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Abstract

The asymmetric synthesis of new chiral y-chloro-a,B-diaminocarboxylamide derivatives by highly diastereoselective Mannich-type
reactions of N-(diphenylmethylene)glycinamides across chiral a-chloro-N-p-toluenesulfinylaldimines was developed. The resulting
(Ss,28,38)-y-chloro-a,B-diaminocarboxylamides were formed with the opposite enantiotopic face selectivity as compared to the
(Ss,2R,3R)-y-chloro-a,B-diaminocarboxyl esters obtained via Mannich-type addition of analogous N-(diphenylmethylene)glycine
esters across a chiral a-chloro-N-p-toluenesulfinylaldimine. Selective deprotection under different acidic reaction conditions and
ring closure of the y-chloro-a,B-diaminocarboxylamides was optimized, which resulted in N*-deprotected syn-y-chloro-a,f-di-
aminocarboxylamides, N-sulfinyl-B,y-aziridino-a-aminocarboxylamide derivatives, a trans-imidazolidine, and an N%NP-depro-

tected syn-y-chloro-a,p-diaminocarboxylamide.
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Introduction

In recent years, non-proteinogenic diaminocarboxylic acids
have gained a lot of attention among organic chemists and
biochemists [1-3]. This is due to the fact that these diaminocar-
boxylic acids are present as key structural fragments in bio-
logically active compounds, and some are also bioactive as the
free diaminocarboxylic acid derivative [1-6]. For example, a,y-
diaminoacylamides are known for their high potency and selec-
tivity as dipeptidyl peptidase (DPP) inhibitors [7-9].

DPP IVs are proteases that specifically cleave off N-terminal
dipeptides and are involved in the degradation of incretin
hormones, including glucagon-like peptide-1 (GLP-1) and
glucose-dependent insulinotropic polypeptide (GIP). GLP-1 is
involved in the regulation of glucose homeostasis through stim-
ulation of insulin secretion, inhibition of glucagon release, and
delay of gastric emptying. It has been demonstrated that the
presence of intravenous GLP-1 increases insulin secretion as a
response to elevated glucose levels, and as such, GLP-1 can
offer therapeutic benefits for patients with type 2 diabetes.
Unfortunately, therapeutic application of GLP-1 is problematic
due to the lack of oral activity and the rapid degradation by
plasma DPP IV. Therefore, DPP IV inhibitors could offer a
solution to this problem, as they can extend the duration of
action of GLP-1 and prolong the beneficial effects [10-12].

Besides DPP IV, a few related enzymes are present in the
family of DPPs, with DPP II, DPP8, DPP9 and FAP being the
most important regarding the therapeutic potential, when
focusing on the inhibitory potency and selectivity [10-12]. In
the research focused on DPP II and DPP 1V inhibitors, it has
been found that the a,y-diaminoacylpiperidine, (S5)-2,4-
diaminobutanoylpiperidine, is a lead compound in the develop-
ment of a large series of highly potent and selective DPP II
inhibitors [7-9] (Figure 1). Next to the o,y-diaminoacylpyrrol-
idines and —piperidines, which exhibit a DPP inhibitory effect,
some B-aminocarboxylamides, such as sitagliptin, are also
known as DPP inhibitors [13]. Sitagliptin is a commercialized

oral antihyperglycemic drug of the DPP IV inhibitor class [14].

As a,y-diaminocarboxylamides, as well as B-aminocarboxyl-
amides, are known for their activity as DPP inhibitors, an
increasing interest to study the DPP inhibitory potency of analo-
gous o,p-diaminocarboxylamides exists [15]. The synthesis of
chiral a,B-diaminocarboxylic acid derivatives by asymmetric
Mannich-type addition of enolates across activated imines, e.g.,
N-sulfinylimines [16-20], is one of the most common and versa-
tile methods in organic chemistry and is continuously under
development [1-3]. Recently, our research group elaborated the
asymmetric synthesis of new chiral y-chloro-a,B-diaminocar-

boxyl esters by highly diastereoselective Mannich-type reac-
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Figure 1: DPP inhibitors.

tions of N-(diphenylmethylene)glycine esters across a chiral
a-chloro-N-p-toluenesulfinylimine [20], which belongs to the
useful class of a-halo-imines [21-26]. However, transformation
of y-chloro-a,B-diaminocarboxyl esters into the corresponding
carboxylic acids, en route to further coupling to carboxyl-
amides, has proven to be unsuccessful, probably due to compet-
itive reactions such as the formation of o,B-diamino-y-butyro-
lactones [20].

