Universiteit
Antwerpen

This item is the archived peer-reviewed author-version of:

Closed form evaluation of a class of improper integrals

Reference:

Levrie Paul.- Closed form evaluation of a class of improper integrals
The mathematical gazette / Mathematical Association [Leicester] - ISSN 0025-5572 - 103:557(2019), p. 323-328

To cite this reference: https://hdl.handle.net/10067/1621870151162165141

uantwerpen.be

Institutional repository IRUA


https://repository.uantwerpen.be

Closed form evaluation of a class of improper integrals

In the paper [1] which is part of a series of papers in a project to prove all the integrals in
the book [2], the following integral is calculated (n > 0):
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The calculation is based on properties of the gamma and the digamma function, and
Feynman’s trick of differentiating under the integral sign. In this paper we use a more
straightforward method, based on properties of self-reciprocal polynomials, a topic that I
first came across when still at school, and which isn’t very well known.

The main result in this paper relies on a closed form evaluation of the following indefinite

integral:
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This integral pops up if we rewrite (1) like this:
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where we have used the substitution t — 1/t in the second integral in the sum. Note that
both integrals in the sum converge, the first one is bounded by fol Intdt, the second one
by [/t gt
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We can write the result as a double integral:
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and if we change the order of integration we get a form with essentially the integral (2):
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To calculate the indefinite integral (2), we start by factoring the polynomial in the numer-

ator:
1= -2+ L+ P+,

The second factor is what we call a self-reciprocal polynomial (see [3]). A polynomial
p(t) = >, a;t" is called self-reciprocal or palindromic if the coefficients satisfy a; = ap,—;
for all 4. If m = 2k is even, such a polynomial can be written in the form p(t) = t*q (t + %)



with ¢ a polynomial of degree k in ¢ + %
In our case we have:
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with Fj,_1(t) = t" ' +t"3 + ... + 75 + 77, and the following theorem tells us how we
can write F,,_1(t) as a polynomial in ¢ + §:

Theorem 1. For n > 1 we have:

Foi(t) = Xn: (n " : 1) (—1)i! (t + %)MH . (3)
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Proof Note that we assume that (T]Z) = 0 if £k < 0. This theorem is an immediate

consequence of the relationship between f,, 1(t), fi(t) and f,,+1(¢) with
fult) =1+
It is easy to see that for m > 1:
o) = (£47) Fl®) = a0,
As a consequence we have that for m > 1:
Fo(t) = (t + %) Fo(t) — Fr1(t).

To prove this, use the following table:

Fy(t) =

Fi(t) = fi(t)

FEit)=1 + ft)

Fs(t) = fi(t) + f3(t)

Fyt) =1 + fot) + fal?)

F5(t) = fi(t) + f3(t) + f5(0)
Fo(t) =1 + fo(t) + fat) + f6(t)

and the fact that 1+ fo(t) = (¢ + 1) fi(t) — 1.
Note that

and



Hence (3) is satisfied for n = 1 and n = 2. Using induction and a well-known identity for
the binomial coefficients, the theorem follows easily.
We use this theorem to rewrite (2) as an integral with variable of integration u =t + %:
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leading immediately to:

Theorem 2. For n > 1 we have:
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Note that this theorem also holds for n = 0.
The same method can be applied to prove more generally:

Theorem 3. Forn >k > 0 we have:
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We are now ready to calculate the integral we started off with. We have rewritten it as a
double integral, and now use Theorem 2:
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This new integral is easy to calculate using the substitution v = tan z:
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leading to a Wallis integral, for which we know that:
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Combining all this, we get our final result:




Theorem 4. For n > 0 we have:
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Some remarks. 1. If we compare this result with the one found in [1], we get the following
combinatorial identity:
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which I haven’t been able to prove directly. But I've tried: see the next remark.

2. If you want to simplify expressions like the one above, it’s always a good idea to consult
Sloane’s On-Line Encyclopedia of Integer Sequences (OEILS) [4]. If we look for the sequence
of the numerators of A,,, which starts with 1,1, 23,11, 563,1627, ..., we immediately find
Sloane’s sequence A002549, and as it turns out, the value of the integral in Theorem 4 is
precisely the coefficient of 2™ in the Maclaurin series of the function f(z) = % Note
that this series can be found by multiplying the series for log(1 — x) with the binomial
series for \/11_7 The result is:

n

log(l—12) < , 2i — 2 1
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This doesn’t help much but leads to the conjecture that A,, can be written in yet another

way:
" (21— 2 1
A, = : .
;(¢—1>2%—1(n—z’+1)

3. It is possible to prove the equality of these three expressions using the sophisticated
machinery of Zeilberger’s algorithm, which is explained in the very nice (and freely down-
loadable) book A=B [5] and which is implemented in most computer algebra systems.
Zeilberger’s algorithm finds a linear recurrence relation for a given sequence. It turns out
that for the three sequences above the recurrence is essentially the same.
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