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CHAPTER 1
Introduction

1.1 Infectious diseases

In the year 165 the Antonine Plague broke out in Rome, following the return
of the Roman army from Parthia. The impact of this disease was significant
in terms of disease burden and fatalities but also in terms of disastrous effects
on the economy of the entire Roman empire. Indeed, the number of taxpayers
collapsed significantly, up to a 93% decline in some districts, as a result of many
casualties and people fleeing from the epidemic [106].

Other examples of infectious disease outbreaks, epidemics or pandemics are
ubiquitous. E.g. the Black Death in the middle of the 14th century killing an
estimated 30-50% of the European population, resulting in severe economic,
social and demographic changes during and following the years of the epi-
demic [93]. The 1918 influenza pandemic, a global epidemic, also referred to as
the Spanish flu, caused the death of an estimated 50-100 million individuals
worldwide [181].

All these examples of devastation in history have a common origin, i.e. they
are caused by an infectious disease. The World Health Organization (WHO)
defines infectious, or communicable, diseases as: “caused by pathogenic mi-
croorganisms, such as bacteria, viruses, parasites or fungi; the diseases can be
spread, directly or indirectly, from one person to another. Zoonotic diseases
are infectious diseases of animals that can cause disease when transmitted to
humans [439]”. The communicable, or transmissible, character of infectious
diseases provides public health policymakers with both assets and liabilities.
Needless to say, outbreaks require prompt interventions and, depending on
the route of transmission, can quickly result in worldwide catastrophes as
mentioned in the examples above. However, if outbreaks can be prevented or
contained through interventions, the total burden of the disease can be limited
to only a few initial cases. Under certain circumstances, the communicable
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14 CHAPTER 1. INTRODUCTION

character can even facilitate the eradication of certain diseases, when trans-
mission can be halted completely [18]. Still, to date, humankind was only
able to eradicate one human disease by vaccination. Smallpox was declared
eradicated by the WHO in 1980 thanks to an eradication program and a vaccine
with origins dating back to Edward Jenner’s findings in the late 18th century
[377]. The last natural case of smallpox had been reported in 1977 in Somalia,
while in 1978 a final case was confirmed in Birmingham after lab exposure
[246].

In developed societies demographical and epidemiological transitions have
been observed in the last centuries following the introduction of medical
technologies that prevent and treat infectious diseases. Take for instance, the
differences in the mortality and population structure by age in England and
Wales between 1891 and 1966 as described by William Jack [176]. In figure 1.1,
two observations stand out. Namely, i) people become older in 1966 than in
1891, with about 45% of the population reaching the age of 75 and above in
1966, i.e. the population ages; ii) mortality has shifted from childbirth and very
young children to older age groups, with the former category only responsible
for about 5% of the deaths in 1966, compared to 35% in 1891. Three main
health technologies contributed to these dynamics and all three link back to
the (reduced) burden of infectious diseases: i) the discovery of Penicillin (an
antibiotic) by Alexander Fleming in 1928 and widespread treatment starting in
1942 [231] ; ii) the widespread use of vaccination, first against smallpox – the
vaccine was made compulsory in England and Wales in 1853 – and followed by
vaccines against other pathogens such as anthrax and rabies [377]; iii) increased
hygiene and sanitation such as hand washing, sewerage and safe water supply
[175].

Additional and more innovative health technologies have been developed
since, yet today infectious diseases still cause a significant burden to public
health on a global scale. E.g. measles caused 110 000 deaths in 2017, even
though a safe and cost-effective vaccine is available [444]. Moreover, a lot of
the infectious disease fatalities are seen in children under the age of 5. E.g.
pneumonia caused 15% of all deaths of children under five years old, killing
over 800 000 children in 2017, followed by diarrhoeal disease killing around
525 000 children under the age of 5 each year. Furthermore, people living in
developing populations are at significantly higher risk of having severe or
fatal infection due to limited access to resources [441, 445]. Examples of recent
outbreaks are: measles outbreaks in countries that had previously eliminated
or interrupted endemic transmission [119], ebola in West Africa in 2013-2014
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[132], the 2009 influenza A/H1N1 (or mexican flu) in 2009 [55] and the 2019-20
COVID–19 pandemic [81].

Figure 1.1: Demography and epidemiology in England & Wales in
1891 and 1966, adapted from William Jack [176]
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1.2 Immunization, vaccination and vaccine hesitancy

The WHO defines immunization as: “the process whereby a person is made
immune or resistant to an infectious disease, typically by the administration of
a vaccine. Vaccines stimulate the body’s own immune system to protect the
person against subsequent infection or disease” [443]. Vaccination is one of the
most successful health interventions ever, averting between 2 and 3 million
deaths each year. Moreover, vaccination is one of the most cost-effective health
technologies ever and known to be a safe way to prevent infection in humans
and to halt or limit the spread of pathogens [443].

Vaccination is a textbook example of an externality: if an individual decides
to get vaccinated, this decision has, mostly positive, implications on others.
Indeed, vaccination is characterized by ‘herd immunity’, by which the vacci-
nation of one individual decreases not only this individuals’ own infection
risk, but also reduces the risk of infecting others, as the vaccinated individual
is no longer a potential transmission route. As such, the more individuals
get vaccinated, the lower the likelihood that a disease will spread among the
population. This means that even with a vaccine coverage below 100%, an
infectious disease can be contained or eliminated. This is illustrated in Fig-
ure 1.2. The indirect protection of unvaccinated people in a largely vaccinated
population is essential because it provides a safety net for those who cannot
receive vaccination for medical reasons (e.g. too young, immunocompromised,
pregnant), those who deliberately reject or delay vaccination or those who are
not or no longer immunized by the vaccine they received.

Herd immunity, or herd protection, complicates the decision of whether or
not to get vaccinated. As more and more people get vaccinated, the marginal
benefit to vaccinate oneself decreases. Theoretical game theory models assume
that at some point, when the marginal cost to vaccinate (expressed in terms of
either time, monetary units or perceived vaccine adverse events) exceeds the
marginal benefit, individuals will rationally refuse vaccination. The decision is
further complicated by the uncertain nature of prevention measures: people do
not know upfront when, or whether, they will contract a vaccine-preventable
disease (VPD). Moreover, vaccination is to a certain extent victim of its own
success. Regions with high vaccination coverage experience less VPD burden,
and when this occurs over a long period, individuals no longer perceive VPDs
as a reasonable threat to their health [472].

Only moments after the introduction of Edward Jenner’s cowpox vaccination in
the late 18th century, negative sentiments and false information regarding this
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Figure 1.2: In the top box no-one is immunized. As such almost
everyone gets infected by the two initial cases. In the middle box,
some individuals are immunized. However, the coverage is subop-
timal such that the disease can still spread through the population
(only immunized individuals can circumvent infection). In the bot-
tom box, almost all individuals are protected from infection, either
by immunization or by herd protection (immunized individuals can
prevent the disease from spreading to some susceptible individuals).
By Tkarcher https://commons.wikimedia.org/wiki/User:Tkarcher

and licensed under CC BY-SA 4.0 https://creativecommons.org/

licenses/by-sa/4.0.

new technique to prevent smallpox infection were spread by the anti-vaccine
movement (e.g. see Figure 1.4). Also today, the successes of vaccination are
increasingly undermined trough elevated vaccine hesitancy which was identi-
fied as one of the 10 global health threats in 2019 by the WHO [442]. Vaccine
hesitancy refers to the: “delay in acceptance or refusal of vaccination despite
availability of vaccination services” [247]. In essence, the vaccine hesitancy
continuum is anywhere between those who accept all vaccines on time and
those who refuse all vaccines (Figure 1.3) [247]. Reasons for vaccine hesitancy
and refusal originate from a spectrum of controversies, such as: refusal on

https://commons.wikimedia.org/wiki/User:Tkarcher
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0


18 CHAPTER 1. INTRODUCTION

religious grounds (e.g. in the Bible Belt in The Netherlands and Amish commu-
nities), conspiracy theories, people preferring a “natural infection” - although
this strategy being conditional on survival and at the risk of severe complica-
tions, perceived severe side-effects (e.g. the alleged, but repeatedly refuted,
link between autism and measles-mumps-rubella (MMR) vaccination [140])
and disbeliefs in vaccines’ effectiveness. The Wellcome Global Monitor 2018
revealed that only 40% of Eastern Europeans believe vaccines are safe, followed
by 59% in Western Europe - with France having the worst score, with only
two in three agreeing that vaccines are safe. In Northern Europe and Northern
America, figures are slightly higher at 73% and 72%, respectively. Attitudes
with respect to vaccines’ effectiveness were more positive with worldwide
84% who agree to some extent that vaccines are effective [131]. Another study
from 2016, that assessed vaccine confidence in 67 countries found that overall,
vaccine sentiments appeared to be inversely correlated with socioeconomic
status [217].

The current magnitude of vaccine hesitancy is at least partly attributable to
the internet and a variety of social media that have amplified the spread of
misinformation and have facilitated the creation of new online anti-vaccine
communities [214]. As such, not only pathogens spread globally in a matter
of days through ever-increasing human mobility [273], but vaccine scares and
hesitancy can propagate even faster online [214, 343]. The communicability of
both infections and vaccine hesitancy undermine hard-fought investments to
prevent, control and eradicate infectious diseases [217].

Vaccine coverage is insufficient, and falling, in many EU countries and in the
US. For example, a large pool of people in the EU are susceptible to measles
due to low historical and current vaccination coverage. Remarkably, a safe
and effective vaccine is available, that was licensed by the FDA already in 1971
[63]. Only 4 EU countries achieved a vaccination coverage of at least 95% in
2017, compared to 14 countries in 2007. These numbers are very concerning
as it causes a decline in indirect protection, or herd immunity, which plays
a central role in protecting vulnerable individuals (e.g. the very young or
immunocompromised). Unsurprisingly, measles resurgence has recently been
observed, with 44,074 cases in 30 EU member states between 2016 and March
2019 [119]. A similar trend has been observed in the US, with over 1276
cases reported in 2019 (even though the US declared elimination of endemic
transmission in 2000) [65, 280, 306]. Both supply-side effects and demand-
side effects can be held responsible for these dynamics. On the supply side,
for example, the time-consuming organization of vaccine visits or clumsy
appointment systems can explain lower uptake. Moreover, the transition from
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Figure 1.3: The continuum of vaccine hesitancy between full accep-
tance and outright refusal of all vaccines. MacDonald et al. [247]

natural infection to vaccine-induced immunity, following the introduction
of measles vaccine, can lead to suboptimal immunity levels [166]. However,
on the demand side, “vaccine hesitancy” also plays an important part in
the decreased immunity levels and observed outbreaks in countries that had
previously eliminated vaccine preventable diseases such as measles [344].

On the demand side, interventions are needed to restore confidence in vaccines
and trust in public health institutions. On the supply side, initiatives should be
undertaken by lowering the barriers for people to get vaccinated to an absolute
minimum. But first, insights are needed into which elements individuals take
into account when deciding about vaccination.
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Figure 1.4: Caricature by James Gillray. “The Cow-Pock - or - The
Wonderful Effects of the New Inoculation!”. Publication of the Anti-
Vaccine Society in 1802.
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1.3 Modeling infectious diseases

Mainly because of ethical considerations, mathematical and economic mod-
els have been proven valuable tools to simulate and evaluate the impact of
prevention measures on the spread, burden and economic impact of infec-
tious diseases. These models inform and guide policy-makers to prepare for
and respond to (re)emerging infectious diseases, particularly when sufficient
information from controlled experiments is lacking.

An important example of such infectious disease model is the susceptible-
infected-recovered (SIR) model by Kermack and McKendrick in their 1927
paper: A contribution to the mathematical theory of epidemics [196], which was
later converted into the basic SIR model and other compartmental models.
Compartmental models are typically characterized by a system of ordinary dif-
ferential equations (ODEs) in which each equation determines the movement in
and out the three different compartments. A simple SIR model without demo-
graphics, can be represented by the following system of ordinary differential
equations:

dS
dt = − βIS

N ,

dI
dt = βIS

N − γI,

dR
dt = γI

People move from the susceptible compartment (S) at a rate depending on β,
the number of contacts per time unit per person, the fraction of infected indi-
viduals (that can transmit the disease to others) and the fraction of susceptible
individuals (that can potentially be infected). This proportion, − βIS

N , moves
individuals into the infected compartment. Lastly, individuals recover at a rate
γ and end up in the recovered compartment (R).

The infectiousness of a specific pathogen or disease is often captured by the
basic reproduction number (R0), which is defined as the average number
of new infections caused by one infected individual in a fully susceptible
population [12]. In the SIR model, the basic reproduction can be calculated as
follows: R0 = β

γ . For example, the basic reproduction numbers for measles
and diphtheria are estimated to be in the range of 15-17 and 4-6, respectively
[12]. This implies that if one measles case is introduced in a fully susceptible
population, on average this case will infect about 15 to 17 other individuals.
Using R0 values, one can estimate, under the assumption of a ‘homogeneously
mixing population’, the critical vaccination coverage to block transmission,
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also referred to as the ‘herd immunity threshold’, using equation: Covcrit =

1− 1
R0

. As such, a vaccine coverage of at least 92 to 95% is needed to block
the transmission of measles [12]. Unsurprisingly, the WHO target vaccination
coverage for measles eradication is set at 95% [119]. See Table 1.1, adapted
from Anderson & May [12], for an overview of basic reproduction numbers for
a selection of vaccine-preventable diseases.

Infectious agent R0 Covcrit(%)

Measles 15 - 17 92 - 95
Pertussis 15 - 17 92 - 95
Mumps 10 - 12 90 - 92
Rubella 7 - 8 85 - 87
Diphtheria 5 - 6 80 - 85
Polio virus 5 - 6 80 - 85

Table 1.1: Basic reproduction numbers (R0) and critical vaccination
coverages in order to block transmission (Covcrit), under a homoge-
neous mixing hypothesis for a selection of vaccine-preventable child-
hood diseases. Adapted from [12].

Other models have been developed in order to model the spread of a wide
range of infectious diseases and interventions to contain them. For example
adding a vaccinated compartment with waning immunity in an SIRVS model,
SIS models for pathogens that do not provide long-lasting immunity, or mod-
els including an M compartment in order to capture maternal immunity for
newborns etc.

1.4 Health economic evaluation

Health interventions are evaluated with respect to both health effects and costs
in health economic evaluations or health technology assessments (HTA). The
outcome of HTA guides decision makers and policymakers when deciding
about the introduction and reimbursement of (new) health technologies. The
objective of HTA is to optimize health care outcomes by identifying and se-
lecting the most efficient health care interventions. I.e. to obtain maximum
health outcomes for a given health budget. This objective requires comparing
different interventions and making choices. Most HTA methods evaluate the
health technology in a marginal sense. That is, the technology under study, is
compared to a baseline situation, usually a status quo situation or an alterna-
tive intervention. Economic evaluation aims to answer questions like: “Is a
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million euros really a justifiable price for a new cancer treatment?” or “Is it
worth investing in human papillomavirus (HPV) vaccination in boys?”.

An important element in health economic evaluations is the point of view – or
perspective – that is taken in the analysis. The choice of perspective has an
important impact on the cost and benefit components assessed in the evaluation
[202]. Some commonly used perspectives are (ordered from broad to narrow):
societal, healthcare system, insurer, single perspective (e.g. a hospital) and the
patient’s perspective. Whereas the societal perspective includes all possible
cost and benefit components of a healthcare service or illness – e.g. including
caregivers’ time to take care of an ill family member – other perspectives
focus on fewer components. For example, productivity losses due to illness
(presenteeism) would not be included in a healthcare payers’ perspective while
it forms an integral part of the costs in a societal perspective. Belgian guidelines
specify the reference case to use the healthcare payers’ perspective that consist
of the patients, the federal government and the three Belgian communities [389].
On the contrary, the Dutch guidelines prescribe to take a societal perspective
[419]. Naturally, health economic evaluations can only be compared if they
apply the same perspective.

The most common approaches to HTA are: i) cost-effectiveness analysis (CEA),
ii) cost-utility analysis (CUA) and iii) cost-benefit analysis (CBA).

Cost-effectiveness analysis (CEA)

CEA evaluates health interventions by expressing the additional costs relative
to the added health effects. The measurement or valuation of such health
effects (E) is expressed in natural units, such as: life-years gained, disability-
days saved, number of acute exacerbations averted, points of blood pressure
reduced etc. [102]. CEA assesses the marginal costs (∆C) and the marginally
gained health effects (∆E) in order to obtain the incremental cost-effectiveness
ratio (ICER):

ICER = ∆C
∆E ,

E.g. an ICER of e2500 per life year gained to introduce and fully reimburse
new Hepatitis C antivirals, means that, on average it costs society e2500 per
life-year saved in Hepatitis C patients due to the new treatment, compared to
an alternative treatment. Given that this measure ignores the quality of life
under certain medical conditions and treatments, it is not frequently used in
practice.
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Cost-utility analysis (CUA)

Instead, CUA is the most commonly used method for health economic analyses,
because it takes into account the quality of life in evaluating the health effects.
Indeed, instead of a single effect of interest (e.g. life years gained), CUA uses
‘healthy life-years’, and more commonly, quality-adjusted life years (QALYs)
or disability-adjusted life years (DALYs) [102]. Figure 1.5, illustrates that by
assessing QALYs, one takes both the life years gained and the quality of life
– during and the years following the intervention – into account. A CEA
would typically only look at the difference between death with and without
the intervention (on the x-axis). In the case of CUA, quality of life at any
point in the patients’ life too is taken into account (on the y-axis) by a value
ranging between 1 (perfect health) and 0 (death). In this specific example, the
intervention adds to the patients’ health-related quality of life and additionally
prolongs the life of the patients. The total QALYs without intervention is equal
to the blue surface (A) and the total number of QALYs under the intervention
equals the blue and brown surface (A+B). As such, the total number of QALYs
gained equals the brown surface (B).

Figure 1.5: Quality adjusted life-years in terms of life years and health
related quality of life. The total QALY gain with the intervention is
represented by the brown surface (B). By Jmarchn https://commons.

wikimedia.org/wiki/User:Jmarchn and licensed under CC BY-SA 3.0
https://creativecommons.org/licenses/by-sa/3.0/deed.en.

https://commons.wikimedia.org/wiki/User:Jmarchn
https://commons.wikimedia.org/wiki/User:Jmarchn
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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The incremental cost-utility ratio (ICUR) is thus defined as:

ICUR = ∆C
∆QALYs ,

The ICUR can be interpreted as the cost per quality-adjusted life year, or the
cost per healthy life year, relative to the chosen baseline. Compared to CEA,
incorporating quality of life in CUA has already improved HTA significantly.
However, some important limitations remain, for example: i) CUA cannot
determine the total size of the healthcare budget, and ii) CUA does not take
inequality into account (i.e, who pays the costs and who benefits from a specific
intervention does not matter in CUA).

Cost-benefit analysis (CBA)

Cost-benefit analysis in health care interventions originates from social welfare
theory. It allows to incorporate distributional weights and evaluates the net-
benefit of an intervention in monetary terms. As such, also health benefits are
expressed in monetary terms and there is no need to compute ratios. Instead,
in CBA, the outcome is expressed in terms of net-benefits or net-costs.

Net-benefit = total benefits - total costs

If the net-benefit is positive, the intervention is economically interesting. Note,
that CBA can be applied to non-health interventions as well, allowing trade-
offs to be made between health interventions and other interventions. In theory,
CBA allows policymakers to determine the size of the health care budget. Yet,
in practice this would require a CBA for all available healthcare interventions,
and summing the total costs of the interventions that resulted in a net-benefit.
Even if this tedious procedure could be – and would be – performed in practice,
the overall size of the health care budget would most likely still be largely
determined by political rather than technical considerations. Nevertheless,
CBA is rarely used in practice, particularly due to the lack of consensus (among
economists) and credibility (among medical professionals) when the value to a
statistical life-year is determined as an intrinsic part of the analysis, as is the
case with CBA.

Uncertainty in HTA

Every health economic analysis contains at least some degree of uncertainty
[202]. Therefore, guidelines recommend that uncertainty analysis forms an
inherent part of health economic analysis [168, 207]. We refer to the work
by Bilcke et al. for a practical guide that offers an integrated approach to
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account for different kinds of uncertainty in decision-analytic models [35].
The authors proposed three broad categories of uncertainty: methodological
(e.g. perspective or discounting rate), structural (e.g. types of functions for
extrapolation or intervention efficacy in different age classes) and parameter
uncertainty (e.g. true value of parameter or bias in parameter estimation) [35].
Sensitivity analysis has been central in the assessment of uncertainty [202]. In
a deterministic sensitivity analyses (DSA), one parameter (or methodological
choice / model structure) is altered one step at a time in scenario analyses
while all other features remain equal (ceteris paribus). Other model features
are ideally altered in proceeding steps up to a point where all parameter
(and methodological choices / model structures) combinations have been
analyzed. Probabilistic sensitivity analysis (PSA) requires the distribution
of input parameters instead of simple point values [297]. In a PSA, input
parameters are randomly sampled from their respective distributions in an
iterative process (at least 1,000 iterations). For each iteration a health economic
analysis is performed (i.e. modelled) of which the outcome is stored (e.g. ICUR
or life-years lost). A PSA provides a distribution of outcomes (e.g. in terms
of ICURs) [297]. We refer to the WHO guide for standardization of economic
evaluations of immunization programmes for more details about uncertainty
and HTA of immunization programmes in general [297].