The results discussed within the present paper demonstrate the
synthesis and elaboration of chiral syn-y-chloro-a,B-diaminocar-
boxylamide derivatives with excellent diastereoselectivity. In
order to develop potential DPP inhibitors, the ring closure and
deprotection of the a-amino functionality of the synthesized
y-chloro-a,B-diaminocarboxylamides were explored as well.

Results and Discussion

The stereoselective synthesis of chiral y-chloro-a,B-diaminocar-
boxylamides was performed by using a Mannich-type addition
of glycine amides 4 across chiral a-chloro-N-sulfinylaldimines
3.

Initially, the chiral a-chloro-N-sulfinylaldimines 3, including
the new imines 3b and 3¢ derived from 2-chloro-2-ethylbutanal
(1b) and 1-chlorocyclohexanecarboxaldehyde (1¢), respective-
ly, were efficiently prepared by condensation of a-chloroalde-
hydes 1 with (S)-(+)-p-toluenesulfinamide (2) in dichloro-
methane in the presence of Ti(OEt)4 (Scheme 1) [27].

The synthesis of N-(diphenylmethylene)glycinamides 4 was
performed starting from N-Boc glycine, in accordance with
literature procedures [28,29]. Based on our previously reported
Mannich-type addition of glycine esters across chiral a-chloro-
N-p-toluenesulfinylaldimine 3a [20], the influence of the base
(LiHMDS or LDA) used for the deprotonation of glycine
amides 4 on the syn- or anti-selectivity of the Mannich-type

addition was investigated (Scheme 2).
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Scheme 1: Synthesis of chiral a-chloro-N-p-toluenesulfinylaldimines 3.

Initially, the Mannich-type addition of glycine amide 4b across
chiral a-chloro-N-p-toluenesulfinylisobutyraldimine (3a) was
performed at —78 °C using 1.1 equiv of LDA. Upon 'H NMR
analysis of the crude reaction mixture, the resulting syn-vy-
chloro-a,f-diaminocarboxylamide syn-5b was formed with an
excellent stereoselectivity (dr > 99:1) but the conversion was
rather low. After crystallization, the syn-adduct syn-Sb was
isolated in a low yield of 16%. Repeating the Mannich-type
addition of glycinamides 4 across chiral a-chloro-N-p-toluene-
sulfinylaldimines 3 with 1.1 equiv of LIHMDS resulted also in
the formation of syn-y-chloro-o,B-diaminocarboxylamides syn-5
with an excellent stereoselectivity (dr > 99:1). Because of the
complete conversion of the substrates under these better reac-
tion conditions (—78 °C, 15 min), the syn-adducts syn-5 could
be isolated in higher yields (41-73%) after recrystallization.
The diastereomeric ratio of these syn-y-chloro-a,B-diaminocar-
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boxylamides syn-5 (dr > 99:1) was determined by a combina-
tion of 'H NMR, 13C NMR and HPLC analysis in which no
signals from other diastereomers could be detected.

In contrast to the Mannich-type addition of glycine esters across
chiral a-chloro-N-p-toluenesulfinylimine 3a [20], the diastereo-
selectivity of the Mannich-type addition of glycinamides 4
across chiral a-chloro-N-p-toluenesulfinylaldimines 3 was inde-
pendent of the base used. The absolute stereochemistry of
(Ss,28,38)-y-chloro-a,B-diaminocarboxylamides syn-5 was
unambiguously determined by means of an X-ray diffraction
analysis of compound syn-5b (Figure 2), in combination with
the analogous NMR chemical shifts (Hgy: 8 = 4.91-5.20 ppm,
Hg: 8 = 3.74-4.05 ppm) and the characteristic vicinal coupling
constants (3JHQ_HB = 0-1.1 Hz) of all derivatives syn-5a—f.

