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INTRODUCTION

In this paper, we study induction and coinduction from invariants
(Section 2) or semivariants (Section 3) for an algebra A that is an
H-module algebra for a Hopf algebra H. We restrict our attention to finite
dimensional Hopf algebras and in fact usually even to the semisimple case.
When A4 is an H-module algebra we let A” denote the subalgebra of
H-invariants and 4 # H is the smash product. In Section 2, the induced
{Ind) and coinduced (Coind) functors from 4”-mod to A4 # H-mod are
studied. The main result in Section 2, Theorem 2.1, provides an analogue of
Theorem 1.1 of [ N] stating that these functors appear in adjoint pairs. In
a particular case such a result was known for the induced functor, cf.
[D2, DT]. We include some applications of this result. The coinduced
functor is then used for describing injective envelopes in 4 # H-mod and
for establishing links between the endomorphism ring of a simple
A # H-module and the endomorphism ring of the homogeneous com-
ponents of its semi-invariant subspace.
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The consideration of semi-invariants is the topic of Section 3. Here we
connect Hopf algebra results to results and techniques from graded ring
theory. First we have to rework in Theorem 3.1 the statements of
Theorem 2.1 for induction and coinduction from semi-invariants.

1. PRELIMINARIES

Let H be a Hopf algebra over the field £, and 4 an H-module algebra.
The notation is that of [S]. For a summary of basic properties, see [CF1].
S will denote the antipode of H. Its composition inverse (when it exists)
will be denoted by S. The comultiplication map is 4 and the augmentation
map &. We denote for each he H

A(h)=2(h) h(1;®h(2)-

If R is a ring, then R-mod will denote the category of left R-modules. If
R=@®,.c R, is a G-graded ring (G is a group), then R-gr will denote the
category of left graded R-modules. If 4 # H denotes the usual smash
product then we have the following:

1.1. Remark. A k-vector space M is an A # H-module if and only if M
is a left H-module and a left 4-module such that

Assertions (i) and (iii) of the following result are Lemma 1 of [C]. The
proof of (ii) and (iv) is similar.

1.3. LEeMMA. Let H be a Hopf algebra, A an H-module algebra, and
MeA # H-mod. For any a,be A, he H, me M, we have:
(@) (ha)b =T, ha La(S(he))b)];
(ii) (ha)m= Z(h) h(l)[”(s(h(z))m)]
If S is bijective, then

(iii) a(hb) = Z(h; h(Z)[(g(h(] ))a)bl

(iv) alhm)=2 ko) [(S(h))a)m].
If H is finite dimensional, then G = Alg(H, k), the set of grouplike elements
of H*=Hom,(H, k), is a finite group under the convolution product. For
o € G, we denote by 6 the convolution inverse of 6. The unit element of G is &,
the augmentation map. If A is an H-module algebra and M e A # H-mod,
we put for each A€ G,

A;={ae A:ha=i(h)a, forallhe H},
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and, similarly
M,={meM:hm=i(h)m, forallhe H}.

Note that 4, (resp. M,) is the subalgebra (resp. subspace) of invariants,
usually denoted by A" (resp. M*). The set ;. A, (resp. U o M) is
called the set of H-semi-invariants of A (resp. M).

The following is Lemma 3.9 of [BCM ], with the obvious analogues for
A # H-modules added:

Lemma. (i) If A, ueG, then A;A,c A;, and A, M, cM,,.
(1) Thesums Y ;. cA,and Y, o M, are direct.

Thus, S,=3,.54, is a G-graded ring, called the semi-invariant
subalgebra of A, and S,,=3,.,M, is a graded S, ,-module, called the
semi-invariant subspace of M. Since ¢ is the unit element of G, M, is a left
A"-module for each AeG. It is obvious that if M and M’ are
A # H-modules, and f: M > M’ is A # H-linear, then f(M )< M/, for all
4+€G. Thus we have a functor S ,: 4 # H-mod — S ;-gr, sending M to
Syr; obviously, S, _, is a left exact functor. For each o€ G, we also have a
left exact functor (—),: A # H-mod — 4%-mod, sending M to M.

We now define the suspension functors as in the graded case. Let g€ G,
and define

T,:4A # H-mod - A # H-mod

in the following way: for Me 4 # H-mod, let T {M)= M as A-modules,
and with H-module structure given by h-m=3%, 6(hy) hoym It is
straightforward to check that T, is a functor. We have the following:

1.5. LemMma. (i) T,-T,=T,,;

aT
(i) T,=1,4Hmod>

(ili)y T, is an isomorphism with inverse T .

