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Abstract

Composite materials are nowadays widely used in several applications, especially in the aerospace field. Despite the

numerous advantages that composites can offer, the health monitoring of this type of structures is challenging. A

major challenge regards the detection and monitoring of delaminations. In the case of aeronautical structures, delam-

inations are often caused by impacts with external objects. Therefore, the capability of detection, localization and

reconstruction of occurring impacts becomes an essential health monitoring tool for the estimation of the remaining

structure lifetime. In this paper, we propose a new procedure for the reconstruction of impacts, based on the structural

model and on measured vibration data. The procedure is tested over a carbon fiber reinforced composite plate, instru-

mented with surface mounted fiber Bragg grating sensors. The experimental results show that the proposed algorithm

(VS-LS) can localize and reconstruct the impact forces with at least three times better accuracy than the classical

pseudo-inverse method.

Keywords: Force identification, impact detection, modal analysis, inverse problem, composite plate, fiber Bragg

grating (FBG).

1. Introduction

The use of composite materials has been growing rapidly in the past decade, because of the higher mechanical

properties that these materials offer (stiffness/density). Composites are, for instance, light and strong, and therefore

they are widely used in aeronautical applications. Despite the numerous existing non-destructive techniques (NDT),

damage detection mechanisms over composite materials are much more complex and require more effort and sophisti-

cated hardware. This makes the monitoring and lifetime cycle estimations more difficult for this type of structures. In

addition to that, the establishment of maintenance schedules in the framework of structural health monitoring (SHM)

becomes often challenging for complex structures.

Composite structures are vulnerable to internal damages, such as delamination and fiber breakage. Most of the

internal flaws occur inside the composite material and they might not be visible for inspection from outside [1]. In

the particular case of aeronautical structures, impacts of birds or other foreign objects can lead to a degradation of

the structural integrity. A typical example of this decrease in structural integrity is the delamination of the composite

layers caused by concentrated impact forces.

Damages caused to the composite structures by low velocity impacts are not easy to identify, since no visual de-

terioration is made to the structure. Therefor, it is useful to try to identify the possible causes of the damage, i.e. the
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forces. The reconstruction of the load signature on structures is a helpful procedure that can considerably help for

SHM. When the applied dynamic forces are known, the monitoring will be easier and the maintenance costs will be

reduced.

Force identification using structural vibration data has recently attracted a lot of interest. The inverse load identi-

fication using system responses is used for monitoring purposes in civil engineering and structural mechanics. In the

particular case of aeronautical structures for example, the force identification becomes applicable in impact detection.

The impact force reconstruction is a popular application of load identification, in which the location and the amplitude

of the impact forces are estimated. Given the structural model, inverse techniques offer the possibility to reconstruct

the system’s input (forces) from measured vibration data (outputs).

In general, the load identification problem consists of localising the forces, and reconstruction of the force time

history. In the literature, the force identification approaches can be divided into two major categories, depending on

the applications (see below).

In the first approach, the aim is only to detect the impact. This approach relies mostly on the knowledge of wave

propagation in the structure. The time of arrival (TOA) is one of the most popular methods in this category. The use

of triangulation techniques and cross correlations can improve the impact localization [2]. Despite the advantages that

these techniques offer, most of the time-based methods fail on complex structures. They are highly sensitive to noise,

and thus not suitable for identifying colored-band excitation. When the material properties are not known exactly, or

when the material in anisotropic, the analytical models usually become non-realistic, so the identification fails [4–12].

In presence of anisotropic materials (such as most of fiber reinforced composites), the wave propagation occurs at dif-

ferent speeds and directions. This makes the force identification process more challenging, since time-based methods

require the knowledge of material properties, such as fiber directions, layups, number of layers, etc.

The second approach consists of estimating not only the location but also the applied force history on the structure.

The use of a structural model (either in time or frequency domain) is necessary in this approach. The model can be

analytical (for simple geometries), experimental or an updated finite element model. Most of these methods are

based on optimization techniques. They try to minimize the error between the measured and predicted vibration

data, obtained from the calculation of the structural model. The model based methods are not limited to impact

detection. They are generally less computationally effective comparing to the TOA techniques. But, with some

special considerations, their computation speed can be in the same order of magnitude as TOA methods [15–24].