Figure 2: Crystal structure of syn-y-chloro-a,B-diaminocarboxylamide
syn-5b.
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Scheme 2: Synthesis of (Sg,2S,3S)-y-chloro-a,B-diaminocarboxylamides 5. @Yield in parentheses results from the use of LDA instead of LIHMDS.
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The vicinal coupling constant 3JH(,_HB = 0-1.1 Hz for the syn-
amides 5 has a comparably small value as the observed vicinal
coupling constant 3JHa-H[3 of the closely related syn-y-chloro-
o,B-diaminocarboxyl esters (3JHa—HB = 1.1 Hz) [20]. Notably,
the (Ss,28,3S5)-y-chloro-a,B-diaminocarboxylamides syn-5 were
obtained with the opposite enantioselectivity as compared to the
(Ss,2R,3R)-y-chloro-a,B-diaminocarboxyl esters obtained by
Mannich-type addition of E-enolates derived from glycine

esters across imines 3 [20].

The monosubstituted tertiary amide enolates obtained by depro-
tonation of N-(diphenylmethylene)glycinamides 4 are expected
to have the Z-geometry in which A(1,3) interactions are mini-
mized and Li-chelation stabilizes the conformation (Scheme 3),
regardless of the base that was used [30,31].

gt

Cc
RE)J\ .
H Li
R A\ — RH
cl 3 NQ\LZ
_ (S)y o
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Reaction of the Z-enolates via a cyclic chelated six-membered
chairlike transition-state model TS-6a, would have resulted in
anti-addition products anti-5 in analogy with our previously
obtained results on the synthesis of (Sg,25,3R)-y-chloro-a,[3-
diaminocarboxyl esters [20]. However, starting from glycin-
amides 4, due to the important 1,3-diaxial interaction between
the haloalkyl group (—~CCIRj3) and the cyclic amine moiety
[-N(CH»),,] in this transition state, TS-6a is highly disfavored.
The formation of the (Ss,2S,3S5)-y-chloro-a,3-diaminocarboxyl-
amides syn-5 can be explained by a boatlike transition-state
model TS-6b involving the (E)-N-p-toluenesulfinylaldimines 3
[32-35]. This less sterically hindered transition state TS-6b,
in which the haloalkyl group (—~CCIR,) occupies the less
hindered pseudoequatorial position, and the corresponding

Li-adduct 7 are stabilized by the interaction between the

;E)-Tol — -1

Ph
Ph
A

O\Li'

Z-enolate

Ph

Ph
anti-5

p-ToI—-S\\ H

° &)n

TS-6b (favored)

Ph
syn-5

Scheme 3: Transition-state model for reaction of the Z-enolate of glycinamides 4 in the Mannich-type addition across chiral a-chloro-N-p-toluene-

sulfinyl aldimines 3.
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Li-cation, the diphenylmethyleneamino group, and the

sulfinylimine nitrogen.

The reversal of the enantiotopic face selectivity in the reaction
of the N-sulfinylimines 3 with the glycinamides 4, as compared
to the reaction with glycine esters, is attributed to the a-coordi-
nating ability of the chlorine atom with the lithium of the
incoming enolate as depicted in transition state TS-6b. The
coordinating a-chloro atom in TS-6b overrides the chelation of
the sulfinyl oxygen (e.g., TS-6a) and allows the sulfinylimine to
react in the conformation wherein the S=O bond and the lone
pair of electrons on the nitrogen atom are antiperiplanar [36].
This reversal of stereoselectivity is analogous to results
obtained with other N-p-toluenesulfinylimines containing an
oxygen atom as a-coordinating group [37-39]. The resulting
syn-addition products syn-5 were subsequently cyclized to the
corresponding N-sulfinyl-f,y-aziridino-a-aminocarboxylamides
8 upon treatment with K,CO3 in acetone under reflux in a
moderate to very good yield (36-90%, Scheme 4).

