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Abstract 

We examine the situation in which hourly data are available for designing advertising 

response models, whereas managerial decision-making can concern hourly, daily or weekly 

intervals. A key notion is that models for higher frequency data require the intra-seasonal 

heterogeneity to be addressed, while models for lower frequency data are much simpler. We 

use three large, actual real-life datasets to analyze the relevance of these additional efforts for 

managerial interpretation and for the out-of-sample forecast accuracy at various frequencies. 
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1. Introduction 

Ever since time series data on advertising and sales have become available, there have been 

discussions about the appropriate level of aggregation to use when estimating advertising 

responses, and when forecasts at different aggregation levels are required. A classic study is 

that by Clarke (1976), who shows that the longitudinal impact of advertising will be 

overestimated grossly if the analyst considers the same type of model for different levels of 

aggregation; see also Russell (1988). This notion is illustrated again by Tellis and Franses 

(2006), who show that the familiar Koyck model for higher frequency data becomes another, 

and more involved, time series regression model for aggregated data. In brief, one by-product 

of aggregation is that the model must change too. Of course, the reverse situation also holds 

true: high frequency data may reveal intra-seasonal heterogeneity, like hour-of-the-day 

effects, and hence, disaggregated data often require a more complex model.  

  A similar result appears for data transformations; see De Bruin and Franses (1999). 

When the higher frequency data are, say, log-transformed to mitigate the impact of extreme 

observations and to dampen the variance, a move towards aggregated data may remove the 

need for such transformations, as these extreme observations will be “aggregated away”. 

  This paper considers the temporal aggregation of advertising response models, ranging 

from micro models at the hourly level to models for data aggregated to the weekly level. We 

find that different aggregation levels require appropriate data transformations. Our motivation 

for this study arises from the concern as to whether models at the hourly level can be expected 

to perform well as forecast tools for lower frequency data. It is well understood that, under 

perfect aggregation, disaggregated models will outperform models at a lower frequency, 

because of the loss of information incurred by aggregation. However, this loss might be 

limited to a couple of percentage points for medium-sized samples. Thus, in real life 

situations, simpler models for aggregate data might conceivably prove to be more robust and 

give more reliable aggregate forecasts. A second question is the extent to which the 

implications of aggregate models are consistent with micro models. For example, is the effect 

of advertising obtained from a daily model similar to that from a micro model for hourly data? 

These questions are inspired by management practice, which usually involves the construction 

of a media plan based on a micro model, but where the performance assessment is based on 

aggregate data. We study these issues through a detailed analysis of three large databases of 

hourly advertising and sales data.  
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 The remainder of the paper is organized as follows. Section 2 briefly discusses the 

literature related to our topic. Section 3 addresses the data used for the empirical application. 

Section 4 discusses the model specification for the hourly data. As the data show strong intra-

day and intra-week seasonality, a two-level model is proposed, with the hour in the week as 

the observation unit. Section 5 presents single-level models for hourly, daily data and weekly 

data. Sections 6 and 7 summarize the forecasting and inference results. Finally, Section 8 

contains the main conclusions and limitations. 

 

2. Literature 

 

The advertising literature contains various studies that address the degree of aggregation used 

to measure advertising effectiveness. A typical workhorse model is the familiar Koyck model, 

which correlates current sales with current advertising and past sales, and includes an error 

term with first order dynamics. Alternative models involve variants of the autoregressive 

distributed lag model (ADL) without moving average terms (MA). For both types of models, 

it holds that the parameter estimates can be used to infer the long-run (or cumulative) effects 

of advertising on sales, the immediate effect on sales, and the shape of the decay function, 

which gives the speed at which the effects of advertising impulses fade out to zero. 

 A key aspect of the models used in this body of literature is the fact that the parameter 

estimates, and their derivative functions, can depend on the aggregation level of the data. For 

example, if one is analyzing monthly data but the underlying process works at the weekly 

level because advertising impulses are given at the weekly level, then one may make 

estimation errors. This insight goes back to the work of Clarke (1976), as well as various 

subsequent studies, such as those of Windal and Weiss (1980), Bass and Leone (1983, 1986), 

Tellis and Weiss (1995), and Leone (1995). 

 There are various possible responses to this phenomenon. The first is to acknowledge 

the aggregation effects and modify the estimation routine accordingly; see Weiss, Weinberg 

and Windal (1983), who propose a nonlinear GLS estimation technique that takes into 

account the effects of aggregation on both the estimates and the error terms. They use 

simulated monthly data and aggregate these into half-yearly and annual data, then look at how 

the estimates of the autoregressive term and the autocorrelation functions change under 

aggregation. They report that the level of aggregation does not cause an upward bias in the 

parameter estimates, but note that the probability of overestimating the lagged depended 
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variable does increase because the aggregation is applied to small samples. Also, they 

attribute the upward bias in the parameter estimates to a misspecification of the model.  