Model-based techniques have the ability to deal with structures having complex geometry and material composi-

tion. In inverse model-based methods, the structure model is perceived as a black box by the algorithm, containing

several inputs and outputs. The force identification procedure becomes independent from the geometrical and physical

properties of the structure. As composite structures are often composed of complex layer configurations, model-based

approach seems to be advantageous than the one based on time. Nevertheless, it is worth mentioning that, if the

model is not reliable in the description of the system dynamics, these methods will not be able to produce correct load

estimations (ex. changes in the boundary conditions, temperature, damage, etc.)

Both approaches require measuring the vibration of the structure under test. Piezoelectric-based accelerometers

are commonly used for vibration measurements. It is possible that in some cases, such as relatively small and light

structures, these sensors affect the structure dynamics by their (non-negligible) mass and dimensions. The vibration

of the structure can be measured instead by using fiber Bragg gratings (FBG). The use of FBG sensors has increased

considerably due to the inherent advantages of optical fibers, such as low weight and the immunity to electromagnetic

interference. This type of sensors can measure strain, and they have been used for detecting forces and damages

on composite structures [2, 3, 13, 14]. The numerous advantages of FBG sensors make them highly desirable for

aerospace applications.

In this paper, we propose a new procedure called variable selective least squares (VS-LS), for localizing and recon-

structing single point forces on structures. It consists of a model-based identification approach, that uses the measured

strain signals together with the strain frequency response functions (SFRF), in order to estimate the applied forces.
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Although the method is limited to single point force identification, it is not restricted to broadband excitations. As

the computation time has always been an issue for the inverse load identification techniques, a strong focus is put on

the simplicity and robustness of the proposed algorithm. Furthermore, the effect of sensor configurations and model

parameters will be investigated in details. The studied structure consists of a fiber re-enforced composite plate (2D

structure). The plate is excited using a hammer and the vibration data is measured by FBG sensors. The proposed

algorithm has been successfully validated with the experimental data.

The remainder of this paper is structured as follows. In section 2, we will state the inverse problem, described as

a set of system of linear equations in frequency domain. This is followed by the theoretical background of the applied

methods. Section 3 introduces the experimental setup. The experimental validation of the proposed approach will be

illustrated and discussed in section 4. Finally, the section 5 includes the conclusions of the present study. A complete

list of the notations used in this paper is presented in the Appendix section.

2. Theory

This section introduces the theoretical background on the fiber Bragg grating (FBG) sensors used for the vibration

measurement procedure and on the proposed solution method.

2.1. FBG sensing principle

A fiber Bragg grating (FBG) is a particular type of sensor created in an optical fiber. A grating is inscribed inside

the fiber core (Figure 1) by means of UV light. Within the grating region, the index of refraction undergoes a periodic

modulation and therefore acts as a wavelength selective filter.

Figure 1: Schematic representation of a FBG. The grating has length L and pitch Λ and is created inside the core region of the optical fiber. The

Bragg wavelength λB depends on the effective refractive index neff and on Λ.

When light with a broadband spectrum enters the fiber, the grating reflects one particular wavelength. This wave-

length is called the Bragg wavelength λB and is given by the following equation:

λB = 2 neffΛ (1)

where, neff is the effective refractive index averaged over the entire grating length L and Λ indicates the grating pitch

(Figure 1). A shift of the Bragg wavelength λB occurs when changes in either or both neff and Λ happen. In isothermal

conditions, a strain variation ∆S acting along the fiber axis induces a wavelength shift ∆λB which is given by:

∆λB = λB (1 − peff)∆S (2)

where peff =
neff

2

2

[

p12 − υ(p11 + p12)
]

, p11 and p12 are the components of the fiber-optic strain tensor and υ is the Pois-

son’s ratio. For GeO2 doped (quartz) fiber a typical value of the effective photo-elastic coefficient peff is 0.204 [25]. It

is worth to notice that the assumption of isothermal conditions is realistic when dealing with vibration measurements,

since the measurement time is short enough to assume all temperature fluctuations negligible. From Equation 2 it is
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clear that the internal axial strain acting on the fiber can be retrieved by tracking the Bragg wavelength shifts ∆λB. For

this purpose, different techniques have been proposed in literature.