Proof. (i) If Me A # H-mod, the H-module structure on 7,(7(M))
is given by

h-m=F ) 6(ha) hay-m=2 ) 6(ha) Tha) hyym
= Z(h) (fﬁ)(h(z)) h(l)m = Z(h) (?ﬁ)(h(z)) h(l)m9

which is the H-module structure on 7, (M).
Part (ii) is obvious and (iii) follows from (i) and (ii).
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Now for each A€ G, we define @,: H— H by &,(h)=3,, A(h,,) h, for
all he H. By Lemma 3.11 of [BCM ], we have that:

I. &,(h)=®,(h)P,(), for allh, e H,
II. &,(1)=1,
(II1) @,,(h)=D;(D(h)), for all he H;
(IV) @.(h)=h, for all he H.

We can also define ¥,: H— H by ?’A(h)=z(h)h(,,):(h(2,), for all he H. It
is obvious that it has properties (I)-(IV) too (only in (III), ¥, (k)=
W,(¥(h))).

We will say that xe H is a left (resp. right) A-integral (leG) if
hx = A(h)x (resp. xh=A(h)x) for all he H. Then an ¢-integral is what is
usually called an integral. The following will be useful in Section 3.

1.6. LEMMA. If H is finite dimensional and semisimple, let t € H denote
the left and right integral of H such that &(t)=1 and S(t)=1t (see

[S, p. 103]). Then for each A€ G, the elements e, =®;(1)=2, A1) 12
and t;=¥,(t)=2, t4,A(t;)) have the following properties:

(1) e, and t,; are left and right A-integrals such that A(e;)= A(t;)=1;
in fact e; =t for all e G. However, we will preserve the two different nota-
tions in order to allow the reader to recognize which one of the two formulas
was used,

(ii) if ueG, then ®,(e;)=e,,; and ¥ (1;,)=1,,;
(iii) S(e;)=1; and S(t;)=e;.

Proof. (i) Let he H Then

he;=h®;(1) =P (h) D,(1)=P,(P(h)) P,(t) =P;(P(h)1)
=@ (X Alhy) b)) ) = P(e(Z ) Alhy) ha))?)
=@, (X Alh)) elh)) 1) = P (A(h)t) = A(h) D(t) = Alh) e;.
The other assertions are proved in a similar way.

Let us prove now that e; =1, for all AeG. Let 1€ G. Then it may be
easily checked that u=3% . A(¢;)) t(z)i(tm) is an integral such that
e(u)=¢(t)=1. If follows that u=1, and applying &, to both sides yields
that t;_=€,1.

(ii) This is clear from

(Du(ei_) = ¢;1(¢A(’)) = ¢/d(t) = e;z)'
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(iii) By 4.0.3 of [S, p. 817, we have that A(S(h)) = A(h) for all he H.
Then we have

S(e;)=S(D(1))=S(X(, M) 1)) =Ty At 1)) St 2))
=X MS(t1y) S(ta)) = Pi(S(t)) = Pi(1)=1t;.

The other assertion is proved in a similar way.

2. INpucTION AND COINDUCTION FROM INVARIANTS

Let H be a finite dimensional Hopf algebra and 4 an H-module algebra.
If A% denotes the ring of invariants of A, recall that for all ceG=
Alg(H, k), (—),: A # Hmod - A”-mod is a left exact functor taking
MeA # H-mod to M.

Consider Ne A”-mod. Then Ind(N)=A® ,» N has an 4-module and
H-module structure given by u(a®n)=ua@n where ue A orue H, ac A,
neN. It is easy to see that Ind(N) is an 4 # H-module, and Ind:
A"-mod — A4 # H-mod defines a functor, called the induced functor. Now
if Ne A%-mod, we put

Coind(N}=Hom ,x(A4, N)

endowed with a structure of A-module by putting (af }(b) = f(ba), for
a,be A, feCoind(N), and with a structure of H-module by putting
(A )(b)= f(S(h)b) where he H, be A, fe Coind(N) (recall that S denotes
the composition inverse of the antipode, which exists since H is finite
dimensional). Let us check that Coind(N) is an 4 # H-module. Only
condition (1.2) needs to be checked. If he H, a, be A, fe Coind(N), then we
have

LA(bf)1(a) = (bf }(S(h)a) = f1(S(h)a)b) = (X4 Sth))lalh,,b)])
(we applied Lemma 1.3(i) at the last step). On the other hand

Z(}.; (hm)b)(h(z)f)(a) = Z(h) (/1(3,‘/')(51(/1(1,[7)) = Z(hlf(g(hm)[a(hmb)])-

Now if u: N— N’ is A" linear, then we define Coind(u): Coind(N)—
Coind(N') by Coind(u)(f)=u-f. Clearly Coind: A”-mod — A # H-mod
defines a functor, called the coinduced functor.