Equity considerations and the role of HTA in reimbursement
decisions

Conventional health economic analyses implicitly consider a utilitarian equity
perspective: the societal value of a QALY gained is independent of how it
is obtained, or to whom it accrues. That is, QALYs are independent of: age
(a QALY gained in a 80 year old is valued equally to a QALY gained in an
8 year old), type of health technology (preventive versus curative), patients’
lifestyle (bad luck versus lifestyle-induced illness), the initial health state of the
patient etc. Yet the general population’s opinions deviate from these implicit
ethical assumptions. Indeed, Luyten et al. found patients’ lifestyle, age and the
type of health technology to be significant attributes in Belgians’ preferences
with respect to prioritisation of healthcare interventions [245]. The work by
Cleemput et al. confirms that societal preferences do not fully correspond to the
utilitarian theory embedded in conventional HTA [72]. Yet, several procedures
have been developed to integrate equity considerations in health economic
evaluations, such as incorporating equity weights and social welfare functions,
or by the use of multi-criteria decision-analysis (MCDA) [182, 348].
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Health technology assessment is however only one component of reimburse-
ment decision making. Whereas economic considerations have been consis-
tently found influential in reimbursement decision-making in the UK, the
strength of clinical evidence for the drug of interest was found more impor-
tant [101]. Studies in Australia, Britain, Canada and Ireland reported HTA
to have had a significant role in reimbursement recommendations as well
[73, 281, 353]. Indeed, since the 1990’s policymakers increasingly use economic
evaluations when making decisions about healthcare programs. Since 1993
it has been mandatory for sponsors to formally include an economic analysis
in submissions to the Pharmaceutical Benefits Advisory Committee (PBAC)
in Australia, whereas guidelines for economic evaluation were already intro-
duced in 1990 [102, 152]. In 1999, the National Institute for Health and Care
Excellence (NICE) was established in the UK with as a formal role “the ap-
praisal of new and existing health technologies” [321]. The Belgian Health Care
Knowledge Centre – that was established in 2002 – performs health technology
assessments as one of its five primary objectives. These assessments provide
useful information to the Commission on Reimbursement of Health Products
(Commissie Tegemoetkoming Geneesmiddelen) that is responsible to amend the
list of reimbursable pharmaceutical technologies in Belgium since 2002 and
formally requires health economic evaluations as a part of reimbursement
submissions [424].

The role of infectious disease models

Model based predictions and dynamics serve as a highly valuable tool for the
health economic evaluation of infectious disease interventions. The impact
of different health interventions (e.g. vaccination, antiviral use etc.) can be
assessed by applying these interventions to infectious disease models. Typi-
cally, several scenarios are compared to a baseline situation. The model output,
often the decrease in the burden of the disease, serves as an input in HTA.
For example, a vaccination program against influenza can be simulated in an
infectious disease model in order to retrieve ∆QALY and ∆C under different
scenarios.

1.5 Behavioral change models in epidemiology

However, the impact of prevention measures and other policy interventions
are subject to individuals’ compliance and demand. For that reason, behavioral
change models have been developed to incorporate dynamic behavior (i.e. the
demand side of prevention measures) into models for infectious disease trans-
mission. As a result of circulating controversies and herd immunity touched



28 CHAPTER 1. INTRODUCTION

upon in the previous paragraphs, vaccination models have become particularly
interesting to take dynamic behavior into account. As a result of herd immu-
nity, the marginal utility of vaccination decreases (non-linearly) as coverage
increases. For example, modelers have been integrating this externality into
game-theoretical models [127, 411]. These mainly theoretical models assume
that individuals are free-riders, enjoying protection from herd immunity and
hence no longer have the incentive to become vaccinated themselves if vac-
cine coverages are already sufficiently high. As more and more individuals
engage in this free-riding behavior, diseases reemerge and the incentive for
individuals to become vaccinated reappears. Behavioral change models are
used for various prevention measures, and can model individuals’ decision
making under different decision rules and assumptions.

Figure 1.6 graphically illustrates an example of a rather simplistic behavioral
change model. Individuals need to decide at some point in time (t) whether or
not to take a preventive measure. Some examples of prevention measures are:
vaccination, antiviral use, wearing face-masks or social distancing. The indi-
viduals are exposed to an information set about the disease and the prevention
measure e.g. the susceptibility to the disease and potential side-effects of the
prevention measure under study. Note that this information set is subject to
bias and, as such, some authors rather use ‘perceived’ susceptibility, ‘perceived’
side-effects, ‘perceived’ vaccine efficacy and so forth. Based on this information,
individuals decide whether or not they take preventive measures to protect
themselves from being infected based on a pre-determined decision function,
whether or not taking others’ decisions into account. All these decisions com-
bined, have an effect on disease dynamics, which are typically estimated by
infectious disease models (e.g. an SIR model adding a ‘vaccinated’ compart-
ment). There is a feedback mechanism providing an information set to the
individuals deciding about preventive measures in a next step. This feedback
mechanism introduces the dynamic character of behavioral change models and
can be either direct (upper arrow), or can be spread by third parties such as
public health information campaigns, social media, healthcare workers etc. In
essence, the preventive measures taken by individuals in time t determine the
information set of individuals deciding in time t+1, by applying an infectious
disease model to estimate the impact in t+1.

1.6 Behavioral change theories in social sciences

Note that several behavioral change theories have been developed in social
sciences – such as in anthropology and medical psychology – as well, and
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Figure 1.6: A graphical representation of a dynamic behavioural
change model that is coupled to an epidemiological model. This il-
lustration presents a rather simplistic – but frequently used – behav-
ioral change model in which individuals change their behavior solely
based on information about the disease and/or intervention measures.
Other, more realistic models will be tackled in the remainder of this
thesis.

are often explicitly used in predicting vaccination uptake [367]. Two behav-
ioral theories stand out: i) the Health belief model (HBM) and ii) the Theory
of Planned Behavior (TPB), which we will introduce in more detail in the
remainder of this section.

Note that other behavior change theories have been developed: e.g. the health
action process approach [355] and the transtheoretical model of health behavior
change [316]. In addition, we would like to draw special attention to the “Be-
haviour Change Wheel” developed by Michie et al. that was published in 2011
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[262], which has been used as a foundation of the WHO’s recently developed
Tailoring Immunization Programmes (TIP) approach [298]. The behavioural
change wheel is a framework that involves three essential conditions, namely:
capability, opportunity and motivation (referred to as the ‘COM-B system’).
The authors furthermore propose 9 interventions to resolve deficits in one of
these conditions as well as 7 categories of policies to enable such interventions.
The application of this theory of behavior change reaches beyond the field
of immunization and was successfully used to characterize interventions in
the fields of tobacco control and reducing obesity. Further discussion of this
model reaches beyond the scope of this thesis. For more details regarding
the behaviour change wheel and its’ relevance for behavioural insights into
immunization programme planning and policy, we would like to invite the
reader to consult the work by Michie et al. [262] and the WHO’s guide to TIP
[298].

The Health Belief Model

The Health Belief Model was developed in the US Public Health Service in
the 1950s and “...grew simultaneously with the solution of practical problems”
[331]. That is, the HBM was mainly a response to failure in the uptake of
disease prevention measures and screening tests (e.g. for the early detection
of asymptomatic disease), which were both focal points of the Public Health
Service at the time. The model, in one of its earliest forms, describes that in
order for an individual to take a preventive action, he or she would need to
believe three traits: i) that the individual is susceptible to the disease, ii) that
by contracting the disease, the individual would at least suffer from moderate
severity in at least one aspect of its’ life, and iii) taking preventive action would
be beneficial to the individual – hence, either reducing the susceptibility to the
disease, reducing the severity when that individual contracts the disease, while
not overcoming important psychological barriers (e.g. costs, convenience, pain
etc.) [331].

The HBM aims to predict and explain preventive behavior in terms of certain
belief patterns [170]. An individual’s motivation in taking preventive action can
be divided into three categories: individual perceptions, modifying behaviors
or factors and the likelihood of action [170]. In more recent descriptions, the
HBM consists of 6 constructs (adapted from Strecher & Rosenstock [378]):

1. Perceived susceptibility: individuals’ subjective perception of the risk
of contracting a health condition or, in case of medically established ill-
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ness, this construct can include the acceptance of the diagnosis, personal
estimates of resusceptibility, and susceptibility in general.

2. Perceived severity: individuals’ feelings with respect to the seriousness
of contracting an illness, or of leaving it untreated, including both medical
(e.g. pain, death, disability, discomfort etc.) and social consequences (e.g.
family or social life).

3. Perceived benefits: individuals’ beliefs regarding the effectiveness of
available actions in reducing the odds of contracting the disease, or
when contracting the disease, the belief that this action would result
in a lower severity. That is, “... an individual exhibiting an optimal
level of beliefs in susceptibility and severity would not be expected to
accept any recommended health action unless that action was perceived
as potentially efficacious. [378]”.

4. Perceived barriers: individuals’ subjective perception about the negative
attributes of a health action recommended (i.e. that the action may be
expensive, dangerous in terms of side-effects, time-consuming, uncom-
fortable, inconvenient etc.).

5. Cues to action: individuals’ internal or external triggers to accept the
desired course of action (e.g. environmental factors, exposure to a health
promotion campaign etc.).

6. Self-efficacy: individuals’ belief that they “... can successfully execute
the behaviour required to produce the outcomes.” [19]. I.e. that they are
confident they can pursue the desired health action.

The HBM has been implemented in a multitude of studies predicting or ex-
plaining vaccination uptake or acceptance. For example, in the context of HPV
vaccination [95, 133], for pandemic influenza vaccine [75], but also in more
general contexts such as for parents making decisions about childhood vacci-
nations [366]. Note that, the HBM has been applied in epidemiological BCMs
as well – such as in the work by Karimi et al. [190] and Durham & Casman
[108], though such applications remain relatively rare to date.

Theory of Planned Behavior (TPB)

The Theory of Planned Behavior was proposed by Ajzen in the 1980s [5, 8],
building on the Theory of Reasoned Action proposed earlier by Fishbein &
Ajzen [7, 115]. The intention to perform a given behavior is a central factor
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to the theory of planned behavior. Indeed, intentions are assumed to capture
motivational factors which influence individuals’ behavior. That is, “ ... how
hard individuals are willing to try ... how much of an effort they are planning
to exert, in order to perform the behavior.” [6].

Figure 1.7: Theory of Planned Behavior. A schematic depiction. Copy-
right ©2019 Icek Ajzen.

The TPB is schematically depicted in Figure 1.7. We briefly elaborate on each
of the theory’s constructs, based on the work by Ajzen [6]. According to the
TPB, three main factors shape an individual’s intention to perform a certain
behavior and, subsequently, their actual behavior. The first are an individual’s
beliefs about the probability of a given outcome of the behavior (“behavioral
beliefs”), and about the value of performing the behavior (“attitude toward
the behavior”). Secondly, an individual’s intention is influenced by the social
pressure they perceive to perform a certain behavior (“subjective norm”). This
subjective norm is, in turn, the result of what an individual thinks is expected
of them by people whose opinion they value (“normative beliefs”) and their
motivation to live up to those expectations. Lastly, an individual’s assessment
of their own ability to perform a given behavior (“perceived behavioral con-
trol”), given the perceived presence of circumstances that may alter how well
the behavior can be performed (“control beliefs”), moderates the first two
factors to produce an actual intention, and finally, behavior.

The theory of planned behavior has been proven useful to query intentions
in the context of vaccination. Indeed, in the context of HPV vaccination,
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Catalano et al. used the TPB to predict vaccination intentions of college men
[61], whereas Askelson et al. focussed on mothers’ intentions to vaccinate their
daughters [17], and Fisher et al. queried intentions in both men and women of
target age [116]. The theory of planned behavior has moreover been applied
to assess the intention to vaccinate against other pathogens as well, such as
influenza [3], or Hepatitis B [88].
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1.7 Motivation and aim

Although there is increased recognition for the need to incorporate behavioral
changes in infectious disease transmission models, a consensus on the proper
methodology to do so is lacking. It appears much research is not supported
by empirical information but departs from a theoretical foundation with arbi-
trarily chosen parameter values and no validation process. As a result, there
is large heterogeneity in the triggers for behavioral change and the impact
on disease transmission, as well as the conclusions of such studies. There
is a need for empirical data to support the validity of these models and to
guide further research [127, 128, 411]. Surprisingly, even though an extensive
selection of behavioral change models is available and demand-side obstacles
are increasingly manifested, HTA applications to infectious disease prevention
that incorporate such models are lacking. The aim of this thesis is to explore
and evaluate behavioral change models for infectious disease transmission
and gather empirical data in order to parameterize behavioral change models
for vaccination. This way, future models can take empirical data into account.
We will apply these empirical data to a behavioral change model for vaccina-
tion against, and transmission of, measles. Additionally, we aim to introduce
individuals’ behavior in the health economic evaluation of infectious disease
interventions.
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1.8 Introducing the chapters and their objectives

This thesis is composed of three main parts: i) review and exploration of
behavioral change models, ii) quantification of vaccination behavior in order
to parameterize behavioral change models, and iii) applications to behavioral
change models with respect to measles transmission and vaccination and a
cost-benefit analysis of employer funded influenza vaccination. Figure 1.8
presents an overview of the topics that are covered in-depth in the chapters.
The overall findings of this thesis, as well as the contributions to the research
field are reviewed in Chapter 8 (General discussion).

Figure 1.8: Overview of the thesis’ structure and chapters.

Behavioral change models (Chapter 2)

Numerous historical infectious disease outbreaks confirm the importance of hu-
man behavior in preventing further spread of infectious diseases. For example,
during the 2003, severe acute respiratory syndrome (SARS) outbreak people
took precautionary actions such as wearing face masks, hand-washing, avoid-
ing public transport, restaurants, shops and other crowded places in Hong
Kong [108, 219] and Beijing [29]. Moreover, behavioral interventions seem to
be central in combatting the 2019 SARS-CoV-2 pandemic [437]. In addition, the
2009 A/H1N1 influenza pandemic has triggered a significant proportion of the
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population to adapt their behavior and take preventive measures such as social
distancing [184, 334]. Since the impact of infectious diseases and interventions
are indeed depending on behavior, we explore behavioral change models for
infectious disease transmission. We systematically identify and analyze models
starting from where a previous review in 2010 left off [127]. These models are
categorized in order to distinguish their assumptions, methods, disease and
transmission-specific applications and implications. Furthermore, a critical
point of view is taken when evaluating these models in terms of their real-life
applicability. Current pitfalls and opportunities are identified to support the
development of more advanced BCMs in the near future. Some BCMs in the
setting of infectious disease transmission still use a game-theoretical founda-
tion that caused the development of, for instance, ‘vaccination games’ [20] and
‘epidemic games with social distancing’ [323]. In the most recent literature
however, only few papers are still using a pure, self-centered game-theoretic
model. Despite recent advancements, we remain concerned that most models
are purely theoretical and lack representative data and a validation process.

Vaccination behavior in Flanders (Chapter 3)

Given the scarcity of empirical exploration with respect to behavioral change
models and in order to investigate whether Flemish individuals involve in
free-riding behavior, we performed a discrete choice experiment (DCE) in
1919 respondents in Flanders, Belgium. By means of this DCE, we analyzed
vaccination behavior as a multi-criteria decision containing six attributes: i)
vaccine effectiveness, ii) vaccine-related side-effects (VRSE), iii) accessibility
(in terms of convenience and reimbursement), iv) vaccine-preventable burden
of disease, v) local (respondents’ network of contacts) vaccination coverage,
and vi) population (the population at large) vaccination coverage. Utility
levels are calculated for each attribute level, facilitating the parameterization
and validation of BCMs for Flanders. We distinguish between individuals
making decisions about vaccines that would be administered to themselves,
and individuals deciding about vaccines that would be administered to their
youngest child. Additionally, this chapter elaborates on the finding that the
free-riding assumption as a driver of individual vaccination decisions seems
inappropriate.

Vaccine drivers in South Africa (Chapter 4)

Based on the findings in Chapter 3, we fine-tuned and updated the question-
naire. In this chapter, we performed a similar DCE in 1200 respondents in
South Africa. A country with a suboptimal vaccination coverage for many
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VPD. Furthermore, South Africa is one of the countries that has suffered most
from the human immunodeficiency virus (HIV) epidemic. Hence, establishing
a high vaccination coverage is essential in order to protect the ones that cannot
be vaccinated for medical reasons. By means of this DCE, we gain insight into
the most important drivers for South Africans to get vaccinated.

No such thing as a free-rider? (Chapter 5)

Following the survey results described in Chapters 3 and 4, we expand our
study population and quantify vaccination decisions by means of a DCE in
France, The United Kingdom, The Netherlands and Belgium as a whole. This
chapter reveals the most and least important attributes these populations
take into account when making decisions about vaccinations. We confirm
the inappropriate use of free-riding assumptions with respect to vaccination
decisions in all study populations and elaborate on both between and within
country differences. Additionally, we highlight the potential of supply side
interventions in increasing vaccination coverage.

A BCM for Measles in Flanders (Chapter 6)

We highlighted concerns with respect to the scarcity of real-life data integra-
tion in behavioral change models (BCM) in Chapter 2. Therefore, we applied
the parameters retrieved from the discrete choice experiment in Chapter 3 to
construct a behavioral change model for measles transmission and vaccination
in Flanders. Instead of resorting to game-theory and free-riding behavior, we
tackled vaccination uptake as a multi-criteria decision, determined by both
constant and varying attributes. This BCM simulates the uptake of measles
vaccination in children at one year of age, parallel to a compartmental SIRV
transmission model that mimics the spread of measles in Flanders. In this chap-
ter we evaluate, among others, the impact of a vaccine scare or a suspension
from the immunization schedule, on vaccine uptake and disease transmission.
Even though this chapter primarily sketches a proof-of-concept, it provides
valuable insights into coupled behavior-disease dynamics under a transparent
set of assumptions. We highlight the challenges that remain with respect to
data availability.

A return on investment? (Chapter 7)

In this chapter, behavioral changes are applied to the economic evaluation of in-
fectious disease interventions. Absenteeism from work due to influenza causes
a large economic burden to society. On the other hand, influenza vaccines
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are mostly recommended in specific risk groups, which typically have a low
employment rate (e.g. the elderly or chronically ill people). However, a higher
vaccination coverage among employees could drastically decrease employee
absenteeism both directly (in vaccinated employees) and indirectly (through
herd immunity in unvaccinated employees on the workplace and beyond).
Therefore, it might be interesting for employers (and perhaps governments)
to organize and promote employer-funded vaccination programs for employ-
ees, even if the direct protection offered by influenza vaccination is far from
perfect. However, to date, the return of such employer investments is largely
unstudied, especially in the context of herd immunity. This chapter presents a
cost-benefit analysis of employer funded workplace vaccination, incorporating
the dynamic (social contact) behavior of symptomatically infected individuals.



CHAPTER 2
A systematic review

This chapter is based on published work: “Verelst F, Willem L, Beutels P
(2016). Behavioural change models for infectious disease transmission: a
systematic review (2010-2015). Journal of The Royal Society Interface 13
(125): 20160820” [411].

Summary

We review behavioural change models (BCMs) for infectious disease trans-
mission in humans. Following the Cochrane collaboration guidelines and
the PRISMA statement, our systematic search and selection yielded 178
papers covering the period 2010-2015. We observe an increasing trend in
published BCMs, frequently coupled to (re)emergence events, and propose
a categorization by distinguishing how information translates into preven-
tive actions. Behaviour is usually captured by introducing information as
a dynamic parameter (76/178) or by introducing an economic objective
function, either with (26/178) or without (37/178) imitation. Approaches
using information thresholds (29/178) and exogenous behaviour forma-
tion (16/178) are also popular. We further classify according to disease,
prevention measure, transmission model (with 81/178 population, 6/178
metapopulation and 91/178 individual-level models) and the way pre-
vention impacts transmission. We highlight the minority (15%) of studies
that use any real-life data for parametrization or validation and note that
BCMs increasingly use social media data and generally incorporate multi-
ple sources of information (16/178), multiple types of information (17/178)
or both (9/178). We conclude that individual-level models are increasingly
used and useful to model behaviour changes. Despite recent advance-
ments, we remain concerned that most models are purely theoretical and
lack representative data and a validation process.

39
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2.1 Introduction

Infectious diseases can have a large impact on society as they can negatively
affect, among others, morbidity, mortality, unemployment and inequality. As a
result, prevention and control of infectious diseases are important for public
health and welfare.

The main objective of infectious disease transmission models is to inform and
guide policy-makers to prepare for and respond to (re)emerging infectious
diseases, particularly when sufficient information from controlled experiments
is lacking. However, the impact of infectious disease transmission and policy
interventions are subject to hosts’ behaviour. Therefore, there is an interest to
incorporate behaviour change in response to disease-related information into
models for infectious disease transmission.

Numerous historical infectious disease experiences confirm the existence of a
so-called behavioural immune system [350] in humans. For example, during
the 2003, severe acute respiratory syndrome (SARS) outbreak people took
precautionary actions such as wearing face masks, hand-washing, avoiding
public transport, restaurants, shops and other crowded places in Hong Kong
[108, 219] and Beijing [29]. In addition, the 2009 A/H1N1 influenza pandemic
has triggered a significant proportion of the population to adapt their behaviour
and take preventive measures such as social distancing [184, 334].

We refer to models incorporating behavioural immunity as ‘behavioural change
models’ (BCMs), which typically complement models for disease transmission
in an attempt to mimic real life dynamics. In essence, a BCM is a model in
which individuals are responsive to external information about the disease
and as a result take one or more preventive measures to reduce the chance of
contracting the disease. The external information individuals respond to can
be global (equally available and relevant to all individuals) or local (individual
availability and relevance determined by physical or social proximity to the
information source). Furthermore, this information can be specified in terms of
actual risks (‘prevalence-based’) or of perceptions of these risks (‘belief-based’),
as well as a mixture of all the above [127]. Vaccination is a common prevention
measure with varying uptake, given historical fluctuations in the trade-off
between the perceived risks of vaccine-related side effects (VRSEs) and of
vaccine-preventable disease. Other common prevention measures include
social distancing and condom use.

