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Closed form evaluation of a class of improper integrals

In the paper [1] which is part of a series of papers in a project to prove all the integrals in
the book [2], the following integral is calculated (n ≥ 0):

I =

∫ +∞

0

ln t

(1 + t2)n+1
dt. (1)

The calculation is based on properties of the gamma and the digamma function, and
Feynman’s trick of differentiating under the integral sign. In this paper we use a more
straightforward method, based on properties of self-reciprocal polynomials, a topic that I
first came across when still at school, and which isn’t very well known.
The main result in this paper relies on a closed form evaluation of the following indefinite
integral: ∫

t2n − 1

(1 + t2)n+1
dt. (2)

This integral pops up if we rewrite (1) like this:

I =

∫ 1

0

ln t

(1 + t2)n+1
dt+

∫ +∞

1

ln t

(1 + t2)n+1
dt

= −
∫ 1

0

t2n − 1

(1 + t2)n+1
ln t dt

where we have used the substitution t→ 1/t in the second integral in the sum. Note that

both integrals in the sum converge, the first one is bounded by
∫ 1

0
ln t dt, the second one

by
∫ +∞
1

ln t
t2
dt.

We can write the result as a double integral:

I =

∫ 1

0

t2n − 1

(1 + t2)n+1

(∫ 1

t

1

y
dy

)
dt

and if we change the order of integration we get a form with essentially the integral (2):

I =

∫ 1

0

1

v

(∫ v

0

t2n − 1

(1 + t2)n+1
dt

)
dv.

To calculate the indefinite integral (2), we start by factoring the polynomial in the numer-
ator:

t2n − 1 = (t2 − 1)(t2n−2 + t2n−4 + . . .+ t2 + 1).

The second factor is what we call a self-reciprocal polynomial (see [3]). A polynomial
p(t) =

∑m
i=0 ait

i is called self-reciprocal or palindromic if the coefficients satisfy ai = am−i
for all i. If m = 2k is even, such a polynomial can be written in the form p(t) = tkq

(
t+ 1

t

)
1



with q a polynomial of degree k in t+ 1
t
.

In our case we have:

t2n−2 + t2n−4 + . . .+ t2 + 1 = tn−1Fn−1(t)

with Fn−1(t) = tn−1 + tn−3 + . . . + 1
tn−3 + 1

tn−1 , and the following theorem tells us how we
can write Fn−1(t) as a polynomial in t+ 1

t
:

Theorem 1. For n ≥ 1 we have:

Fn−1(t) =
n∑

i=1

(
n− i

n− 2i+ 1

)
(−1)i−1

(
t+

1

t

)n−2i+1

. (3)

Proof Note that we assume that
(
m
k

)
= 0 if k < 0. This theorem is an immediate

consequence of the relationship between fm−1(t), fm(t) and fm+1(t) with

fk(t) = tk +
1

tk
.

It is easy to see that for m ≥ 1:

fm+1(t) =

(
t+

1

t

)
fm(t)− fm−1(t).

As a consequence we have that for m ≥ 1:

Fm+1(t) =

(
t+

1

t

)
Fm(t)− Fm−1(t).

To prove this, use the following table:

F0(t) = 1
F1(t) = f1(t)
F2(t) = 1 + f2(t)
F3(t) = f1(t) + f3(t)
F4(t) = 1 + f2(t) + f4(t)
F5(t) = f1(t) + f3(t) + f5(t)
F6(t) = 1 + f2(t) + f4(t) + f6(t)

...

and the fact that 1 + f2(t) =
(
t+ 1

t

)
f1(t)− 1.

Note that

F0(t) = 1 =
1∑

i=1

(
1− i

1− 2i+ 1

)
(−1)i−1

(
t+

1

t

)1−2i+1

and

F1(t) = t+
1

t
=

2∑
i=1

(
2− i

2− 2i+ 1

)
(−1)i−1

(
t+

1

t

)2−2i+1

.