The main result of this section is the following:

2.1. THEOREM. Let H be a finite dimensional Hopf algebra and A an
H-module algebra. Then the following assertions hold for any ceG=
Alg(H, k), the set of grouplike elements of H*:
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(a) the functor T;-Ind is a left adjoint of the functor (—), (recall
that & is the convolution inverse of ¢);

(b) if H is semisimple then the functor T;-Coind is a right adjoint of
the functor (—),. Moreover (— ) o TzoCoind =1 4u 0q-

Proof. (a) Let Med # Hmod and Ne A”-mod. We define the
functorial morphisms

a:Hom , , y(T;(A® 4u N), M) - Hom #(N, M)
B :Hom #(N, M,) - Hom , , ;(T;(A® 4 N), M)
as follows. If ue Hom , 4 4(T;(A® 44 N), M) and ne N, we put
a(ul(n)=u(l®@n).
We show that a(u)(n)e M,. Let he H. Then
h-(a(u)(n))=h-u(1@n)=uth-(1@n))= u(Z(h) G(ha)) h(l)(l ®n))
=u(Xnolh) hoy - 1@ n))=u(Xw olhe))elhy) 1Qn))
=u(o(X ) ho)elh())(1 @ n)) =u(a(h)(1 ®n))
=a(h) u(1 @n)=a(h)(x(u)(n)).

It is clear that o(u) is A"-linear.

Now if ve Hom (u(N, M), we put fi(v)(a® n)=av(n). Since it is easy to
check that fB(v) is A-linear, let us check that it is H-linear. Let he H. We
have

Ble)h-a®@n)=Bw)Xn olha)h,a@n))
= Z(h) U(h(z))(h(ua) v(n)= th) (h(l)a) U(h(Z)) v(n)
=Y m (haya)lhyv(n)) = h(av(n)) = h(B(v)(@a @ n)).
Now
a(B(v))(n)=Bw)(1@n)=lv(n)=1v(n)
and
Bla(u)a®n)=ax(u)(n)=au(l ®n)=u(a®n),

hence o and f are inverse one to another.

{b) Since H is finite dimensional and semisimple, we let, for each
g€ G, t, denote the g-integral, as in Lemma 1.6.
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Let Me A # H-mod, Ne A”-mod. We define the functorial morphisms
7 :Hom , , (M, T;(Hom 4#(4, N))) > Hom (M, N)
0 :Hom #(M,, N)—- Hom, , 4(M, T,(Hom 4(A4, N)))

as follows. If ue Hom , , (M, T;(Hom 4«(A4, N))), then we put y(u)(m,) =
u(m,)(1) for m,e M. It is easy to see that y(u) is 4“-linear.

Now if ve Hom ,#(M ., N), we put d(v)(m)(a)=v(t,(am)) for me M,
acA. It may easily be checked that 8(v)(m) is A“-linear, since v is
A¥-linear and the elements of 4 commute with elements of H, and that
d(v) is A-linear. Let us show now that d(v) is H-linear. Indeed, if A€ H then
o(v)(hm)(a) = v(t,(a(hm))), and

[A-(d(v)(m))](a)= Z(h) U(hm) 5(”)(m)(§(h(1))a)
=Y 0(h2) v(2,((S(h))a)m))
= 0( ) t.0(h) J(S(h())aym))
= U(Z(h) lah(Z)((S_(h(l))a)m))
=v(t,(a(hm))),

by Lemma 1.3(iv).
Now

Y0 (my)=o(v)(m,)(1) =v(t,m;) =v(a(1,) m,) =v(m,),

and

o(y(u))(m)(a) = y(u)(t,(am)) = u(t,(am))(1) = (¢, - u(am))(1)
=X (1) 0L ulam)(S(t,,)) - 1) =3, 0(t,,,) ulam)(e(t,,) - 1)
=0(t,) u(am)(1) = u(am)(1) = (au(m))(1) = u(m)(a),
therefore y and 6 are inverse one to another.

