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Abstract

This paper revisits the compound options as introduced by R. Geske [2]. Geske
presented a theory for pricing an option on an option which he defined as a com-
pound option. He developed a closed form expression for this kind of options.

In this paper we will extend the notion of compound option to the n-fold com-
pound option or compound option of order n.

Moreover an interesting relationship between a k-variate normal distribution func-
tion and a (k+1)-variate normal distribution function is proved for this intention.
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1 Introduction

As was mentioned by Geske [2], any opportunity with a choice whose value
depends on an underlying asset can be viewed as an option.

The specific opportunity for an option are its boundary conditions. Many oppor-
tunities have a sequential nature, where latter opportunities are available only if
earlier opportunities are undertaken. Such is the nature of the compound option
(by Geske [2]) or option on an option.

We reintroduce the concept of a compound (call) option.

A 2-fold compound call option (or compound option of order 2) is a call option
on a call option i.e. a call option with the underlying being a call option itself.
So such a contract entitles one to the following payoff at ¢,

max {C'(t1, S(t1), o, K3), K1},
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that is, at ¢1, the investor (holder) receives the maximum of the amount K; and
the value of a European call on the asset S with exercise date and price given
by t5 and K5 respectively. In other words the investor holds a call, exercisable
at t;, on the underlying call which is exercisable at t,.

In this paper this idea is generalized to a compound call of order n (with exercise
date and price given by ¢; and K;) with as underlying asset a compound call of
order n-1 (with exercise date and price given by ¢, and K5) which itself is a call
on a call of order n-2 ... until the final underlying asset, a European call, to be
a call of order 1 (with exercise date and price given by ¢, and K,,).

The price at time ¢, of such a call of order n is denoted by

C(n) (t0> S(tO; (tja Kj)?:l))a

with (¢;, K;) the exercise date and price of the call of order (n-j+1), underlying

the call of order n.

In section 2 the valuation equation for this n-fold compound option (compound
of order n) is presented and proved by induction. The proof is based on the PDE
representation form and involves a result on a relationship between the k-variate
and (k+1)-variate normal distribution function which is treated in appendix A.

The reason for the consideration of these n-fold compound options is the possible

application of such derived financial products in the field of

- growing business

- insurance business where the relevance of such products was shown by
Simon and Van Wouwe [6] to leave the insured the opportunity to get out
of a life insurance contract on certain surrender dates and to be in the
possibility to put a price on such an opportunity.

Notations:

V¢ current market value of the firm,

S @ current market value of the stock, viewed as a call option
on the value of the firm V/,

C : current value of the compound call-option,

t : current time,

t* . maturity date of investment for the compound call option C,
maturity date of investment for the call option .S,

r : risk-free rate of interest,

instantaneous variance of the return on the assets of the firm,



K exercise price for the compound call option C,
M exercise price for the call option S,
Ni(.) univariate cumulative normal distribution function,
No(h,k : p) bivariate cumulative normal distribution function

with A and k£ as upper limits and p as the correlation coefficient,
V¢ solution of the equation S(V,t*) = K.

The economic assumptions, which are to be considered for the valuation equation
of a compound option in a continuous time and using a hedging argument, are:

there is no credit risk, only market risk,

the market is maximally efficient, i.e. it is infinitely liquid and does not
exhibit any friction,

continuous trading is possible,

the time evolution of the asset price is stochastic and exhibits geometric
Brownian motion,

the risk-free interest rate r and the volatility o are constant,
the underlying pays no dividends,
the underlying is arbitrarely divisible,

the market is arbitrage-free.

According to the article of Geske [2] we have the following partial differential

equations:
oC oc 1, ,0°C
-~ V= _Z — 1
ot A TR LT (1)
05 oS 1, ,0°S
hd— V= _Z — 2
o = T Vo 7 g 2)
with boundary conditions:
Cy = max (0,5 — K) (3)
ST = Inax (0, VT - M) (4)

Solving equation (2) leads to the well-known Black-Scholes-Merton equation:

S(V,t) = V.Ni(dy) — M.e7"T=Y Ny (d,),
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with
2
Y =TT — 1)

4 = M 2
oVl —t
d1 = d2—|—0'\/T—t.