 Second, it is recognized that aggregation can change the model. For example, when an 

autoregression of order 1 (AR(1)) is adequate for describing weekly data, the model becomes 

an autoregressive moving average model of order 1,1 (ARMA(1,1)) after aggregation. Russell 

(1988) argues that temporal aggregation of the data does not change the underlying 

advertising-sales relationship, but typically the model is misspecified at the aggregated level. 

To retrieve the micro-frequency parameters, one needs to know (or assume) what the micro-

frequency model looks like. Recently, Tellis and Franses (2006) used this result to determine 

the optimal level of aggregation, in order to ensure that this retrieval is still possible.  

 A third response to aggregation issues, which has become possible due to the recent 

increase in the availability of high frequency data, is to simply rely on models for the highest 

frequency. The seminal articles on high frequency models are those by Tellis, Chandy, and 

Thaivanich (2000) and Chandy, Tellis, MacInnis, and Thaivanich (2001). These studies 

indicate that models for high frequency data can be used as the basis for decision support 

systems in media planning regarding the optimal choice of channels, time slots, and spot 

lengths, and insights about the relative effectiveness of appeals and wear-in wear-out effects 

can also be obtained. Tellis and Franses (2006) use such high frequency data to show that the 

optimal data interval or aggregation level is the unit exposure time, which is the time interval 

in which consumers would typically be exposed to a single advertising spot. These studies 

advocate the use of high frequency data, even if decisions have to be made at a more 

aggregated level. This paper will examine the latter issue in more detail.  

 Even though much of the literature is dedicated to the issue of aggregation and its 

effects on (functions of) parameter estimates, the focus is rarely on out-of-sample forecasting. 

Since the main use of econometric advertising models is for budgeting and strategy planning, 

most managers require accurate forecasts for planning and decision making. Note that the 

planning and decision horizon does not necessarily match the available data frequency. For 

example, managers may need to make budgetary plans for the next year, and therefore require 

forecasts of the next year’s sales level. If a modeler has access to weekly data, then it is an 

open question as to whether a model using such weekly data is useful for forecasting the next 

year’s total sales. Aggregation would entail a loss of information, and hence the parameter 

estimators would be less efficient. At the same time, aggregation should not lead to 

inconsistency if the model is modified and specified appropriately. However, the main issue is 

that higher-frequency data require more complex models to take into account the increased 
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information content. More data may also mean more data patterns, such as intra-seasonal 

patterns, and these should be modeled too.   

The aim of the present study is to shed light on this managerially relevant issue. We 

analyze a case that is actually very relevant for the company at hand, who allowed us to use 

their data. The data and the high frequency model for one of the three datasets used below 

were discussed by Kiygi Calli, Weverbergh, and Franses (2012), and many of the details on 

the specification of models with intra-seasonal features can be found there too. As high 

frequency (e.g., hourly) data can show large variations due to potential outliers, we also show 

that aggregation impacts data transformation. Indeed, it is common to use transformations 

such as the natural log transformation to dampen the variation in, say, hourly data; however, 

we find this transformation to be less relevant for aggregated weekly or monthly data  

 

 

3. Real-life data 

 

This section analyzes data relating to a car repair service provided by a multinational. We 

consider three different areas where data are collected, namely Flanders (the Dutch-speaking 

part of Belgium), Wallonia (the French-speaking part of Belgium), and Spain.  All three 

samples are relatively large (23,880, 21,672 and 9,251 hourly observations respectively). For 

the evaluation, each datasets is split into an estimation sample (2/3 of the observations) and an 

out-of-sample forecast part (1/3). National call centers, for Belgium (an almost 24/7 service) 

and Spain separately, collect all requests for information and service appointments from 

consumers. The two markets run on similar principles, but with different operating hours. Of 

course, the three areas’ media plans and communication channels are all quite different. The 

dependent variable is the number of incoming calls received by the call center. Table 1 

provides an overview of the three datasets, where the high frequency data are hourly data. 

 

--- Insert Table 1 about here --- 

 

 In all cases, the company relies mainly on radio advertising, and to a limited extent on 

television advertising in Belgium. There is no comparable service advertised at the national 

level, and therefore the data are very well suited for an analysis of advertising effects. There is 
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little or no variation in the advertising themes, but the core message is framed in different 

formats or spot lengths.  