We now prove the last part of the statement. If Ne A”-mod, then we
have the canonical morphism of 4*-modules

@ :[T;(Hom (A4, N))], > N

defined by @(v)=10v(1,).
If #, denotes the o-integral as in Lemma 1.6 and if ¢ is the idempotent

in the integral of H, then recall that 1, =%, d(ty) ¢ty If ve
[T,(Hom 4u(A, N})],, then

t,-v=0(t,)o=u,
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thus if ae A, we have

v(a)=(t,-v)a)= (Z(r) 0'-([(2)) Loy U)(a)=2(,) 0—'(’(3)) G(t(z)) U(g(t(l))a)
=Zu) 3(‘(2)) v(g(t(l))a) = v(§(t)a)= v(ta) = (ta) v(1),

so @ is injective. Let ne N, and put v(a) = (ta)n for each ae A. It is obvious
that v is A”-linear, and if he H, then

(h-v)a)= Z(h) U(h(z)) U(g(h(l))a) =Z(m G(h(z))(ts—(h(”)a)n
=2 ny 0(h Wte(hyy)a)n = a(h)(ta)n = a(h) v(a).
On the other hand v(1)=n, hence @ is surjective too.

2.2. Remarks. (1) Assertion (a) from Theorem 2.1 was known in case
oc=¢ from [D2, DT]. We note that in this case the result is much more
general: £ does not need to be a field, H is arbitrary.

(2) From assertion (a) we obtain that for all ¢ € G, the functors (—),
and (—),oT, are isomorphic, since they are both right adjoints of the
functor T;oInd. Thus, it would have been enough to prove assertion (b)
only for e =e¢.

(3) In case (b) (ie., if H is semisimple), then we also have that
(—),°T;0Ind =1 »-mod, since by [CF2, Proposition 1.4], 1 s-mod=
(—).cInd and it follows that 1 ,mod=(—),oT,oT;oIndx=(~),0
T;-Ind.

We now establish some applications of Theorem 2.1.

2.3. COrROLLARY. (i) Suppose that H is finite dimensional, and that
AJA" is right H*-Galois (see [CFM ] for the definition; we will also say that
A" < A is a Galois extension). Then Ind induces an equivalence from a
quotient category of A¥-mod to A # H-mod.

(ii) If H is finite dimensional and semisimple, then A"-mod =
A # H-mod/ ¢, where # is a localizing subcategory.

Proof. (i) By Theorem 1.2 of [CFM, 2(b)], 4 is a projective finitely
generated right A%-module, hence A4 is flat as a right 4”-module. From
Theorem 1.2 of [CFM, 5] it follows that Ind o( — )7 =1, , j.moq- Note that
this isomorphism is exactly the functorial morphism associated to the
adjoint pair Ind, (—)”. By a well-known result of Gabriel (see [G,
Proposition 5, p. 374; Fa, Proposition 15.18]), and since Ind: A#-mod —
A # H-mod (which is an exact functor) has a right adjoint (—)” (by
Theorem 2.1(a)), and Ind o(— )" =1, 4 sr.moq, it follows that Ker(Ind)=
{NeA”-mod: A® 4 N=0} is a localizing subcategory of 4#-mod, and
A%-mod/Ker(Ind)= 4 # H-mod.
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(ii) By Theorem 2.1(b), (—}*"=(—),: A # H-mod — A”-mod, which
is an exact functor, has a right adjoint Coind, and (—)”-Coind =1 4n,,4-
By the result of Gabriel referred to above, A”-mod~ A4 # H-mod/#,
where

J=Ker(—)"={MeA # H-mod: M¥ =0}.

2.4. Remarks. (1) Assertion (i) of the above corollary may be derived
at once from 2.14 of [DT].

(2) Theorem 2.2 of [CFM] states that if 4/47 is right H*-Galois
and A has an element of trace I, then A* and 4 # H are Morita equiv-
alent. Assertion (i) of Corollary 2.3 shows what happens if we drop the
condition “A4 has an element of trace 1.” Moreover, by [KT] (see also
[CFM, Lemma 2.1(4)]), A has an element of trace 1 il and only if 4 is
faithfully flat over 4" (in the Galois case) so the above mentioned result
follows at once from Corollary 2.3(i), and the equivalent conditions of
Theorem 2.2 of [CFM] are equivalent to “Ind: A”-mod — 4 # H-mod is
an equivalence of categories.” We also remark that under the hypotheses of
Theorem 2.2 of [CFM] we obtain for each o€ G an equivalence between
A # Hmod and A“-mod, namely (—),, with inverse T,<Ind. In
particular, if Me A # H-mod, 6 e G, M,=0, then M =0.

(3) Let H be semisimple finite dimensional and A4/4" right
H*-Galois. Then 4 has an element of trace 1, so 47 and 4 # H are
Morita equivalent (see also [CFI, Theorem 4]). Corollary 2.3(ii) shows
what happens if we drop the Galois condition. Again the result may be
retrieved directly to Corollary 2.3(i1), since if the extension is Galois, then
M=A® uM" for all Me A # H-mod, so Ker(— )" =0.