In this work, we used the so called fast phase correlation (FPC) algorithm recently introduced in [26, 27]. The

choice of the FPC algorithm was driven by the need of accurate and precise dynamic strain measurements. It has

been proven, in fact, that compared to other techniques the FPC allows to achieve better performance especially when

the wavelength resolution is poor and/or the FBG reflected peak is noisy or partially distorted. Moreover, in case of

dynamic strain measurements where the strain frequency response function need to be computed, the FPC guarantees

higher SNR ratios. A complete discussion on the FPC algorithm can be found in [26–28].

2.2. Preliminary study

As mentioned in the introduction, this study is performed in the frequency domain, and it requires the strain

frequency response functions (SFRF) of the structure. The experimental procedure of obtaining the SFRF is presented

in Figure 2. For this purpose, the roving hammer test is performed over the DOFs of the structure. Both the force

and strains data are converted to the frequency domain (by Fourier transformation), and then used to compute the

raw SFRF. Then, a parametric model is created based on the force and strain measurements. This parametric model

of the FRFs has been obtained using the poly-reference least-squares complex frequency domain (pLSCF) estimator,

industrially known as Polymax method [30, 31]. The Polymax estimator uses the so-called right matrix fraction

description (RMFD) model to represent the measured strain frequency response functions (SFRFs). The model is

then estimated by fitting the the measured SFRFs, in a linear least-squares sense. The obtained model is denoted by

Hs in the next sections. The Hs matrix relates all the DOFs to all of the FBG sensors, installed on the structure.

H1 method 

System F S

Hs

PolyMax

Hs
Inverse 

methods 
(ex: VS-LS) 

System F S

FRFs

Figure 2: The structural model Hs is obtained in frequency domain. This model will be used together with the strain matrix S in order to estimate

the applied force matrix F̂.

In another set of measurements, the model Hs will be used together with the vibration measurements S , in order

to identify the force vector F̂. A 3D representation of the force, strain and the model matrices is illustrated in Figure

3. The third dimension shown in this figure is related to the frequency axis (N f ). The matrices S and F contains all

the strain and force data. Each elements of these matrices (S
f
n , F

f

k
) corresponds respectively to the strain value of

sensor n, and the unknown force at k-th DOF, at frequency f . Each element Hs f

n,k
links the DOF k to the sensor n,

at frequency f . Note that in this case, the size of S matrix is smaller than the unknown force vector F. This reflects

the ill-posed character of the inverse problem. In other words, there are less sensors attached on the structure than the

number of unknown variables.

2.3. Problem statement

As described in section 2.2 and Figure 3, the mathematical problem is described as a set of complex linear equa-

tions, linking the outputs (strains S f ) to the inputs of the system (force F f ). By means of some inverse procedures,
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we aim at localizing and reconstructing the applied impact forces. The system dynamics Hs is represented for each

frequency line f ∈ { f1, . . . , fN f
}. The system is described as follows:

S f = Hs f
F f (3)

where S f is the n × 1 strain vector with n the number of FBG sensors, F f is the k × 1 force vector with k the number

of unknown force locations, and Hs f is the n × k strain frequency response function (SFRF) model. The Hs f matrix,

which describes the behavior of the system to external excitations, is obtained experimentally by the roving hammer

test (H1 method: broadband excitation by hammer [29]). In this study, we consider the cases with n ≤ k, which means

that there are less sensors than the unknown force locations (under-determined problem). The solution of the problem

(F̂ f ) is expected to have a sparse pattern, since the impact force is located at one point. In the next section, a new

procedure of force identification is introduced in details.
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Figure 3: A 3D representation of the matrices S , F, and Hs over frequency. Note that the size of sensors S is smaller than the unknown force

locations F.

