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I. INTRODUCTION

Can thermal fluctuations be rectified? Ever since Maxwell
[1] raised this question with his famous thought experiment
involving a so-called Maxwell demon, it has been the object
of debate in both the thermodynamics and statistical physics
community. The mainstream opinion is that rectification is
impossible in a system at equilibrium. Indeed the property of
detailed balance, which was discovered by Onsager[2], and
which turns out to be a basic characteristic of the steady-state
distribution in area preserving time-reversible dynamical
systems(in particular Hamiltonian systems) [3], states that
any transition between two states(defined as regions in
phase space of nonzero measure and even in the speed) oc-
curs as frequently as the time-reversed transition. The sepa-
rate issue, first introduced by Szilard[4], of involving an
“intelligent observer” that tracks the direction of these tran-
sitions, making possible the rectification by interventions at
the right moment, has a contorted history of its own. It turns
out that the engendered rectification is offset by the entropic
cost of processing(and more precisely of erasing) the in-
volved information[5]. Another more recent debate involv-
ing entangled quantum systems[6] is still ongoing.

Apart from the fundamental interest in the subject, a num-
ber of recent developments have put the issue of rectifying
thermal fluctuations back on the agenda. First, we mention
the observation that thermal fluctuations can in principle be
rectified if the system under consideration operates under
nonequilibrium conditions. The past decade has witnessed a
surge in the literature on the subject of the so-called Brown-
ian motors[7]. Such motors possibly explain, amongst other,
phenomena such as transport and force generation in biologi-
cal systems. Second, our ability to observe, manipulate, or
even fabricate objects on the nanoscale prompts us to look
into new procedures to regulate such small systems, possibly
by exploiting the effects of thermal fluctuations in a con-
structive way.

Even though several constructions have been envisaged to
discuss the issue of rectification in more detail, including for
example the Smoluchowski–Feynman ratchet[8], the issue
of thermal fluctuations in a system with nonlinear friction[9]
and the thermal diode[10,11], no exactly solvable model has
been put forward. In this paper, we will present two fully
microscopic Hamiltonian models, in which the rectification
of thermal fluctuations can be studied in analytic detail. Ver-

sions of the first model have appeared in the literature for
some time under the name of Rayleigh piston[9] or adiabatic
piston [12–14] (see also[15]). The second model, to which
we will refer to as thermal Brownian motor, was introduced
in a recent paper[16]. Both models involve a small object
simultaneously in contact with two infinite reservoirs of ideal
gases, each separately at equilibrium but possibly at a differ-
ent temperature and/or density. A Boltzmann-Master equa-
tion provides a microscopically exact starting point to study
the motion of the object. As a result of the rectification of the
nonequilibrium fluctuations, the object acquires a systematic
average speed, which will be calculated exactly via a pertur-
bative solution of the Boltzmann equation, with the ratio of
the mass of the gas particles over that of the object as the
small parameter.

The organization of this paper is as follows. We start in
Sec. II by reviewing the general framework and the type of
construction for the Brownian motor that we have in mind.
The main technical ingredients are closely related to the so-
called 1/V-expansion of van Kampen[10]. In Sec. III we
turn to a detailed presentation and discussion of the adiabatic
piston. The rectification has in this case been investigated to
lowest order by Gruber and Piasecki[14]. We present a
streamlined derivation allowing us to go two orders further
in the expansion. Next, in Sec. IV, we discuss the more sur-
prising thermal Brownian motor in which the motion derives
from the spatial asymmetry of the object itself[16]. We again
calculate the three first relevant terms in the expansion of the
average speed. Finally, in Sec. V, the obtained analytic re-
sults are compared with a direct numerical solution of the
Boltzmann-Master equation and with previous molecular dy-
namics simulations[16].

II. EXPANSION OF THE BOLTZMANN-MASTER
EQUATION

Consider a closed, convex, and rigid object with a single
degree of freedom, moving in a gas. To obtain a microscopi-
cally exact equation for the speedV of this object, we will
consider the ideal gas limit in which:

(1) the gas particles undergo instantaneous and perfectly
elastic collisions with the object,

(2) the mean free path of the particles is much larger than
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the linear dimensions of the object(regime of a large Knud-
sen number),

(3) the (ideal) gas is initially at equilibrium, and hence at
all times: the perturbation due to the collisions with the ob-
ject is negligible in an infinitely large reservoir.

With these assumptions, there are no precollisional corre-
lations between the speed of the object and those of the im-
pinging gas particles, hence the Boltzmann ansatz of molecu-
lar chaos is exact[17]. In fact, since the collisions with the
gas particles occur at random and uncorrelated in time, the
speedV of the object is a Markov process and its probability
density obeys a Boltzmann–Master equation of the following
form:

] PsV,td
] t

=E dV8fWsVuV8dPsV8,td − WsV8uVdPsV,tdg.

s1d

WsVuV8d represents the transition probability per unit time to
change the speed of the object fromV8 to V. Its detailed form
can be easily obtained following arguments familiar from the
kinetic theory of gases.

To construct a model for a Brownian motor, two addi-
tional ingredients need to be introduced. First, we have to
operate under nonequilibrium conditions. This can most eas-
ily be achieved by considering that the object interacts not
with a single but with two ideal gases, both at equilibrium in
a separate reservoir, each at its own temperature and density.
The physical separation(no particle exchange) between the
gases can be achieved by using the object itself as a barrier
(adiabatic piston) or by assuming that the object consists of
two rigidly linked (closed and convex) units, each moving in
one of the separate reservoirs containing the gases. Second,
we need to break the spatial symmetry. In the adiabatic pis-
ton this is achieved by the asymmetric distribution of the
gases with respect to the piston. In the thermal Brownian
motor, at least one of the constitutive units needs to be spa-
tially asymmetric. With these modifications in mind, we can
still conclude that Eq.(1) remains valid, but the transition
probability is now a sum of the contributions representing
the collisions with the particles of each gas.