2.5. COROLLARY. If H is finite dimensional and semisimple, and A/A" is
right H*-Galois, then Ind = Coind.

Proof. By Theorem 2.1(b), (— )"+ Coind =1 4u,,q. But Indo(— )" =
1 4 4 Hmod» SInCE the extension is Galois, so the result follows.

We finish this section by listing some applications of the coinduced
functor. The first result is a Hopf algebra version of Proposition 1.1 of [N].

2.6. PROPOSITION. Let H be finite dimensional and semisimple. By
Theorem 2.1(b), for each M € A # H-mod we have a functorial morphism of
A # H-modules

v(M): M - T,(Coind(M,)),

where v(M)(m)(a)=1,(am), for me M, ae A, and where t, is the a-integral
as in Lemma 1.6. Then Tm(v(M)) is an essential submodule T ,(Coind(M )).
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Proof. Let fe T;(Coind(M,)), f#0. Then there exists ae A such that
f(la)#0 and f(a)=xe M,. We have that
VIM)(x) (@) =t,(ax) =}, (15,6(t,5, ))x = (¥5(1,)a) f(a)
= (t,,0) f(a) = (t2) fla) = f((tx)a) = (af )(ta) = (af (S(1)2)
= (af)(g(Zu,) tamo-(to'(z,))a} = Z(l,,) O.(ta'm)(af)(g(tau,)a)
=(t, - (af))(a),
thus ¢, - (af') € Im(v(M)). On the other hand ¢, - (af) # 0 since
t,-(af M(1) = (@ (11 ) = (af (1 ) = f(a) = x 0.

Now we can use the Coind functor to describe injective envelopes in
A # H-mod, as in Section 1 of [N].
If H is finite dimensional and semisimple, and o € G = Alg(H, k), we put

€,={MeA# H-mod: M,=0}.

Since (—), is an exact functor, it follows that %, is a localizing subcategory
of A # H-mod. We will say that M e 4 # H-mod is o-faithful if 7 (M) =0,
where 1, is the torsion radical associated to the localizing subcategory €,,.
By Remark 2.4, if A/A" is right H*-Galois, then M is o-faithful, for all
ceG(Me A # H-mod).

The following is an immediate consequence of Theorem 2.1. The proof is
the same as the proof of Corollary 1.1 of [N].

2.7. CoROLLARY. The following assertions hold if H is finite dimensional:
(i) if H is semisimple and N is an injective A”-module, then Coind{N)
is an injective A # H-module;
(ii) if A is flat as a right A"-module, and M € A # H-mod is injective,
then M, is an injective A"-module for each o € G.

The proof of the result is a mere transcription of the proofs of
Corollaries 1.2, 1.3, and 1.4 of [N], but we repeat it for the reader’s
convenience.

2.8. COROLLARY. Let H be finite dimensional and semisimple. Then the
Sfollowing assertions hold
(i) if Qe A # H-mod is injective and o-faithful, then Q is injective

over A7, and

Q= T,(Coind(Q,));
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(il) if Me A # H-mod is o-faithful, then
E 44 (M)=T;(Coind(E (M ,)))

(here E(X) denotes the injective envelope of the S-module X);

(ili) i Y e A # H-mod is simple, then if 3., #0, 3. is o-faithful, and
in this case

E, 4 u(2) = T,(Coind(£ 44(3,)))-

Proof. (i) We show that the canonical morphism v(Q):Q—
T,(Coind(Q,)) is injective. Indeed, if x, e Ker(v(Q)),, then v(Q)(x,)=0,
hence

v(Q)x ) =1t,x,=0(t;) x,=x,=0.

Thus Ker(v(Q)),=0, and Ker(v(Q))e%,. Consequently Ker(v(Q))c<
1,(0)=0, and v(Q) is injective. By Proposition2.6, v(Q) is an
isomorphism.

Let us show that @ is injective over A”. If E(Q,) = E ,#(Q,), then, since
Coind is left exact, we have the monomorphism Coind(Q,)— Coin-
d(E(Q,)). But Coind(Q,) = T,(Q) as we just have shown, hence Coind(Q,)
is an injective 4 # H-module. Therefore, Coind(Q,) has an A # H-
complement in Coind(E(Q,)), le.,

Coind(E(Q,))= Coind(Q,)® X
for some Xe A # H-mod. Thus
E(Q,)= Coind(E(Q,))" = (Coind(@, )" @ X" =0, ® X".