For the Flanders region (data set 1), the calls data cover the period from October 2004 

to June 2007. Our analysis is performed on data at hourly intervals (23,880), which include a 

total of 6,144 radio spots and 252 television spots. Television advertising occurred in 2006 

and 2007 only.  

For the Walloon region (data set 2), the calls data cover the period from January 2005 

to June 2007, giving 21,672 data points, a total of 7,432 radio spots and 330 television spots. 

The television advertising occurred in 2006 and 2007 only. For radio, 20-second spots are 

used predominantly, with other spot lengths being used much less. For television, there is a 

relatively large number of five-second spots, which are the so-called ‘sponsoring spots’ 

associated with the weather forecasts. 

For Spain (data set 3), the available data cover the period from January 1, 2004, to 

June 30, 2006, with a two-week period missing in the middle, as Figure 1 shows. For this 

market, we have data for 9,251 hours. During the observation period, 4,827 radio 

commercials were broadcasted on twenty-five radio stations, with most being 60-second 

commercials. Spots at 8 AM were used frequently. The distribution of broadcasts is more or 

less equal over the weekdays. In the dataset, the commercials start at 6 AM. The call centre 

operates from 8 AM to 8 PM on weekdays, has shorter service hours on Saturdays, and is 

closed on Sundays. Thus, the call centre operates 70 hours per week.  

 The advertising strategy of the company makes use of ‘pulsing’. This means that all 

advertising is scheduled in a subset of weeks, which are alternated with non-active weeks. 

Advertising reach of a commercial is measured by means of Gross Rating Points (GRPs) 

(Tellis, 2004). Table 1 shows that this subset consists of approximately one third of the 

weeks, with average GRP levels equal to 237 for data set 1, 312 for data set 2, and 249 for 

data set 3. 

 

--- Insert Figure 1 about here --- 

 

Figure 1 shows the numbers of incoming calls (“sales”) in the three areas. The 

numbers of daily incoming calls for data sets 1 and 2 are approximately equal, while the 

market size of data set 3 is substantially larger.  

 

--- Insert Figure 2 about here --- 
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The three panels in Figure 2 show the average levels of incoming calls for the three 

call centers for hours with and without advertising. The intraday patterns are highly similar. 

The peak in calls occurs between 8AM and 9AM, with a smaller peak in the early afternoon, 

at around 2PM. 

 

--- Insert Table 2 about here --- 

 

Table 2 provides a summary of the average radio GRPs per hour of the day. The radio 

commercials are most often broadcasted between 6AM and 8PM, and the average GRPs vary 

between 0.70 and 11.52. For data set 1, the GRPs are highest at 7AM. For data sets 2 and 3, 

the maximum values are at 8 AM. 

Next, we will analyze these hourly data using multi-level models, after which we will 

aggregate to the daily and weekly levels, and fit models and produce forecasts accordingly. 

 

4. Two-level models for hourly data 

 

We resort to a two-level regression model in order to capture the substantial variation in the 

data at the hourly level properly. In short, we treat the hour within the day as the observation 

unit, so we deal with sales denoted by thY , , where the subscript h denotes the hour and t 

denotes the week. As such, we have a panel of time series, where the panel consists of 168 

units and the time frame covered is 143, 130 or 88 weeks, respectively (see Table 1). For this 

panel, we choose to consider the linear mixed model (LMM; see for example Verbeke and 

Molenberghs, 2000), where the model reads as  
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         (1) 

 

In words, the first level contains parameters that can possibly vary with the hour of the week 

(h), and the second level correlates those parameters to the characteristics of the particular 
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hours that are incorporated in thW , . As such, this model allows the substantial variation in the 

data that is present at this highly disaggregated level to be captured.  

 After some experimentation (along lines similar to those outlined by Kiygi Calli et al., 

2012), we fix the first level of the three models as  
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  (2) 

 

where the variables in this first-level model are defined as follows: 

 

 )1log( ,,  thth CallsY , where h runs from 1 to 168 and t  runs from 1 to T, 

 )1log( ,,  thth RadioGRPR , 

)1log( ,,  thth TVGRPTV , and
 

52

2
cos,

52

2
sin

tt 
 
are harmonic or goniometric regressors that capture the intra-year 

seasonality in the data;
 

and where thTVD ,  denotes the log of the total amount of TV GRPs during the previous day. 

Note that this last variable takes the same value for 24 hours in a row. 
thB ,
 is a dummy 

variable for bank holidays, and 
thTr ,
 is a trend defined as t/52, where t is 1,2,…,total week 

number. 