With the ingredients for a Brownian motor thus available,
we expect that the object can rectify the fluctuating force
resulting from the collisions with the gas particles. Hence it
will develop a steady state average nonzero systematic
speed, which we set out to calculate analytically. Unfortu-
nately, an explicit exact solution of Eq.(1) cannot be ob-
tained even at the steady state, and a perturbative solution is
required. Since we expect that the rectification disappears in
the limit of a macroscopic object, a natural expansion param-
eter is the ratio of the massm of the gas particle over the
mass M of the object. More precisely, we will use«
=Îm/M as the expansion parameter. In fact this type of ex-
pansion is very familiar for the equilibrium version of the
adiabatic piston, namely the so-called Rayleigh particle. It
has been developed with the primary aim of deriving exact
Langevin equations from microscopic theory and culminated
in the more general well-known 1/V expansion of van
Kampen[10]. With the aim of streamlining this procedure

for the direct calculation of the average drift velocity, with
special attention to higher order corrections, we briefly re-
view the technical details. First it is advantageous to intro-
duce the transition probabilityWsV8 ; rd=WsVuV8d, defined in
terms of the jump amplituder =V−V8, since the latter jumps
are anticipated to become small in the limit«→0. One can
then rewrite the Master equation as follows:

] PsV,td
] t

=E WsV − r ;rdPsV − r,td dr

− PsV,td E WsV;− rd dr. s2d

A Taylor expansion of the transition probability in the first
integral of Eq.(2) with respect to the jump amplitude leads
to an equivalent expression under the form of the Kramers–
Moyal expansion:

] PsV,td
] t

= o
n=1

`
s− 1dn

n!
S d

dV
Dn

hansVdPsV,tdj, s3d

with the so-called “jump moments” given by

ansVd =E rnWsV;rddr. s4d

Since the change in the speed of our object of massM,
i.e., the jump amplituder, will, upon colliding with a particle
of massm, be of order«2=m/M, the Kramers–Moyal expan-
sion appears to provide the requested expansion in our small
parameter. However, the parameterM will also appear im-
plicitly in the speedV. Indeed, we expect that the object will,
in the stationary regime, exhibit thermal fluctuations at an
effective temperatureTeff, i.e., 1

2MkV2l= 1
2kBTeff. To take this

into account, we switch to a dimensionless variablex of or-
der 1:

x =Î M

kBTeff
V. s5d

The explicit value ofTeff will be determined below by self-
consistency, more precisely from the conditionkx2l=1 to
first order in«. The probability densityPsx,td for the new
variablex thus obeys the following equation:

] Psx,td
] t

= o
n=1

`
s− 1dn

n!
S d

dx
Dn

hAnsxdPsx,tdj, s6d

with rescaled jump moments,Ansxd, defined as

Ansxd = SÎ M

kBTeff
Dn

ansxd. s7d
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Equivalently, and of more interest to us, the following set of
coupled equations determine the momentskxnl
=exnPsx,tddx:

]tkxl = kA1sxdl,

]tkx2l = 2kxA1sxdl + kA2sxdl,

]tkx3l = 3kx2A1sxdl + 3kxA2sxdl + kA3sxdl,

]tkx4l = 4kx3A1sxdl + 6kx2A2sxdl + 4kxA3sxdl + kA4sxdl,

s8d

]tkx5l = 5kx4A1sxdl + 10kx3A2sxdl + 10kx2A3sxdl + 5kxA4sxdl

+ kA5sxdl,

]tkx6l = 6kx5A1sxdl + 15kx4A2sxdl + 20kx3A3sxdl

+ 15kx2A4sxdl + 6kxA5sxdl + kA6sxdl

¯ .

The exact solution of this coupled set of equations is as
hopeless and equally difficult as the full Boltzmann-Master
equation. However, a Taylor expansion in« shows that the
equations are no longer fully coupled and the calculation of a
moment up to a finite order reduces to an in principle simple
(but in practice tedious) algebraic problem.

III. THE ADIABATIC PISTON

A. Motivation

In Fig. 1, we have represented in a schematic way the
construction of the Rayleigh piston and of its nonequilibrium
version known as the adiabatic piston. We concentrate here
on an(infinite) two-dimensional system, for reasons of sim-
plicity. The piston is considered to be a single “flat” particle
of length L and massM with a unique degree of freedom,
namely its positionx along the horizontal axis. Since the
piston has no internal degrees of freedom, it cannot transfer
energy by “hidden” microscopic degrees of freedom. The
absence of a corresponding heat exchange prompted the use
of the name “adiabatic piston.” The piston is moving inside

an infinite rectangle separating the gases to its right and left
from each other. These gases are initially taken separately in
equilibrium, but not necessarily at equilibrium with each
other. In the thermodynamic context of a macroscopic piston,
this construction is an example of an indeterminate problem,
i.e., the final position of the piston can not be predicted by
the criterion of maximizing the total entropy, since it depends
on the initial preparation of the gases[13] (see also[14]).
The case of interest to us is when the mass of the piston is
not macroscopically large, i.e., finite«=Îm/M. When oper-
ating furthermore at equilibrium, this Rayleigh piston pro-
vides an exactly solvable model, allowing, for example, the
rigorous derivation of a linear Langevin equation appearing
as the first nontrivial limit of the Boltzmann-Master equation
in the limit «→0. When the left and right gases are not at
equilibrium, but exert equal pressure on the piston, the model
becomes an example of a Brownian motor, which is able to
perform work by rectifying pressure fluctuations[14]. In do-
ing so, the single degree of freedomx also plays the role of
a microscopic thermal conductivity, an issue that is quite
relevant to other models of Brownian motors[18]. Since this
model is essentially one-dimensional and the related calcula-
tions are relatively simple, we include it in this paper to
illustrate the calculation procedure and at the same time to
derive novel results for the average drift speed up to order«5.

B. Presentation of the model

The ideal gases in the right and left compartments, sepa-
rated from each other by the piston, are each at equilibrium
with Maxwellian velocity distributions at temperaturesT1
andT2, and with uniform particle densitiesr1 andr2, respec-
tively. Since we are mainly interested in the rectification of
fluctuations, we will focus on the case of mechanical equi-
librium with equal pressure on both sides of the piston, i.e.,
r1T1=r2T2.

The motion of the piston is determined by the laws of
Newton. Hence its velocity only changes, say, fromV8 to V
when it undergoes a collision with a gas particle, its
(x-component of the) velocity going fromvx8 to vx. Conser-
vation of energy and momentum determines the postcolli-
sional speeds in terms of the precollisional ones:

1
2mvx

2 + 1
2MV2 = 1

2mvx8
2 + 1

2MV82,

mvx + MV = mvx8 + MV8,

implying

V = V8 +
2m

m+ M
svx8 − V8d. s9d

The transition probabilityWsVuV8d then follows from stan-
dard arguments in kinetic theory of gases: one evaluates the
frequency of collisions of gas particles of a given speed and
subsequently integrates over all the speeds. Note that we
have two separate contributions from the gas right(r1 and
T1) and left (r2 andT2). The result reads

FIG. 1. The adiabatic piston.
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WsVuV8d =5Lr1E
−`

+`

dvxsvx − V8dHfvx − V8gf1svxddFV8 +
2m

m+ M
svx − V8d − VG if V , V8,

Lr2E
−`

+`

dvxsV8 − vxdHfV8 − vxgf2svxddFV8 +
2m

m+ M
svx − V8d − VG if V . V8,6

with H the Heaviside function,d the Dirac distribution and
fi the Maxwell–Boltzmann distribution at temperatureTi:

fisvxd =Î m

2pkBTi
expS− mvx

2

2kBTi
D .