A widely used theoretical foundation for the formation and dynamic nature
of individuals’ behaviour comes from game theory. Game theory has a rich
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history in social sciences with the Prisoner’s Dilemma being a frequently used
illustration (see [137] for a comprehensive introduction). Game theory assumes
individuals take rational decisions based on a trade-off that embodies the
anticipated rational decisions of all other individuals in society. Even though
these assumptions are often not observed in real life [421], a multitude of BCMs
in the setting of infectious disease transmission still use a game-theoretical
foundation that caused the development of, for instance, ‘vaccination games’
[20] and ‘epidemic games with social distancing’ [323].

Another foundation for behaviour change is found in the fields of network
science and individual-based modelling (IBM), where there are opportunities
to develop more realistic models by introducing (more) heterogeneity. The chal-
lenge here is to find a balance between model complexity and computational
boundaries. Some examples of behavioural change research for which network
science has been used include models using adaptive contact networks [408],
vaccinating behaviour in social contact networks [258] and social distancing in
sexual contact networks [328].

Although there is increased recognition for the need to incorporate behavioural
changes in infectious disease transmission models, a consensus on the proper
methodology to do so is lacking. It appears much research is not supported by
empirical information but departs from a theoretical foundation with arbitrarily
chosen parameter values and no validation process. As a result, there is large
heterogeneity in the triggers for behavioural change and the impact on disease
transmission, as well as the conclusions of such studies. There is a need for
empirical data from, for instance, surveys or discrete choice experiments to
support the validity of these models and to guide further research [127, 128].

The main goal of this paper is to systematically review and document how and
to which extent behavioural immunity has been explored in infectious disease
transmission models over the past 5 years. In brief, we aim to investigate to
which extent: (i) technological advancements and increased data availability
have enriched BCMs, (ii) the literature has coped with the fact that behavioural
immunity is often contingent on the disease and not coupled to disease dy-
namics, (iii) modelling efforts are validated with quantifiable observations and
parameterized, (iv) the current models have assessed the importance of social
networks in individual decisions, (v) the process of transferring information to
behaviour is managed and (vi) irrational behaviour is demonstrated.

In the following sections, we systematically identify and analyse BCMs applied
to infectious disease transmission, starting from where a previous review in
2010 left off [127]. These models are categorized in order to distinguish their
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assumptions, methods, disease and transmission-specific applications and im-
plications. Furthermore, a critical point of view is taken when evaluating these
models in terms of their real-life applicability. Current pitfalls and opportuni-
ties are identified to support the development of more advanced BCMs in the
near future.

2.2 Methods

The strategy and reporting in this review are based on Cochrane guidelines for
systematic reviews of intervention [167] and the PRISMA statement [269]. The
eligibility criteria and the search query were determined by consensus between
all authors, covering expertise in infectious disease modelling and economics.

Search

We searched PubMed and Web of Science (WoS) for records published between
January 2010 and December 2015. After discussing and defining the inclusion
and exclusion criteria, we obtained our final search query which we used
in PubMed on 12 January 2016 and in WoS on 13 January 2016: ‘(behavio*
OR decision*) AND (change* OR influence* OR dynamic* OR adapta* OR
adapt OR adaptive OR strategic*) AND (infect* OR epidemic OR epidemics
OR epidemiology OR epidemiological OR epidemiologic OR pandem* OR
outbreak*) AND (disease* OR vaccin*) AND (model OR models OR modelling
OR modeling OR simulat* OR transmission*)’.

Selection

In a first step, F.V. screened the results of the search query based on title and
abstract in accordance with the following pre-specified eligibility criteria:

Infectious diseases. Only records that concern infectious diseases are included
in the selection. Infectious diseases are defined using the WHO definition:
infectious diseases are caused by pathogenic microorganisms, such as
bacteria, viruses, parasites or fungi; the diseases can be spread, directly
or indirectly, from one person to another [439].

Model. Records should consist of a mathematical model for behavioural
change, for infectious disease transmission or a coupled model com-
bining these two.
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Individual behaviour. Behaviour is considered the consequence of personal
and voluntary choices made by an individual, i.e. we exclude stud-
ies tackling forced interventions such as school closure or mandatory
vaccination, but include government interventions creating awareness,
education in prevention, etc.

External trigger(s). At least one trigger for modelled individuals to change
their behaviour is external and has to be related to infectious disease. We
exclude models with exclusively intrinsic triggers from the selection (e.g.
an individual’s own human immunodeficiency virus (HIV) status).

Preventive measure. A preventive measure is central to the analysis (e.g. vac-
cination or social distancing). The behaviour of the individual is defined
by the decision (not) to take preventive measures.

Humans. We are interested in diseases in humans and behaviour of humans
regarding these diseases, and therefore exclude research on plants, ani-
mals, the behaviour of the model itself or the behaviour of governments
or institutions.

Original research. We exclude review articles, letters, editorials and com-
ments.

English language. Excluding articles written in other languages.

In a second step, the remaining articles’ full texts were screened to confirm
eligibility, independently by F.V. and L.W. Whenever there was doubt about
eligibility, agreement was sought through discussion.

Data extraction

Using a common data extraction protocol for each eligible article, F.V. and L.W.
independently retrieved from the full text: (i) infectious disease; (ii) disease
category (sexually transmitted infection (STI), influenza-like illness (ILI), child-
hood disease, vector-borne disease (VBD) or other); (iii) prevention measure
(vaccination, social distancing etc.); (iv) source of information (global, local or
multiple); (v) type of information (prevalence-based, belief-based or multiple);
(vi) effect on the model (disease state, model parameters, contact structure or
multiple); (vii) disease transmission model description; (viii) BCM descrip-
tion; (ix) whether there was interaction between the behaviour and disease
transmission model; (x) whether the analysis incorporated real-life data; and
(xi) movement of individuals in the model. When applicable, other interest-
ing information was extracted using free form fields. Again, discrepancies in
interpretation were resolved through discussion.
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2.3 Results

Search results

Our search query resulted in 7193 records from Web of Science and PubMed
(figure 2.1). We identified and removed 1434 duplicates, resulting in 5759
unique records that were screened based on title, abstract, keywords and full-
text if necessary. Exclusions were mostly related to (i) topic, including the
study of non-infectious diseases or infections in animals, plants and crops; (ii)
discipline, including microbiological and clinical trial studies, and to a lesser
extent to (iii) language and article type. Eventually, 178 articles were included
for full-text analysis.

Records identified through 
searching Pubmed and Web 
of Science Core Collection 

(n = 7193) 

Records screened after 
duplicates removed 

(n = 5759) 
 

Studies included in 
quantitative and qualitative 

synthesis 
(n = 178) 

Records excluded based on 
abstract/title: disease in 

animals/crops, clinical studies, 
no model, no (infectious) 

disease… (n = 5541) 
 

Records excluded based on 
 full-text screening: intrinsic 
factor, no disease, different 

language, no behaviour 
change… (n=40) 

Id
en

tif
ic

at
io

n 
Sc

re
en

in
g 

El
ig

ib
ili

ty
 

In
cl

ud
ed

 

Full-text articles assessed 
for eligibility 

(n = 218) 

Figure 2.1: Prisma flow diagram.

The number of articles matching our eligibility criteria increased from 18 in
2010 to 38 in 2015, but there was a single year downward deviation from
the trend in 2014 (with 22 eligible studies; figure 2.2). Compared with Funk
et al. [127], we observe a marked increase in BCM publications. Over the 9
year period between 2002 and 2010, Funk et al.’s search yielded 27 eligible
articles (i.e. about 15% of our yield over 6 years), but their search and selection
procedure lacks transparency to compare these results in depth.



2.3. RESULTS 45

Models applied to influenza or ILI stand out, together with ‘general’ models.
In the latter category, a hypothetical infectious disease is modelled, without
specification of which disease (but often including optimistic statements about
the generalizability of the application).
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Figure 2.2: Number of studies over time.

Model structure categories

In table 2.1, we categorized the studies according to disease, prevention mea-
sure (topic) and whether the model is implemented at the population level or
at the individual-level (i.e. using an IBM or contact network) to simulate infec-
tious disease transmission. Metapopulation models for disease transmission
were also identified and are labelled in bold. Furthermore, the columns indicate
at which level the impact of prevention measures is modelled, distinguishing
whether behavioural change is implemented through a switch in infectious
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disease state (e.g. vaccination immunizes previously susceptible persons, and
this can be modelled by moving them from the susceptible to the immune
state), a change in model parameters (e.g. hygiene measures may be assumed
to reduce the effectiveness of transmission) or in social contact structure (e.g.
social distancing may be mimicked by a link-breaking or rewiring process
between susceptible and infectious individuals in contact networks). Studies
can appear in multiple categories, as some have multiple prevention strategies
or multiple effects on the disease transmission model. For the transmission
model category, we interpreted to which extent heterogeneity is introduced
in the model. All references are categorized and represented in a spreadsheet
that can be found as electronic supplementary material (see [411]). The model
type is often disease-dependent. For instance, all retrieved models for measles
and/or pertussis are population models with vaccination as a preventive mea-
sure that affects the disease state in the transmission model. Moreover, the
models are often prevention-dependent. We observe that most of the models
that use vaccination as a prevention strategy will impact the model through
a switch in disease state. For instance, in many compartmental susceptible-
infectious-recovered (SIR) disease models, vaccinated individuals move to the
R compartment. General models with social distancing as a prevention strategy
usually impact the model in terms of a modified contact structure, contingent
on the disease transmission model. Whereas for influenza applications, this
only applies for one out of seven references.

Prevention measures

Most of the eligible articles use models with vaccination or social distancing as a
prevention measure, though other strategies have been considered. The choice
of prevention measure naturally depends on the disease under study. For
instance, the discovery and implementation of antivirals as a prophylactic for
influenza and HIV has resulted in the publication of models with pre-exposure
antiviral use as individual behaviour. A minority of models does not specify
the preventive action taken by individuals. When an effect on the contact rate
was mentioned, we assumed that the preventive action was social distancing.
It appears some authors use the term ‘social distancing’ as a synonym for all
non-pharmaceutical interventions (NPIs) [323]. In this review, social distancing
is interpreted as reducing physical (or sexual) contacts between individuals
and their environment.
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Diseases

In table 2.1, we classified the records based on four specific disease categories,
one category for general models (not specifying a disease) and one category
for other diseases. Most models retrieved were on influenza or influenza-
like illness (ILI) and HIV. Other frequent diseases studied with BCMs are
‘measles & pertussis’ and ‘syphilis & gonorrhoea’. Historically, perceptions of
high risks, associated with measles and pertussis vaccination, have adversely
affected the uptake of these vaccines. As a result, these are topical applications
for transmission models incorporating behavioural changes, as discussed in
[32]. The literature on measles is becoming more diverse as VRSE perceptions
evolve; Bhattacharyya & Bauch [31] describe a model in which parents delay
vaccinating their children as a result of an exogenous vaccine scare, whereas the
same authors use social networks of imitation behaviour for VRSE perception
spread in response to a vaccine scare [23], and d’Onofrio et al. [99] introduce
public interventions in their model to increase vaccine uptake. Diseases in
the ‘other’ category are: SARS, smallpox-like disease, malaria, hepatitis B,
Ebola, pneumococcus, pneumonic plague, toxoplasmosis and cholera. General
models do not explicitly specify a disease, often assuming general applicability.
As noted earlier, models tend to be disease-specific. In the case of influenza or
influenza-like illness, some models look at seasonal changes in behaviour with
backward looking individuals evaluating the success of their (vaccination or
social distancing) strategy during previous season(s) [59, 125, 157, 239, 457, 468,
471]. HIV BCMs are often coupled with a public health information/education
campaign aimed at evaluating public health measures to control epidemic
spread or to study the cost-effectiveness of these control measures [180, 191,
256, 287, 288]. An example of a more advanced, game-theoretic model is
the model by Tully et al. [396]. They use an agent-based model (ABM) for
the spread of risk perception, sexual behaviour and HIV transmission in the
context of individual sexual encounters evaluating the behaviour of (potential)
partners.



Table 2.1: Model structure categories. References in bold represent metapopulation models. References in italics represent references
that use empirical data for parameterisation and/or validation. PrEP:Pre-Exposure Prohylaxis. References in category “Other”
specify a disease other than the above. Hygiene measures include face-mask use, increased hand washing etc.

Disease Prevention measure
Population level Network / IBM

Infectious Disease State Model Parameters Infectious Disease State Model Parameters Contact Structure

Influenza / ILI

Vaccination Bhattacharyya and Bauch
[32], Breban [43], Laguzet
and Turinici [211], Liu et al.
[239] & Cohen et al. [76],
Shim et al. [362], Xia and Liu
[459]

Vardavas et al. [410] Cardillo et al. [59], Corn-
forth et al. [80], Fu et al.
[123], Fukuda et al. [124,
125], Han and Sun [157],
Liao and You [229], Liu
et al. [239], Loganathan
et al. [241], Wells and Bauch
[434], Wells et al. [436], Wu
and Zhang [457], Xia and
Liu [458], Zhang et al. [466],
Zhang [471] & Andrews and
Bauch [14]

Marathe et al. [255], Mei
et al. [259], Zhang et al.
[469] & Karimi et al. [190]

-

Social Distancing Mummert and Weiss [278],
Poletti et al. [313] & Zhong
et al. [472]

Greer [149], Larson and
Nigmatulina [218], Liu et al.
[236], Morin et al. [271],
Wang [428] & He et al. [162],
Poletti et al. [312], Springborn
et al. [370]

- Barrett et al. [21, 22], Karimi
et al. [190], Mei et al. [259],
Wang et al. [432] & Bayham
et al. [25]

Chen et al. [68]

PrEP Antivirals - - Liao and You [229] Barrett et al. [22], Chen et al.
[68], Liao and You [229],
Mao and Bian [253], Mao
and Yang [254], Marathe
et al. [255], Mei et al. [259]
& Andrews and Bauch [14]

-

Hygiene measures - Larson and Nigmatulina
[218], Parikh et al. [305] &
Poletti et al. [312]

- Mei et al. [259], Parikh et al.
[305], Wang et al. [432]

-

Other & General - Pawelek et al. [307], Xiao et al.
[460]

Liao et al. [230] & Collinson
et al. [77]

Zhang et al. [468] & Fierro
and Liccardo [112]

-



Table 2.1 Continued: Model structure categories. References in bold represent metapopulation models. References in italics
represent references that use empirical data for parameterisation and/or validation. PrEP:Pre-Exposure Prohylaxis. References in
category “Other” specify a disease other than the above. Hygiene measures include face-mask use, increased hand washing etc.

Disease Prevention measure
Population level Network / IBM

Infectious Disease State Model Parameters Infectious Disease State Model Parameters Contact Structure

HIV

Condom Use - Johnson et al. [180], Nyabadza
et al. [288]

- Vieira et al. [420] -

Reduce sexual risk - - Alimadad et al. [9] Tully et al. [396, 397] -
Social Distancing - Nyabadza et al. [287, 288],

Reluga and Li [325], Re-
niers and Armbruster [326]
& Viljoen et al. [422]

- Tully et al. [396] -

Other & General Kassa and Ouhinou [191,
192]

- - Marshall et al. [256] -

Syphilis & Gonorrhea

Condom use - Morin et al. [270] - Gray et al. [146] -
Vaccination - Milner and Zhao [265] - - -
Reduce sexual risk - Milner and Zhao [265] - - -
Social distancing - Aadland et al. [1] - Gray et al. [146] Althouse and Hebert-

Dufresne [10]
Measles & Pertussis Vaccination Bhattacharyya and Bauch

[31], Shim et al. [363] &
Bauch and Bhattacharyya
[23], d’Onofrio et al.
[99], Oraby et al. [293]

- - - -

Other
Social distancing Greenhalgh et al.

[148], Perra et al.
[309], Sharma and Misra
[360]

Cooper et al. [78], Del Valle
et al. [89], Wang et al. [429]

- Fast et al. [110] Robinson et al. [328]

Vaccination Sharma and Misra [360],
Sykes and Rychtar [382]

- - - -

Other & General Misra et al. [267] Cooper et al. [78] Williams et al. [450] - -
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Disease Prevention measure
Population level Network / IBM

Infectious Disease State Model Parameters Infectious Disease State Model Parameters Contact Structure

General models

Social distancing Funk et al. [126], Misra et al.
[266, 268], Samanta et al.
[347], Wang et al. [427], Zuo
and Liu [477]

Brauer [41], Buonomo et al.
[52], Fenichel et al. [111], Li
et al. [226, 227], Liu et al.
[235], Liu [237], Lubuma
and Terefe [243], Morin et al.
[272], Reluga [322], Wang
et al. [426], Xiao et al. [461]

Sahneh and Scoglio [339] Cao [58], Wang et al. [430],
Wu et al. [454], Zhang et al.
[470] & Schumm et al. [354]
& Bichara et al. [34], Liu
and Zheng [238], Meloni
et al. [260], Sun et al. [381]

Dong et al. [96], Jolad et al.
[183], Juher et al. [186], Liu
et al. [234], Maharaj and
Kleczkowski [248], Noble
et al. [286], Rogers et al.
[329], Shaw and Schwartz
[361], Szabo-Solticzky et al.
[384], Tunc and Shaw [398],
Valdez et al. [402, 403],
van Segbroeck et al. [408],
Zhang et al. [467] & Nico-
laides et al. [285] & Maharaj
et al. [249]

Vaccination Bauch et al. [24], Bhat-
tacharyya et al.
[33], Buonomo et al.
[51, 53], d’Onofrio and
Manfredi [97], d’Onofrio
et al. [98], Oraby and
Bauch [292], Reluga and
Galvani [324], Voinson et al.
[423], Wu et al. [453], Xu
and Cressman [462]

Barbagallo and Cojocaru
[20]

Cai et al. [56], Campbell
and Salathé [57], Dong et al.
[96], Han et al. [158], Hel-
bing et al. [164], Liang and
Juang [228], Mbah et al.
[258], Morsky and Bauch
[274], Ruan et al. [333],
Schimit and Monteiro [352],
Wells et al. [435], Wu et al.
[455, 456]

Zhang et al. [465] -

Hygiene measures Funk et al. [126] - - - -
Other & General Joshi et al. [185] Liu and Stechlinski [240],

Reluga [323], Samanta and
Chattopadhyay [346], Sega
et al. [357]

Goyal and Vigier [142], Guo
et al. [151], Hatzopoulos
et al. [161], Juher et al. [187],
Liu et al. [232], Miller [263],
Sahneh and Scoglio [340],
Sahneh et al. [341], Yuan
et al. [464] & Chen et al. [67]

Goyal and Vigier
[142], Kitchovitch and
Lio [205, 206], Ni et al.
[283], Rutherford et al.
[336], Shang [358, 359]

-
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Emergence-driven research

The Centers for Disease Control and Prevention (CDC) defines emerging in-
fectious diseases as: “those whose incidence in humans has increased in the
past 2 decades or threaten to increase in the near future. These diseases, which
respect no national boundaries, can challenge efforts to protect workers as pre-
vention and control recommendations may not be immediately available” [62].
Between 2010 and 2015, a number of studies appear to have been emergence-
driven. That is, the research field responds by focusing on infectious disease
events that are of major interest because of a change in the threat they present to
public health. The influenza A/H1N1 pandemic of 2009 has largely influenced
the development of BCMs for influenza. For example, Poletti et al. [312] use
the influenza A/H1N1 pandemic of 2009/2010 to parametrize an influenza
transmission model with behavioural changes focusing on the spread of risk
perceptions in the population. In addition, a model on Ebola virus disease
(EVD) was published in 2015 in response to the epidemic outbreak in Liberia
[110]. The authors use WHO and CDC data to parametrize the model sug-
gested in an attempt to mimic disease transmission and to identify behavioural
changes as drivers of the disease dynamics. Note that, in the current review,
we relate ‘emergence’ not only to disease emergence, but also the emergence
of a vaccine scare (such as observed with measles-mumps-rubella (MMR) vac-
cination and pertussis whole-cell vaccination [23]) or the emergence of new
interventions for endemic diseases (such as the development of a multi-season
influenza vaccine [410]).

Disease transmission models

We identify three major categories of models: population-level models, metapop-
ulation and individual-level models. Population-level models traditionally
formulate compartments according to health state (e.g. susceptible, infectious
and recovered) and simulate transitions between the compartments over time
using population averages. These models are often based on the mass-action
principle to designate the transmission probability. Each individual has an
equal probability of contracting disease given the disease state levels in the
population. Metapopulation models split the population into different sub-
populations with their own (spatial) general characteristics and disease-related
parameters. The individual-level category consists of network models and
IBMs. Network models represent disease transmission on a network where
nodes (individuals) are connected to each other using links. This allows to
model individuals with different degrees, representing how many links a node
has (i.e. number of neighbours/direct contacts). IBMs or ABMs typically incor-
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porate more heterogeneity and stochasticity on individuals’ characteristics such
as spatial location, age, gender, sexual orientation, etc. The model selection
depends on disease characteristics, data availability, modelling purpose (i.e.
what outcome figures are you interested in?), computational resources, etc.