 The second-level equations allow for distinct specifications across the three data sets, 

and include time variation in the coefficients across the hour of the week or the day. For 

example, the autocorrelation is found to vary substantially all three samples, with a short 

cycle of one day. The results show that the autocorrelation is much higher at peak hours, 

which leads in part to a higher effectiveness of advertising during peak hours. The time 

variability for the advertising coefficients is less pronounced. The characteristics of 

advertising spots, length and channel are included in order to detect differences in advertising 

effectiveness. 
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 The second-level equations start from the same specification for all three data sets. To 

achieve parsimony, the final model is obtained by deleting non-significant variables with t-

values less than one. 

 

The intercept term in each dataset is given by 
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where hd is the hour of the day (1,2,...24), and d

hD
 
is a dummy variable which takes a value 

of one for day d and zero otherwise, with 1d  meaning a Monday.  

 For the first-order autoregressive parameters, we specify   
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The second-order and third-order autoregressive terms are specified as constants. For the 

second-order autoregressive term, we specify  

 

  
0,2,2  h
,          (5) 

 

whereas for the third-order autoregressive term we have 

 

 
0,3,3  h
.          (6) 

 

In all three samples, the two further autoregressive terms are modeled as 

 

 hh ,20,24,24            (7) 
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and 

 

 hh ,30,168,168   .         (8) 

 

For the regressors concerning the commercials on radio and television, we have the following 

second-level equations for all three data sets: 
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where jhFC ,  is the fraction of radio GRPs per channel j, and ihFL , is the fraction of radio 

GRPs per spot length i. For the first television variable, we specify 
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where jhFTV ,  is the fraction of television GRPs per channel j, and hdhD ,  is a zero–one 

dummy variable indicating the hour of the day within a day.   

  For the next day television variable, we specify 
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where jhTVDC ,  is the fraction of television GRPs per channel j during the previous day, and 

ihTVDL ,  is the fraction of television GRPs per spot length. 

 Finally, for the annual seasonality, we specify  

 



 

11 

 

 
h

ssss

h

hdhd
,5210 )

12

2
cos()

12

2
sin( 





 

     (12)
 

 

 
h

cccc

h

hdhd
,6210 )

12

2
cos()

12

2
sin( 





  .

     (13)
 

 

 The independent variables relate to the media schedule (time of broadcast, channel and 

length, or equivalently, the theme of a spot).  In principle, all equations could be specified 

with a random error; however, this makes the model too complex, causing estimation 

problems. For the second-level equations, some trial and error has been applied. We tried 

several different forms for these equations, but the current ones turned out to be best in terms 

of the in-sample fit. We are aware that the best in-sample fit does not guarantee the best out-

of-sample forecast accuracy, but the complexity of the models is such that we see no other 

way of selecting our final models. The first-order, daily and weekly autoregressive terms, 

current radio effect and annual seasonality, are all specified with a random error.   

 

5. Alternative models 

 

In addition to the model in the previous section, we also consider more traditional 

autoregressive distributed lag (ADL) models for the data at three aggregation levels, namely 

hourly, daily and weekly. However, the preferred model for the hourly data is that presented 

in the previous section. This model allows for heterogeneity across hours within a week, and, 

as such, is very useful for capturing variation in the data. 

 The two-level (hourly) model in the previous section used a logarithmic specification. 

However, the transformation to logarithms is not necessarily appropriate for all levels of 

aggregation. We rely on the Box–Cox transformation to capture the non-stable variance in the 

data. As was discussed by Box and Cox (1964), this transformation is given by 
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For a single-level model for hourly data Y (in levels), where h now runs from 1 to the total 

number of hours, as indicated in Table 1, we specify 
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where 

 
1 hh CallsY , 

 1 hh RadioGRPR , 

 1,  thh TVGRPTV ,
 

 

and hjRC ,  are the radio GRPs per channel j, hiRL , are the radio GRPs per spot length i, and 

the equivalent variables for television are hjTVC ,  and hiTVL , . hwhD ,  is a dummy for hour hw 

of a week, and khH ,  is a dummy for hour h in the week. 

