1 –1 –1 +1 –1  +1 –1 –1 +1 +1 

10  –1  +1 +1 +1 +1 +1 –1  +1 –1 +1 +1 –1 

11  +1  +1 –1 –1 +1 –1 –1  +1 +1 –1 –1 –1 

12  +1  +1 –1 +1 –1 +1 –1  +1 +1 +1 –1 +1 

13  +1  +1 –1 +1 –1 +1 +1  +1 –1 –1 –1 +1 

14  +1  +1 +1 –1 –1 +1 +1  +1 –1 +1 –1 –1 

15  +1  +1 +1 –1 +1 –1 +1  +1 +1 –1 +1 –1 

16  +1  +1 +1 +1 +1 –1 +1  +1 +1 +1 +1 +1 

             

Table 5 Standard errors as well as D- and A-efficiencies for the D-optimal 

design and the 
6 2

IV2 

 design for the injection molding experiment. 

Effect  D-opt. 
6 2

IV2 

 

Intercept  0.289  0.25  

A|B+ 0.289  0.354  

B  0.289  0.25  
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Effect  D-opt. 6 2

IV2 

 

C  0.25  0.25 

D  0.25  0.25  

E  0.25  0.25  

F  0.25  0.25  

D-eff.  92.11% 90.57%  

A-eff.  87.50% 87.50%  

   

Table 6 D-optimal design and 
6 2

IV2 

 design for the aluminum experiment. 

Run D-optimal design 
6 2

IV2 

 design 

 A  B  C  D  E  F  A  B  C  D  E  F  

1  –1  +1 +1 +1 +1  N.A. –1  –1 –1 –1 N.A. NA 

2  –1  –1 –1 –1 N.A. N.A. –1  –1 –1 +1 N.A. NA 

3  –1  +1 –1 +1 –1  N.A. –1  –1 +1 –1 N.A. NA 

4  –1  –1 +1 –1 N.A. N.A. –1  –1 +1 +1 N.A. NA 

5  +1  +1 +1 –1 –1  +1  –1  +1 –1 –1 +1  NA 

6  +1  +1 –1 –1 +1  +1  –1  +1 –1 +1 +1  NA 

7  +1  +1 +1 –1 +1  –1  –1  +1 +1 –1 –1  NA 

8  +1  +1 –1 –1 –1  –1  –1  +1 +1 +1 –1  NA 

9  +1  –1 –1 +1 N.A. –1  +1  –1 –1 –1 N.A. –1  

10  +1  +1 +1 +1 –1  +1  +1  –1 –1 +1 N.A. +1 

11  +1  –1 +1 –1 N.A. +1  +1  –1 +1 –1 N.A. +1 

12  +1  –1 +1 +1 N.A. –1  +1  –1 +1 +1 N.A. –1  

13  +1  +1 –1 –1 –1  –1  +1  +1 –1 –1 –1  +1 

14  +1  –1 –1 +1 N.A. +1  +1  +1 –1 +1 –1  –1  

15  +1  +1 +1 +1 +1  –1  +1  +1 +1 –1 +1  –1  

16  +1  +1 –1 +1 +1  +1  +1  +1 +1 +1 +1  +1 
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Run D-optimal design 
6 2

IV2 

 design 

             

Table 7 Standard errors as well as D- and A-efficiencies for the D-optimal 

design and the 
6 2

IV2 

 design for the aluminum experiment. 

Effect  D-opt. 6 2

IV2 

 

Intercept  0.292  0.25  

A  0.292  0.25  

B  0.261  0.25 

C  0.253  0.25  

D  0.253  0.25 

E|B+ 0.324  0.354  

F|A+ 0.289  0.354  

D-eff.  84.44% 82.03%  

A-eff.  78.75% 77.78%  
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