Performing the integrals over the speed gives the following
explicit result for the transition probability:

WsVuV8d = Lr1Fm+ M

2m
G2

3sV8 − VdHfV8 − Vgf1SV8 −
m+ M

2m
sV8 − VdD

+ Lr2Fm+ M

2m
G2

3sV − V8dHfV − V8gf2SV8 −
m+ M

2m
sV8 − VdD .

s10d

From the transition probability, the rescaled jump moments
Ansxd (7) can be calculated. The exact expression for thenth
jump moment is as follows(see also[19]):

Ansxd = 2s3n−1d/2LÎ kB

pm

«n

s1 + «2dnTeff
−n/2GF2 + n

2
G

3Ss− 1dnr1T1
sn+1d/2 expF−

Teff

2T1
x2«2G

3FF2 + n

2
,
1

2
,
Teff

2T1
x2«2G + r2T2

sn+1d/2

3expF−
Teff

2T2
x2«2GFF2 + n

2
,
1

2
,
Teff

2T2
x2«2GD

+ 23n/2LÎ kB

pm

«n+1

s1 + «2dnTeff
s1−nd/2GF3 + n

2
G

3xSs− 1dnr1T1
n/2 expF−

Teff

2T1
x2«2G

3FF3 + n

2
,
3

2
,
Teff

2T1
x2«2G − r2T2

n/2

3expF−
Teff

2T2
x2«2GFF3 + n

2
,
3

2
,
Teff

2T2
x2«2GD ,

s11d

with G the Gamma function:

Gf1 + kg = k! ,
s12d

GF1 +
2k + 1

2
G =

Îp

2k+11 · 3 · 5 ·¯ · s2k + 1d,

and F the Kummer function, in its integral representation
given by

Ffa,b,zg =
Gfbg

Gfb − agGfagE0

1

eztta−1s1 − tdb−a−1 dt. s13d

C. Stationary speed

The moment equations(8) form together with the explicit
expressions(11) for the jump moments the starting point for
a straightforward perturbation in terms of the small param-
eter«. To simplify notation, we introduce

fsnd = LÎ 2

p
ÎkB

m

r1T1
n + r2T2

n

Teff
n−1/2 , s14d

gsnd = LÎkB

m

r1T1
n − r2T2

n

Teff
n−1/2 . s15d

Also, the limit«→0 entails a slowing down of the motion of
the piston, which can be accounted for by introducing a new
scaled time variable:

t = «2t.

The equations for the first and second moments, expanded up
to order«5 and«4, respectively, are as follows(the expansion
for higher moments up to the sixth moment can be found in
Appendix A):

]tkxl = − 2ff1/2gkxl − gf0gkx2l« + 1
3s6ff1/2gkxl

− ff− 1/2gkx3ld«2 + gf0gkx2l«3 + s− 2ff1/2gkxl

+ 1
3 ff− 1/2gkx3l + 1

60ff− 3/2gkx5ld«4 − gf0gkx2l«5

+ Os«6d, s16d
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]tkx2l = 4sff3/2g − ff1/2gkx2ld − 2gf0gkx3l« + 2s− 4ff3/2g

+ 5ff1/2gkx2l − 1
3 ff− 1/2gkx4ld«2 + 4gf0gkx3l«3

+ s12ff3/2g − 16ff1/2gkx2l + 7
6 ff− 1/2gkx4l

+ 1
30ff− 3/2gkx6ld«4 + Os«5d. s17d

Note that the condition of macroscopic equilibriumsr1T1

=r2T2d was used to derive these equations. In particular,
without this constraint, an additional term corresponding to a
constant, velocity-independent, force acting on the piston
would be present in Eq.(16).

To lowest order in«, the equation for the first moment,
Eq. (16), is not coupled to higher order moments. It displays
the usual linear relaxation term of the velocity, namely, in
original variables,M]tkVl=−gkVl, with friction coefficient
g:

g = 4LÎkBm

2p
sr1

ÎT1 + r2
ÎT2d. s18d

For T1=T2 and(consequently) r1=r2, this result is in agree-
ment with[10]. We conclude that at this order of the pertur-
bation, the steady-state speed is zero. This is not surprising
since any asymmetry is buried at the level of linear response
theory.

Going beyond the lowest order, one enters into the do-
main where fluctuations and nonlinearity are intertwined.
The first moment is now coupled to the higher order mo-
ments. Therefore, we focus on the steady state speed reached
by the piston in the long time limit. We will omit, for sim-
plicity of notation, a superscriptst to refer to this stationary
regime. Recalling that we defined the effective temperature

Teff by the conditionkx2l=1 at the lowest order in«, we
immediately find from Eq.(16) that at order« the piston will
indeed develop a nonzero average systematic speed equal to
«gs0d / f2fs1/2dg. The explicit value ofTeff follows from Eq.
(17), implying at lowest order in« that kx2l= fs3/2d / fs1/2d
=1. In original variables, cf. Eq.(5), these results read as
follows:

Teff = ÎT1T2 s19d

and

kVl =
Î2p

4
Îm

M
SÎkBT1

M
−ÎkBT2

M
D + ¯ . s20d

Although there is no macroscopic force present(pressures on
both sides of the piston are equal), the piston attains a sta-
tionary state with a nonzero average velocity toward the
higher temperature region. Fluctuations conspire with the
spatial asymmetry to induce a net motion in the absence of
macroscopic forces. It is also clear from Eq.(20) that the net
motion vanishes whenT1=T2 and also in the macroscopic
limit M→`. The above result was already derived in[14],
but the calculation presented here is streamlined so as to
allow for a swift calculation of higher order corrections.

At each of the next orders, a coupling arises to a next
higher order moment. We shall present here the results up to
order «5, requiring the evaluation of the moments
kx2l , kx3l , kx4l , kx5l, and kx6l, up to orders«4, «3, «2, «1,
and«0, respectively(cf. Appendix A for details of the calcu-
lation). The resulting expression for the average stationary
speed in the original variableV up to fifth order in« is

kVl = S m

M
D1/2ÎpkB

2M

1

2
sÎT1 − ÎT2d + S m

M
D3/2ÎpkB

2M
S1

4
sÎT1 − ÎT2d −

1

3

r1
ÎT2 + r2

ÎT1

r1
ÎT1 + r2

ÎT2

sÎT1 − ÎT2d +
p

16

sÎT1 − ÎT2d3

ÎT1T2
D

+ S m

M
D5/2ÎpkB

2M

1

8
SsÎT1 − ÎT2d − 5

sr1T1
−1/2 + r2T2

−1/2d2T1T2sÎT1 − ÎT2d

sr1
ÎT1 + r2

ÎT2d2
+

85

18

r1
ÎT2 + r2

ÎT1

r1
ÎT1 + r2

ÎT2

sÎT1 − ÎT2d

+
1

3

r1T1
−3/2 + r2T2

−3/2

r1
ÎT1 + r2

ÎT2

T1T2sÎT1 − ÎT2d −
29p

12

sÎT1 − ÎT2d3

ÎT1T2

+
47p

12

sr1T1
−1/2 + r2T2

−1/2dsÎT1 − ÎT2d3

sr1
ÎT1 + r2

ÎT2d
−

3p2

4

sÎT1 − ÎT2d5

T1T2
D

+ ¯ . s21d

As required, the average speed is zero at equilibrium, when
T1=T2. Note also that the average speed depends on the den-
sities of the gases solely through their ratior1/r2. This im-
plies that, forT1 andT2 fixed, varying the densities will not
modify the steady-state velocity when operating at mechani-
cal equilibrium. In Figs. 2(a) and 2(b), we illustrate the de-
pendence ofkVl on the temperatures: the piston always

moves towards the high temperature region and its speed
increases with the temperature difference.