 This model is similar to that of Tellis et al. (2000), who also use hourly data, but they 

consider referrals to health care services. Eq. (15) allows a substantial degree of heterogeneity 

both through the hourly dummies affecting the intercept and in the effects of the explanatory 

variables.  
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 The model for daily data is   
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  (16) 

 

where TdD ,  is the day of the week. Finally, the model for weekly data is    
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  (17) 

 

 We also consider the two-level model in the previous section, where we apply the 

Box-Cox transformation. In the first level of the Box–Cox transformed LMM model, Eq. (2) 

becomes  
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Finally, we also consider mixed data sampling (MIDAS) models, which allow the 

regressand and regressors to be measured with different frequencies (Clements & Galvao, 

2009), with the regressors appearing at a higher frequency than the regressand (Ghysels, 

Sinko, & Valkanov, 2007).  In our case, the MIDAS specification is obtained by aggregating 

the dependent variable, but keeping the micro detail on the right hand side, at least for the 

variables of interest, a procedure that Ghysels et al. (2007) claim protects against aggregation 

bias. 

We analyze daily and weekly MIDAS models. The heterogeneity of the hour, channel 

and length effects of radio and TV ads are maintained by specifying such effects at a high 

frequency in the MIDAS models. Daily and weekly MIDAS model specifications, 

respectively, are given as 
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   (20) 

 

In addition, we also estimate linear, logarithmic and Box–Cox transformed MIDAS models 

and evaluate their predictive accuracies. All of the model parameters are estimated using 

maximum likelihoods. 

 

6. Estimation results 

 

We compare the various models of interest by considering their forecast accuracies.  

 

--- Insert Table 3 about here --- 

 

 We begin with the two-level model for hourly data in Section 4. The (5% significant) 

parameter estimates for data set 1 are displayed in Table 3. The estimation results for the other 

two data sets can be obtained from the authors, but are not given here to save space. Clearly, 

these estimation results show the relevance of the two-level model. The parameters show a 

strong variation across the hours, especially for the first order autoregressive parameters.   

 

--- Insert Table 4 about here --- 
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 When we estimate the models in Eqs. (15), (16) and (17), the values of the estimated 

Box–Cox parameters are as presented in Table 4. As expected, the estimated values get closer 

to zero for the higher frequency data and closer to or over one for the aggregated data, like 

weekly data. This pattern is quite consistent across the three data sets. These results show that 

the optimal model changes from logarithmic to linear as the aggregation level changes. This 

largely solves the problem of aggregate models producing unrealistic estimates of the 

advertising effectiveness. 

  

--- Insert Table 5 about here --- 

 

Table 5 shows (part of the) estimation results of the model for hourly data in Eq. (15), 

for the logarithmic model, which is equivalent to a Box–Cox parameter of zero. The 

estimation results in this table can be compared to those in Table 3. When we compare the 

parameters for the TVGRP variables, we do see quite considerable differences across tables.  

 

--- Insert Table 6 about here --- 

 

To highlight some of the crucial differences across the estimated models in Eqs. (15), 

(16) and (17), consider the parameter estimated for the weekly lag in Table 6, which 

corresponds to lag 168 for the model for hourly data and lag 7 for the model for daily data. 

Note that this parameter is crucial for computing the rate of decay of the advertising impact. 

As expected, given the seminal work of Clarke (1976) and others, this parameter increases as 

the frequency decreases; that is, upon aggregation. To illustrate, for data set 1 and no 

transformation, consider the parameter 0.096 for the hourly data, compared to 0.233 for the 

weekly data. Hence, the effect of advertising seems to last longer when weekly data are 

considered.  

 

 

--- Insert Table 7 about here --- 
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7. Forecasting accuracy 

 

In order to compare different models’ out-of-sample forecasting performances, we back-

transform Box–Cox transformed models to the original scale and compare their predictive 

accuracies with those of the other models. In other words, we estimate forecasts in the 

transformed form for the Box–Cox transformed models (Eqs. (15), (16), (17) and (18)). 

Hence, back-transformation induces a bias in the forecasts (De Bruin & Franses, 1999). For 

one-step-ahead forecasts, we compute de-biasing factors for the back-transformations as given 

by Guerrero (1993). This de-biasing factor involves the standard deviations of individual 

observations, and therefore cannot be used for multi-step forecasts, given the autoregressive 

nature of the models. We then compute the average empirical bias from the estimation sample 

according to the number of steps ahead, and correct the forecasts for this bias (Guerrero, 

1993). The results indicate that de-biasing factors have no positive impact on the forecasting 

accuracy, and sometimes even have a negative impact. The bias appears to improve the fit in 

the estimation sample, but may cause a deterioration in forecast accuracy in the forecast 

sample. 

Table 7 reports the predictive accuracy of the models for hourly, daily and weekly 

data, where the aim is to forecast the data as hours, days and weeks. We investigate both one-

step-ahead and multi-step-ahead forecasts, using recursive formulas for the latter forecasts.   