2.4. Solution method

As mentioned in the previous section, the force identification problem is defined as a 3D system of equations,

involving every frequency line N f inside the band of interest (see Figure 3). The solution of this problem can be

estimated for each frequency line, using least squares (LS) as follows:

F̂
f

LS
= argminF f

{

1

2
‖Hs f

F f − S f ‖22

}

(4)

Since the number of rows in Hs f is less than the number of columns (n < k), the problem in (4) is ill-posed. Never-

theless, the Pseudo-inverse method still can provide an estimation of the LS solution, since in our case there are more

sensors than the number of forces [32].

F̂ = [Hs f ]+S (5)

where the pseudo-inverse operator is represented with •+ operator. Although the solution provided by the pseudo-

inverse method is mathematically correct, it usually fails to represent sparse force vectors. Since this technique is

estimating a LS solution, the force results are spread over almost all force candidate locations k, and the impact can

not be correctly reconstructed. In the literature, there are several methods in which the sparsity of the force vector is

guaranteed by imposing more restrictions on the cost functions. The challenge with inverse problems is that they are

often mathematically ill-posed, due to the fact that their system model is rank deficient and the condition number is

relatively high. There is no unique and general purpose solution method in solving inverse problems.

It is possible to regularize the solution by adding extra constraints or penalty functions, as in [33]. In [34], authors

propose a mixed penalty function to promote sparsity in the solutions. Other possible solutions are the Bayesian
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methods as in [35] or the `1-norm based cost functions, like in [16]. Although these techniques provide accurate point

force identifications, they need a relatively high computation time. In the applications where the calculation speed is

a necessary feature, it is better to avoid large scale optimization procedures.

There are several online techniques such as in [4–10] that are fast in the computation. Usually, these methods are

designed to detect and localize impacts, and not to reconstruct the force time history, since most of them are not model

based. There is a need for a new approach that is model based, and fast enough that allows the system to be used in

real-life applications.

We propose a new procedure to localize and reconstruct the impact force. The method is named variable selective

least squares (VS-LS). The procedure is defined in the following steps:

n A frequency domain model of the structure is built based on measurement data. → Hs f

n For each frequency line, the k candidate force locations are selected one by one, and each time a force at that

location is calculated. → F̃
f

k

n The cost function (CFk) is calculated over all the frequency lines. → CFk

n The k̂ is obtained by the cost function CFk.

n When the impact is localized at k̂, the model is reduced to the impact DOF (→ Hs f

k
), and the impact force is

estimated.

n The force is reconstructed in time domain by using the inverse Fourrier transform.

VS-LS method

Problem:

Find F such that: S = HsF

Solution

For k = 1 : Nd

For f = f1 : fN

F̃
f

k
= [Hs f

k
]+S f

CFk =
∑ fN

f= f1
‖Hs f

k
F̃

f

k
− S f ‖2

k̂ = argmink {CFk}

F̂ f = [Hs f

k̂
]+S f

As the presented procedure examines each DOF separately, the sparsity in the solution vector F̂ is guaranteed.

The algorithm is not computationally expensive. As the large scale optimization problem is reduced to a simple min-

imization procedure, a very fast computation is expected. Another advantage of this force identification procedure is

that it is not limited to impact forces. As long as a single force is present, the algorithm can identify the location and

amplitude of any force spectrum (not limited to broadband forces).

3. Experimental setup and procedure

To illustrate the applicability of the proposed approach, several experiments are conducted. A composite plate

(fiber reinforced) with a rectangular shape is clamped from four corners. The plate is composed of 16 plies, with the

following layup: [0/90/0/90]2s. This composite plate has a symmetric and balanced layup (same amount of each layer

direction). The tensile modulus of the plate is included in the Table 3, together with additional specifications. The
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structure is a general-purpose composite plate that was selected for the test setup without any particular preferences

in material and size selection. It has been fabricated by the R-G company and it is used for the sake of validating the

impact identification procedure.