IV. THERMAL BROWNIAN MOTOR

A. Motivation

The systematic motion observed in the adiabatic piston is
not entirely surprising since the piston is embedded in a non-
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equilibrium state with an explicit spatial asymmetry of its
surroundings. More interesting is the case of the thermal
Brownian motor, which was introduced and studied by mo-
lecular dynamics in a recent paper[16]. While the spatial
environment is perfectly symmetric here, the object itself has
a spatial asymmetry. The nonequilibrium conditions are gen-
erated by its interaction with two(or more) ideal gases that
are not at the same temperature. The perturbative analysis,
presented for the adiabatic piston, can be repeated here but is
more involved because the problem is now genuinely two-
dimensional.

B. Presentation of the model

Consider a two-dimensional convex and closed object
with total circumferenceS. Suppose thatdSis a small part of
the surface, inclined at an angleu, measured counterclock-
wise from thex-axis (see Fig. 3). We define the form factor
Fsud as the fraction of the surface with orientationu. This
means thatS Fsuddu is the length of the surface with orien-
tation betweenu andu+du. One can immediately verify that
F satisfies

Fsud ù 0, positivity, s22ad

E
0

2p

duFsud = 1, normalization, s22bd

E
0

2p

duFsudsinu =E
0

2p

duFsudcosu = 0, object is closed.

s22cd

To simplify notation we will write ksinul instead of
e0

2pduFsudsinu.
We suppose that the object, with total massM and veloc-

ity VW , has no rotational degree of freedom and a single trans-
lational degree of freedom. Choosing the latter oriented fol-

lowing thex-axis, we can writeVW =sV,0d. Collisions of the
gas particles, of massm and velocityvW, with the object are
supposed to be instantaneous and perfectly elastical. Hence,
pre- and postcollisional velocities of the object,V8 and V,

and of a gas particle,v8W =svx8 ,vy8d andvW =svx,vyd, are linked
by conservation of the total energy and the momentum in the
x-direction,

1
2MV82 + 1

2mvx8
2 + 1

2mvy8
2 = 1

2MV2 + 1
2mvx

2 + 1
2mvy

2, s23d

mvx8 + MV8 = mvx + MV. s24d

Furthermore, we assume a(short-range) central force, imply-
ing that the component of the momentum of the gas particle
along the contact surface of the object is conserved:

vW8 ·eWi = vW ·eWi, s25d

with eWi=scosu ,sinud, see Fig. 3. This yields for the postcol-
lisional speedV:

V = V8 +

2
m

M
sin2 u

1 +
m

M
sin2 u

svx8 − V8 − vy8 cotud. s26d

FIG. 2. Stationary average speed of the adiabatic piston accord-
ing to Eq. (21). Top: Forr1=0.25 andT1=2.0 fixed, the speed is
shown as a function ofT2. Note thatr2 is determined by the con-
dition of mechanical equilibriumsr1T1=r2T2d and that the piston
always moves to the higher temperature region. Bottom: the speed
of the piston as a function ofT1 and T2, for r1=0.25 andr2

=r1T1/T2. The velocity vanishes whenT1=T2 and is maximal for a
large temperature difference. The following parameter values were
used: mass of the gas particlesm=1, mass of the pistonM =100 and
kB=1 by choice of units.

FIG. 3. A closed and convex object with total circumferenceS.
The length of the surface with an orientation betweenu andu+du is
S Fsuddu, defining the form factorFsud.
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Similar to in the adiabatic piston problem, we start from
the linear Boltzmann equation(1), which is exact in the ideal
gas limit, to describe the motion of the object. The object
consists of rigidly linked(closed and convex) parts, each
sitting in a reservoiri containing an ideal gas with uniform
particle densityri and Maxwellian velocity distributionfi at
temperatureTi:

fisvx,vyd =
m

2pkBTi
expS− msvx

2 + vy
2d

2kBTi
D . s27d

Examples of the construction with two reservoirs are sche-
matically represented in Fig. 4. The transition probability
WsVuV8d is then the sum of the contributions of the different
units of the object and can be calculated, starting from the
basic arguments of the kinetic theory. The contributiondWi
to WsVuV8d of the surface section of sizedSi, with orienta-
tion in fu ,u+dug, exposed to the gas mixturei is

dWisVuV8d = SiFisudduE
−`

+`

dvx8E
−`

+`

dvy8HfsVW 8 − vW8d ·eW'g

3usVW 8 − vW8d ·eW'urifisvx8,vy8d

3d3V−V8−

2
m

M
sin2 u

1 +
m

M
sin2 u

svx8 − V8 − vy8 cotud4 ,

s28d

with H the Heaviside function,d the Dirac distribution and
eW'=ssinu ,−cosud a unit vector normal to the surface(see
Fig. 3). The total transition probability is then given by

WsVuV8d = o
i
E

0

2p

dWisVuV8d. s29d

The integrals over the speed of the colliding gas particles can
be performed explicitly, resulting in

WsVuV8d =
1

4o
i

SiriÎ m

2pkBTi
SsV8 − VdHfV8 − VgE

sin u.0
+ sV − V8dHfV − V8gE

sin u,0
DduFisudS M

msinu
+ sinuD2

3exp3−

mSV8 +
1

2
FsV − V8dS1 +

M

msin2 u
DGD2

sin2 u

2kBTi
4 . s30d

FIG. 4. Four different realizations of the ther-
mal Brownian motor, each consisting of two rig-
idly linked units. The units are simple convex ob-
jects: a bar of lengthL, a disk of radiusR or an
isosceles triangle with apex angle 2u0 and baseL.
(a) was introduced in[16] and will be referred to
here asTriangula.
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The remaining integral depends on the shape of the object.
Following the general setup, we switch to the dimension-

less variablex=ÎM /kBTeffV, cf. (5), with the effective tem-
peratureTeff to be determined from the conditionkx2l=1.
The exact expression for thenth rescaled jump moment
Ansxd, cf. (7), is then

Ansxd = s− 1dn2s3n−1d/2o
i

SiriÎkBTi

pm
S Ti

Teff
Dn/2

«−n/2

3SE
sin u,0

+ s− 1dnE
sin u.0

DduFisud

3expF−
Teff sin2 u

2Ti
x2«2GS «2 sinu

1 + «2 sin2 u
Dn

3SGF1 +
n

2
GFF1 +

n

2
,
1

2
,
Teff sin2 u

2Ti
x2«2G

+ «x sinuÎ2Teff

Ti
GF3 + n

2
G

3FF3 + n

2
,
3

2
,
Teff sin2 u

2Ti
x2«2GD s31d

with G the Gamma function(12) and F the Kummer func-
tion (13).