But E(Q,) is an essential extension of Q,, so X" =0, hence Q,= E(Q,)
and @, is injective over 4”.

(i) Since the class of torsion free modules is closed under injective
envelopes, it follows that FE,, ,(M)= T(Coind((E 4 4{(M)),)), and
(E 4 4 n{M)), is injective over A”. Since E, , (M) is o-faithful, M, is an
essential 4”-submodule of (E, , 4#(M)),, hence

E (M) =(E 4 n(M)),.

(iii) Since Y, #0, then 1,(3)#0, otherwise 3 =1,3), and >, =0,
a contradiction.

We end this section by some remarks on Clifford Theory. First, we have,
as in the graded case, the following:



HOPF ALGEBRAS 215

29. CorROLLARY. Suppose H is finite dimensional and semisimple and let
> € A # H-mod be a simple module. Let 6 € G be such that Y., #0. Then the
Jollowing assertions hold.

(i) 3, is a simple A™-module;
(i1) End,w(3,)=End, , 4(3).

Proof. (i) Letxe} ., x#0. Then Ax is a non-zero 4 # H-submodule
of ¥, so Ax=Y. It is clear that A¥x<Y . Conversely, let ye Y . Then
y=ax for some ae A. If ¢, is the o-integral from Lemma 1.6, then it may
be easily seen that y=1_y=t,(ax)=(ta)xe A¥x, so A¥x=3,.

(i) The proof is identical to the proof of [GN, I3], and it goes as
follows: since S is o-faithful, we have an essential monomorphism

0-3Y — T'y(Coind(3,)).

Let @:End, , 4(3))— End (3 ,) be the morphism given by &(f)=f"=
Ns, 1 f,geEnd, 4(>) such that /=g let xe > ,, x#0. Then 3 = Ax,
so for all y e there is an ae A4 such that y=ax. Hence f(y)=af(x)=
ag(x)=g(y), ie, @ is injective.

Now, for 0# he End #(3,), we take ke End , , ,(T;(Coind(¥,))) to be
the natural image of 4. In order to show that @ is surjective, it is enough
to show that A(Y)< Y (in this case ®(h)=h). We have the following
situation: Y is an essential extension of X, X is simple, and u is an
automorphism of Y. We want that u(X)< X, but that is clear, and the
proof is complete.

Let now Y € 4 # H-mod be a simple module, and denote by
Mod(4|Y)={XeA-mod |3 - X -0}

the full subcategory of A-mod consisting of all 4-modules which are
Y -generated. The Direct Clifford Theory (see [Da]) is an equivalence of
categories between Mod(4 | X°) and End (3 )-mod. Trying to prove this in
our case turns out to be difficult from the very beginning, since (unlike the
graded case) it is not clear at all whether Y is semisimple over A¥. Adding
an extra condition may make things trivial. For example, if we require the
action of H on A4 to be inner, then 4 = A4 # H is a centralizing extension,
so Y. is semisimple over A, like all objects of Mod(4 | 3). Then it is clear
that Y is a small projective generator in Mod(A4 | Y).

3. INDUCTION AND COINDUCTION FROM SEMI-INVARIANTS

Let H be a finite dimensional Hopf algebra and 4 an H-module algebra.
Throughout this section, G will denote the group of grouplike elements of

481/165/1-15
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H* G=Alg(H, k), Sy= @ . A, the ring of semi-invariants of 4 which
is a graded ring of type G, S ,-gr the category of left G-graded S ,-modules.
We will denote by S, ,: A4 # H-mod—S,-gr the functor taking
Me A # H-mod to the module of semi-invariants S,,= @ ,.s M;, which
is a left exact functor.

If Ne S -gr, N= @ ;. N, then we define the 4 # H-module induced
by N as follows: IND(N)= A4 ®jg, N, which becomes an 4 # H-module if
we put

bla®@n)=ba®n and ha®n;)=3 ., Aha) hya®n,,
where a, be A, ne N, he H, and n,e N;,. We have
T (hgya)hoy(b®@n,)) =2, (hya) Alhy) hp)db®n;

= Z(h) i(hm) h(l)(ab) ®n,
= h(ab®n;)=h(a(b®n,))

and hence IND(N) is an A4 # H-module. Clearly IND:S -gr—
A # H-mod defines a functor.
The coinduced A # H-module by Ne S ,-gr is defined as

COIND(N) = Homyg (4, N)

which becomes an A4 # H-module if we put for q,be 4, he H and fe
Homg (A4, N),

(af)(b)=f(ba); (hf)(b)=2).ec [f(Z(h) g(h(l)) l(h(z))b)] i

(recall that if ne N, then n,e N, is the homogeneous component of n of
degree A). If ge H, then