Individual-level models are gaining interest in the BCM literature since they can
introduce heterogeneity in behaviours, tackle clustering of vaccine sentiments
and look at stochastic and local outbreaks of infectious diseases with a high
vaccination coverage (e.g. measles). Moreover, given an underlying contact
structure, individual-level models are well suited to model social distancing be-
haviour in terms of reduced contacts as a prevention strategy. Remarkably, for
measles and pertussis we found deterministic models only, despite the widely
acknowledged stochastic nature of outbreaks in highly vaccinated populations.
Note that, in table 2.1, we also made a distinction between individual-level
and population-level models in the category ‘disease transmission model’.
Metapopulation models are displayed in bold.

Information gathering

In order for individuals to change their behaviour in relation to prevention
measures, they require disease-related information. As defined in the eligibility
criteria, we only included papers in which this information is external to the
individual. Examples of disease-related, external information include: news
broadcasts on a disease outbreak or rumours among friends and family about
VRSEs or vaccine-preventable disease. Funk et al. [127] proposed a classifica-
tion based on type and source of information, distinguishing global and local
information as source and prevalence-based and belief-based information as
type of information. Global information is defined as information available to
all individuals in the population, for example, TV stations and public health
campaigns. Local information is information individuals gather from their
direct contacts or neighbourhood. Examples are rumours from neighbours
or infective individuals in their close contacts. Prevalence-based information
is defined as ‘directly relating to disease prevalence’, whereas belief-based
information is ‘not directly relating to disease prevalence’. Belief-based in-
formation can therefore have its own dynamics, to some extent independent
of the disease dynamics. For example, rumours can inflate the perception of
disease prevalence, even if the true prevalence is low. In table 2.2, we classify
the studies we identified in a matrix, using the same definitions.
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Type of information
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Belief-based Prevalence-based Multiple
Local Alimadad et al. [9], Barbagallo and Cojocaru [20],

Cardillo et al. [59], Fukuda et al. [125], Funk et al.
[126], Han and Sun [157], Liu et al. [239], Mbah
et al. [258], Tully et al. [397], Wang et al. [432], Wu
and Zhang [457], Xia and Liu [458, 459], Zhang
et al. [468], Zhang [471]

Althouse and Hebert-Dufresne [10], Cai et al. [56],
Cao [58], Dong et al. [96], Fu et al. [123], Fukuda
et al. [124], Han et al. [158], Helbing et al. [164],
Juher et al. [186, 187], Liu et al. [232], Maharaj et al.
[249], Morsky and Bauch [274], Noble et al. [286], Re-
niers and Armbruster [326], Rogers et al. [329], Ruan
et al. [333], Sahneh and Scoglio [339, 340], Sahneh
et al. [341], Schumm et al. [354], Shaw and Schwartz
[361], Szabo-Solticzky et al. [384], Tunc and Shaw
[398], Valdez et al. [402, 403], van Segbroeck et al.
[408], Wells et al. [435], Wu et al. [456], Zhang et al.
[470]

Andrews and Bauch [14], Guo et al. [151], Mao
and Bian [253], Mao and Yang [254], Miller
[263], Shang [359], Wells et al. [436], Wu et al.
[455], Zhang et al. [466]

Global Bauch and Bhattacharyya [23], Bhattacharyya
and Bauch [31, 32], Cooper et al. [78], Cornforth
et al. [80], Durham and Casman [108], Fast et al.
[110], He et al. [162], Johnson et al. [180], Joshi
et al. [185], Karimi et al. [190], Laguzet and
Turinici [211], Li et al. [227], Mannberg [251], Mar-
shall et al. [256], Milner and Zhao [265], Misra
et al. [267], Oraby et al. [293], Parikh et al. [305],
Poletti et al. [313], Shim et al. [362, 363], Sykes
and Rychtar [382], Vieira et al. [420], Voinson et al.
[423], Zhang et al. [465]

Aadland et al. [1], Barrett et al. [21], Bichara et al. [34],
Buonomo et al. [51, 52], Chen et al. [67, 68], Collinson
et al. [77], Del Valle et al. [89], d’Onofrio and Man-
fredi [97], d’Onofrio et al. [98], Fenichel et al. [111],
Goyal and Vigier [142], Greenhalgh et al. [148], Greer
[149], Jolad et al. [183], Kassa and Ouhinou [191], Li
et al. [226], Liu et al. [234, 235, 236], Liu [237], Liu
and Zheng [238], Liu and Stechlinski [240], Lubuma
and Terefe [243], Meloni et al. [260], Misra et al.
[266, 268], Morin et al. [270, 271, 272], Mummert and
Weiss [278], Nyabadza et al. [287, 288], Pawelek et al.
[307], Poletti et al. [312], Reluga [322, 323], Reluga and
Galvani [324], Reluga and Li [325], Samanta and Chat-
topadhyay [346], Samanta et al. [347], Sharma and
Misra [360], Sun et al. [381], Viljoen et al. [422], Wang
et al. [426, 427], Wang [428], Wang et al. [429, 430], Wu
et al. [453], Xiao et al. [460, 461], Xu and Cressman
[462], Yuan et al. [464], Zhang et al. [467, 469], Zhong
et al. [472], Zuo and Liu [477]

Bauch et al. [24], Bayham et al. [25], Bhat-
tacharyya et al. [33], Breban [43], Buonomo et al.
[53], Liao et al. [230], Oraby and Bauch [292], Sega
et al. [357]

Multiple Campbell and Salathé [57], Cohen et al. [76],
d’Onofrio et al. [99], Loganathan et al. [241], Ni
et al. [283], Nicolaides et al. [285]

Barrett et al. [22], Kassa and Ouhinou [192],
Kitchovitch and Lio [205, 206], Larson and Nigmat-
ulina [218], Maharaj and Kleczkowski [248], Marathe
et al. [255], Schimit and Monteiro [352], Shang [358],
Vardavas et al. [410]

Fierro and Liccardo [112], Hatzopoulos et al.
[161], Liang and Juang [228], Liao and You [229],
Mei et al. [259], Perra et al. [309], Tully et al.
[396], Wells et al. [436], Wu et al. [454]
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We observe that most BCMs are using information that is globally available and
prevalence-based. These models are frequently game-theoretic (or pay-off max-
imizing) behavioural change frameworks coupled with disease transmission
models at the population level. Studies that met our eligibility criteria, but are
unclear about the information individuals use [41, 146, 328, 336, 370, 450] were
excluded from figure 2.2. Given the increasing individual heterogeneity in dis-
ease transmission models, it is becoming more interesting to incorporate local
information in BCMs. In network models and IBMs, one could for instance
model the local spread of information through direct contacts with crucial
implications in terms of clustering of both disease prevalence and opinions
[283].

In addition, we observe that more articles are using multiple information types
and/or sources, making individual behaviour more realistic. For instance,
Barrett et al. [22] constructed a model where ‘individual behaviour is triggered
by the prevalence level of the virus in the overall society (global prevalence) as
well as within one’s own demographic class (local prevalence)’. Highly relevant
are articles introducing both multiple sources and multiple types of information
such as the model by Liang & Juang [228], which introduces different forms of
information in the individual’s risk perception of an epidemic, embodying all
four information categories.

How is the transfer from information to behaviour managed?

Based on full-text analysis, we extracted how individuals were modelled to
translate the information they receive into behavioural change. Traditionally,
behaviour formation models were composed of a game-theoretic framework
in which individuals have perfect information on disease-related data and
prevention effectiveness. Individuals are then assumed to use this information
in a utility-maximizing game by comparing the expected costs of infection
with the expected costs of the prevention measure. However, more advanced
and different BCMs have been developed since. We identified five distinct
categories for characterizing the decision-making process of individuals, listed
from a) to e) (see also electronic supplementary material to Verelst et al. [411]).
Some referenced papers contain multiple BCMs.

a) Exogenous behaviour formation (16/178)

We retrieved 16 papers [41, 78, 89, 146, 149, 180, 185, 190, 256, 270, 305, 328, 336,
370, 420, 450] describing BCMs in which there is no two-way interaction with
a disease transmission model. Morin et al. [270] provide an example of such a
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model by assessing the impact of policies encouraging condom use, on gon-
orrhoea transmission dynamics; i.e. behaviour (condom use) is parametrized
based on different empirical studies and model projections are made to estimate
consequential disease transmission and model equilibria. Similarly, Brauer [41]
assessed disease model implications of a constant fractional reduction in the
number of contacts. A third example is the model by Joshi et al. [185] where a
time-dependent education function moves susceptible individuals into lower
susceptibility classes with lower transmission rates, independent of disease
dynamics. These models are relatively rare and most often focus on policy
implementations and short-term effects of behaviour on disease transmission.

b) Information threshold (29/178)

We retrieved 29 BCMs in which behaviour change is modelled conditional
on exceeding a predefined information threshold [10, 21, 22, 57, 68, 96, 112,
151, 183, 186, 187, 191, 232, 234, 253–255, 286, 326, 329, 354, 361, 384, 398, 402,
403, 408, 455, 461]. The information the individual assesses can be obtained
in a direct way (e.g. through prevalence in neighbours) or in an indirect way
(e.g. through rumours or opinions). These models do not elaborate on how
behaviour is rationally determined or influenced by relevant factors. Instead,
behaviour formation is a result of a predefined threshold function. Examples
include switching to social distancing when the number of infectives exceeds
a threshold [461], social distancing by rewiring once a non-infected node
connects to an infected node [361], and – as in Wu et al. [455] – to have an
individual’s vaccination decision exercised through a risk function exceeding a
threshold, which in turn depends on the number of infected neighbours. Mao
& Yang [254] used an individual risk function incorporating the proportion
of ‘adopters’ among contacts, the perceived pressure of ‘adoption’ and the
proportion of infective neighbours. Again, once the risk function exceeds a
threshold, individuals adopt preventive behaviour, which in this case consisted
of taking prophylactic antivirals.

c) Information as dynamic parameter (76/178)

The largest category embodies 76 references managing information as a dy-
namic parameter [9, 25, 34, 51–53, 58, 68, 77, 97, 99, 108, 110, 112, 126, 148,
158, 161, 162, 183, 192, 205, 206, 218, 226–230, 235–238, 240, 241, 243, 248, 259,
260, 263, 265–268, 278, 283, 287, 288, 307, 309, 333, 339–341, 346, 347, 357–
360, 381, 422, 423, 426–430, 454, 456, 459, 460, 464, 467, 470, 472, 477]. In this
category, instead of a threshold, the information is a continuous input in the
decision-making process of individuals. At the population level, we can char-
acterize these BCMs as information driving the flow in and out the prevention
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taking compartment. Two subcategories can be distinguished: models with
a direct relation between infectious disease parameters and behaviour forma-
tion (i.e. behaviour changes vis-à-vis disease dynamics), and models with
an indirect relation, through an information spread medium. For the former
subcategory, the behaviour or decision-making process is predefined as a func-
tional relation depending on disease transmission parameters. The functional
form does not need to be linear. Some examples are vaccination coverage as
a positive decreasing function of perceived risk of VRSE [97], the percentage
of the susceptible population engaging in avoidance actions increases as the
disease becomes more prevalent [472] and a model where the effective contact
rate reduces with the number of infectives [226].

The latter subcategory requires a third-party spreading the information for
individuals to receive. For instance through mass media, neighbours, formation
of opinions in the population, etc. A multitude of these models introduce an
‘aware’ compartment in the model where aware and unaware individuals are
assigned distinct disease transmission parameters such that aware individuals
have lower susceptibility of acquiring infection. See for example Funk et al.
[126], in which a rate introduces people in an ‘aware’ class after which the
awareness spreads through the population, coupling disease transmission with
a BCM. Interestingly, some models introduce information spread models with
characteristics from disease transmission models where individuals are, for
example, susceptible to or infected with disease-related information. Misra et
al. [266] use a model with media coverage creating awareness in the population,
also introducing an ‘aware’ compartment in a population model. Social impact
is introduced in a model by Ni et al. [283], where they use a variety of complex
networks for the spread of opinions driving the individual probability of
prevention behaviour. The use of a network is convenient to model these
dynamics as they allow clustering of, for instance, vaccine-related sentiments
in the population. Most often these models assign additional characteristics
to nodes (which represent individuals), apart from disease state. An example
could be that a node is assigned a disease state and an opinion which is
either provaccination or contravaccination. When simulating the disease and
behaviour dynamics in this network, when nodes interact, transmission of both
disease and opinions can occur. Such that if a provaccine node is surrounded
by many vaccine sceptics, it might change its opinion towards the opinions
of its links (i.e. neighbours) and as a result this will influence the individual’s
probability of taking vaccination as a prevention measure.
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d) An economic objective function (37/178)

This ‘economic’ class of BCMs is also quite common with 37 articles being
retrieved [1, 14, 20, 24, 32, 33, 43, 67, 76, 80, 111, 142, 164, 211, 249, 251, 258, 260,
271, 272, 274, 285, 322–325, 352, 362, 363, 382, 396, 397, 410, 423, 432, 434, 465].
This approach assumes individuals take their prevention decision based on an
objective function, which they attempt to optimize (i.e. by maximizing benefits
and/or minimizing costs). Game theory grounded models form an integral
part of this category. By way of example, one can assume that individuals
have knowledge about both the disease and their options for prevention and
make rational decisions based on this knowledge. People accordingly possess
a (perceived) cost of infection (ci) and a (perceived) cost of the prevention
measure (cp), which can, for instance, be assumed to be 100% effective. Another
important input in people’s decision-making, their probability of infection (λ)
can be assumed to be dependent on disease prevalence, which evolves over
time. For instance, one can define this using an SIR model under the mass
action principle as the force of infection, i.e. λ = βI, where β is the per-contact
transmission rate, and I is the fraction of infectives in the population. This way
the behavioural change framework can be coupled to the disease dynamics.
The individual makes the following trade-off, with P, the choice of taking the
prevention measure

P =

1 if ciλ > cp

0 if ciλ < cp
(2.1)

In a study by Bhattacharyya & Bauch [32], individuals take their vaccination
decision based on the perceived vaccination cost in the context of the 2009
A/H1N1 influenza pandemic. Their BCM model exhibits a ‘wait and see’ Nash
equilibrium where individuals incorporate the concept of herd immunity in
their prevention behaviour, resulting in free-riding represented by a ‘delayer’
strategy. The model developed by Morin et al. [271] embodies individuals’
behaviour by the maximization of expected utility determined by adapting
the contact level (i.e. social distancing). Aadland et al. [1] introduce a BCM
maximizing an individual’s expected lifetime utility by choosing the number
of sexual partners, hereby explaining the re-emergence of syphilis.

e) An economic objective function with social learning/imitation. (26/178)

We retrieved 26 papers [23, 31, 56, 59, 96, 98, 123–125, 157, 239, 258, 292, 293,
312, 313, 435, 436, 453, 457, 458, 462, 466, 468, 469, 471] describing a BCM
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with an objective function with imitation. It is recognized that some social or
peer influence should be incorporated in the decision-making process of the
individuals (see also models with information as a dynamic parameter). As a
response to this concern, the (rational) ‘game-theoretic’ model has been adapted
to include social influence or imitation behaviour. In these models, it is assumed
that people compare their own prevention-related behaviour with that of other
individuals in society. Through comparison, individuals learn whether their
own behaviour is optimal and, to which extent they should adapt it. Typically,
a sampling rate is assumed for individuals sampling other individuals from
the population. After sampling an individual from the population, the trade-
off is compared and people switch strategies with a probability as a function
of the pay-off difference. Often, a Fermi-like function is used, guiding the
adoption to the better strategy depending on the magnitude of the pay-off
difference. Other switching functions/strategies are used, but naturally, the
larger the beneficial pay-off difference, the higher the probability of switching
your behaviour. An example of a Fermi function, taken from [125] is given in
this section. If we represent the pay-off of the strategies of individual i (with
strategy si) and individual j (with strategy sj) as εi and ε j respectively, and
the pay-off difference is defined by ∆εij = εi − ε j. Then, the probability of
individual i switching to the strategy of individual j is

Pr(si ← sj) =
1

1 + exp[
∆εij

κ ]
(2.2)

where κ denotes the selection pressure representing the sensitivity of individu-
als to switch strategies in response to a pay-off difference [125]. Parameter κ can
be interpreted as expressing ‘stickiness’ in behaviour. Figure 2.3 indicates that
individuals are very responsive even to small differences in the pay-off when κ

is low, and that for large values of κ (e.g. 0,9) their behaviour becomes ‘sticky’.
Sticky, in the sense that they need to observe a very large pay-off difference
before they opt to change. For intermediate values of κ, people have sticky
behaviour but when the potential benefit in the pay-off is large enough, people
switch to the strategy of individual j. If the behaviour is not assumed to be very
sticky, then it could be that individual i still adopts the strategy of individual j
even if the pay-off of strategy j is worse. The underlying assumption is here
that for some individuals peer influence and social conforming behaviour is
-to a certain extent- more important than pay-off maximization. Note that in
the majority of these models, assumptions rather than real-life observations
guide the choice and distribution of the ‘stickiness’ parameter κ.
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Figure 2.3: Fermi function for different values of κ

Model parameterisation and validation

One may question how well BCMs approach reality, as there is a paucity of em-
pirical data on behavioural responses to disease-related information informing
these models. We examined whether and how data were used to parameterize
BCMs, and to which extent these data support the underlying theoretical model.
Moreover, we critically assessed model parameterization, distinguishing data-
driven from assumption-driven parameterization, for the disease model, the
BCM and the complete integrated model. A first, striking observation is that
most models are solely theoretical because they are constructed independently
from empirical observations. Often a stability analysis is performed, and equi-
libria are obtained in order to grasp the dynamics of the model in the absence
of parameter values. Others perform numerical simulations with either as-
sumptions on parameters or referring to other studies supporting their choice
of parameters. Less than 20% of the studies has (partially) fitted or validated
their model to behavioural and/or disease transmission data. Retrospective
studies on disease emergence are particularly useful when real-time data on
behavioural change and disease transmission during an outbreak are available
over a sufficiently long time. Social media data and other electronic sources of
information are also increasingly used, thus creating opportunities for ‘big data’
collection on disease transmission, behaviour formation and spatial location
[25, 307, 459]. Next, we briefly describe studies constructing their models using
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observational data, i.e. studies not exclusively making assumptions or taking
parameters from literature.

To underpin BCMs, participatory experiments have been performed to capture
social distancing. Maharaj et al. [249] and Chen et al. [67] collected data
through a game in which participants trade-off social contacts versus their risk
of infection. Such data can be used to parameterize game-theoretic models of
social distancing and adaptive networks with link deletion. In addition, survey
data have been used to assess behavioural change. Zhong et al. [472] used sur-
vey (Public Risk Communication Survey, 2009) data to parameterize their BCM.
Robinson et al. [328] surveyed sexual attitudes and lifestyle to build a sexual
contact network. The IBM in Gray et al. [146] for syphilis transmission was also
informed with survey data on sexual behaviour. Additionally, disease trans-
mission parameters were calibrated from syphilis diagnosis among gay men
in Victoria, Australia. A survey on altruism and self-interest was conducted
by Shim et al. [362] to calibrate the behavioural change parameters regarding
influenza vaccination. In Schumm et al. [354], the BCM is represented by a
dynamic social contact network with social distancing, constructed from a
survey and census data. Cohen et al. [76] surveyed a convenience sample of
students about their risk perceptions for influenza A/H1N1 to estimate the
utility values of different behaviours. The study by Fierro & Liccardo [112],
used data on awareness and concern about the risk of contagion to populate
their model on A/H1N1 influenza transmission with behavioural parameters.
Moreover, they also validated their output through comparisons with Italian
influenza surveillance data from 2009. The health belief model (HBM) [170]
is frequently used to retrieve prevention behaviour and parameterize BCMs.
The parameters in the HBM in Durham & Casman [108] were calibrated, using
survey data on perceived severity and susceptibility during the 2003 SARS out-
break in Hong Kong. Karimi et al. also use the HBM for their ABM on influenza
in 2015 [190]. For validation, the authors compare their model output with
similar influenza ABMs in the literature. Another model tackling the influenza
A/H1N1 pandemic in 2009 is the model by Bayham et al. [25], who used
data from the American time-use survey and the National Health and Activity
Patterns Survey (NHAPS). Moreover, Google Trends data are represented as a
proxy for subjective risk perception and weather data are used to control for
the effects of extreme weather phenomena. Xia et al. [459] constructed a social
network using data of an online Facebook-like community to construct a BCM
for disease and vaccine awareness on the 2009 influenza A/H1N1 pandemic in
Hong Kong. The same pandemic has inspired Springborn et al. to use home
television viewing as a proxy for social distancing [370]. Pawelek et al. [307]
used Twitter data of self-reporting for awareness spread and ILI surveillance
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data (UK Health Protection Agency) of the 2009 A/H1N1 influenza pandemic
for disease transmission. In addition, Collinson et al. [77] constructed a model
on influenza A/H1N1, incorporating mass media report data from the Global
Public Health Intelligence Network.

Incidence and outbreak data have been useful to inform the disease dynamics
parallel with BCMs. For the 2009 influenza pandemic, Zhong et al. [472] param-
eterized their transmission model with outbreak data from Arizona and Xiao
et al. [460] estimated parameters using outbreak data (laboratory-confirmed
cases) from Shaanxi province in China. Schumm et al. [354] focused on ob-
servational census and survey data from rural areas. Andrews & Bauch [14]
calibrated both disease and behaviour parameters to vaccine coverage and
disease incidence data. Althouse & Hébert-Dufresne [10] used surveillance-
based incidence rates for syphilis and gonorrhoea from 1941 to 2002. Gray
et al. [146] calibrated disease transmission parameters from data on syphilis
diagnosis among men who have sex with men in Victoria, Australia. An HIV
transmission model including adaptive condom use and sexual partnerships in
South Africa is fitted to HIV prevalence data in Nyabadza et al. [288]. The pub-
lication makes projections for disease dynamics when scaling up condom use
and reducing the number of sexual partners stepwise with 10%. Behavioural
change parameters are not calibrated in this publication. The HIV model of
Viljoen et al. [422] is fitted to prevalence data in South Africa and Botswana to
look at the effect of awareness on disease spread.