However, there is a slight difference for the value of the compounded call option,
which was showed by Geske [2]:

C(V,t) = V.Ny(hi,di;p) — M.e"T=D N, (ha, da; p) — K.e =0 N, (ha),

with
1
s + (r — —02> (t* — 1)
By — V 2
2
oVt* —1

h,l = h2+0'\/t*—t.



2 Valuation of the n-fold compound option

Definition 2.1 By induction:

A compound call option (of order 2) is a call option on a call option. This can
be generalized to a compound call of order k£ + 1 (with exercise date and price
given by ¢; and K;) with an underlying call of order k.

Now consider an expansion of the symbols from paragraph 1:

t; : maturity date of investment for the compound call option C;,
K; : exercise price for the compound call option Cj,

C; : current value of the compound call option on the option Cj,q,
Ni(ay,ag,...,ax; A) : k-variate cumulative normal distribution function with

a; as upper limits and A as the correlation matrix.

Because each C; is function of the value of the firm V and the time ¢, these calls
all have the same PDE:

oC; oc; 1, ., 0%C;
5 r.C; —r.V. BTG 20 V ek

but with a different boundary condition:

Ci(V, t;) = max(0,Cip1 (V, 1) — K5) .

The most outer call is simply derived according to Black, Scholes and Merton,
while the next one can be defined following the method of Geske [2].

Further we repeatedly add a time step and solve the corresponding PDE.

This results in the following theorem:

Theorem 2.1 Suppose for s =k + 1, k, ..., 2 the calls C; are known and given
by:

— . Ak+2—s
Cs = VNk-I—?—s (as,a5+1,...,ak+1,AS )

k+1

o Z Km'e_T(tm_t)'Nm-l-l—s (bsa bs—|—1, ceey bm; A;n—kl—s) ,

where we use the notations

ay = b+ oty —t (=23,...k+1

Inge + (r = 5)(te — 1)

b = (=23, k+1
(4 O'\/tht 39y ey K
V¢ solution of the equationCy,(V,t,) = K, 0=2,3,...k
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t,—1 Py
Pij tj ¢ J
a; = 1
L _ ¢
A = (a”)i,jzl,Q,...,Z where o
Gij = Pits—14+s-1 <]

Then the (k + 1) fold compound option can be found to be:

— . AR+
Ci = V.Nip ((11702,---7ak+17A1 )

k+1
— 3" Kpe "IN, (br, bay ey by AT
m=1

Proof

Since (' is a call option, the following PDE holds for C:
oc, oC, 1 , ., 0°Cy
5% - r.Cy —nr.V. o7 20 V ek

with C(V,t1) = max(0, Cy(V,t;) — K;) as boundary condition.
Making use of the results in appendix B, the PDE for ('} can be transformed
into a diffusion equation:

or  0°%

95 op*

with adjusted boundary conditions for the variables p and s

CQ(V,tl) —K1 lfVZVl
i(p,0) = -
0 V< V4

(V1 being the solution o’y — K; = 0.)
(see [7] for a proof of the monotonicity of C' with respect to),}V

or
( VNk(dQ, dg, ceny dk—i—l; Ag)
k+1
i(p,0) = — 3" Kpe " T N (foy fay e fs AR — Ky ifp >0
m=2
0 if p < 0.
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By introducing the notations

dy = fo+oti—1t (=23, ..

Inge-+ (r — %) (te — 1)

fe = (=23, ..

J\/tg — tl

and for ¢ =2,...,k the matrices

where ¢

\

we find the following expression for V at t =
2

1
— 50'
V = ble:zp<—1 2])
r— 50

2
which will be used later on.

k1
Jk+1
a; = 1
Qij = Qi = Pit1jl |t
_ tiy1 — 1
livi— 1t
tll

).