Table 7 also shows the Diebold–Mariano test results, which examine whether there is 

a statistical difference between the accuracies of two competing forecasts (Diebold & 

Mariano, 1995). In the table, the numbers in boldface have the highest forecast accuracies. 

For each panel (forecast horizon) and column, RMSPE values that are underlined and in 

boldface are not significantly different at the 5% level from that with the highest forecast 

accuracy, according to the Diebold–Mariano test.
4
 The first panel of Table 7 shows that the 

Box–Cox transformed ADL and LMM models in Eqs. (15) and (18) perform best for 

forecasting hourly data. Interestingly, the second panel shows that the same models also 

perform best when forecasting days ahead. They do better across the models for hourly data, 

but they also outperform the other models for daily data. Likewise, approximately similar 

results are obtained when it comes to forecasting weeks ahead.  

The outcomes of the Diebold–Mariano tests indicate that, for hour-ahead forecasts, 

Box–Cox transformed ADL and LMM models provide better forecast accuracies than the 

                                                 
4
 We provide the Diebold–Mariano test results in the supplementary document. 
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other models. For day-ahead forecasts, hourly ADL linear and Box–Cox transformed ADL 

and LMM models give better accuracy results than the others. For week-ahead forecasts, 

hourly Box-Cox transformed LMM and ADL models give the highest forecast accuracies, 

while weekly Box-Cox transformed and linear ADL models also give higher forecast 

accuracies than daily models.    

Table 8 presents the predictive accuracies of the MIDAS models that are given in Eqs. 

(19) and (20), and shows that Box-Cox transformed and linear MIDAS models achieve the 

highest forecast accuracies. We also conduct F-tests with the null hypothesis of homogenous 

time, channel and length effects, and conclude that these effects are not significantly different 

from zero. The F-test results can be obtained from the authors, but are not given here to save 

space. We also conduct the F-test with a null hypothesis that there is no significant difference 

between the hourly GRP effects. For the daily MIDAS estimation, we fail to reject the null 

hypothesis, with an F-value of 0.53 (p-value: 0.90). Therefore, we conclude that the daily 

MIDAS model given in Eq. (19) with non-significant hourly GRP effects boils down to a 

daily ADL model.      

 

 

8. Conclusion and discussion 

 

This paper presents detailed estimation and forecasting results for three large datasets that 

contain high frequency information on advertising and responses. We cannot claim to have 

discovered a generalizing principle for these three cases, but we do find that properly-

specified models for high frequency data can achieve appropriate forecast accuracies, and 

compare well with models for temporally aggregated data.  

 Therefore, the main argument in this paper is that models for higher frequency data 

probably do not have constant parameters, and that a forecaster should take care of that. This 

intra-seasonal heterogeneity can be captured in a two-level regression model (LMM). In our 

case, a model for hourly data requires the variation across those hours to be modeled, and we 

advocate using the LMM for this purpose. Aggregating the hourly data to weekly data reduces 

this variation. Using three real-life cases, we have shown that, when done properly, models 

for higher frequency data are more useful than forecasts from models for aggregated data in 

terms of managerial use, and equally useful in terms of forecasting such aggregated data.  

Hence, rather than aggregating high frequency data, designing models for the 

aggregated data and computing forecasts, we recommend modeling the high frequency data 
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directly. It should also be noted that the specification changes, as the aggregation level 

increases, from logarithmic at the hourly level, to a square root transformation at the daily 

level, to approximately linear at the weekly level.  This finding is particularly relevant for 

normative models. We observed that a simple aggregation that did not take into account this 

change in functional form led to unrealistic normative implications, which may differ 

substantially from those of the corresponding micro models. In particular, we observed 

considerably overestimated advertising effects in some cases. 

 In general, the results in our paper support the notion that high frequency data deserve 

to be analyzed. These high frequency data models include parameters that provide the proper 

interpretation in terms of decay rates and the short-run effects of advertising, and, as we have 

shown, also provide accurate forecasts for any policy horizon of interest. In general, our study 

supports the modeling exercises of Tellis et al. (2000), Chandy et al. (2001) and Tellis and 

Franses (2006), which generally recommend analysis at the most detailed level possible, as 

aggregation removes useful information and does not necessarily produce better forecasts.  

 The natural limitation of our study concerns the empirical data at hand. More actual 

data sets could be analyzed, and additional further work analyzing other elements of the 

marketing mix, like pricing and promotions, would also be relevant. At present, most 

marketing-response models rely on (at most) weekly data, and perhaps this is another 

situation in which one could benefit from the analysis of less aggregated data.  
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Table 1:  

Characteristics of the three actual data sets. 