BCMs on vaccination dynamics have also been supported by real-life observa-
tions. Bauch & Bhattacharyya [23] informed model parameters with historical
vaccine coverage and disease incidence data from two vaccine scares (MMR
and whole-cell pertussis). The behavioural change framework introduced in
the model has a game-theoretic foundation with inclusion of imitation. Like-
wise, a model for the dynamics of vaccine uptake with a public intervention
was proposed by d’Onofrio et al. [99]. Pertussis vaccination uptake and disease
dynamics data for the UK are used to fit the model by Oraby et al. [293], which
focuses on the inclusion of injunctive social norms in the context of vaccina-
tions for paediatric infectious diseases. The model is validated comparing the
model prediction with observed vaccination uptake data during both the UK
vaccine-scare period and high coverage period.

Model fitting has been performed through maximum-likelihood and least-
squares methods [108, 162]. Poletti et al. [312] use ILI incidence data in Italy
to calibrate the disease dynamics in their game-theoretic model using least-
squares. In addition, data on antiviral drug purchase were used to calibrate the
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model. In [110], a model of social mobilization is fitted to weekly case counts
from CDC and WHO for EVD in Lofa County, Liberia. He et al. [162] inves-
tigated three possible explanations for multiple waves of the 1918 influenza
pandemic, with one consisting of human behaviour responses. Three proposed
models are fitted to historical mortality data using maximum-likelihood in
order to determine the extent they can justify the observed disease dynamics.
Johnson et al. [180] used prevalence data, antenatal clinic surveys and house-
hold surveys for parameterization in order to determine the effects of increased
condom use and antivirals on disease dynamics. They calibrated both disease
and behaviour parameters to age-specific data using a Bayesian approach for
two distinct models.

2.4 Discussion

What are current BCMs capturing?

It is intuitively logical to include human behaviour in mathematical models for
the spread of infectious diseases. After all, disease dynamics are, in essence,
dependent on human behaviour dynamics: people interact and take preventive
measures on a regularly basis. Because there is much heterogeneity in the ways
in which behaviour is included and parameterized in BCMs, it seems the real
question is: ‘How should behaviour be taken into account?’ We found that
model output may depend on the model specification, to the extent that the
selection and development of a model leads in a predictive way towards a
predefined conclusion. That is, it seems many of these models serve to justify a
theory. For instance, in many pure game-theoretic models, free-rider behaviour
emerges resulting in suboptimal vaccination coverage levels, whereas in mod-
els including imitation behaviour, the results are often ambiguous. Validation
of models with real-life observations is desperately needed to specify an appro-
priate model, conditional on disease characteristics. Note that model selection
implicitly determines the characterization of individuals in the population;
models with an economic objective function often assume rational decision-
makers, whereas models with imitation or information spread introduce some
‘irrational’ behaviour such as peer influence and social responsibility.

In addition, purely rational game-theoretic models fail to capture important
notions highlighted by Tversky & Kahneman. That is, such models do implic-
itly rely on expected utility theory – in which it is assumed that “... individuals
choose in such circumstances as if they were seeking to maximize the expected
value of some quantity.” [122]. Kahneman & Tversky criticized this theory and
proposed an alternative, called prospect theory. Prospect theory incorporates
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flaws in individuals’ decision making, such as the certainty effect (people are
risk averse for choices involving sure gains and risk seeking for choices involv-
ing sure losses) and the isolation effect (people discard aspects that are shared
by all alternatives) [188]. Moreover, they do not capture other notions of cog-
nitive bias which have been found to influence human decision making [399].
Cognitive biases influences our judgment and perception under uncertainty,
and hence our decision making. For example, omission bias – the finding
that a potential loss due to inaction is valued less than the same potential loss
due to action – has been found significant in parents making decisions about
pandemic flu vaccination to their children [47, 327].

Primary sources such as surveys are needed to empirically underpin the foun-
dations of the models used. The study of Skea et al. [364] on MMR vaccination
decisions uses an online chat forum to assess vaccination sentiments and the
importance of social responsibility in the parental decision process. The au-
thors find that: ‘participants expressed a desire to both (i) protect their own
child and (ii) help protect others by contributing to herd immunity’ [364]. This
finding suggests that people are not purely self-interested and herd immunity
is not taken as a means to opt for free-riding, on the contrary, establishing
herd immunity is seen as an additional incentive, protecting others. A similar
conclusion can be drawn from Vietri et al. [421], who tested whether college
students consider either free-riding or altruistic motives to decide on (not)
receiving vaccinations. They find that individuals both incorporate their own
risk of infection and altruistic motives in their decision of whether or not to
vaccinate. Determann et al. [92] suggest that these behaviours – and as a result
the decision-making process – are country-dependent. They find that focus
group participants tend to ‘base their vaccination decision on the trade-off
between perceived benefits and barriers of the vaccine’. Although, in their
vaccination strategy, Swedish participants also incorporate: following the rules,
doing the right thing, solidarity with other citizens and social influences. The
latter drivers are less important in Dutch and Polish participants. This implies
that studies may have to be diversified by country-specific characteristics to
tackle the inhabitant’s behaviour. Dorell et al. [100] conclude that one of the
most important factors for vaccination is the healthcare provider’s recommen-
dation, which is a determinant that is not included in any of the approaches in
the models we found in this extensive review.

In general, there is a need for empirical research to underpin the development
of valid models approximating real-life behaviour and disease transmission.
Some attempts for recent BCMs illustrate the difficulty of finding suitable ob-
servational data. For instance, Springborn et al. [370] used television viewing
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habits (average viewing time) as a proxy for social distancing, although this
proxy is far removed from a direct estimation of social distancing in an out-
break situation. More promising sources of information include: survey data
using, for instance, the HBM framework (also see [147, 170, 332]) or time-use
surveys [25, 67, 76, 108, 146, 180, 190, 328, 354, 362, 472] or digital sources such
as social media [25, 249, 307, 342, 459]. Real-life data collection during the
influenza A/H1N1 pandemic in 2009 has been a milestone for the parametriza-
tion of BCMs with increased collection of both behaviour and disease-related
information. For instance, Van Kerckhove et al. [406] studied social contact
patterns of symptomatic ILI cases during the pandemic. We encourage the
collection of such real-time data in future outbreaks to guide policy-makers in
the establishment of an optimal response strategy. For some models, data are
just not available, and one needs to resort to assumptions to model behavioural
change. Note also that excluding behavioural change from infectious disease
models equates to assuming behaviour is unaffected by risk perceptions and
disease incidence, and vice versa. Ignoring behavioural responses in the face
of substantial changes in risk perceptions is probably worse than making as-
sumptions within a theoretical model in the first place. This review has also
met with important limitations in clarity of assumptions and methods in many
publications, notwithstanding transparency is an essential part of publishing
credible and replicable research.

Disease-dependent model specification

We observed that the specification of BCMs largely depends on the disease
being investigated and the prevention measures considered. Clearly, the trans-
mission characteristics (e.g. air and saliva borne versus STIs), the potential
prevention measures (e.g. social distancing versus condom use) and the epi-
demic stage (e.g. emergence versus endemic equilibrium versus elimination)
are interdependent, and determine both the utility and specification of a BCM.
For instance, many influenza models use vaccination as a prevention measure
with individuals evaluating their previous influenza vaccination decisions to
determine the current season’s strategy. It would seem unrealistic to require
more data to parameterize both behavioural change and disease transmission
models with the aim to develop more general models that suit any infectious
disease, albeit that behavioural change in response to one disease’s risk percep-
tions could change the risk perceptions of another. At the current stage of BCM
development and parameterization, generalized BCMs accommodating multi-
ple pathogens and different transmission routes seem unrealistic. However, it
would be easier to combine multiple diseases with the same transmission and
prevention properties. For instance, BCMs assessing the combined effects of
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vaccination scares on MMR and diphtheria, tetanus, pertussis (DTP) disease
seem intuitively possible and relevant, though technically challenging and
high on data demands.

Developing BCMs with multiple prevention measures is also challenging.
Again, we take influenza as an example where we discovered a multitude of
prevention measures in our selection (also see table 2.1): vaccination, social
distancing, pre-exposure prophylaxis by antivirals, hygiene measures and oth-
ers. Interdependencies between these prevention strategies may occur. For
instance, a person vaccinated for seasonal influenza may put less effort into hy-
gienic measures such as hand-washing. However, individuals taking hygiene
measures may also be more inclined to engage in social distancing if these
individuals are more risk-averse. Researchers need to take into account that
focusing health policy on one prevention measure may induce ‘crowding out’
of other prevention measures because of such interdependencies. Hence, it is
useful to assess the total effect of combined prevention efforts when evaluating
policies to reduce the incidence of a disease. Models introducing behavioural
change with interdependencies between different prevention measures are
influenced by both intrinsic and extrinsic factors.

The popularity of emergence-driven research has many drivers: often new
research funding and data collection opportunities arise as an emergence
unfolds for the development and parameterization of new models to inform
health policy.

Social networks and IBMs

We observed a rise in the number of studies using (complex) social networks
and IBMs to represent disease spread and individual behavioural changes.
Social network models impose a structure in the population enabling the iden-
tification of model subjects at the individual-level. The implementation of these
networks creates a coherent environment to model: social distancing as a pre-
vention measure, the spread and clustering of disease- and prevention-related
information and disease dynamics itself. In addition, neighbours can be identi-
fied to implement game-theoretic models with imitation dynamics, potentially
resulting in clustering of prevention measures. It is clear that the development
of these networks has increased the feasibility of modelling local or combined
local-global information sources in a BCM. Nevertheless, the selection of an
individual-level model is often a trade-off between the desirability for hetero-
geneity and IBM-specific hurdles such as the computational burden, greater
risk of coding errors and potential loss of transparency and reproducibility.
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Here too, data availability is key to develop relevant models. For example, one
could use the POLYMOD study on mixing patterns to construct a synthetic
population or a network [276]. Still, more research is needed to enrich the
validity of synthetic populations as a representation of real-life dynamics. We
refer to a review by Wang et al. [431] focusing on coupling disease dynamics
with behaviour in complex networks. A more general work covering BCMs is
the book by Manfredi & D’Onofrio [250].

Some models use a single social network for both the disease transmission
process and the formation of behaviour. Nonetheless, depending on the back-
ground, separate networks may be needed to model the spread of risks and
the spread of information influencing behaviour. Take for instance anti-vaccine
sentiments. These are often spread through blogs, Facebook groups and other
social media [342]. Unlike these sentiments, infections are not spread through
the Internet, and as a result require an additional network of physical contacts
(see also Grim et al. [150], who make the case for modelling multiple networks).
Additionally, the timescale of disease transmission can differ substantially from
that of information spread leading to behaviour change. The models by Fukuda
et al. [125], Helbing et al. [164] and Maharaj & Kleczkowski [248] are useful
examples to guide further development of BCMs with separate parallel and
sometimes interacting networks.

Internet and social media

Information gathering by individuals has evolved over the past decades with
the introduction of the Internet, mobile phones and associated social media
applications. It is well documented that web-based information can provide
a distorted picture about disease risks and adverse events from vaccinations
[28, 83, 215]. For instance, the search term ‘MMR vaccine’ in Google is au-
tomatically complemented by the suggestions ‘autism’ or ‘side effects’. We
know individuals retrieve information using these sources for disease-related
or prevention-related information and as a result, individuals are exposed to
a wide variety of biased information. We recommend policy-makers to im-
plement measures to help individuals to distinguish between evidence-based
and unsubstantiated information. A quality label for health-related websites
and public health information campaigns are two examples of such measures.
Surveys can help understanding how individuals form their perceptions and
where they obtain their information.

Another challenge we are faced with, given the popularity of social media, is
whether we can still make a distinction between global and local information
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and how to use these sources of information to construct BCMs. We motivate by
example: are Tweets local or global information? In essence, this information
can be accessed by anyone, so that they are global. However, at the same time,
Tweets are primarily shared among contacts that ‘follow’ each other, which
defines local information. In addition, Facebook contacts are not necessarily
close in a geographical sense, such that ‘local’ relates more to the possibility
of clustering, moving beyond geography. This evolution reinforces the need
for having distinct networks in the same model. While social media require
reconsidering how information spread is modelled, they also present an op-
portunity to gather data on behaviour and behavioural changes. A number of
studies we identified already integrated social media data [25, 307, 342, 459].
We expect future modelling studies to increasingly use social media as a data
source to parameterize BCMs.

Irrational behaviour and altruism

BCMs have evolved from the perspective of a fully rational ‘Homo economicus’
to a more reasonable, empathic ‘Homo sapiens’. This evolution is conform
the findings of surveys examining individuals’ drivers to take vaccination
[92, 364, 421] and common sense in general. The study of Shim et al. [362] even
considers altruism explicitly as a driver of individuals to take vaccination. In
the most recent literature, only few papers are still using a pure, self-centred
game-theoretic model. Instead, in the majority of the papers, some form of
irrational behaviour has been introduced by the inclusion of social influences
or imitation. It is striking, however, that most of the imitation BCMs did not
empirically justify their choice of stickiness parameter.

Level of detail of behaviour.

Many BCMs today capture, to some extent, heterogeneity in behaviour; individual-
level networks can, for instance, introduce heterogeneity in the number of
neighbours that can influence a person to adopt preventive measures. Some
population models split the population into compartments representing differ-
ent levels of risk attitude [31]. Some IBMs introduce personal experiences with
disease or prevention measures in behaviour change models [123].

Moreover, heterogeneity in behaviour can be split into two categories: hetero-
geneity in information an individual receives (e.g. the social contact network
of the individual) and heterogeneity in the response to this information (e.g.
assigning individual values of stickiness of response in models with imita-
tion). The majority of the publications include individual heterogeneity as the
information they are exposed to, whereas only few include the latter category.
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The desirability of heterogeneity in behaviour depends on the circumstances
and characteristics observed. We illustrate by example: for measles in a highly
vaccinated population, it has been observed that unvaccinated individuals
and anti-vaccine sentiments are clustered and, as a result, heterogeneity in
behaviour should be introduced in behaviour models. For example, one can
introduce a distinction between vaccine sceptics and vaccine believers [363].

Again, the availability of real-life observations determines to a large extent
the feasibility of introducing heterogeneity in BCMs. Why develop a complex
model with large heterogeneity if the parameters cannot be informed by real-
life observations? A trade-off needs to be made in terms of computational
efficiency, data availability and desirability of heterogeneity given the context
of the disease [128].

Limitations and strengths

Our search was limited to the past 6 years. However, a previous review ended
where we start, and since this field is transitioning fast with rapidly increasing
computational and research capacity, we believe the most recent years are the
most informative. This is also testified by the evolution of our search yield
over the 6 year period we covered. Our strength lies in the transparent and
systematic way we have searched and analysed the literature according to the
standards of systematic review. Nevertheless, as with any systematic review,
our search string strikes a balance between completeness and feasibility. Given
the current lack of a consistently used common term for the models we review,
it is inevitable that we missed some admissible research. Indeed, it came to
our attention that, for instance, [252, 257, 474] terms were not retrieved by our
search, although they would satisfy our eligibility criteria. This emphasizes
the need for a specific terminology. We therefore propose the use of the term
‘behavioural change model’ in title, abstract or keywords to facilitate more
accurate identification of relevant studies by researchers in different fields.

2.5 Conclusions

We have systematically reviewed the literature on BCMs published from 2010
until 2015. We analysed and classified 178 references after full-text processing.
We proposed a classification of the BCMs based on the decision-making process
of the individual. We can summarize our findings in line with the six aims
we listed in the introduction. Regarding the technological advancements and
increased data availability (i), we find that social media and big data are use-
ful to parametrize BCMs and present an as yet insufficiently explored source
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of information. Social media can, however, introduce a bias in individuals’
prevention- or disease-related perceptions. In addition to the health recommen-
dations they make, policy-makers can optimize their influence by enabling the
collection and accessibility of government-owned data (such as surveillance)
and by establishing a quality label for disease-related websites. Further, we
can confirm that behavioural immunity is often contingent on the disease (ii):
BCMs are disease and situation-dependent, which we strongly support. Re-
garding model validation and parametrization with quantifiable observations
(iii), we can state that additional data sources are needed to specify relevant
BCMs. Although the 2009 influenza pandemic presented an opportunity for
parametrization and validation of both disease transmission and BCMs for
flu-like illnesses, there is still much room for improvement in other disease
areas. Current models have, without a doubt, assessed the importance of social
networks in individual decisions (iv). Individual-level models such as IBMs are
extremely useful to tackle behaviour changes and to mimic disease transmis-
sion better. More specifically, (v) the diversity observed in BCMs has increased
the feasibility of introducing social influences and irrational behaviour (vi).
In terms of policy recommendations, it is highly important to think about the
total effect of an intervention, with possible implications on all prevention
strategies.

The expansion of BCMs has been remarkably valuable. We encourage re-
searchers to incorporate behaviour changes in future disease transmission
models and to be transparent about the assumptions they make if data sources
for parametrization or validation are sparse.
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CHAPTER 3
A discrete choice experiment

(DCE)

This chapter is based on published work: “Verelst F, Willem L, Kessels
R and Beutels P. (2018). Individual decisions to vaccinate one’s child or
oneself: A discrete choice experiment rejecting free-riding motives. Social
Science & Medicine, 207, 1-9.” [413] and: ”Verelst F, Willem L, Kessels R
and Beutels P. (2018). Corrigendum to ‘Individual decisions to vaccinate
one’s child or oneself: A discrete choice experiment rejecting free-riding
motives’. Social Science & Medicine, 217, 31.” [412]
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Summary

It is essential for public health to understand what drives people’s hesi-
tance towards vaccination. Theoretical models of vaccination decisions
are ubiquitous, often incorporating herd immunity, perceptions of vaccine-
related side-effects (VRSE) and of vaccine-preventable burden of disease,
but with little to no empirical exploration. Herd immunity is a (usually)
positive externality where vaccinated individuals influence others’ risks
by their reduced capability to transmit an infectious disease to them. It
is often assumed that (rational) individuals incorporate this externality
in their strategic vaccination decision, from which free-riding behavior
arises. We performed a Bayesian D-efficient discrete choice experiment
in February-March 2017 to study vaccination behavior in 1919 Belgian
respondents. Choice sets with vaccine profiles were constructed using six
attributes: vaccine effectiveness, VRSE, accessibility (in terms of conve-
nience and reimbursement), vaccine-preventable burden of disease, local
(respondents’ network of contacts) vaccination coverage, and population
(the population at large) vaccination coverage. VRSE and accessibility
are the most influential attributes, followed by vaccine effectiveness and
burden of disease. Both population and local coverage are less important
than the other attributes, but show a significant direct linear relationship
with vaccine utility. This supports the existence of peer influence (more
incentivized as more and more vaccinate), rather than free-riding on herd
immunity. These findings were independent of whether respondents made
vaccine choices for themselves or for their child. Around 40% of the re-
spondents indicated accepting vaccination with little or no questioning.
These ‘acceptors’ were less sensitive to changes in the vaccine-preventable
burden of disease for their child’s vaccination choices (but not for them-
selves). Public health institutions are critical in stimulating vaccine uptake
by making vaccines conveniently available at an affordable price and by
communicating pro-actively on perceived VRSEs. The free-riding assump-
tion as a driver of individual vaccine decisions, seems inappropriate, but
this observation needs confirming in other populations.
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3.1 Introduction

Infectious disease prevention is increasingly challenged by globalization [173].
Not only pathogens spread globally in a matter of days through ever-increasing
human mobility [273], but vaccine scares and hesitancy can propagate even
faster via social media [214, 343]. The communicability of both infections and
rumors undermine hard-fought investments to prevent, control and eradicate
infectious diseases [217]. Hence, understanding individual vaccination deci-
sions is highly relevant for policy-makers and vaccine program managers in
order to anticipate and respond to drops in vaccination coverage. Empirical
information on how individuals decide about vaccinating themselves or their
children is however lacking [128, 411].

Yielding uncertain benefits in the future, prevention differs fundamentally from
cure. People do not know upfront when (or if) they will contract a preventable
disease. Other vaccine-specific aspects further complicate an individual’s deci-
sion to accept vaccination [79]. Widespread vaccination yields (mostly positive)
externalities through herd immunity [114]. Herd immunity – the indirect pro-
tection of unvaccinated people in a largely vaccinated population – provides a
safety net for those who cannot receive vaccination for medical reasons (e.g.
too young, immunocompromised, pregnant), those who deliberately reject or
delay vaccination or those who are not or no longer immunized by the vaccine
they received. Some theoretical models assume herd immunity is incorporated
by individuals in their vaccination decision, implying many individuals are
assumed to deliberately free-ride on others’ vaccination (e.g. [20, 352, 471], see
[411] for a systematic review). Though rarely discussed, it remains unresolved
whether herd immunity contributes more to vaccine acceptance through altru-
istic motives (to protect the vulnerable) than to rejection or hesitance through
free-riding motives [317, 364, 421]. Moreover, vaccination is to a certain extent
victim of its own success. Regions with high vaccination coverage experience
less vaccine-preventable disease (VPD) burden, and when this occurs over a
long period, the need for a high vaccination coverage may be questioned to
the extent that large VPD outbreaks occur until coverage rises again [475].