The vibration data (consisting of strain signals) are measured FBG sensors. There are 10 FBG sensors (Ge-doped

type I, DTGs from FBGS Int., with wavelength near 1550 nm), equally distributed on a single fiber (blue rectangles

in Figure 4). The coordinates of the sensors are presented in Table 2.

The locations and directions of the FBG sensors are chosen arbitrarily. In fact, different sensor configurations have

been considered (spiral, rectangular, zigzag, etc.) and they were all studied in order to obtain better signal to noise

ratios on the strain signals. Because of the minimum allowed curvature radius of the optical fiber, some technical lim-

itations were encountered. To avoid any damage on the fiber, we decided to select a very straight and simple sensor

layout. This allows having some FBGs in 0o and some other in 90o. The last FBG is arbitrarily glued at 45o. The

impact identification results show that even with a non-optimized FBG sensor layout, the algorithm is still capable of

localizing and reconstructing the impact force. In general, as long as the strain levels are above 1µε, the strain signals

can be correctly measured and the proposed algorithm will work. If the sensors are not located in the nodal points (at

resonance frequencies), the chance is high to obtain good signal to noise ratios.

The fiber is attached to the plate surface using a UV curable glue. Only the sensing part of the fiber is glued,

allowing to relieve the strain between the individual gratings and avoid cross-talk of the gratings. Figure 5 shows a

more detailed view of the setup.
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(a) Setup (b) Front view (c) Rear view

Figure 4: The setup consists of a composite plate, instrumented by FBG sensors. The orange dots correspond to the DOFs. The vibration (strain)

is measured using FBG sensors, presented by blue dots.

The plate is excited using a PCB R© hammer on the DOFs of the plate (orange dots in Figure 4). The applied force

is also measured for validation purposes. The hammer force is measured by a National Instruments R© data acquisition

device (NI-DAQ). As shown in Figure 4, the output strain signal from the fiber sensors is measured with the FBG Scan

700 (from FBGS Int.). The strain measurement is synchronized with the force measurements, by means of a square

trigger signal, created with the NI-DAQ. The NI-DAQ acts as the central reference unit for the synchronization of

all the 11 measurements (1 force and 10 strains). The strain measurements are triggered using the intercepted output

trigger signal of NI-DAQ. All the input (force) and output (strains) signals are triggered with the NI-DAQ reference.

The strain signals are derived from the Bragg wavelengths shifts that are determined using the FPC algorithm. An

example of raw input and output measurement data is illustrated in Figure 6.

Using the set-up explained in the previous paragraph, the system model is first constructed experimentally follow-

ing, following the system identification techniques presented in [30, 31, 36]. In this way, an input-output model is
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(a) Sensor configuration (b) Zoom view

Figure 5: The 10 FBG sensors are attached to the plate as shown in (a). A zoom view in (b) shows an example of the sensor configuration.

calculated based on the measured strain signals. Then, system identification techniques are applied to the measured

SFRF in order to find the modal parameters of the system. This SFRF relates the output strains to the input point

forces. The working frequency range is limited up to 250 Hz. Each measurement was performed for a total duration

of 4.5 s, with a sampling frequency of 1 kHz. Figure 7 shows some of the SFRF over the selected frequency range.

Time [s]
0 1 2 3 4 5

F
o
rc

e
 [
N

]

-5

0

5

10

15

20
Force (raw)

Time [s]
0 1 2 3 4 5

S
tr

a
in

 [
-]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06
Strain (raw)

Frequency [Hz]
0 100 200 300 400 500

F
o
rc

e
 [
d
B

]

-60

-50

-40

-30

-20

-10

0

10
Force (raw)

Frequency [Hz]
0 100 200 300 400 500

S
tr

a
in

 [
d
B

]

-100

-80

-60

-40

-20

0

20
Strain (raw)

Figure 6: An example of the raw data, measured during the experiments (impact at location 11). The hammer force and all of the FBG strain signals

are stored and transformed to frequency domain.
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Figure 7: This figure shows some of the SFRF curves, related to the first sensor. The (approximate) resonance frequencies are emphasized in the

x-axis.
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4. Results and discussion

4.1. Forward verification

The verification of the quality of the system model (Hs) is a necessary condition for obtaining reliable results in

the inverse procedure. This verification consists of comparing the measured strains with the estimated strains that are

computed using the structural model Hs. The results of the forward check show that in general, a very good overall

agreement between the measured and simulated response signals is obtained. As this condition is satisfying, the model

Hs can be used in the inverse calculation for force reconstruction.