The conversion of the ring-closure reaction was always
complete as determined by TLC analysis, but purification of
these N-sulfinyl-f,y-aziridino-o-aminocarboxylamides 8
by flash chromatography resulted in a considerable loss of
product.

In order to extend the potential applicability of the synthesized
N-sulfinyl-B,y-aziridino-o-aminocarboxylamides 8 as building
blocks in biomedicinal chemistry, some attempts were made to
remove the N-protective groups of diaminocarboxylamides 8
under mild acidic conditions (Scheme 4). In analogy with our
recently published results on the corresponding aziridino esters
[20], amide 8b was treated with 5 equiv of trifluoroacetic acid
in acetone/water (2:1) at rt for 15 min. After a basic workup
with NH4OH, it was concluded that the conversion towards the
N-deprotected syn-f,y-aziridino-a-aminocarboxylamide 9b was
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complete based on 'H NMR and LC—-MS analysis of the crude
reaction mixture. Unfortunately, all attempted purification tech-
niques (column chromatography, preparative TLC, acid-base
extraction) to remove benzophenone and some other minor
impurities from the crude reaction mixture, failed to provide the
pure N-deprotected syn-f,y-aziridino-a-aminocarboxylamide
9b.

Alternatively, the deprotection of the o-amino functionality of
the synthesized syn-y-chloro-a,B-diaminocarboxylamides syn-5
was investigated en route towards the development of potential
DPP inhibitors [7-9]. The syn-y-chloro-a,B-diaminocarboxyl-
amides syn-5 were treated with 5 equiv of trifluoroacetic acid in

acetone/water (2:1) for 15 min (Scheme 5).

After a basic workup with NH4OH, the a-deprotected syn-y-
chloro-a,B-diaminocarboxylamides 10 could be purified by
crystallization or preparative TLC (21-91% yield). The
obtained result was in accordance with the earlier reported
selective deprotection of a benzophenone imine functionality, in
the presence of an N-p-toluenesulfinyl moiety, of diamino esters
with H3PO4/H,O/THF [17,40].

In a subsequent step, syn-y-chloro-a,B-diaminocarboxylamide
10b was chemoselectively cyclized to the corresponding
N-sulfinyl-f,y-aziridino-a-aminocarboxylamide 11b upon treat-
ment with K,COj3 in acetone under reflux in 86% yield. In order
to provide access to the N®,NP-deprotected syn-y-chloro-a,B-di-
aminocarboxylamides, syn-y-chloro-a,p-diaminocarboxyl-
amides syn-5 were subjected to some alternative acidic depro-
tection reactions (Scheme 6).

In an initial reaction, syn-y-chloro-a,B-diaminocarboxylamide
syn-5b was treated with 10 equiv of trifluoroacetic acid in
ethanol at rt [18]. This resulted in trans-imidazolidine 12b
after basic workup with NH4OH. It is remarkable that the

O p-Tol n..g_s )//O
(S)S.. { b) SI Zx) 1) 5 equiv TFA
p-Tol* “"NH "N™'n R, N H N7 acc—};tgne/HzO(Zﬂ) H N
R (S 3 equiv K,CO PN rt, 15 min H
7 WVICOs . RPN X - $8)
G NG P acetone, A, 24 h NP1 2) NH4OH (workup) ®Y o
NH
Ph Ph Rn=_|\ge 2
syn-5a—f 8a (59%) 9b
8b (90%)
8¢ (44%)
8d (50%)
8e (36%)
8f (43%)

Scheme 4: Synthesis of N-sulfinyl-B,y-aziridino-a-amino carboxylic amides 8.
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3 equiv K,COg3

acetone, A, 24 h

11b (86%)

Scheme 5: a-Deprotection and subsequent ring-closure of syn-y-chloro-a,B-diamino carboxylic amides syn-5.