Discrete choice experiments (DCEs), which are well-established in health
economics [71, 85], have been used before to elicit preferences for vaccines
[36, 84, 91, 138, 154, 303, 338], but none of these compared adults’ vaccine
choices for themselves with those for their children, and only one investigated
free-riding motives [154].

In Belgium, the administration of childhood vaccines up to age 15 months is
organized at the regional level through well-baby clinics, which are attended
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by about 70% of infants [203]. During five vaccination consults, these infants
receive up to 13 vaccine doses (jabs and oral intakes combined) against 12
pathogens. Only poliomyelitis vaccination is mandatory in Belgium. Most
recommended vaccines are available on site for free. Only the oral rotavirus
vaccine requires parents to first get a prescription, buy the vaccines at the
pharmacy (co-payment of 11.90 euro per dose), and take the vaccine to the
well-baby clinic or general practitioner (GP) for its administration. School-age
children are vaccinated through a regional-level institution of school nurses
and physicians. In general, vaccination coverage of recommended vaccines
(i.e. in the basic immunization schedule) in children is stable and high (92.9-
96.2%) [409]. Despite the above practical hurdles and personal costs, even
rotavirus vaccine coverage attained 89.7% in Flanders, the Dutch speaking
part of Belgium [409]. As such, the Flemish population remained up till now
largely indifferent to vaccine controversies [217, 409], except for some clusters
of susceptibles interfering with measles elimination (e.g. measles outbreak
linked to an antroposophic school [40]). Nonetheless, an understanding of
the individuals’ “vaccination blackbox” is important to inform simulation
models, and to guide policy-makers in case of spill-overs of vaccine hesitancy
or refusals from other countries [159, 217, 308].

Flemish adults are familiar with vaccination decisions as well. More specifically,
they are familiar with seasonal influenza vaccine (recommended for risk groups
and elderly), booster doses for tetanus, diphtheria and acellular pertussis
(Tdap) every 10 years (with additional recommendations for future parents)
and travel vaccinations such as typhoid fever, yellow fever and hepatitis A.
Pneumococcal and shingles vaccines are licensed for adults, though the uptake
remains low. Tdap is offered for free and is available at the vaccinator, while
others require a subscription or a visit to the pharmacy or travel clinic [27].

In this chapter we explore determinants of Flemish individuals’ decision-
making on vaccination by means of a DCE. As such, the decision-making
process is represented as a multi-criteria decision in which we can determine
the importance individuals assign to each attribute. We discuss the relevance
of our findings for modeling and vaccine policy-making.
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3.2 Methods

We conducted a survey among Flemish-Dutch speaking Belgian inhabitants
in February-March 2017, recruiting respondents from a registered consumer
panel. Multiple techniques guaranteed a high-quality panel, such as consis-
tency checks, mobile phone ID verification and the identification of ‘straight-
liners’ (respondents answering the same for each question) and ‘speeders’
(respondents completing the survey much faster than a reference time). Only
one respondent per household could take part. Participation was incentivized
through credit rewards, transferable into coupons, airline miles, etc. No physi-
cal samples were collected and the ethical committee of the Antwerp University
Hospital (UZA) approved the study protocol.

A representative sample was drawn in terms of gender, age group and province
with Flemish-Dutch native speakers. Respondents filled out the survey for
themselves or for their youngest child (<18 years), which we distinguish as
the ‘adult’ and ‘child’ group, respectively. Preferences elicited in the child
group reflect parents’ preferences with respect to vaccinations for their child.
Demographic and household info was used to include and assign panel mem-
bers until the sample quota were reached (table 3.1). In total, 1919 panel
members completed the full survey through a web-link directing them to an
online version of the questionnaire. We surveyed 1091 respondents in the
adult group and 828 in the child group. The participation rate was 88% (in a
multi-source, routed environment with efficient participant allocation), imply-
ing 12% of respondents started but chose not to complete the survey. Other
respondents completed the full survey or were dropped out automatically,
when pre-defined sample quota were reached.
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Table 3.1: Comparison of sample characteristics with pre-defined sample quota and population characteristics.

Characteristic Adult group (%) Child group (%) Pre-defined quota (%)* Sample (%) Flemish population (%)
Gender

Male 55 46 50 51 49
Female 45 54 50 49 51

Age group
18-34 23 35 25 28 26
35-49 15 50 25 30 25
50-64 27 14 25 21 26
65-85 35 1 25 20 22

Educational attainment
Low 5 3

NA

4 25
Medium 50 48 49 41
High 45 47 46 34
Other 0 1 1

Province
Antwerp 31 29 28 30 28
Limburg 14 14 13 14 13
East Flanders 23 24 23 23 23
West Flanders 16 17 18 17 18
Flemish Brabant 14 13 17 13 17
Brussels 2 1 2
Other 1 1 1

Sample size N=1091 N=828 N=1500 N=1919

Source for Flemish population rates: Algemene Directie Statistiek - Statistics Belgium: http://statbel.fgov.be/nl/statistieken/cijfers/bevolking/,
retrieved on May 16, 2017.
*Pre-defined quota were made on the full sample in absolute numbers (e.g. minimum 375 respondents aged between 65-85). Another pre-defined sample
characteristic was a 70/30 ratio of child group respondents with their youngest child between [0-11] and [12-18] years respectively.
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Figure 3.1: Flow chart representing the selection and tuning of DCE
attributes and attribute levels.

DCE Attributes

The construction of choice sets with vaccine profiles by means of attributes
is a trade-off between completeness and cognitive feasibility. We retrieved
relevant elements from the literature [48–50, 84, 91, 127, 138, 154, 245, 303, 338],
departing from systematic reviews [317, 411] in order to make vaccine profiles
and to match attributes to the parameterization of vaccine-decision models.
Attributes were then ranked and categorized through a focus group discussion.
Final selection and tuning of relevant attributes occurred through a pilot study
with free-form feedback, followed by a soft launch in the study population
with respondent feedback scoring. Feedback from the focus group and the pilot
study resulted in a reduced number of attributes (from 8 to 6) and an adapted
DCE design with only 10 choice sets (instead of 15) of two vaccine profiles.
Feedback from the respondents of the soft launch confirmed feasibility of the
DCE with an average score of 8.1/10 based on survey length and experience
(survey company tool). The details of the attribute and attribute level selection
are displayed in Figure 3.1. Table 5.1 lists the final attributes and corresponding
levels, the rationale of which can be summarized as follows:

1. Vaccine effectiveness is described as the proportion of vaccinated persons
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protected by the vaccine and has two levels: 50% and 90%. These levels were
chosen to represent vaccines with moderate effectiveness, such as seasonal
influenza vaccination [117, 195] and high effectiveness, such as hepatitis B [385]
and measles [379] vaccination.

2. Burden of disease is a combination of disease prevalence and severity. Both
these subattributes have two levels, implying four levels describe the burden of
disease attribute: rare/common and mild/severe (see table 5.1). Mild/severe
disease is further specified as hospitalization occurring exceptional/often and
being not life-threatening/life-threatening. We chose two extreme levels for
both prevalence and severity to facilitate the choice task. Our pilot study
validated the feasibility of this four level representation, with no reported
interpretative difficulties.

3. VRSE are described by two possible levels: common and rare. The focus
group discussion and cognitive feasibility considerations led us to represent
risk of vaccination by frequency rather than severity of VRSE.

4. Accessibility was included as an attribute to represent practical hurdles
of vaccine administration, represented by broad reimbursement policy and
time cost. We defined two levels based on current vaccination practice in
Flanders: ‘The vaccine is provided for free and available at the vaccinator . . . ’
versus ‘The vaccine is not reimbursed and is only available with a prescription’.
The first represents most current universal childhood vaccinations, such as
Tdap vaccination. Without naming them, the latter describes non- or partially
reimbursed vaccines (depending on target group), such as rotavirus vaccine,
seasonal influenza vaccine, or travel vaccines against hepatitis A, tick-borne
encephalitis or typhoid fever, and many new vaccines when they first enter the
market.

5. Local coverage was specified as 30%, 60% and 90% of close acquaintances
(friends and family) already being vaccinated. In the absence of previous ex-
plorations of this attribute, we retained the above specific description based on
(1) the focus group study, confirming attribute importance in vaccine decisions,
and (2) the pilot study where respondents indicated they clearly understood the
attribute and different levels. We also intended to quantify to which extent indi-
viduals adhere varying degrees of importance to local and population coverage
as a main driver for vaccination choices, as often assumed in vaccine-decision
models [127, 411].

6. Population coverage, i.e. vaccination coverage in the intended target group,
was also included as an attribute.
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Table 3.2: DCE attributes and levels.

Attribute Level description

1. Vaccine effectiveness
a) Protects 50% of vaccinated
b) Protects 90% of vaccinated

2. Burden of disease

a) The disease, against which the vaccine protects is rare and often mild:
hospitalisation is exceptional and the disease is not life-threatening
b) The disease, against which the vaccine protects is rare and often severe:
often with hospitalisation and the disease is life-threatening
c) The disease, against which the vaccine protects is common and often mild:
hospitalisation is exceptional and the disease is not life-threatening
d) The disease, against which the vaccine protects is common and often severe:
often with hospitalisation and the disease is life-threatening

3. VRSE
a) Side-effects are common
b) Side-effects are rare

4. Accessibility
a) The vaccine is provided for free and available at the vaccinator (GP, well-
baby clinic, school- or occupational physician)
b) The vaccine is not reimbursed and is only available with a prescription

5. Local coverage
a) 30% of your acquaintances (friends and family) is already vaccinated
b) 60% of your acquaintances (friends and family) is already vaccinated
c) 90% of your acquaintances (friends and family) is already vaccinated

6. Population coverage
a) 30% of the population in general is already vaccinated
b) 60% of the population in general is already vaccinated
c) 90% of the population in general is already vaccinated
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Survey

The four-part questionnaire probed for background characteristics, vaccine-
related attitudes, the DCE-preferences and risk perceptions on infectious dis-
eases and vaccination. We circumvented disease- or vaccine-specific sentiments
by not specifying (e.g. naming) an infectious disease until the fourth part on
risk perception. The questionnaire was developed and honed through liter-
ature [50, 245], focus group discussion and a pilot study. The survey started
with a general introduction, the questionnaire’s outline and its estimated time
to completion (20 minutes). Individuals were sampled employing a routing
environment with efficient allocation of the respondents.

Background characteristics were derived on gender, age, ZIP code, educa-
tional attainment, job status, family situation, family size, age of youngest
child, mother’s country of birth, professional experience in the health care
sector, experience with severe illness, experience with seasonal influenza vac-
cination, smoking status and religion. Respondents were then assigned to
the adult or child group in accordance with our quota. Unconditional assign-
ment to the adult group was performed until sample quota (based on the total
sample) were reached, but to the child group assignment was conditional on
parenting a child under the age of 18 at the time of recruitment. Parents of
children under 18 were not excluded from the adult group. From this point
onwards, child group respondents were instructed to fill out the questionnaire
making hypothetical vaccine decisions regarding their youngest child. Adult
group respondents filled out the questionnaire making these decisions for
themselves. Background characteristics were tested as covariates with the DCE
estimates to examine preference heterogeneity.

Vaccine attitudes were surveyed by means of 13 statements about vaccina-
tion sentiments and habits on a five-point Likert scale. We displayed these
statements sequentially to minimize nonresponse [233]. Vaccine attitudes were
tested as covariates with the DCE estimates to examine preference heterogene-
ity.

The DCE started with a general description and an illustrative example of a
simplified choice set to familiarize the respondents with the choice tasks ahead.
We then used 10 choice sets of two partial profiles each. Partial profiles vary
the levels of only a subset of the attributes to limit cognitive burden [70, 198].
We presented three attributes with varying levels and three with constant
levels (see figure 3.2). For each choice set, respondents indicated which vaccine
profile they were most inclined to choose. Similar to several previous DCEs
[82, 198, 200, 201, 245], the evaluation of the choice sets was made easier and
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Figure 3.2: Example of a choice set in the DCE, consisting of 2 vaccine
profiles based on 6 attributes. The attributes with differing levels be-
tween the two vaccine profiles are displayed in yellow.

clearer by marking the varying attributes in yellow. However, we explicitly
instructed respondents to also consider the constant, non-yellow attributes and
to compare all the attributes jointly for a given profile. This helps preventing
respondents imagining levels for the constant attributes, which improves the
validity of the preference estimates [90] and enables estimating interaction
effects.

In addition to the main effects of the attributes, we aimed to estimate all
two-way interactions between the attributes ‘vaccine effectiveness’, ‘VRSE’
and ‘accessibility’. To guarantee that these preference parameters could be
estimated with maximal precision, we opted for a partial profile design that
is D-optimal (as measured by the log-determinant of the information matrix)
for the basic multinomial logit (MNL) model [199]. Because there are 34 model
terms (10 main and 24 interaction effects), we constructed a sufficiently large
design of 50 choice sets and divided it into five survey versions of 10 choice
sets (described in Appendix A.1), about evenly presented to respondents. The
three varying attributes in the design differ between choice sets. For each
survey we determined them using the attribute balance approach that, for the
given design dimensions, comes down to a balanced incomplete block design
that enables each attribute to vary in exactly five choice sets and each pair of
attributes in exactly two choice sets [198].

The D-efficient partial profile design in Appendix A.1 is Bayesian because it
includes prior knowledge. For example, the design assumes that 90% is favored
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over 50% vaccine effectiveness and that VRSE are desired to be rare rather than
common. For all attributes, we similarly ranked the levels in order of expected
importance. Based on literature [48–50, 91, 127, 245, 303] and discussion, we
also made a prior ranking of attributes. Table A.2 in Appendix A.2 displays
the attributes and their levels in the resulting descending order of priority.
We expressed our uncertainty regarding these a priori rankings in a prior
multivariate normal distribution. A Bayesian D-efficient design maximizes the
information content of the DCE when averaged over that prior distribution.
This state of the art approach generally leads to the smallest possible standard
errors in model estimation at the smallest sample sizes [37, 199, 330]. We chose
to generate a Bayesian D-efficient design for the MNL model because Bliemer
and Rose [37] have shown that such a design also performs well for the precise
estimation of the more sophisticated panel mixed logit (PML) model, which
we used for our main analysis.

Risk perception questions were adapted from Bults et al. [50] inquiring about
the perceived relative severity and susceptibility of measles compared to in-
fluenza, leukemia and bladder infection. The respondent’s relevant sources
of information, and knowledge about VRSE of the measles-mumps-rubella
(MMR) vaccine were also queried. Risk perception responses were tested as
covariates with the DCE estimates to examine preference heterogeneity.

Data analysis

To determine the relative importance of the attributes and attribute levels, we
estimated for both the adult and child group a PML model using the Hierar-
chical Bayes (HB) technique in the JMP 13 Pro Choice platform [179] (based
on 10,000 iterations, with the last 5,000 used for estimation). For each model
we assumed normally distributed preference parameters without correlation
between attributes. These random parameters accommodate unobserved het-
erogeneity in the respondents’ preferences.

The average utility function of the adult and child group is the sum of the
average values of the attributes’ main and interaction effects. We computed
the overall significance of the attributes using likelihood ratio (LR) tests and
measured the relative importance of the attributes by the logworth statistic,
i.e. -log10(p-value of the LR-test). We started our analysis by estimating the
a priori PML model for each group, i.e. the model with the attributes’ main
effects and all two-way interactions between ‘vaccine effectiveness’, ‘VRSE’
and ‘accessibility’. Next, we dropped the insignificant model terms until we
obtained two final models in which all effects had significant explanatory value
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at the 5% level. We explored the presence of observed preference heterogeneity
(i.e. structural differences in the parameters by different respondent groups)
by estimating interaction terms one by one, based on background character-
istics, vaccine attitudes and risk perception questions. Finally, we tested the
(individually significant) covariates in a joint model, dropping the insignificant
ones until only significant covariates remained.
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3.3 Results

The bar charts in figure 3.3 show the relative importance of the attributes’
significant main effects and interactions with respondent covariates. All six
attributes are statistically significant, but none of the anticipated two-attribute
interactions are significant. The bar charts express the logworth statistic of each
of the significant model terms relatively to the logworth statistic of ‘VRSE’,
which is the most important attribute in both the adult and child model. For
the two models, ‘VRSE’ is followed by ‘accessibility’, ‘vaccine effectiveness’
and ‘burden of disease’. Lastly, the local and population coverage attributes
are statistically significant, but with limited effect on decision-making. There
are three significant covariate terms in the adult model and one in the child
model.
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Figure 3.3: Importance of the main and interaction effects of the six attributes in the panel mixed logit model relative to the
most important attribute ‘VRSE’.
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Adult model

‘VRSE’ is about 40% more important than ‘accessibility’ and ‘vaccine effec-
tiveness’, and three times more important than ‘burden of disease’. Table 3.3
presents the PML model estimates for the adult group. A positive marginal
utility indicates a more preferable vaccine profile. For instance, the marginal
utility for rare VRSE is 0.563, and -0.563 for common VRSE. Hence, the most
favored vaccine profile has the following characteristics (ranked according to
the logworth statistic): rare side-effects, free & accessible at the vaccinator, 90%
protective effectiveness, prevents common & severe disease, with its popula-
tion and local coverage at their highest level. Note that the coverage attributes
are treated in a linear manner, such that a 10% rise in local vaccination coverage
is associated with a 0.047 utility increase. The maximum attribute utility is
reached when 100% of the person’s acquaintances is vaccinated (yielding a
marginal utility of 0.47). Hence, a vaccine that is already used at high levels
of coverage, is preferred to a vaccine for which coverage is low. The marginal
utility of the burden of disease attribute levels can be ranked as follows (from
least to most desirable level): rare & mild, common & mild, rare & severe and
common & severe, indicating that disease severity is more influential than
disease prevalence in assigning a preference to a vaccine profile.

There are three significant covariate effects in the adult model. First, respon-
dent’s age interacts significantly with the VRSE attribute (figure 3.4a). The
impact of VRSE variation on the marginal utility is lower for respondents in
the youngest age group [18-34] compared to those in older age groups. The
[50-64] age category is the most risk-averse for side-effects: their marginal
utility of common VRSE is -0.696 compared to -0.348 for the [18-34] age group.
Note that with its larger logworth statistic (see figure 3.3: 8.4 vs 7.7 and 5.5),
this interaction can be considered more important than the two main effects
attributes on coverage.

Second, respondent’s age is also significant with the burden of disease (figure
3.4b). The oldest age group is the most risk-averse, in the sense that they
prefer a vaccine against rare & mild disease, more than younger age groups do.
By contrast, younger respondents express greater utility when the burden of
disease is large (common & severe) than the oldest respondents do. Overall,
figure 3.4b shows that differences in burden of disease levels have less impact
on individuals’ utility in the oldest age group [65-85] compared to younger age
groups.

The third covariate interaction effect is between the burden of disease attribute
and the (non-) selection of ‘traditional media’ as a source of information (figure
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3.4c). Individuals who use traditional media are less in favor of a vaccine
that protects against rare & mild disease, compared to individuals not using
traditional media as an information source on infectious diseases and vacci-
nation. However, when the vaccine preventable disease burden is greater, the
traditional media subgroup are more in favor of the vaccine. For intermediate
levels of the disease burden, the two subgroups have similar preferences.

Child model

Similar as in the adult model, VRSE, accessibility, vaccine effectiveness, and
burden of disease are the most important considerations in the decision-process
on childhood vaccination (see figure 3.3 and table 3.4). Although the population
and local coverage attributes are more important than in the adult model, they
remain less important than the other attributes, and the ordering of main
attributes is unaffected. Side-effects are considered about twice as important
as burden of disease, and accessibility is considered to be the second most
important attribute. Again, more utility is attached to severity compared to
frequency of occurrence in the burden of disease attribute.

The interaction between burden of disease and being an ‘acceptor’ is the only
significant covariate term in the child model (see figure 3.4d). An acceptor is
defined as a respondent indicating ‘strongly agree’ or ‘agree’ (5-point Likert
scale) on the statement: ‘I do not question vaccination, it’s just something I do
when it is offered to me’. Differing levels of the burden of disease have a smaller
impact on the marginal utility of ‘acceptors’ compared to ‘non-acceptors’. For
instance, the marginal utility in the case of a common & severe (rare & mild)
disease is 0.485 (-0.500) for ‘acceptors’ compared to 0.769 (-0.728) for ‘non-
acceptors’.
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Figure 3.4: Marginal utilities for the significant covariate interaction terms: a), b)
and c) represent the three covariate terms in the adult model, and d) represents the
single covariate term in the child model.
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Table 3.3: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. Adult Model.