[(h(g/NB)]),= [f(Z(hj,(g) S’_(g(“) g(hm) l(h(z)) l(g(z))b)]z
= [f(z:(h)‘(g) g(h(l)g(l)) A(h(Z)g(Z))b)]A
= [((hg)f)(b) ],

for all AeG.
Now if he H, a, be A, fe COIND(N), then we have

(RN a) =T co LS (X Sthy) Alhp))a)b)];
=2ieG [f(Z(h) /l(h(s)) g(hm)(a(hu)b)))h



HOPF ALGEBRAS 217

(by Lemma 1.3(i)). On the other hand,

Z(h) ((h(nb)(h(z)f))(a)=21h) (h(z)f)(a(h(l)b))
=36 [f(Z(h) g(h(z)) l(h(s))(a(hmb)))]z,

so COIND(N) is an 4 # H-module. Clearly COIND: S, — A4 # H-mod

defines a functor.
The main result of this section is the following analogue of Theorem 2.1.

THEOREM. Let H be a finite dimensional Hopf algebra and A an
H-module algebra. Then the following assertions hold:

(1) IND is a left adjoint of the functor S _,;
(2) if H is semisimple, then COIND is a right adjoint of S _,.
Moreover,

S(-)cCOIND =1 .,
and
S, IND=1g, ..

Proof. (1) If MeAd # Hmod and NeS,-gr, N=@,.c N,, we
define the functorial morphisms

a:Hom, , ((A®s, N, M)—-Homg, , (N, Sy)
B :Homg, ,(N, Sy )— Hom, , /(4®;, N, M)

as follows. If ue Hom, , 4(A®s, N, M) and neN,, we put a(u)(n,;)=
u(l1®n;). Let us check that «(u) is a morphism in S,-gr. First,
u(1®n;)e M, because if he H, then

h(1@n,)=uh(1@n,;))= “(Z(h; }-(h(z)) h(ul ®n;)

= ”(Z(},J '{(h(z)) 8(h(1)) 1®n;)= M(A(Z(h) h(z)s(hm)) 1®n;)
=u(A(h) 1@n;)=Ah)u(1®n,).
It is clear that a(u) is S ,-linear.

Now for ve Homg, (N, S)), we put B(v)(a®n;)=av(n;), for ae A4,
n;e N;. It is clear that (v) is A-linear. Let us show that it is H-linear too.
Take he H. We have that

Bv)(h(a®n;))= ﬂ(v)(Z(h) ']v(h(z)) hi,a®n,)
= Z[h] }h(h(z))(hu]a) v(n;)= Z(h) (hu)a)(hqz) v(n;))
= h(av(n;))=h(B(va®n,)).
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Now
a(B(o))n;)=P)A®@n,)=1-v(n,)=1v(n;)
and
Bla(u)a®@n,) = aa(u)(n;) = au(1 @ n;) =u(a @ ny),

hence o and f§ are inverse to one another.

(2) Since H is semisimple, let for each A€ G, e; (ort;) denote the
A-integrals as in Lemma 1.6. Recall that e, =¢, =1, the idempotent in the
integral of H. Let M e A # H-mod, Ne§,-gr, N=@ ,.s N, and define
the functorial morphisms

y : HomA # H(M3 HomSA(A’ N)) - HomSA-gr(SM’ N)
é:Homg, . (Sy, Ny—Hom ,, ,(M, Homg (A4, N))
as follows. If we Hom , , 4(M, Homg (A, N})), then
y(u)(m,) = [u(m;)(1)]1;

for each m ;e M. Let us show that y(u) is a morphism in S ,-gr. Let
a,€A,. We have

yula,m;) = [ula,m;)(1)],, = [(a,u(m;)(1))]1,, = [ulm;)(a,)].;
= [a (u(m,;)(1)]1,; = a,[u(m;)(1)]; = a,y(u)(m,).