 Datasets 

Feature 1 2 3 

 Flanders region Walloon region Spain 

Sample 
01-10-2004 

22-06-2007 

01-01-2005 

22-06-2007 

01-01-2004 

30-06-2006 

Number of hours: total 

Estimation sample 

Forecast sample  

23,880 

16,056 

7,824 

21,672 

14,448 

7,224 

9,251 

6,646 

2,605 

Number of days 995 903 608 

Number of weeks 143 130 88 

Number of weeks with 

commercials 
48 43 37 

Number of radio spots 6,144 7,432 4,827 

Number of TV spots 252 330 0 

Call center operating hours  

per week 
168 168 70 
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Table 2: 

Average radio GRPs per hour of the day. 

Dataset1 

Hour 6 7 8 9 10 11 12  

GRPs 6 14 7 6 6 6 11  

Spots 45 201 154 141 153 130 169  

Hour 13 14 15 16 17 18 19 20 

GRPs 3 2 4 6 3 4 2 1 

Spots 33 17 34 51 94 133 85 9 

Dataset 2 

Hour 6 7 8 9 10 11 12  

GRPs 5 15 16 11 13 10 7  

Spots 54 181 161 75 113 109 98  

Hour 13 14 15 16 17 18 19 20 

GRPs 10 12 2 4 3 3 7 0 

Spots  126 2 13 70 82 64 39 0 

Dataset 3 

Hour 6 7 8 9 10 11 12  

GRPs 9 9 36 6 2 2 2  

Spots 87 127 177 68 37 25 19  

Hour 13 14 15 16 17 18 19 20 

GRPs 4 3 1 2 1 3 1 1 

Spots  20 88 1 17 5 12 3 6 
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Table 3:  

Estimation results for the LMM model for data set 1 (the estimation results for the other 

data sets can be obtained from the authors). 

Second level Parameter Estimate Standard 

error 

Second level Parameter Estimate Standard 

error 

Intercept 
0  0.559 0.020 Current radio 

GRP 

0

0  NS  

 
1  –0.363 0.018  0

2  0.055 0.018 

 
2  –0.459 0.019  0

4  0.043 0.024 

First-order lag 
0,1  0.194 0.013  0

5  0.044 0.030 

 
s,1,1  –0.118 0.041 One-hour lag 1

0  0.026 0.008 

 
c,1,1  –0.308 0.038  1

1  –0.063 0.027 

 
s,2,1  –0.081 0.045  1

4  –0.070 0.039 

 
c,2,1  –0.233 0.042     

 
s,4,1  –0.040 0.043 Two-hour lag 2

0  NS  

 
c,4,1  –0.228 0.040  2

1  0.073 0.024 

 
s,5,1  –0.089 0.043 Current TV GRP 0

0  0.240 0.059 

 
c,5,1  –0.200 0.040  0

1  –0.068 0.068 

 
sss ,7,1,6,1,3,1  

 

–0.020 0.025 Hour of the day 0

2  –1.251 0.555 

 
ccc ,7,1,6,1,3,1  

 

–0.071 0.024 One-day lag d

0  0.012 0.006 

Second-order 

lag 
0,2  0.079 0.008  d

2  –0.028 0.012 

Third-order lag 
0,3  0.057 0.008 Seasonality s

0  0.035 0.017 

One-day lag 
0,24  0.068 0.010  s

1  0.009 0.007 

One-week lag 
0,168  0.071 0.012  s

2  –0.001 0.001 

Trend 
1  0.070 0.007  c

0  0.068 0.014 

Bank holiday 
2  –0.413 0.026  c

1  –0.034 0.006 

 
3  0.154 0.025  c

2  0.003 0.001 

 
4  –0.059 0.023     

Note: NS means “not significant”.
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Table 4:  

Estimated Box-Cox parameters (with standard errors) for Eqs. (15), (16) and (17).  

 Dataset 

Frequency 1 2 3 

Hours 0.192 

(0.005) 

0.225 

(0.006) 

0.620 

(0.009) 

Days 0.211 

(0.031) 

0.469 

(0.053) 

0.601 

(0.030) 

Weeks 1.561 

(0.009) 

1.518 

(0.000) 

1.327 

(0.000) 
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Table 5:  

Selected estimation results of Eq. (15) for hourly data for data set 1. 