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

VRSE
Common -0.563 (0.023; 0.058)

640.612 1 < 0.0001
Rare 0.563

Accessibility
Co-payment & prescription -0.410 (0.023; 0.058)

412.568 1 < 0.0001
Free & accessible 0.410

Vaccine effectiveness
50% -0.487 (0.023; 0.075)

358.211 1 < 0.0001
90% 0.487

Burden of disease
Rare & mild -0.423 (0.042; 0.070)

218.655 3 < 0.0001
Common & mild -0.313 (0.042; 0.049)
Rare & severe 0.204 (0.040; 0.034)
Common & severe 0.532

VRSE*age group
Common*[18-34] 0.215 (0.028; 0.044)

57.915 3 < 0.0001

Common*[35-49] 0.022 (0.035; 0.051)
Common*[50-64] -0.133 (0.033; 0.051)
Common*[65-85] -0.104
Rare*[18-34] -0.215
Rare*[35-49] -0.022
Rare*[50-64] 0.133
Rare*[65-85] 0.104

Population coverage (x10%) 0.055 (0.007; 0.044) 45.431 1 < 0.0001
Local coverage (x10%) 0.047 (0.008; 0.040) 31.638 1 < 0.0001
Burden of disease*age group

Rare & mild*[18-34] -0.161 (0.061; 0.089)

48.614 9 < 0.0001

Rare & mild*[35-49] -0.001 (0.083; 0.094)
Rare & mild*[50-64] -0.081 (0.081; 0.074)
Rare & mild*[65-85] 0.228
Common & mild*[18-34] -0.096 (0.060; 0.074)
Common & mild*[35-49] 0.073 (0.068; 0.070)
Common & mild*[50-64] -0.134 (0.050; 0.067)
Common & mild*[65-85] 0.157
Rare & severe*[18-34] 0.105 (0.055; 0.056)
Rare & severe*[35-49] -0.107 (0.076; 0.055)
Rare & severe*[50-64] 0.053 (0.059; 0.050)
Rare & severe*[65-85] -0.051
Common & severe*[18-34] 0.152
Common & severe*[35-49] 0.029
Common & severe*[50-64] 0.162
Common & severe*[65-85] -0.343

Burden of disease*traditional media
Rare & mild*not selected 0.126 (0.033; 0.054)

17.930 3 0.0005

Rare & mild*selected -0.126
Common & mild*not selected 0.044 (0.034; 0.049)
Common & mild*selected -0.044
Rare & severe*not selected -0.024 (0.044; 0.032)
Rare & severe*selected 0.024
Common & severe*not selected -0.146
Common & severe*selected 0.146

Note: Mean estimates corresponding to the last level of an attribute, either as a main
effect or involved in an interaction, are calculated as minus the sum of the estimates for
the other levels of the attribute.
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Table 3.4: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ration (LR) tests. Child Model.

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

VRSE
Common -0.516 (0.027; 0.118)

452.542 1 < 0.0001
Rare 0.516

Accessibility
Co-payment & prescription -0.447 (0.026; 0.155)

384.639 1 < 0.0001
Free & accessible 0.447

Vaccine effectiveness
50% -0.519 (0.034; 0.121)

315.617 1 < 0.0001
90% 0.519

Burden of disease
Rare & mild -0.614 (0.052; 0.090)

255.510 3 < 0.0001
Common & mild -0.283 (0.036; 0.103)
Rare & severe 0.271 (0.041; 0.045)
Common & severe 0.627

Population coverage (x10%) 0.077 (0.009; 0.053) 69.391 1 < 0.0001
Local coverage (x10%) 0.058 (0.008; 0.052) 35.822 1 < 0.0001
Burden of disease*acceptor

Rare & mild*agree 0.114 (0.041; 0.168)

18.069 3 0.0004

Rare & mild*disagree -0.114
Common & mild*agree 0.092 (0.037; 0.116)
Common & mild*disagree -0.092
Rare & severe*agree -0.064 (0.038; 0.046)
Rare & severe*disagree 0.064
Common & severe*agree -0.142
Common & severe*disagree 0.142

Note: Mean estimates corresponding to the last level of an attribute, either as a main
effect or involved in an interaction, are calculated as minus the sum of the estimates for
the other levels of the attribute.
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3.4 Discussion

Our study confirms that the decision to vaccinate or not is made by trading
off different attribute levels, i.e. it is a multi-criteria decision [154]. VRSE are
pivotal in this process. Rapid dissemination of VRSE misperceptions, through
social or traditional media [343] can undermine vaccination programs. In
addition to continuously providing scientific evidence to counter VRSE mis-
perceptions, health policy institutions and program managers are instrumental
in achieving and sustaining high vaccination coverage, by making vaccines as
accessible as possible. Indeed, accessibility – inversely related to the opportu-
nity costs (in terms of both time and money) faced by an individual to receive
vaccines – as well as effectiveness and disease burden are important determi-
nants of whether or not people become vaccinated. The fact that people are
more inclined to demand vaccination when a disease becomes more prevalent
supports the idea of a behavioral feedback mechanism. That is, as the preva-
lence of a vaccine preventable infectious disease increases, more and more
people become vaccinated. Through the success of vaccination, the incentives
to get vaccinated, along with disease prevalence, decrease to the point where
they no longer outweigh perceived VRSE, and the cycle starts all over again.
However, the (perceived) severity of disease leads to a larger gain in vaccine
utility than disease prevalence does. This finding is supported by Sadique et
al. [338], who performed a DCE in 369 UK mothers, and found that severity
of disease exerted an important influence on vaccination demand, in contrast
to frequency of disease, that was found not to be significant. We estimated
both models with a decomposition of the burden of disease into severity of
disease (severe/mild) and frequency of disease (common/rare), and found no
substantial differences in results from using the joint attribute (Appendix A.3).
While also significant, population and local vaccine coverage turned out to be
less important attributes compared to the previous four. The propensity to vac-
cinate was shown to increase with increasing local and population vaccination
coverage.

A previous Belgian DCE investigating the public’s preferences on how the
government should prioritize health care interventions [245], found patients’
lifestyle and age to be the most important attributes. Although the research
question and some attributes under investigation were different, three other
significant attributes were similar, but they were ranked in descending order of
importance as effectiveness, severity of illness, and adverse effects, compared
to VRSE, vaccine effectiveness, and burden of disease in the current study.
Hence, adverse effects seem more influential when the DCE is framed around
vaccinations, compared to an unspecified curative or preventive intervention
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as in Luyten et al. [245]. The specific context of vaccination seems to make
people more cautious about adverse effects. However, this may change in
pandemic emergency situations, as suggested by Determann et al. finding
vaccine effectiveness is more influential than VRSE, institutional advice, out of
pocket costs and media coverage for pandemic vaccination in The Netherlands
[91], and some other European countries [92]. Explicitly specifying risk ratios
associated with rotavirus and pneumococcal vaccines, Sadique et al. found
severity, but not frequency, of VRSE to be a significant attribute [338]. Limiting
our VRSE attribute to a cognitively much less demanding category of frequency,
we found it to be highly significant, given the limitation that we did not attempt
to describe the severity of these VRSE.

The importance of vaccine effectiveness in vaccine decisions was documented
in other studies as well [36, 91, 303]. We distinguished - as the first DCE to
our knowledge - two vaccination coverage attributes: local and population
coverage. Vaccination coverage was incorporated in two other studies [138,
154] as a single (statistically significant) attribute. The specification of the
accessibility attribute incorporating both monetary cost and time cost differs
from other studies as well, but yields a highly significant estimate in line with
others (out-of-pocket cost, cost per visit etc.) [36, 91, 138, 154, 338].

We found no considerable differences in the decision-making process of the
adult versus the child group. The rank order of the attributes is the same but
there are differences in the attributes’ relative importance, marginal utility,
and significant covariate terms. Preference heterogeneity, investigated by
estimating interactions between the attributes and covariates based on socio-
economics, demography, vaccine attitudes and risk perception, is limited to
four significant terms. In the adult model, significant interactions exist between
VRSE and age group on the one hand, and burden of disease and age group
on the other. Older age categories tend to be more risk-averse with respect to
VRSE compared to younger age categories (figure 3.4a). This is in line with
psychological literature [113] documenting declines in risk-taking by age. One
could argue also that younger adults might be willing to risk more (side-effects)
today as they benefit longer from the vaccine compared to older individuals.
Older people may also have a more severe perception of VRSE, given that they
are more vulnerable to them.

However, when it came to burden of disease (in terms of prevalence and
disease severity), our oldest age-group (65-85 years) was less sensitive to risk
than the other, younger age groups (figure 3.4b). For the elderly, the difference
in utility between a vaccine that protects against a rare & mild disease, and a
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vaccine that protects against a common & severe disease is much smaller. An
explanation could be that younger individuals are generally in better health
and less vulnerable to mild disease, and have comparatively more to lose from
severe disease. The oldest age group seems more indifferent to the vaccine
preventable disease burden, as long as the vaccine is safe.

We also found that those who use traditional media are more risk-sensitive than
those who do not rely on these media for information on infectious diseases
and their prevention (figure 3.4c). Presumably those using traditional media
are better informed about which specific diseases could correspond to our
descriptions of mild, common, severe and rare vaccine preventable diseases,
and other information related to specific vaccines. This may help explain why
they attach relatively more utility to a vaccine protecting against a common
& severe disease, as opposed to a vaccine protecting against a rare & mild
disease.

In the child model, we only found one significant covariate effect (figure
3.4d), when we observe a difference in risk sensitivity between ‘acceptors’
and ‘non-acceptors’. Quoting Brunson [49]: ‘Acceptors rely on general social
norms as the basis of their decisions. They accept these norms with little
or no questioning. They do not investigate vaccination.’ We singled-out an
acceptor subgroup by the two most positive response levels on a five-point
Likert scale for the statement: ‘I do not question vaccination, it’s just something
I do when it is offered to me’. They represented 40% of respondents in the
child group, and 35% in the adult group. Unsurprisingly, ‘acceptors’ are less
sensitive to vaccine-preventable disease burden. They just seem to accept each
recommended vaccine offered to their child, trusting it is safe and effective as
part of the package that comes with having an infant undergoing regular health
check-ups. The fact that adult vaccination is less of a routine undertaking may
explain why we do not observe this covariate for the adult group.

The Belgian population remained relatively unfazed by international vaccine
controversies and corresponding drops in vaccination coverage in other coun-
tries [217, 409]. Yet, it is important to understand underlying attitudes towards
vaccination in times of global exposure to fake facts through social media [107].
The identification of the accessibility attribute as an important contributor to
vaccine acceptance provides public health institutions with further leverage
to improve vaccination coverage. When a vaccine is available at first contact
with the vaccinator (GP, occupational physician, pediatrician etc.), it is more
likely to be taken, especially if it is offered to large groups simultaneously
(e.g. at school or in the work place, such as influenza and HPV [222] vaccines).
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This avoids the time-consuming process of sequentially visiting a physician
for a prescription, a pharmacy for buying the vaccine, and again a physician
for vaccine administration. The basic recommended childhood vaccines are
currently available at the vaccinator in Belgium. Naturally, policymakers can
raise uptake by fully or partially reimbursing vaccines [222] (e.g. only Tdap
booster vaccine is fully reimbursed for Belgian adults [134]).

The authorities should communicate timely and transparently on VRSE - the
most important attribute for vaccine decisions - to better align the public’s
perceptions with reality and to build trust. Numerous historical examples exist
where misperceptions on VRSE have lowered vaccine coverage substantially,
opening a window for outbreaks and re-emergence of vaccine-preventable
disease. For instance, the MMR vaccine scare originating from a fraudulent
paper, linking MMR vaccination with autism [140] has significantly decreased
the coverage in England & Wales from about 92% in 1995 to about 80% in 2003,
resulting in measles re-emergence in subsequent years [23]. Other examples
include the whole cell pertussis vaccine scare in the UK, lowering vaccine
coverage from around 80% in 1971 to under 40% in 1976 [23], and the HPV
vaccine crisis in Japan [159]. Establishing and maintaining vaccine confidence
requires many parallel activities, including clear communication about vac-
cines in general [214], or about post-marketing safety surveillance [60], and a
constructive dialogue with those who hesitate or refuse vaccinations [79, 214].

Moreover, rapid and wide media communication about infectious disease
outbreaks can help rationalize vaccination behavior. Especially, information on
disease risk and severity (i.e. the burden of disease attribute) lacks in regions
where vaccination coverage was high for a long time. The interaction effect of
traditional media with burden of disease in our DCE confirms the potential
of media to help rationalize vaccination decisions. Scrutinized information on
the true burden of disease can function as a compensatory mechanism against
potentially inflated misperceptions of VRSE in the individuals’ trade-off.

‘Free-riding on herd immunity’ is often an assumption in (game-theoretical)
vaccine-decision models. The reasoning is as follows. Individuals face some
cost of vaccination (monetary, time and health cost (including VRSE)) and
some cost of contracting the disease. They use these perceived costs to make
a trade-off between vaccinating or not vaccinating, incorporating the choice
of other individuals (either in his/her community, or on a population level).
That is, individuals are assumed to calculate how herd immunity arising
from vaccination in others affects their own risk of infection. As part of game-
theoretical analysis, the decision whether or not to take vaccination, depends on
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the potential to free-ride on established herd immunity. Many examples exist
of models explicitly applying free-riding on vaccine-induced herd immunity
[20, 24, 32, 142, 211, 324, 363], despite empirical studies suggesting there might
also be an altruistic motive in vaccination behaviour [15, 362, 364, 421], i.e. the
partial intention to protect others.

One would expect, following the above reasoning, that individuals would
be less inclined to take vaccination if more and more people are already vac-
cinated against the disease. In line with the observation of Hall et al. [154]
on varicella vaccination coverage in a ‘child group’-like Australian sample of
50 respondents, we observe this is not the case – neither locally nor for the
population coverage – in Flanders for vaccination in general. Peer influence
dominates free-riding on herd immunity, such that an individual prefers a vac-
cine against which a larger proportion of the population is already vaccinated
(keeping the other attributes constant). Gidengil et al. [138] also find coverage
to be significant and positively associated with the demand for combination
vaccines in the US. Importantly, we observe this for both the child and adult
group, and find a direct linear relation between the utility of vaccination and
local and population vaccination coverage. These results suggest it is more ap-
propriate for modellers to integrate herd immunity implicitly through (clinical)
disease prevalence rather than through vaccination coverage. The individuals’
reasoning is thus replaced by ‘not many people contract the disease, so the
chances are low for me too’. This fits with the notion that demand for vaccines
is prevalence-elastic, but is completely removed from an underlying free riding
consideration. Note that vaccination coverage influences primarily the risk of
infection, and not only the risk of disease, a distinction which is essential in
modelling infectious disease dynamics.

Study limitations

Our sample represents the Flemish population well on all intended characteris-
tics, with the possible exception of educational attainment. The lower-educated
seem underrepresented, though this is somewhat difficult to interpret since
the age intervals of the government statistics on educational attainment (15-64
years) and our sample (18-85 years) do not completely overlap. Note that
interaction terms were estimated based on educational attainment, though
this was not found to be a significant characteristic for subgroup preference
heterogeneity.

Regarding the partial profile design, we colored the varying attributes yellow
and asked respondents to also consider the constant, non-yellow attributes.
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However, it would be interesting to explore in future studies to what extent
respondents actively study the levels of the constant attributes in the presence
of the yellow highlighting, which is important for estimating interaction effects.
Furthermore, we did not include VRSE severity as an attribute, next to VRSE
frequency. In the vaccine-related DCE literature VRSE frequency is a much
more widely used attribute than VRSE severity (7 versus 1 studies [338]). How-
ever, since VRSE frequency was the most influential attribute, the addition of
VRSE severity could have benefited the interpretation of our analysis, likely
decreasing the logworth statistic, and hence the importance of VRSE frequency.
Furthermore recent guidance recommends the use of natural frequencies to
represent risks [139]. Nonetheless, we opted to use terms like ‘rare’ & ‘com-
mon’ to describe our attribute levels, based on the focus group and the pilot
study showing this offered a clear and interpretable understanding. Finally,
sample quota were pre-determined for the full sample (see table 3.1). As such,
subgroup-level samples do not necessarily reflect population characteristics.



CHAPTER 4
Vaccine behavior in South

Africa

This chapter is based on published work: “Verelst F, Kessels R, Delva W,
Beutels P and Willem L. (2019). Drivers of vaccine decision-making in
South Africa: A Discrete Choice Experiments, Vaccine 37(15):2079-2089”
[414].
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Summary

To increase vaccination coverage, it is essential to understand the vac-
cine decision-making process. High population coverage is required to
obtain herd immunity and to protect vulnerable groups in terms of age
(e.g. the very young) or health (e.g. immunodeficiency). Vaccine confi-
dence and coverage in South Africa are relatively low, opening the window
for sustained outbreaks of vaccine-preventable diseases in a country fac-
ing one of the most severe HIV epidemics in the world. To capture the
vaccine-related decision-making process in South Africa, we performed a
discrete choice experiment with 1200 participants in December 2017. We
asked for their preferences with respect to (1) vaccine effectiveness, (2)
vaccine-preventable burden of disease, (3) accessibility of the vaccine in
terms of co-payment and prescription requirements, (4) frequency of mild
vaccine-related side-effects, (5) population vaccination coverage and (6)
local vaccination coverage. We distinguished between decision-making for
vaccines administered to the participant, and for vaccines administered to
their youngest child. We analyzed the data for each of these groups using
a panel mixed logit model and found similar results for decisions to vacci-
nate oneself or one’s child. Vaccine effectiveness was the most important
attribute followed by population coverage and burden of disease. Local
coverage and accessibility were also important determinants of vaccination
behavior, but to a lesser extent. Regarding population and local coverage,
we observed a positive effect on vaccine utility indicating the potential
of peer influence. As such, social normative influence could be exploited
to increase vaccination confidence and coverage. With respect to vaccine-
preventable burden of the disease, the marginal utilities showed disease
severity to be more important than frequency of disease. Policymakers and
health care workers should stress the effectiveness of vaccines together
with the severity of vaccine-preventable diseases.
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4.1 Introduction

Decades of progress made in control and prevention of infectious diseases
are currently under threat by a worldwide increase in vaccine hesitancy and
refusal [217]. The number of people perceiving vaccines as unsafe or un-
necessary is growing, fueled by a false sense of security due to a decline in
vaccine-preventable diseases, amplification of anti-vaccine messages through
social media [105] and continued anti-vaccine exploitation of a fraudulent
paper linking the measles-mumps-rubella vaccine to autism [140]. Decreas-
ing vaccination coverage is even more concerning as it causes a decline in
indirect protection, or herd immunity, which plays a central role in protecting
vulnerable individuals (e.g. the very young or immunocompromised) [114].
Understanding what drives individuals’ vaccination-related decisions is highly
relevant to inform policymakers and vaccine administrators in their efforts to
increase or maintain vaccination coverage.

The voluntary nature of most vaccines substantiates the need to take the
decision-making process into account. Information deficiencies make it diffi-
cult for the public to grasp the potential burden of vaccine-preventable diseases
and hence to understand the need for protection. As such, vaccination is to a
certain extent victim of its own success; many regions experienced sufficiently
high vaccine coverage for several years, leading to very low prevalence or even
elimination. I.e. many regions are no longer confronted with the image of the
corresponding vaccine-preventable diseases. This could lead to a false sense of
safety and the idea that vaccination is otiose. In addition, many studies assume
that vaccine decisions are influenced by free-riding behavior, through which
individuals would be less inclined to opt for vaccination when they perceive
vaccination coverage to be high [411]. As such, they have the opportunity to
obtain “free”, indirect protection through herd immunity.

Global vaccine confidence was recently examined in 67 countries by Larson
et al. [217]. Overall, vaccine sentiments appeared to be inversely correlated
with socioeconomic status. The European region was found to have the lowest
vaccine confidence regarding vaccine safety. For the African region, pediatric
vaccines were found less important in South Africa than in Ethiopia, Algeria,
Ghana, Nigeria and DR Congo. Other studies on vaccine refusal in South Africa
refer to the use of the monovalent MeasBio® vaccine that contains porcine
gelatin, which is poorly accepted in some religious communities [118, 144].
The country-level coverage of the measles-containing vaccine in South Africa is
estimated to be around 60% for the first and second dose [440], which is below
the herd immunity threshold of 95% to stop endemic measles transmission
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[405]. Achieving and maintaining high vaccination coverage is especially
important to sustain herd immunity and avoid outbreaks of diseases like
measles and protect vulnerable subpopulations like human immunodeficiency
virus (HIV) positives. In January-September 2017, 129 laboratory-confirmed
measles cases were detected in South Africa in three major outbreaks [118].

At the same time, South Africa faces one of the most severe HIV epidemics
in the world, with an estimated 6.4 million people living with HIV in 2012
[476]. Infants born to HIV-infected mothers have lower maternal passive
immunity and are likely to acquire HIV. HIV-infected children are more at risk
of severe and lethal vaccine-preventable diseases, including measles [275, 356],
partly because they are also less responsive to vaccination [120]. Hence, herd
immunity is pivotal in protecting this large vulnerable group in South Africa,
and this depends largely on whether other South Africans decide to receive
vaccination or not. Despite indications of vaccine distrust and skepticism
reported by Larson et al. [217], there is to our knowledge no published study
on the drivers of individual vaccination decisions in South Africa.

Discrete choice experiments (DCEs) have been used to investigate societal
preferences regarding vaccinations in multiple countries and revealed the
importance of vaccine-related side-effects [84, 91, 154, 303, 338, 413], vaccine
efficacy [36, 84, 91, 154, 303, 413] and vaccine cost [91, 138, 154, 338, 413]. A DCE
is a surveying technique where respondents are asked to make choices between
specified profiles in consecutive choice sets to extract attribute importance and
utility values for each attribute level [199]. These utilities represent preferences
for an attribute level relative to all other attribute levels.