C. Stationary speed

The equations of moments(8), together with the explicit
expressions for the jump moments(31), provide the starting
point for a straightforward series expansion in terms of the
small parameter«. The equations for the first and second
moments, expanded up to order«5 and «4, respectively, are
given by st=«2td

]tkxl = o
i

SiriÎkBTi

m
F− 2Î 2

p
ksin2 ulikxl

+ SÎ Ti

Teff
−ÎTeff

Ti
kx2lDksin3 uli«

+
1

3
Î 2

p
S6kxl −

Teff

Ti
kx3lDksin4 uli«

2

− SÎ Ti

Teff
−ÎTeff

Ti
kx2lDksin5 uli«

3

+Î 2

p
S− 2kxl +

1

3

Teff

Ti
kx3l +

1

60
STeff

Ti
D2

kx5lD
3ksin6 uli«

4 + SÎ Ti

Teff
−ÎTeff

Ti
kx2lDksin7 uli«

5G
+ Os«6d, s32d

]tkx2l = o
i

SiriÎkBTi

m
F− 4Î 2

p
S−

Ti

Teff
+ kx2lDksin2 uli

+ 2S4Î Ti

Teff
kxl −ÎTeff

Ti
kx3lDksin3 uli«

+ 2Î 2

p
S− 4

Ti

Teff
+ 5kx2l −

1

3

Teff

Ti
kx4lDksin4 uli«

2

+ 2S− 7Î Ti

Teff
kxl + 2ÎTeff

Ti
kx3lDksin5 uli«

3

+Î 2

p
S− 16kx2l +

7

6

Teff

Ti
kx4l

+
1

30
STeff

Ti
D2

kx6lDksin6 uli«
4G + Os«5d. s33d

Note that a term of order«−1 in the series for]tkxl is zero
because of the property(22c). Such a term would correspond
to a constant, velocity-independent, force acting on the ob-
ject. It should indeed be zero, since each gas mixture sepa-
rately is in equilibrium. From Eq.(32) we also immediately
recognize to lowest order in« the linear relaxation law, writ-
ten in original variables asM]tkVl=−gkVl, with g=oigi and
gi the linear friction coefficient, due to the section of the
motor sitting in gas mixturei:

gi = 4SiriÎkBTim

2p
E

0

2p

duFisudsin2 u. s34d

At this level of the perturbation, the speed of the object is
zero: no rectification takes place at the level of linear re-
sponse.

In order to find the first nonzero contribution to the veloc-
ity kxl, we need the terms up to order«. From the definition
of Teff, by the conditionkx2l=1 up to lowest order in«, we
find from Eq.(33)

Teff =
o igiTi

o igi
. s35d

The lowest nonzero term for the average velocity then fol-
lows from Eq.(32) and reads in the original variableV:

kVl =Îm

M
ÎpkBTeff

8M

o
i

SiriS Ti

Teff
− 1DE

0

2p

duFisudsin3u

o
i

SiriÎ Ti

Teff
E

0

2p

duFisudsin2sud

+ ¯ . s36d
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This speed is equal to the expansion parameter times the
thermal speed of the motor and further multiplied by a factor
that depends on the geometric properties of the object. Note
that the Brownian motor ceases to function in the absence of
a temperature difference(when Ti =Teff for all i) and in the
macroscopic limitM→` [sincekVl,1/M]. Note also that
the speed is scale independent, i.e., independent of the actual
size of the motor units:kVl is invariant under the rescalingSi

to CSi. To isolate more clearly the effect of the asymmetry of
the motor on its speed, we focus on the case where the units
have the same shape in all compartments, i.e.,Fisud;Fsud
andSi ;S. One finds

Teff =
o iriTi

3/2

o iri
ÎTi

, s37d

and

kVl =Îm

M
ÎpkBTeff

8M

o
i

riS Ti

Teff
− 1D

o
i

riÎ Ti

Teff

ksin3 ul
ksin2 ul

+ ¯ .

s38d

In this caseTeff is independent ofFsud and the drift velocity
is proportional toksin3 ul / ksin2 ul, with the average defined
with respect toFsud. The latter ratio is in absolute value
always smaller than 1, a value that can be reached for
“strongly” asymmetric objects as will be shown below on
specific examples. The resulting speed is then very large, i.e.,
comparable to the thermal speed.

Calculation of the average speed up to order«5 requires
the evaluation ofkx2l , kx3l , kx4l , kx5l, andkx6l, up to orders
«4, «3, «2,«, and«0, respectively, cf. Appendix B. This cal-
culation has been carried out using symbolic manipulations,
and the resulting expressions have been used in Table IV and
Fig. 5. However, since the analytic expressions are very in-
volved, we only reproduce the result here up to order«3:

kVl =Îm

M
ÎpkBTeff

8M

o
i

SiriS Ti

Teff
− 1Dksin3 uli

o
i

SiriÎ Ti

Teff
ksin2 uli

+ S m

M
D3/2ÎpkBTeff

8M 5o
i

SiriS1 −
Ti

Teff
Dksin5 uli

o
i

SiriÎ Ti

Teff
ksin2 uli

+

So
i

SiriÎ Ti

Teff
ksin4 uliDSo

i

SiriS Ti

Teff
−

7

2
Dksin3 uliD

Fo
i

SiriÎ Ti

Teff
ksin2 uliG2 +

o
i

Siriksin3 uli

o
i

SiriÎ Ti

Teff
ksin2 uli

33o
i

SiriS2S Ti

Teff
D3/2

+
1

2
ÎTeff

Ti
Dksin4 uli

o
i

SiriÎ Ti

Teff
ksin2 uli

−
p

2

So
i

Siri
Ti

Teff
ksin3 uliDSo

i

SiriS Ti

Teff
− 1Dksin3 uliD

Fo
i

SiriÎ Ti

Teff
ksin2 uliG2 4

+ 3p

41 o
i

Siriksin3 uli

o
i

SiriÎ Ti

Teff
ksin2 uli2

2

−
1

3

o
i

SiriÎTeff

Ti
ksin4 uli

o
i

SiriÎ Ti

Teff
ksin2 uli43o

i

SiriS− 2S Ti

Teff
D2

+
9

2

Ti

Teff
−

5

2
Dksin3 uli

o
i

SiriÎ Ti

Teff
ksin2 uli 46 + …. s39d

D. Special cases

The above analytic result, Eq.(39), is valid for any con-
vex shape of the constituting pieces. To illustrate the type of
explicit results that are obtained, we focus on simple shapes
like a disk, a bar, and a triangle. In Table I the circumference
S, the form factorFsud and the friction coefficientg are

calculated for these objects. Note that the friction coefficient
of the bar is in agreement with the result of the adiabatic
piston problem, cf. Eq.(18).