Qo ta, 0
p-Tol* " “>NH "N 'n
1) 10 equiv TFA (S) 0.5 M (aq) HCI/EtOAc
(?)NS 4[:1; EtOH, rt, 16 h S) (2:1),rt,0.5h HCI-H,N N
/| - > S
N 2) NH4OH (workup) cl NYPh ¥ N0
Cl O Ph Cl  NHxHCI
12b (55%) syn-5a (n = 1) 13a (83%)
syn-5b (n = 2)

Scheme 6: N-p-toluenesulfinyl-deprotection of syn-y-chloro-a,B-diaminocarboxylamides syn-5.

N-(diphenylmethylene) group was not removed under these
reaction conditions but was trapped by the deprotected B-amino
group, as the deprotection of analogous anti-substrates under
the same reaction conditions led to unprotected anti-a,B-
diaminocarboxyl esters [18]. This is possibly due to the fact that
solvolysis of the imine functionality with ethanol is not favor-
able and an acid-catalyzed deprotection of the sulfinyl moiety
will occur first [41,42]. The resulting f-amino deprotected syn-
y-chloro-a,B-diaminocarboxylamide could subsequently ring
close further to trans-imidazolidine 12b, which will be less ster-
ically congested than an analogous cis-imidazolidine. In the
literature, comparable non-halogenated trans-imidazolidines
were already synthesized by 1,3-dipolar cycloaddition of
N-benzylidene glycine ester enolates across N-sulfinyl-
aldimines in the presence of a Lewis acid [43]. The trans-
stereochemistry of imidazolidine 12b was ensured by the
vicinal coupling constant /4.5 = 7.43 Hz and the 'H NMR
chemical shift of H4 (3.85 ppm), which were in the same range
as for closely related trans-imidazolidines and trans-oxazo-
lidines [43-45]. The trans-imidazolidine 12b is a potential
building block for foldamers, as the corresponding trans-oxazo-
lidin-2-ones are already applied as such [46]. trans-Imidazoli-
dine 12b could also be used as a precursor of the corresponding

N“,NB-deprotected o,B-diaminocarboxylamide, by hydrolysis

under acidic conditions, in analogy with deprotection reactions
of imidazolidines, imidazolines and oxazolines in the literature
[16,47,48]. However, in a second reaction, syn-y-chloro-a,f3-
diaminocarboxylamide syn-5a was directly converted into the
dihydrochloride of the N% NP-deprotected syn-y-chloro-o,p-
diaminocarboxylamide 13a, by stirring in 0.5 M (aq) HCl/
EtOAc (2:1) for 30 min at rt, in a yield of 83%. In this reaction,
the acid-catalyzed hydrolysis of the benzophenone imine func-
tionality proceeds readily and prevents the formation of the
corresponding frans-imidazolidine.

Conclusion

In conclusion, it was demonstrated that new chiral syn-y-chloro-
a,B-diaminocarboxylamides are formed in acceptable to good
yields and with excellent diastereomeric ratios by stereoselec-
tive Mannich-type reactions of N-(diphenylmethylene)glycin-
amides across chiral a-chloro-N-p-toluenesulfinylaldimines.
Notably, a very high syn-diastereoselectivity was obtained in
the synthesis of the (Sg,25,35)-y-chloro-a,B-diaminocarboxyl-
amides with the opposite enantiotopic face selectivity as
compared to the Mannich-type additions of N-(diphenylmeth-
ylene)glycine esters across chiral a-chloro-N-p-toluenesulfinyl-
aldimines. The synthesized y-chloro-a,p-diaminocarboxyl-

amides were selectively deprotected under acidic conditions,
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and the resulting a,B-diaminoacylpyrrolidines and -piperidines
have a potential applicability as dipeptidyl peptidase inhibitors,

which is currently under investigation.
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