1<

Using a Green’s function as delta-function, the expression for Z(p,s) can be

written as:
—+0o0
z(p,s) = [ z(p',0).Glp—1p,s)dp
1 . \2
withG(p — p',s) = e

or
- oo %O’2 , &
ips) = [ Viewp =250 ) Ne(ds, oo, disr; A).
0 7"—50

m=2
oo 1 (p—1p)°
— K| ——. _
/0 ! \VATs “rp ( 4s

/

p—D

V2s

A substitution of b =

b =b— o/t; —t in the first integral, lead to the following expression:

Le:J/: —ﬁ db’
Vor b 2

“+oo
i(p,s) = » Ve =) Ni(d, ..., djy, 13 AY).

?

1
Vars

1
——.exp | ———
VAars b (

+oo k41
_/0 Z Km-eir(tmitl)-Nmfl(f%"'7fm;AgLil)‘

) dp'.

in all of the three integrals and a second substitution



+oo k+1 (t t) 1 1 b2
— Kpp.em " Ny (fo oy [ ADT0). .exp | —— | db
> o B A

o "\ i
—fi ' \/% «rp 2

In these calculations the new integration boundaries can be found as:

V 1
_an_1+ (r— 5&) (t, — 1)
O\/tl—t

—d1 = —(f1+0'\/t1—t),

while for £ = 2,3,.... k + 1 we get:

—fi

Vl l0'2 1
In— 2 ! ( - = 2) ty— 1
£ ol —
" by + p1e b . t1—1t
fe = o if p1p = -
1— pi, te—t

and

d; =

An application of theorem A.1 in the first integral leads to the final expression
for z(p, s):

I(p,s) = V-er(trt)-NkH(dh A2y ey Af415 Alf“)
E+1
- K ") N (1,0, e, by AT — KN (fr),
m=2

where the correlation matrices can be written as:
a; = 1

AL = (ay). with
1 05) j=1,2, k+ _ . e - .
4,j=1,2,k+1 a’ij = aji = pij if i < ]
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and form =2,3,---,k+1:

a; = 1
A" = (a;). . with v e
1 ( Z])Z,]:l,?,--',m Gij = Qj; = Pij if i < )

The final form for the (k + 1) fold compound call option therefore equals

Ci(V;t) = V.Npi(ar,ag, ..., apii; Alf“)
k+1
— 3 Ko "IN by, oy ey by AT — Kre DN (by),
m=2

with
ap = by+o\tp—t (=1,2,....k+1
V o?
by = L (=1,2,.. k+1
(4 U\/m 32, K+
Vy determined byCy, 1 (V, t,) = K, (=1,2,...k
Vk+1 = M
ti—1 oF
pij = i<
Y ti—t
ai; = 1
¢ _ ¢
Ay = (aij)i,jzl,Q,...,Z where .
Qij = Gji = Pij <]

3 Conclusions

The notion of a n-fold compound option is introduced as a generalization of
the compound option by Geske [2]. The closed-form analytic expression for this
n-fold compound option is proved by induction and by using some interesting
results on the relationship between (k+1)-variate normal distributions and k-
variate normal distributions.



A A useful relationship between the k£ + 1 th mul-
tivariate distribution function and the £ th mul-
tivariate distribution function

In theorem A.1 we will need the following two lemmas about a matrix and its
inverse. Both of the lemmas can be proved in a straightforward way.

Lemma A.1 If
i 1 —a12 o —Q1g
V1—al, 1—aj,
1
A=| 0| —— O
V1 —a?,
1
o] O
I 1—a?,
then i .
1 aio e ai
-1
A o 0 1-— G%Q O
o] O 1—a2,
by the use of the principle of partitioning.
Lemma A.2
1{o - 0 1[0 --- 0
IfA 0 then A~! 0
= _ s en = .
| B! | B
0 0

Let Ny be the k-variate normal distribution function and Ny_; the (k-1)-variate
normal distribution function, the following expression can be determined between
Nk and N, k—1-
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Theorem A.1

+oo ] _

—.€
—mi1 \/ 27T

La? N7 (m2+p12x1 mk+P1k$1
\/1—/712 \/1_Plk
with C = (¢;j)ij=1,.. & symmetric matrix with

cip = 1
Cij = P
cii = puipry+/(L=pk) (1= pt) b1

and where for convenience we put
Ny = 1.