A thermal Brownian motor can only operate under non-
equilibrium conditions, which can be achieved if at least two
of such units are each located in a reservoir containing an
ideal gas at a different temperature. The two units are rigidly
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linked and can move as a single degree of freedom along the
x-direction. Besides the nonequilibrium constraint, a spatial
asymmetry is also required to yield a net motion. In particu-
lar, a construction with only bars and/or disks will not gen-

erate any net motion. One of the simplest motors one can
imagine was introduced in[16] and will be referred to as
Triangula [see Fig. 4(a)]. Two identical rigidly linked isos-
celes triangles(with apex angle 2u0, pointing in the
x-direction) are each located in a reservoir containing a gas
separately in equilibrium at a different temperature. The low-
est order contribution to the average velocity ofTriangula
follows from Eq.(36), cf. Table I:

kVlTriangula=
Î2pkBm

4M
s1 − sinu0d

r1r2sT1 − T2dsÎT1 − ÎT2d
fr1

ÎT1 + r2
ÎT2g2

.

s40d

The fact that the combination of the asymmetry and the tem-
perature gradient is necessary to generate the systematic mo-
tion is contained in Eq.(40). If either T1=T2 or u0=p /2 (the
triangle becomes a bar and thus the asymmetry disappears),
the average velocity vanishes. The corrections of order«3 to
this formula can be found in Appendix B. The dependence of
the speed on the temperatures and densities are reproduced in
Fig. 5. Note that from Eq.(40) it may be concluded that the
speed of Triangula is maximal forr1

ÎT1=r2
ÎT2. Figure 4

also shows some other variations of the thermal Brownian
motor. Their drift speed up to lowest order in« can be found
in Table II. One can easily verify that each thermal Brownian
motor ceases to function when the spatial asymmetry or the
temperature difference vanishes. In this context it is some-
times stated that equilibrium is a point of flux reversal. This
is indeed the case for our microscopic model except when
there are special symmetries in the system. When the units in
the two reservoirs are not the same, the direction of the net
motion changes when the temperature difference changes
sign. From the models depicted in Fig. 4, onlyTriangula
keeps its original direction of motion. In this latter case, the
speed exhibits a parabolic minimum as a function of the
temperature, with zero speed at equilibrium. The reason for
this peculiar behavior derives from the permutational sym-
metry of identical units, implying that the speed must be
invariant under the interchange ofT1,r1 with T2,r2. In par-
ticular it must be an even function ofT1−T2 whenr1=r2.

TABLE I. The circumferenceS, the form factorFsud and the friction coefficientg in a gas with densityr and temperatureT, for a vertical
bar of lengthL, a disk with radiusR and an isosceles triangle with baseL and apex angle 2u0, pointed in thex-direction.

Shape CircumferenceS Form factor Fsud Friction coefficientg

Bar 2L
1

2
SdFu −

p

2
G + dFu −

3p

2
GD 8LrÎkBTm

2p

Disk 2pR 1/2p 4pRrÎkBTm

2p

Triangle
L

1 + sinu0

sinu0

2dfu − 3p
2 g sinu0 + dfu − u0g + dfu − sp − u0dg

2s1 + sinu0d
4LrÎkBTm

2p
s1 + sinu0d

FIG. 5. Average speed ofTriangulaaccording to Eq.(B4). Top:
the dependence of the velocity on the densities(T1=1.0 andT2

=5.0). Bottom: The stationary speed increases with the temperature
differencesr1=r2=0.0022d. The following parameter values were
used: mass of the gas particlesm=1, total mass of the motorM
=100, apex angle of the triangles 2u0=p /18 andkB=1 by choice of
units.
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V. COMPARISON WITH SIMULATIONS

The analytic results for the adiabatic piston and the ther-
mal Brownian motor are compared with the results of the
numerical solution of the Boltzmann equation in Tables III
and IV, respectively. To improve the precision of these simu-
lations, we used a special technique for solving a Master
equation, based on the introduction of a simple envelope
process(see Appendix C for details). The agreement between
theory and simulations is very satisfactory, and only breaks
down, as expected, for small ratiosm/M where the pertur-
bative result becomes inaccurate. We have also included for
completeness the results obtained by molecular dynamics
simulations, cf.[16] for more details. We used low densities
for the hard disks,r=0.0022, a regime in which one comes
close to the properties of an ideal gas. Nevertheless one ex-
pects strong finite size effects, due to the fact that the reser-
voirs containing the gases are not very large. To cite just one

important phenomenon, we note that the motion of the motor
will generate sound waves that will reimpact on it. Taking
this into account, the speeds observed in the molecular dy-
namics are in reasonable agreement with the theoretical and
numerical results obtained from the Boltzmann equation.
Notably the speed of the thermal motor in the hard disk gases
is systematically larger by roughly 20 to 40%, for reasons
that are unclear to us.

VI. DISCUSSION

The problem of the Maxwell demon has been haunting
the imagination and theoretical efforts of physicists for more
than 100 years. While there is a consensus that one cannot
rectify fluctuations at equilibrium, it is comforting that one
can construct microscopic models, involving interactions
with ideal gases only, for which this thesis can be verified
explicitly. The same models can be used as test cases for
another important field of interest, namely the rectification of
thermal fluctuations in nonequilibrium, also referred to as
Brownian motors. In this respect we claim that our model is
a genuine Brownian motor: the rectification appears at the
level of nonlinear response, where the usual separation be-
tween systematic and noise terms, as made explicit in a lin-
ear Langevin equation, is no longer possible. Hence the op-
eration of our Brownian motor falls outside the scope of
linear irreversible thermodynamics. It belongs to the realm of
microscopic theory in which nonlinearity and noise form an
intertwined part of the microscopic dynamics. This is in con-
trast to most of the Brownian motors discussed with mesos-
copic theory. For example, the prototype model of one class
of Brownian motors referred to as flashing ratchet can be
described by diffusion in an external potential, a standard
problem in linear irreversible thermodynamics.

TABLE II. Analytic result for the lowest order contribution tokVl for the different constructions depicted in Fig. 4.