2



Hence (3) is satisfied for n = 1 and n = 2. Using induction and a well-known identity for
the binomial coefficients, the theorem follows easily.
We use this theorem to rewrite (2) as an integral with variable of integration u = t+ 1

t
:∫

t2n − 1

(1 + t2)n+1
dt =

∫
(t2 − 1)tn−1Fn−1(t)

(1 + t2)n+1
dt

=

∫
Fn−1(t)

(t+ 1
t
)n+1

(
1− 1

t2

)
dt

=

∫
Fn−1(t)

(t+ 1
t
)n+1

d

(
t+

1

t

)
=

n∑
i=1

(
n− i

n− 2i+ 1

)
(−1)i−1

∫
u−2i du

leading immediately to:

Theorem 2. For n ≥ 1 we have:∫ v

0

t2n − 1

(1 + t2)n+1
dt =

n∑
i=1

(
n− i

n− 2i+ 1

)
(−1)i

2i− 1

(
v

v2 + 1

)2i−1

.

Note that this theorem also holds for n = 0.
The same method can be applied to prove more generally:

Theorem 3. For n ≥ k ≥ 0 we have:∫ v

0

t2n−k − tk

(1 + t2)n+1
dt =

n−k∑
i=1

(
n− k − i

n− k − 2i+ 1

)
(−1)i

k + 2i− 1

(
v

v2 + 1

)k+2i−1

.

We are now ready to calculate the integral we started off with. We have rewritten it as a
double integral, and now use Theorem 2:

I =

∫ 1

0

1

v

(∫ v

0

t2n − 1

(1 + t2)n+1
dt

)
dv =

n∑
i=1

(
n− i

n− 2i+ 1

)
(−1)i

2i− 1

∫ 1

0

v2i−2

(v2 + 1)2i−1
dv.

This new integral is easy to calculate using the substitution v = tan z:∫ 1

0

v2i−2

(v2 + 1)2i−1
dv =

∫ π
4

0

(sin z cos z)2i−2dz =
1

22i−1

∫ π
2

0

sin2i−2w dw

leading to a Wallis integral, for which we know that:∫ π
2

0

sin2mw dw =
1

22m

(
2m

m

)
π

2
.

Combining all this, we get our final result:
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Theorem 4. For n ≥ 0 we have:

2

π

∫ +∞

0

ln t

(1 + t2)n+1
dt =

n∑
i=1

(−1)i

2i− 1

(
n− i

n− 2i+ 1

)(
2i− 2

i− 1

)
1

24i−3 .

Some remarks. 1. If we compare this result with the one found in [1], we get the following
combinatorial identity:

(An =)
n∑

i=1

(−1)i−1

2i− 1

(
n− i

n− 2i+ 1

)(
2i− 2

i− 1

)
1

24i−3 =

(
2n
n

)
22n

n∑
i=1

1

2i− 1

which I haven’t been able to prove directly. But I’ve tried: see the next remark.
2. If you want to simplify expressions like the one above, it’s always a good idea to consult
Sloane’s On-Line Encyclopedia of Integer Sequences (OEIS) [4]. If we look for the sequence
of the numerators of An, which starts with 1, 1, 23, 11, 563, 1627, . . ., we immediately find
Sloane’s sequence A002549, and as it turns out, the value of the integral in Theorem 4 is
precisely the coefficient of xn in the Maclaurin series of the function f(x) = log(1−x)√

1−x . Note

that this series can be found by multiplying the series for log(1 − x) with the binomial
series for 1√

1−x . The result is:

log(1− x)√
1− x

=
∞∑
n=1

anx
n with an = −

n∑
i=1

(
2i− 2

i− 1

)
1

22i−1(n− i+ 1)
.

This doesn’t help much but leads to the conjecture that An can be written in yet another
way:

An =
n∑

i=1

(
2i− 2

i− 1

)
1

22i−1(n− i+ 1)
.

3. It is possible to prove the equality of these three expressions using the sophisticated
machinery of Zeilberger’s algorithm, which is explained in the very nice (and freely down-
loadable) book A=B [5] and which is implemented in most computer algebra systems.
Zeilberger’s algorithm finds a linear recurrence relation for a given sequence. It turns out
that for the three sequences above the recurrence is essentially the same.
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