S e = HsF (6)

where F and S represents the measured force and strain. The estimated strains S e will be compared to the actual

strains on the structure S . Some results of the forward check are presented in figures 9. As the comparison study

shows a good overall agreement is observed between the measured and estimated strain signals. The quality of this fit

indicates the relevance of the structural model.
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Figure 8: The estimated strains are calculated based on the structural model and a measured force.
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Figure 9: The measured and estimated strains show a good overall agreement. In this case, the force is applied at location 10.

4.2. Force identification

The force identification on the composite plate is performed using both the classical pseudo-inverse and the new

procedure, as described in section 4.2. The inputs of the algorithm consist of the structural model Hs obtained in the

previous sections, together with the strain measurement matrix S , measured during an experiment. To illustrate the

efficiency of the suggested algorithm, three different load cases are considered. The results of the force identification

procedure are shown in Figure 10.

The first study case corresponds to the case where the point 2 is impacted. All the FBG sensors contribute to

the measured strain vector. The purpose of analyzing this case is to validate the proposed procedure. In the second

study case, the force is applied at point 11, and only six FBG sensors (1 3 5 7 9 10) are active. In this way, the effect

of sensor number on the result quality is examined. The last study case pushes the sensor constraints to their limits,

where only three FBG sensors are taken into account in the inverse process (1 4 9). For the last case study, the plate

is impacted at point 17.
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It is more convenient for illustration purposes to make use of a non-dimensional parameter called β, that can

provide a better geometrical understanding of the force localization. This parameter is defined as suggested in [37],

and consists of a normalization over frequency and DOFs.

βi =

∑N f

f= f1
‖F

f

i
‖2

2

∑k
j=1

∑N f

f= f1
‖F

f

j
‖2

2

i, j ∈ {1 · · · k} (7)

Among the results presented in Figure 10, the amplitude of β for each DOF is represented by a color (see the colorbar).

In the last column, the values of the cost function CF are plotted per force point, calculated following the formulae in

section 4.2. The location k̂ that minimizes CF will be identified as the impact location.

Once the force location is identified, the system model is reduced to the localized point (Hs f

k̂
), and the force

amplitude is calculated. The last step of the force identification process consists of reconstructing the time history of

the localized force using inverse Fourier transform. The time domain results are presented in Figure 11. The relative

error is also calculated for each case, in order to provide a basis for the comparison of different methods.

RE =
‖F − F̂‖2

‖F‖2
(8)

Table 1: The computation time and the relative error (RE), corresponding to each case study. This table shows the quality of the estimations made

by VS-LS method.

Computation time [s] Relative error (RE) [-]

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Pseudo-inverse 0.49 0.36 0.33 1.35 7.52 1.57

VS-LS 0.73 0.74 0.71 0.64 0.71 0.32

For each study case, the plot of βimposed shows the exact loading conditions of the composite plate. As illustrated

in this figure, a general trend can be observed in the results provided by pseudo-inverse technique: this method fails

to identify the correct force location. These results are in agreement with the theoretical expectations. Since the

pseudo-inverse provides a LS solution of the problem, it lacks the sparsity feature that is necessary in this particular

case (point forces). On the other hand, the VS-LS method localizes the impact force correctly. The plot of the cost

function CF confirms the localization capabilities of this technique. As explained in the previous sections, the VS-LS

estimates a sparse solution of the force vector F. The reconstructed force in time domain (in all study cases) is in

agreement with the measured applied force (see Figure 11).