Shape Figure Stationary velocitykVl (order«)

Triangula Fig. 4(a)
Î2pkBm

4M
s1 − sinu0d

r1r2sT1 − T2dsÎT1 − ÎT2d

fr1
ÎT1 + r2

ÎT2g2

Triangle–bar Fig. 4(b)
Î2pkBm

4M
s1 − sin2 u0d

2r1r2
ÎT1sT1 − T2d

f2r1
ÎT1 + r2

ÎT2s1 + sinu0dg2

Triangle–
triangle

Fig. 4(c)
Î2pkBm

4M
s1 − sinu0d

r1r2sT1 − T2dsÎT1 + ÎT2d

fr1
ÎT1 + r2

ÎT2g2

Triangle–disk Fig. 4(d)

Î2pkBm

4M

s1 − sin2 u0d
pR

L

r1r2
ÎT1sT1 − T2d

FpR

L

r1
ÎT1 + s1 + sinu0dr2

ÎT2G2

TABLE III. Stationary average speed of theadiabatic piston
from the perturbative solution method up to order« , «3, and «5,
compared with the result from a numerical solution of the Boltz-
mann equation. The following parameter values were used: particle
densitiesr1=10−2 andr2=1, temperaturesT1=100 andT2=1, and
mass of the gas particlesm=1. kB=1 by choice of units.

Mass
M

Theory
(order«)

Theory
(order«+«3)

Theory
(order«+«3+«5)

Boltzmann
equation

1 5.64 −7.82 20.44 1.411

5 1.13 0.590 0.8158 0.7289

20 0.282 0.2484 0.2519 0.2511

50 0.113 0.1074 0.1076 0.1076

100 0.0564 0.05505 0.05508 0.0554

200 0.0282 0.02786 0.02787 0.0280
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APPENDIX A: DETAILS ON THE CALCULATION
FOR THE ADIABATIC PISTON

Expansion of the rescaled jump momentsAnsxd (11) in the
moment equations(8) yields the following power series ex-
pansion in«=Îm/M, with the first and second moments ex-
panded up to fifth and fourth order in« [cf. Eqs. (16) and
(17)], respectively, and the higher momentskx3l , kx4l , kx5l,
and kx6l up to «3, «2, «, and«0 respectively:

]tkx3l = 6s2ff3/2gkxl − ff1/2gkx3ld − 3s4gf2g + gf0gkx4ld«

+ s− 56ff3/2gkxl + 24ff1/2gkx3l − ff− 1/2gkx5ld«2

+ 9s4gf2g + gf0gkx4ld«3 + Os«4d, sA1d

]tkx4l = 8s3ff3/2gkx2l − ff1/2gkx4ld − 4s12gf2gkxl + gf0g

3kx5ld« + 4S16ff5/2g − 44ff3/2gkx2l

+ 11ff1/2gkx4l −
1

3
ff− 1/2gkx6lD«2 + Os«3d,

]tkx5l = 10s4ff3/2gkx3l − ff1/2gkx5ld − 5s24gf2gkx2l

+ gf0gkx6ld« + Os«2d,

]tkx6l = 12s5ff3/2gkx4l − ff1/2gkx6ld + Os«d.

In the stationary regime these equations form, together with
Eqs.(16) and (17), an algebraic set of equations, which can
be solved to find the stationary average velocitykxl up to
order «5. The result in terms of the original variableV
=ÎkBTeff /Mx is given in Eq.(21). The corresponding results
for the higher order moments read

kV2l =
kB

ÎT1T2

M
+

kBm

M2 SÎT1T2

2
+

p

8
sÎT1 − ÎT2d2

−
1

2

sr1T1
−1/2 + r2T2

−1/2dT1T2

r1
ÎT1 + r2

ÎT2
D +

kBm2

M3

3SÎT1T2

4
−

2

3

sr1T1
−1/2 + r2T2

−1/2d2sT1T2d3/2

sr1
ÎT1 + r2

ÎT2d2

−
29p

48
sÎT1 − ÎT2d2 −

3p2

16

sÎT1 − ÎT2d4

ÎT1T2

+
35p

48

r1T1
5/2 + r2T2

5/2

r1
ÎT1 + r2

ÎT2

sÎT1 − ÎT2d2

T1T2

+
1

8

sr1T1
−3/2 + r2T2

−3/2dsT1T2d3/2

r1
ÎT1 + r2

ÎT2

+
7

24

sr1T1
−1/2 + r2T2

−1/2dT1T2

r1
ÎT1 + r2

ÎT2
D + ¯ ,

kV3l =
ÎkB

3mp

2Î2M2
sÎT1 − ÎT2dÎT1T2 +

ÎkB
3m3p

Î2M3

3S−
8

3
sÎT1 − ÎT2dÎT1T2 −

3p

4
sÎT1 − ÎT2d3

+
7

4

sÎT1 − ÎT2dsr1T1
5/2 + r2T2

5/2d

sr1
ÎT1 + r2

ÎT2dÎT1T2
D + ¯ ,

sA2d

kV4l = 3SkB
ÎT1T2

M
D2

+
kB

2m

M3 S− 4T1T2 −
7p

4
sÎT1 − ÎT2d2

3ÎT1T2 + 4
r1T1

5/2 + r2T2
5/2

r1
ÎT1 + r2

ÎT2
D + ¯ ,

TABLE IV. Stationary average speed of the thermal Brownian motorTriangula from the perturbative
solution method up to order« , «3, and «5, compared with the result from a numerical solution of the
Boltzmann equation. The following parameter values were used: particle densitiesr1=r2=0.002 22, tem-
peraturesT1=1.9 andT2=0.1, mass of the particlesm=1 and apex angle of the triangle 2u0=p /18. kB=1 by
choice of units. For comparison, we also include the speed observed in molecular dynamics, see[16] for
more details.

Mass
M

Theory
(order«)

Theory
(order«+«3)

Theory
(order«+«3+«5)

Boltzmann
equation

Molecular
dynamics

1 0.38 −1.23 11.66 0.057 0.12

5 0.076 0.011 88 0.1150 0.0470 0.064

20 0.0190 0.015 02 0.016 63 0.0157 0.024

50 0.007 62 0.006 974 0.007 077 0.0071 0.0093

100 0.003 81 0.003 648 0.003 661 0.0035 0.0043

200 0.001 90 0.001 864 0.001 866 0.0017 0.0021
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kV5l = −
ÎkB

5mp

M3

5

2Î2
sÎT1 − ÎT2dT1T2 + ¯ ,

kV6l = 15SkB
ÎT1T2

M
D3

+ ¯ .

Note that the lowest order terms are consistent with the ob-
servation that the velocity distribution itself is Gaussian at
the lowest order, cf.[14].