Proof by induction
For k =1 the result is straightforward.
For the second part of the proof we first rewrite the integral as

+oo ] m T
e’%z%.N,P ( 2t P21 mk+P1kx1 )dxl

- /21 AR ’ Ayt

+o00 1
/ / matpioz / mp+o1p 1 —'6_% o) dml dmZ e
( = 1) —<ﬁ> (27)* det B

1- P1z 1=y,

1o -~ 0 "
with P(z1,...,2) = [x1 o -+ xg]. O B_l : 35.2
0 | 2 |
Making use of the substitution
Yj :xjm+p1jx1 forj =2,3,---k
we can rewrite this expression as
- /+OO .../+OO 1 s D@ ) o dyy - dyy
- —my k ,
\I (2m)* det B jl:[2(1 — p1;)

11
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In this formula, we introduced the matrix:

10 0 o
* 0 t
P*(x1,y2, .5 yk) =21 y2 -0yl .D. : B-! D' | v2 |,
0 :
L Yk |
where
' — P12 —P1k

\/1—,0%2 1_/0%/@

: . '

0 O Ny
L 1 — piy
Since we want to express the k-variate integration by means of a k-variate normal
CDF, we now have to determine the correlation matrix C' with:

1‘0 0

C'=D. B_l D',

An application of lemma A.1 and A.2 leads to

L] 0 0 1]0 0
o - P12 \/1—0%2 O 0
a : N B
Pk O 1 - p}y 0
1‘ P12 P1k

0| 1-p O

0 O 1 — pi
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or

1 ‘Pu

Pk

P12
P1k
with F obtained by partitioning as

P12 \/ 1 — phy

O

Y2 B P2

p1i) bic1j1

: -[012 p1k]+ .B.
P1k O V91— PRk O
Hence this results in:
C11 = 1
C= (Cij)i’jzl’...’k with Cij = Py
Cij = pPupiy+ \/(1 —pii) (1=
Now, since P*(x1, s, ..., yx) can be written as
Xy
P (x1,y2, ., Uk) = [ T1 Y2 Yk ] Cc yQ
Yk
and
det C = H — p};).det B
j=2

for the integral we find

(2m)k det B T[ (1 — p3))

[oLo :

=2

+
_/— /mkq/ZwkdetC’

or

- Nk(mla e TS C)a

which completes the proof.
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.67% P*(x1,y2,Yk)

d.’L’1 dy2

dyg

d.’L’l dy2 Ce dyk

O
V1= riy



B From PDE to diffusion equation

Consider the PDE:
aC; ac; 1 ., ., 9*C;
5 r.C; —r.V. 57~ 3° V ek

with boundary condition at time ¢; given by
Ci(V;t;) = max(0, Ci1 (Vo ;) — KG).

Let V; be defined as the value for which C;,1(V;,t;) = K;.

Making use of some substitutions, we can rewrite this PDE as a diffusion equa-
tion.

Indeed, first we choose w as

w=In

b

v

and we define the function z(w,t) as
z(w,t) = "D 0V, t)

= €T(ti_t) CZ(VZGw, t) .

Secondly, we rescale the independent variables as

( . r— %O’Q
w = 1 w
202
2
2
(r=30)
s = T 5 (tz —t),
\ 50

we define the function Z(w', s)
z(w', s) = x(w,t).
With
p=uw+s,
finally we rewrite the dependent variable as
z(p,s) = z(w', s).

Then it follows in a straightforward way that this last function satisfies the
diffusion equation

or 0%

ds  9p>
See [5] for more details.
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C Green’s function

Consider Green’s function

1 (z=2")2
G(z— 2t = e aw
( ) VAt
which clearly satisfies the diffusion equation
0G _ G
o 022"

Note that G behaves like a delta-function in ¢ = 0:
*1f 2 # 2 and ' — 0 then G(z — 2/, t') = 0
*If =2 and t' — 0 then G(z — 2/, t') — o0

*

+oo - ]

Gz—2,t)de = — —Zd

| G=2tyd == L) dg
2

= L/#—ooeaj (—q—)d
B \/27’(’ —00 b 2 1
1
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