Variable Parameter estimate (standard error) 

Intercept 0.343 (0.035) 

AR term, 1-hour lag 0.186 (0.008) 

AR term, 2-hour lag 0.110 (0.008) 

AR term, 3-hour lag 0.065 (0.008) 

AR term, 24-hour lag 0.089 (0.008) 

AR term, 168-hour lag 0.096 (0.007) 

Radio GRP, current hour –0.051 (0.081) 

Radio GRP, 1-hour lag 0.005 (0.011) 

Radio GRP, 2-hour lag 0.032 (0.009) 

TV GRP, current hour 0.189 (0.064) 

TV GRP, 24-hour lag 0.008 (0.006) 

Yearly sine function 0.063 (0.006) 

Yearly cosine function –0.015 (0.005) 
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Table 6:  

Estimates of the parameter (and associated standard errors) for the weekly lag (168 for 

hourly data, seven for daily data and one for weekly data), based on Eqs. (15), (16) and 

(17). 

  Dataset 

Transformation Frequency 1 2 3 

None 

Hourly 0.096 

(0.007) 

0.079 

(0.008) 

0.238 

(0.008) 

Daily 0.088 

(0.021) 

0.130 

(0.032) 

0.011 

(0.034) 

Weekly 0.233 

(0.112) 

0.100 

(0.042) 

0.330 

(0.080) 

Box–Cox 

Hourly 0.101 

(0.007) 

0.084 

(0.007) 

0.212 

(0.008) 

Daily 0.109 

(0.021) 

0.143 

(0.031) 

0.149 

(0.032) 

Weekly 0.657 

(0.023) 

0.494 

(0.074) 

0.647 

(0.000) 
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Table 7: 

Forecast performances, in terms of root mean squared prediction errors.  

  Dataset 

Frequency Model 1 2 3 

  Forecast horizon: hours ahead 

Hours (one-step-ahead 

forecast) 

LMM logs 5.10 4.83 23.51 

LMM Box–Cox 4.82 4.16 16.14 

ADL logs 4.72 4.45 35.80 

ADL linear 4.76 4.52 23.76 

ADL Box–Cox 4.66 4.35 23.74 

 Forecast horizon: days ahead 

Hours (multi-step-ahead 

forecast) 

LMM logs 68.8 87.2 332 

LMM Box–Cox 59.4 56.9 196 

ADL logs 54.9 52.8 385 

ADL linear 55.2 36.9 234 

ADL Box–Cox 57.2 46.5 305 

Days (one-step-ahead 

forecast) 

LMM logs 70.4 62.0 399 

LMM Box–Cox 61.6 51.1 448 

ADL logs 63.5 60.5 423 

ADL linear 58.1 44.7 256 

ADL Box–Cox 57.8 47.0 402 

 Forecast horizon: weeks ahead 

Hours (multi-step-ahead 

forecast) 

LMM logs 305 512 1382 

LMM Box–Cox 209 215 922 

ADL logs 203 237 2348 

ADL linear 232 226 1354 

ADL Box–Cox 222 238 1422 

Days (multi-step-ahead 

forecast) 

LMM logs 428 398 2156 

LMM Box–Cox 412 342 2082 

ADL logs 389 424 2758 

ADL linear 274 258 1901 

ADL Box–Cox 334 292 1807 

Weeks (one-step-ahead 

forecast) 

ADL logs 276 439 1619 

ADL linear 211 190 1263 

ADL Box–Cox 228 187 2134 

Notes:  the boldface and underlined boldface numbers are the smallest RMSEs per panel and 

column. 
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Table 8: 

Forecast performances, in terms of root mean squared prediction errors of MIDAS 

specifications. 

  Dataset 

Frequency Model 1 2 3 

  Forecast horizon: days ahead 

Days (one-step-ahead 

forecast) 

MIDAS log 71.1 63.7 401 

MIDAS linear 60.5 47.0 412 

MIDAS Box–Cox 60.7 50.2 450 

 Forecast horizon: weeks ahead 

Days (multi-step-ahead 

forecast) 

MIDAS log 459 448 2611 

MIDAS linear 282 278 2290 

MIDAS Box–Cox 356 343 1892 

Weeks (one-step-ahead 

forecast) 

MIDAS log 216 381 3327 

MIDAS linear 232 164 3555 

MIDAS Box–Cox 208 273 3424 

Notes:  the boldface and underlined boldface numbers are the smallest RMSEs per panel and 

column. 

 



 

28 

 

 

 

 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

W
e

e
kl

y 
In

co
m

in
g 

C
al

ls

Week Number

Data Set 1 Data Set 2 Data Set 3
 

Figure 1: Weekly incoming calls. 
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Figure 2: Average numbers of calls in weeks with and without commercial activity. 
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