Although the poor localization capability of the pseudo-inverse method, it still remains the faster than VS-LS in

the computation time. As shown in Table 1, the pseudo-inverse is at least 2 times faster than VS-LS, but they are both

less than a second. The reconstructed forces by VS-LS in time domain have a better agreement with the measured

forces. In all the studied cases, the force time history matches the exact one. VS-LS not only localizes the force

locations, but provides also very good estimations of the applied force.
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(a) Imposed force (b) Pseudo-inverse (c) VS-LS (d) CF

(e) Imposed force (f) Pseudo-inverse (g) VS-LS (h) CF

(i) Imposed force (j) Pseudo-inverse (k) VS-LS (l) CF

Figure 10: Some results of the force identification procedure are presented at this figure. Figures (a), (b), (c) and (d) correspond to a force at

location 2 and consider all the 10 FBG sensors. Figures (e), (f), (g) and (h) correspond to a force at location 11 and consider FBG sensors at [1 3 5

7 9 10]. Figures (i), (j), (k) and (l) correspond to a force at location 17 and consider FBG sensors at [1 4 9].
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(a) Case 1: Force at point 2
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(b) Case 2: Force at point 11
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(c) Case 3: Force at point 17

Figure 11: The applied forces are reconstructed in time domain for each test case. The zoom views in the figures show a better estimation quality

for VS-LS method. Note that only the force vector at the excited point is plotted. The force signals are band-filtered between 5-250 Hz.
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5. Conclusion

In this study, the point force reconstruction has been addressed, and a new procedure is introduced for solving

the ill-conditioned load identification problem. Impacts have been applied to an instrumented composite plate, in

several test cases. The strain data is measured using optical fibers (FBG), attached on the surface of the plate. The

location of the applied forces are determined by minimizing a cost function. The forces are then reconstructed in

time domain. The comparison of the results from the pseudo-inverse and the newly proposed method shows that

the classical methods fail to produce good force estimations. The experimental results indicate that the proposed

technique (VS-LS) is able to correctly identify the applied impacts on the plate.
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Appendices

•̂ Estimated matrix

•T Conjugate transpose operator

‖ • ‖p `p-norm defined as 1/p

√

∑

i •
p

i

•+ Pseudo-inverse of a matrix

f Frequency

N f Number of frequency lines in the studied range

n Number of sensors (equations in the problem)

k Number of candidate force locations (unknowns in the problem)

L Length of the grating

Λ Grating pitch

fe f f Effective refractive index

Λin Incident wavelength

Λre f l Reflected wavelength

Λtransm Transmitted wavelength

ΛB Bragg wavelength

pe f f Effective photo-elastic coefficient

pi j Components of the fiber-optic strain tensor

υ Poisson ratio

β Normalized force index (indicating the force location)

S Strain matrix n × 1 × N f

F Force matrix k × 1 × N f

F̂ Estimated force matrix (k ∗ N f ) × 1

H s Frequency response function matrix in 3D n × k × N f

H s f

k
The k-th column of the frequency response function at a given frequency f

DOF Degree of freedom

SFRF Frequency Response Function

LS Least Squares estimation

UV Ultra violet

CF Cost function

RE Relative error

FBG FIber Bragg grating
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Table 2: The composite plate is instrumented with 10 FBG sensors attached at following coordinates. The reference point is placed at lower left

corner of the plate.

Sensor x-coordinate [cm] y-coordinate [cm] Angle [deg]

1 10.0 38.2 90

2 10.0 28.5 90

3 10.0 18.5 90

4 16.2 15.5 0

5 18.5 21.5 90

6 18.5 31.7 90

7 20.5 38.5 0

8 25.5 35.4 90

9 26.0 25.4 90

10 23.2 16.5 45

Table 3: The specifications of the composite plate.

Layers [0/90/0/90]2s

Height 550 mm

Length 350 mm

Thickness 2.4 mm

Fiber volume 60%

Density 1.6 g/cm3

Tensile strength 1.300 MPa

Tensile modulus 130.00 MPa

Shear modulus 5300 MPa
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