Now if ve Homg, . (S),, N}, we put [d(v}m)(a)],=v(e,{am)). It is easy
to see that d(v) is A-linear. Let us show that it is H-linear. Let he H. We
have

[o(v)(hm)(a)]; = vie (al(hm)))
and
[(R(v)(m)(a)]; = [o(e)(m)Z 4 S(h)) Ahz))a)];
=v{e;((Xm §(h(1)) i(hm)a)m)).
But
ei(a(hm)):ei(z:(h)h(2)[§(h(l))a)m]):2(h)e&’{(h(Z))(s(h(lj)a)m
(we used Lemma 1.6(ii)), therefore
d(v)(mia,a)=3;cc [o(v)(m)(a,a));=2;cc a,[d(v)(m)(a)l,;
=a,3 ;¢ [6(v)(m)(a)])s, = a, 6(v)(m)(a).
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Now
P(6(v))(m ) = [6(v)(m;)(1)]; = v(e;m,;) = v(A(e;) my) = v(1m,;) = v(m,),
and, on the other hand,
[6(y(u))(m)(a)], = y(u)(e,(am)) = [u(e,(am))(1)]; = [(e;u(am))(1)];
= [u(am)(T ., S(e,,,) Aes,) - 1)1s
= [u(am)(T ;) Me,,,) e(S(e,))) - 1)1a
= [ulam)(A(X (e €apy8les,) - 1)1,
= [u(am)(i(e;)-1)]; = [u(am)(1)],
= [au(m)(1)], = [u(m)(a)];,

hence y and é are inverse to one another.
If Ne S ,-gr, we have the canonical morphism in S ,-gr

b SHomsA(A,N)—'N

given by @(v;)= [v,(1)], for v, € Homg (4, N),. Since v; e Homg (4, N),,
i ;=2 tnAlty) is  the A-integral of Lemma 1.6, then
L, =At) v, =v;.

Thus, for ae 4 we have

vi(a)= (v, (@) =2 6 [Vi(X 0y Sty ult5)) Al23))a)],
= Eyec; [U).(Zu) g(t(l)) .U):(t(z))a)]u
=2 ec [UA(E(tm)a)]u
=Y, cc[vile, a)], (by Lemma 1.6(iii))
=2 uea [vile)a) vi(1)],
=Y o (eu@v,(1) ],
=2 uea (e a)v,(1)],,

hence @ is injective. Now if ne N,;, we put v,(a}=3 s (e, a)n. Ifa, e 4,,
we have

vi(a,a) =2, cq (e (aza))n
=Yuec L2, oley,) asle,,a)]n
=2 e La,(Psle,)aln
=2 ,ec Lasleza)]n
=a,(X,ec (e, a)n)

= aav).(a)s
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then v, e Homg, (A4, N). If he H, then

L )a) ], = [0 Stha) plh) @), = Tez T, Sthiy) wlhe)aln
= [Zn €uitth(S(h,))) ulhay)aln
= [ e diith)) plhey)aln
= (e zA(h)ayn=A(h)(e 1a)n=A(h)[v:(a)],,

so v,e Homg (4, N),. Moreover [v,(1)],=(e;;1)n=(el)n=(t-1)n=
(e())n=1.n=n, so @ is surjective too.

Finally, let us prove the last statement. For al Ne S ,-gr, we have the
canonical graded morphism of S ,-modules

Y’:N—*SA@,SAN
given by

Y(n,)=1@n,
forall n,e N,. Now if a®@ne(4A®g, N),, then

a@n=t,a@n)=1,(3;cca®n,)=3cc1,(a®@n;)
=3ec Vilt,)a®@n, =%, ,;a®n;
=25ec 1@ U1a)n,=1®%;c¢ (t,:a)n;.
Thus we define ¥’ SA®SAN—>N by
Y(a@n)=% e (t;5a) €N,

fora®ne(A®s, N),. It is now easy to check that ¥ and ¥’ are mutually
inverse. Being the inverse of a bijective S ,-linear map, ¥’ is S,-linear.

3.2. CoROLLARY. If H is finite dimensional and semisimple, and A is an
H-module algebra, then S _, induces an equivalence of categories between
A # H-mod/Ker(S_)) and S, # kG*-mod.

Proof. Since S_, is exact, A # H-mod/Ker(S._,) is equivalent to
S ,-gr by the result of Gabriel referred to in the proof of Corollary 2.3(i).
On the other hand, S ,-gr is isomorphic to S, # kG*-mod by Theorem 2.2
of [CM] or by Proposition 1.2.

Remarks. As the referee kindly pointed out, if we add to the hypothesis
of Corollary 3.2 “4/4" is H*-Galois,” then we obtain that S, is a strongly
graded ring. This is a particular case of Remark 3.11(2) of [Sc] and also
a generalization of Ulbrich’s result [U] which states that a ring graded by
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a finite group is strongly graded if and only if it is a Galois extension (in
the Hopf algebra sense) of the part of degree 1. Perhaps Proposition 2.4 of
[VO] might be used in conjunction with this to prove results on finiteness
conditions for Galois extensions in the semisimple case. We also remark
that in this case IND =~ COIND.
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