APPENDIX B: DETAILS ON THE CALCULATION
FOR A THERMAL BROWNIAN MOTOR

OF A GENERAL SHAPE

A perturbative series in« is given for the moments, ob-
tained by the expansion of Eqs.(8), together with the jump
moments defined in(11). The resulting expressions for the
first and second moment up to order«5 and«4, respectively,
are given in Eqs.(32) and (33). Calculation ofkVl up to «5

requires furthermorekx3l , kx4l , kx5l, and kx6l up to order
«3, «2, «, and«0, respectively:

]tkx3l = o
i

SiriÎkBTi

m
H6Î 2

p
S2

Ti

Teff
kxl − kx3lDksin2 uli + 3S− 4S Ti

Teff
D3/2

+ 7Î Ti

Teff
kx2l −ÎTeff

Ti
kx4lDksin3 uli«

+Î 2

p
S− 56

Ti

Teff
kxl + 24kx3l −

Teff

Ti
kx5lDksin4 uli«

2 + 3S12S Ti

Teff
D3/2

− 21Î Ti

Teff
kx2l + 3ÎTeff

Ti
kx4lDksin5 uli«

3J+ Os«4d,

]tkx4l = 4o
i

SiriÎkBTi

m
H2Î 2

p
S3

Ti

Teff
kx2l − kx4lDksin2 uli + S− 12S Ti

Teff
D3/2

kxl + 10Î Ti

Teff
kx3l −ÎTeff

Ti
kx5lDksin3 uli«

+Î 2

p
S16S Ti

Teff
D2

− 44
Ti

Teff
kx2l + 11kx4l −

1

3

Teff

Ti
kx6lDksin4 uli«

2J + Os«3d,

]tkx5l =5o
i

SiriÎkBTi

m
H2Î 2

p
S4 Ti

Teff
kx3l − kx5lDksin2 uli + S− 24S Ti

Teff
D3/2

kx2l +13Î Ti

Teff
kx4l −ÎTeff

Ti
kx6lDksin3 uli«J+Os«2d,

]tkx6l = 12o
i

SiriÎkBTi

m
HÎ 2

p
S5

Ti

Teff
kx4l − kx6lDksin2 uliJ + Os«d. sB1d

In the stationary regime, these equations form together with Eqs.(32) and (33) an algebraic set of equations from which the
average velocity can be obtained up to order«5. The analytical expression in the original variableV up to«3 is reproduced in
Eq. (39). The corresponding power series for the higher moments of the stationary velocity distribution function are

kV2l =
kBTeff

M

+
kBmTeff

M2 5o
i

Siri1− 21 Ti

Teff
2

3/2

+
5

2
Î Ti

Teff

−
1

2
ÎTeff

Ti
2ksin4 uli

o
i

SiriÎ Ti

Teff

ksin2 uli

−
p

4

So
i

Siriksin3 uliD1oi

Siri1− 21 Ti

Teff
2

2

+
13

2

Ti

Teff

−
5

2
2ksin3 uli2 − 21oi

Siri

Ti

Teff

ksin3 uli2
2

3oi

SiriÎ Ti

Teff

ksin2 uli4
2 6 + ¯ ,
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kV3l =Îm

M
SkBTeff

M
D3/23Îp

2

o
i

SiriS− 2S Ti

Teff
D2

+
9

2

Ti

Teff
−

5

2
Dksin3 uli

o
i

SiriÎ Ti

Teff
ksin2 uli 4 + ¯ ,

kV4l = 3SkBTeff

M
D2

+ ¯ , sB2d

kV5l =Îm

M
SkBTeff

M
D5/23Îp

2

o
i

SiriS− 20S Ti

Teff
D2

+
75

2

Ti

Teff
−

35

2
Dksin3 uli

o
i

SiriÎ Ti

Teff
ksin2 uli 4 + ¯ ,

kV6l = 15SkBTeff

M
D3

+ ¯ .

For the particular case ofTriangula [see Fig. 4(a)] one can verify that

Teff =
r1T1

3/2 + r2T2
3/2

r1
ÎT1 + r2

ÎT2

,

sB3d

ksinn ul =
s− 1dn sinu0 + sinn u0

1 + sinu0
.

The average speed ofTriangula up to «3 reads:

kVl =Îm

M
ÎpkBTeff

2M

1

2
shf1g − hf0gdssinu0 − 1d + S m

M
D3/2ÎpkBTeff

2M
H1

2
shf0g − hf1gd

sin4 u0 − 1

sinu0 + 1

+
phf0g

4
S− hf1g2 − hf0ghf2g +

13

4
hf0ghf1g −

5

4
hf0g2Dssinu0 − 1d3 + S1

2
hf1/2ghf1g −

7

4
hf1/2ghf0g + hf0ghf3/2g

+
1

3
hf− 1/2ghf2g −

3

4
hf− 1/2ghf1g +

2

3
hf− 1/2ghf0gD ssinu0 − 1ds1 + sin3 u0d

1 + sinu0
J , sB4d

with

hfng =
r1T1

n + r2T2
n

r1
ÎT1 + r2

ÎT2

Teff
−n+1/2. sB5d

APPENDIX C: SIMULATION OF THE MASTER
EQUATION

Consider a Markov process, defined by the transition rate
WsVuV8d, for transitions from stateV8 to V. We decompose
the transition rate as follows,

WsVuV8d = RsV8dPsVuV8d,

whereRsV8d=edV WsVuV8d is the total rate andPsVuV8d is
the conditional probability. Stochastic trajectories ofV may
be easily produced if the probabilityP can be easily realized,
that is, if it is simple to generate random values with that
distribution. However, for complicatedW and P this direct
approach is often not possible and an alternative construction
is necessary.

We introduce an “envelope” process,W*sVuV8d, for which
W* ùW for all V,V8, cf. [20]. The difference
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W0sV8d = W*sVuV8d − WsVuV8d

is called the “null” process. The envelope process is chosen
such thatR* is a constant and thatP* has a simple form(e.g.,
a Gaussian distribution).

The simulation of trajectories ofW then proceeds as fol-
lows:

(1) Given the current stateV8, find the time to the next
transition for the envelope process as

t = − lnsRd/R* ,

whereR is a uniformly distributed random value ins0, 1d.
The random variablet is exponentially distributed withktl
=1/R* .

(2) Choose the new state,V, from the distribution
P*sVuV8d.

(3) With probability WsVuV8d /W*sVuV8d the transition
V8→V occurs, otherwise, the event is a null event and the
stateV8 is unchanged. In either case, the time is advanced
by t.

(4) Return to step(1) until the required number of itera-
tions are performed.

Note that the probability of a transitionV8→V being se-
lected in step(2) is P*sVuV8d and the probability of that
transition being accepted in step(3) is W/W* so the net prob-
ability of the accepted transition is

P*sVuV8d
WsVuV8d
W*sVuV8d

= P*sVuV8d
WsVuV8d

R*P*sVuV8d
=

1

R* WsVuV8d.

Since the total rate(accepted plus null transitions) is R* the
algorithm produces the stochastic process with the desired
transition rateWsVuV8d.

Clearly, the method will be inefficient if the ratioW/W* is
small since most transitions would be rejected. On the other
hand, the method is only correct ifW/W* ø1 for all V,V8
since the probability of acceptance cannot be greater than 1
(i.e., the null process cannot have negative probability for
anyV8). As such, the form of the envelope process(e.g., the
mean and variance of the Gaussian) must be chosen with
care.
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