In this paper we describe the results of a DCE that explored the vaccine decision-
making process for a general, unnamed vaccine among 1200 respondents
in South Africa. We identified the most influential vaccine attributes and
analyzed preference heterogeneity. We distinguished between decisions about
a vaccine that would be administered to the participant versus decisions about
vaccination of their youngest child. We discuss our findings in the context of
policy-making and modeling vaccination behavior.
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4.2 Methods

We surveyed individuals in South Africa in December 2017 from an online
panel using pre-defined quota on gender, age and ethnicity based on national
statistics [2]. Details on the quota and background characteristics are presented
in Table 4.1. The survey was launched on an established panel platform, where
only the average time required and credit rewards for filling out the survey
were displayed. Panel members opted-in for this survey based on this in-
formation only. Only one respondent (>18 years) per household could take
part. Respondents filled out the survey for themselves or for their youngest
child (<18 years), and accordingly, we classified respondents in an ‘adult’ or
‘child’ group. Preferences elicited in the child group reflect parents’ preferences
with respect to vaccinations for their child. Individuals were first randomly
assigned to a group. If a respondent in the ‘child’ group indicated not to have
a child under the age of 18, (s)he was moved to the adult group. In total
2958 panel members started the survey of which: 1431 completed the survey
successfully, 725 chose not to complete it, 122 were screened out because they
were identified as ‘speeders’ (completed the survey much faster than the ref-
erence time) or ‘straight-liners’ (responded the same for each question), and
680 were halted after the first part of the survey with background questions
when pre-defined sample quota were reached to optimize participant alloca-
tion. From the 1431 completed surveys, we selected 600 participants from the
adult and child group, separately, to approximate the pre-defined quota for
age, gender and ethnicity. Given the state-of-the-art Bayesian optimal design
[199] of this study, a sample size of 600 is sufficient to estimate all attribute
and covariate effects. Participation was incentivized through credit rewards
which are, after a delay of 72 h, transferable into coupons, gift cards, airline
miles, etc. The study protocol was approved by the ethics committee of the
Antwerp University Hospital, Belgium, (Reference number: 15/2/12) and no
physical samples were collected. Data collection was performed according the
ICC/ESOMAR International Code on Market, Opinion and Social Research
and Data Analytics. Given the observational and anonymous nature of our
study, and by resorting to this regulated survey panel, no additional approval
from a South African regulator was required.

The survey consisted of four parts probing for participants’ background char-
acteristics, vaccine-related attitudes, discrete choice preferences and risk per-
ception on infectious diseases and vaccination. Background characteristics
included gender, age, postal code, educational attainment, job status, family sit-
uation, family size, age of youngest child, mother’s country of birth, ethnicity,
professional experience in the health care sector, experience with severe illness,
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Table 4.1: Sample characteristics and national statistics for South
Africa from Stats SA Community survey 2016 [2]. (* age group “18-
34 years” from the survey is compared with age group “20-34 years”
from Stats SA.)

Characteristic Adult group
(%)

Child group
(%) Sample (%)

South
African
population
(%)

Pre-defined
quota (%)

Gender
Male 52.0 44.8 48.4 49.0 50.0
Female 48.0 55.2 51.6 51.0 50.0

Age group
18-34 (*) 55.6 42.0 48.8 44.5 ≥30.0
35-49 21.7 49.2 35.5 29.3 ≥30.0
50+ 22.8 8.8 15.8 26.2 ≥20.0

Educational attainment
No schooling 0.2 0 0.1 6.0
Primary education 0.3 0 0.2 59.3
Secondary education 33.3 28.5 30.9 31.4 NA
Bachelor’s degree 62.2 65.3 63.8 3.3
Other 4.0 6.2 5.1 NA

Ethnicity
Black African 48.8 52.3 50.6 80.7 >50.0
Coloured 5.7 8.8 7.3 8.7 >4.0
Indian/Asian 4.0 3.5 3.8 2.5 >1.0
White 40.8 33.7 37.3 8.1 >4.0
Other 0.7 1.7 1.2 NA NA

Province
Guateng 47.0 45.7 46.4 24.1
North West 2.7 3.8 3.3 6.7
Limpopo 2.0 2.8 2.4 10.4
Mpumalanga 5.0 4.5 4.8 7.8
KwaZulu-Natal 11.8 15.0 13.4 19.9 NA
Eastern Cape 8.3 6.5 7.4 12.6
Western Cape 18.3 16.0 17.2 11.3
Northern Cape 1.8 1.3 1.6 2.1
Free State 3.0 4.2 3.6 5.1

Sample size N=600 N=600 N=1200

experience with seasonal influenza vaccination, smoking status and religion.
The second part of the survey contained 12 statements regarding vaccination
that participants were asked to rate on a 5-point Likert-scale ranging from
‘strongly agree’ to ‘strongly disagree’.

In the third part, the DCE was surveyed using 10 choice sets with 6 attributes
to balance between completeness and cognitive feasibility for the respondent.
We derived the attributes and their levels (Table 4.2) from the literature on
DCEs in the context of vaccination [36, 84, 91, 138, 154, 303, 338, 413] and
health economics in general [71, 85, 245]. Burden of disease was introduced
in a DCE on vaccination risk perceptions in the UK [338] and in a DCE on
health prioritization in general [245]. Vaccine effectiveness was included in
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four studies we retrieved from the literature [36, 91, 245, 303]. We found an at-
tribute describing VRSE in two studies [91, 338] and accessibility was included
in a variety of descriptions (willingness-to-pay, number of visits, out-of-pocket
costs etc.) in five studies [36, 91, 138, 154, 338]. We only retrieved two studies
that included an attribute on vaccine coverage [138, 154], but found the need
to include both local coverage as well as population coverage based on the
literature covering behavioral change models in infectious disease epidemi-
ology [411]. We adopted the survey design from [413], which was created
for a multi-country DCE study, except for the description of the attribute on
vaccine-related side-effects (VRSE). In the current DCE, we only varied VRSE
frequency by explicitly specifying VRSE as being mild in both of its attribute
levels.
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Table 4.2: DCE attributes and levels.

Attribute Level description

1. Vaccine effectiveness
a) Protects 50% of vaccinated persons
b) Protects 90% of vaccinated persons

2. Burden of disease

a) The disease, against which the vaccine protects is rare and often mild: hospitalisation is
exceptional and the disease is not life-threatening
b) The disease, against which the vaccine protects is rare and often severe: often with hospitalisa-
tion and the disease is life-threatening
c) The disease, against which the vaccine protects is common and often mild: hospitalisation is
exceptional and the disease is not life-threatening
d) The disease, against which the vaccine protects is common and often severe: often with
hospitalisation and the disease is life-threatening

3. VRSE
a) Mild side-effects commonly occur and severe side-effects are highly unlikely
b) Mild side-effects rarely occur and severe side-effects are highly unlikely

4. Accessibility
a) The vaccine is provided for free and is directly available at the vaccinator (GP, well-baby clinic,
school- or occupational physician)
b) The vaccine is not reimbursed and is only available with a prescription

5. Local coverage
a) 30% of your acquaintances (friends and family) is vaccinated
b) 60% of your acquaintances (friends and family) is vaccinated
c) 90% of your acquaintances (friends and family) is vaccinated

6. Population coverage
a) 30% of the population in general is vaccinated
b) 60% of the population in general is vaccinated
c) 90% of the population in general is vaccinated
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Figure 4.1: Example of a choice set with three variable and three con-
stant vaccine attributes.

The feasibility of the survey was confirmed through a ‘soft launch’ in a small
sample of the panel. The DCE was introduced to the respondents by a general
description and an illustrative choice set with two attributes. Subsequently,
we asked the respondents for their preference between two vaccine profiles
in 10 choice sets (Figure 4.1 shows one choice set). We avoided using a tech-
nical/epidemiological lexicon to describe attribute levels, resulting in a good
understanding by 80 respondents in the soft-launch. We varied three out of
six attributes in each choice set and marked the varying attributes in yellow
to limit the cognitive burden on the respondents. However, we stressed the
importance of taking all attributes into account, corresponding to the method-
ology described in the literature [82, 198, 200, 201, 245]. We designed the DCE
to estimate the main attribute effects and all two-way interactions between
any of the six attributes, and ‘vaccine effectiveness’, ‘VRSE’ and ‘accessibility’
with maximum precision. To capture all model terms (10 main effects and 24
interaction effects), we constructed a Bayesian D-optimal design [199] of 50
choice sets, divided into five subsets of 10 choice sets (see Appendix A.1 for the
choice design and Appendix A.2 for the specification of the prior parameter
distribution). These subsets were evenly presented to the participants in both
the adult and child group.

The last part of the questionnaire asked participants about their perception of
relative severity and susceptibility of measles compared to influenza, leukemia
and bladder infection, based on the work of Bults et al. [50]. Finally, we asked
about their relevant sources of information and their knowledge about measles
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and measles containing vaccines.

We used the JMP Pro 13 Choice platform [179] to obtain the relative importance
ranking of the attributes and the utility values of their levels by estimating a
Panel Mixed Logit (PML) model using Hierarchical Bayes. We assumed nor-
mally distributed preference parameters without correlation between attributes
to accommodate unobserved heterogeneity in the respondents’ preferences.
Results were obtained after 10,000 iterations, with the last 5000 used for esti-
mation. The total utility of a vaccine profile is the sum of the attributes’ main
and interaction effect estimates. We computed the overall significance of the at-
tributes using likelihood ratio (LR) tests and measured the relative importance
of the attributes by the logworth statistic, i.e. -log10(p-value of the LR-test). We
started the data analysis with a PML model for each group (adult and child), i.e.
the model with the main attribute effects and all two-way interactions between
an attribute and ‘vaccine effectiveness’, ‘VRSE’ and ‘accessibility’.

To explore structural differences in the observed preference heterogeneity
among subsets of respondents, we estimated two-way interactions between
vaccine attributes and background characteristics, vaccine attitudes and risk
perception. We first tested the interaction effects with each covariate in separate
models. We then constructed a joint model by including all individually
significant covariates (p-value <0.05). In this model, some of the covariates
turned out to be insignificant, which we then dropped through an iterative
process until only significant ones remained.

We obtained additional relative importance rankings of the attributes by sam-
pling 100 sub-datasets without replacement of 700 respondents for which the
ethnicity distribution matched that of the population (i.e. increasing the pro-
portion of Black African respondents to 80.7% and decreasing the proportion
of White South Africans to 8.1%). We generated models for each of these
sub-datasets, computed and recorded the logworth statistics and calculated the
mean and 95% confidence interval for the importance of each attribute using
the percentile method.
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4.3 Results

For the full sample (N=1200), around 90% of the respondents were found
to be pro-vaccine, based on a dichotomized 5-point Likert response on the
statement ‘If a vaccine is available against a certain disease, vaccination is
mostly a good method to protect individuals against this disease’. Likely based
on commonly rumored measles vaccine side-effects, 4.6% thought measles
vaccine could cause autism. Also, 8.5% indicated chronic fatigue syndrome
and 11.7% an overloaded immune system as possible side-effects. On the other
hand, 58% perceived measles as a severe to very severe disease. About half of
the respondents indicated they ‘do not question vaccination, it’s something
I do when it is offered to me’. About 28% agreed with the statement ‘The
vaccine-related decisions of friends, other parents and/or family affect my own
decision’. Henceforth, we will use the term ‘relier’ to refer to the individuals
agreeing with this statement (see also Brunson et al. [49]). Conversely, we refer
to 61% of the respondents agreeing with the statement ‘I deliberately weigh
the advantages and disadvantages of a vaccine against the disadvantages
of the disease, before making a decision’, as ‘thinker’. With respect to the
household structure, our sample consisted of 16% single parents, 26% singles
without children, 15% living together without children and 43% living together
with one or more children. We found no significant associations between risk
perception and vaccine preferences.

The summary of background characteristics from our DCE sample of 1200 indi-
viduals in Table 4.1 shows that, in terms of educational attainment, individuals
with no schooling or only primary schooling were not reached. Hence, our
results are only representative for a subpopulation in South Africa that attained
at least secondary school. With respect to ethnicity, we performed additional
analyses using 100 sub-datasets to meet the population statistics, as explained
in the methods section.

For the ethnicity-adjusted analysis, Figure 4.2 displays the relative importance
of the attributes by means of the normalized logworth values, i.e. the logworth
values relative to the most important attribute, which is vaccine effectiveness.
We found all six attributes to be significantly associated with vaccine-related
decisions. Vaccine effectiveness is followed by accessibility and population
coverage which both had a relative importance of about 60% compared to
vaccine effectiveness. Note also that in some of the 100 analyses the rank order
of accessibility and population coverage switched, hence the large overlap
in confidence intervals. Furthermore, vaccine-preventable burden of disease
ranked fourth, with a relative importance of about 40%. Local vaccination
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Mild VRSE

Local coverage (x10%)

Burden of disease

Population coverage (x10%)

Accessibility

Vaccine effectiveness

Attribute importance with ethnicity−based sampling

Normalized logworth statistic

0 20 40 60 80 100

Figure 4.2: Importance of the main effects of the six attributes in
the multinomial logit model relative to the most important attribute
‘Vaccine effectiveness’. Bars represent the mean and normalized Log-
Worth values for 100 samples of 700 observations correcting for ethnic-
ity levels.

coverage and frequency of mild VRSE were found to be less decisive, with a
relative importance of 25% or less.

Covariate interactions were estimated with the full survey data for both the
adult and child group (both N=600). The model results are shown in Figure 4.3,
Table 4.3 and Table 4.4, and are comparable with those of the ethnicity-adjusted
analysis. We elaborate on the main findings in the next paragraphs and the
discussion section.



4.3.
R

ESU
LT

S
109

Mild VRSE

Mild VRSE*Internet

Population coverage (x10%)*Occupational status

Burden of disease*Relier

Burden of disease*Internet

Accessibility*Province

Local coverage (x10%)

Accessibility

Burden of disease

Population coverage (x10%)

Effectiveness

Adult model

Normalized logworth statistic

0 20 40 60 80 100

7.4

9.9

10.1

11.1

11.6

12.9

16.2

26.5

53.8

54.6

100

Burden of disease*Thinker

Accessibility*Religion

Mild VRSE

Burden of disease*Household

Accessibility

Local coverage (x10%)

Burden of disease

Population coverage (x10%)

Effectiveness

Child model

Normalized logworth statistic

0 20 40 60 80 100

4.5

6.2

6.6

6.9

14.8

24.1

42.9

50.5

100

Figure 4.3: Importance of all statistically significant main and interaction effects (p-value < 0.05) relative to the most important
attribute ‘vaccine effectiveness’.
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Adult model

For respondents in the adult group, i.e. for individuals making vaccine choices
for themselves, all six attributes were significantly associated with vaccine-
related decisions (p-value<0.05) (Figure 4.3). Vaccine effectiveness was by
far the most important attribute, followed by population coverage and bur-
den of disease, which were ranked as about half as important. Accessibility
and local coverage were also influential attributes, although to a lesser ex-
tent (26.5% and 16.2%, respectively). Mild VRSE was found to be relatively
unimportant as it ranked last, after several covariate interaction terms, with a
relative importance of 7.4%. We observed substantial preference heterogeneity
demonstrated by significant covariate interactions with accessibility, burden
of disease, population coverage and mild VRSE. We elaborate on preference
heterogeneity further in this section. In Table 4.3, we display the estimates for
the adult model, which represent marginal utilities assigned to the different
(combinations of) attribute levels. For example, a vaccine protecting 90% of
vaccinated individuals (as opposed to 50%) increased vaccine utility by 0.906.
Note that the coverage attributes are treated in a linear way. For example, the
marginal utility of a population coverage of 50% was 5 x 0.113 = 0.565. Our
analysis indicated that the most favored vaccine profile was a vaccine with 90%
vaccine effectiveness, 100% population and local coverage, protecting against
a common & severe disease, that was free & accessible and with mild VRSE
rarely occurring (yielding a total utility of 3.176). Note that the estimates of
the coverage attributes were positive, suggesting that individuals were more
inclined to opt for vaccination if more people were vaccinated. Note also that
for the burden of disease attribute, which was expressed in terms of suscepti-
bility and severity, the marginal utilities of a vaccine protecting against a rare
& severe disease and a common & severe disease were positive and those of a
vaccine protecting against a rare & mild disease and a common & mild disease
negative. This implies that respondents assigned more weight to severity of
disease than to susceptibility.

Regarding the observed preference heterogeneity, we found the most sig-
nificant covariate interaction between accessibility and province (Table 4.3).
Respondents in some provinces (Western Cape, Northern Cape and North
West) were more sensitive to accessibility characteristics of vaccines than the
average respondent. They attached a relatively lower value to a vaccine that
requires patient co-payment and a prescription, and a relatively higher value
to a vaccine that is free & accessible.

Figure 4.4 visualizes three other significant covariate interactions. Respondents
selecting the internet as a source of information regarding infectious diseases
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and prevention seemed more sensible in their choice between preventing a
rare & mild versus a common & mild disease, indicating more often their
preference for the latter than other respondents (Figure 4.4a). Preference het-
erogeneity based on internet use for information gathering was also observed
for mild VRSE (Figure 4.4b). Individuals not using the internet as a source
of information hardly attached any value to mild VRSE as opposed to those
who did use the internet. The significant covariate interaction with ‘relier’
relates to the dichotomized response (agree vs. disagree) on the statement ‘The
vaccine-related decisions of friends, other parents and/or family affect my
own decision’ (Figure 4.4c). People who disagreed with the statement were
less sensitive to the description of the burden of disease. On the other hand,
individuals who did agree with the statement attached relatively more value to
a vaccine protecting against a common & severe disease. Also, they were less
inclined to opt for vaccination if the disease against which the vaccine protects
was common & mild.

The last significant covariate interaction appeared between occupational status
and population coverage (Table 4.3). The positive estimate of 0.042 for indi-
viduals that were unemployed implied that they attached a relatively higher
value to population coverage and hence were more prone to peer influence or
social norms in their vaccine-related decisions.

Child model

When respondents completed the questionnaire for vaccines that would be
administered to their youngest child, again all six attributes influenced the
vaccine decision-making significantly (Figure 4.3). Vaccine effectiveness was
the key attribute, followed by population coverage, burden of disease and local
coverage, with relative importance levels of 50.5%, 42.9% and 24.1% compared
to vaccine effectiveness, respectively. Accessibility and frequency of mild
VRSE were least valued at 14.8% and 6.6%, respectively. Also, we observed
preference heterogeneity through three significant covariate interactions with
vaccine attributes.

Table 4.4 shows that the mean utility ranking of the attribute levels of ‘burden
of disease’ is more rational in the child model than in the adult model: in
the child model a vaccine protecting against a common & mild disease was
generally preferred to a vaccine protecting against a rare & mild disease.

Figure 4.5 shows significant interactions with burden of disease. Single parents
attached a higher value to burden of disease: they valued a vaccine protecting
against a rare & mild disease and against a common & mild disease less than
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Figure 4.5: Marginal utilities for the significant covariate interaction
terms in the child model

respondents of a two-parent household (Figure 4.5a). Also, single parents
attached more value to a vaccine protecting against a rare & severe disease
than respondents of a two-parent household.

The significant interaction with being a ‘thinker’ involves the dichotomized
response (agree vs. disagree) on the statement: ‘I deliberately weigh the
advantages and disadvantages of a vaccine against the disadvantages of the
disease, before making a decision’ (Figure 4.5b). Individuals agreeing with the
‘thinker’ statement attached a higher absolute value to the different levels of
the burden of disease attribute. However, they valued a vaccine protecting
against common & mild disease worse than a vaccine protecting against a rare
& mild disease, which seemed somewhat counterintuitive.

Lastly, we discovered preference heterogeneity based on religion and the
accessibility attribute. In general, free & available vaccines are preferred,
and this preference is more outspoken for Buddhist, Jewish and non-religious
people than for Christian and Muslim respondents (Table 4.4).
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4.4 Discussion

Four vaccination behavior profiles were recently distinguished by a WHO
SAGE Working Group on Vaccine Safety: active demand, passive acceptance,
vaccine hesitancy and vaccine refusal. They also defined vaccine hesitancy as a
‘delay in acceptance or refusal of vaccination despite availability of vaccination
services’. In essence, the vaccine hesitancy continuum is anywhere between
those who accept all vaccines on time and those who refuse any vaccine. In
order to increase or maintain high vaccination coverage it is therefore pivotal
to focus on the population in this hesitancy continuum and develop context,
community and vaccine specific strategies [247, 295].

By means of our DCE, we gathered insights in the vaccine decision-making pro-
cess among a sample of relatively higher educated and slightly younger adults
in South Africa. More specifically, we found vaccine effectiveness to be the key
element in vaccine-related decision-making. Population coverage, as well as
burden of disease, were also highly important, followed by local coverage and
accessibility. The frequency of mild VRSE was relatively unimportant. These
conclusions hold for both the adult and child group. We did not observe large
differences between the two groups except for a few covariate interactions.
The attribute importance ranking from the analysis of the ethnicity-adjusted
samples tells a similar story. However, accessibility seemed more important
in this analysis, which might be due to the fact that Black Africans are more
represented in the latter analysis and/or because covariate interactions were
not considered.

The marginal utilities of population and local coverage are positive, with the
largest utility for population coverage. This means that individuals were more
likely to accept a vaccination if more individuals have had already done so.
As such, peer effects and social norms dominated vaccine decision-making
rather than free-rider motives. This is similar to results from a Belgian [413],
an Australian [154], and a US [138] survey.

For policymakers, these results are highly relevant and provide the opportu-
nity to stimulate vaccination coverage. Vaccination campaigns can cause a
positive dynamic: a one-time increase in vaccination uptake will have a larger
impact through peer influence. However, this dynamic also works in the other
direction: a sudden (exogenous) fall in vaccination coverage can also trigger
a further decline in vaccine uptake, causing vaccination no longer to be the
social norm. Communication about coverage levels on both the population
and the local level is however essential for this dynamic to take place. Note
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that this social norm effect is opposite to the common hypothesis of free-riding
on herd immunity [413]. Behavioral models capturing vaccine decisions in
South Africa should consider social norms instead of free-riding behavior. A
recent systematic review on vaccine hesitancy confirms social norms to be an
important determinant in vaccine decision-making [216].

Timely and accurate information about vaccine effectiveness and burden of
disease can contribute to increasing vaccination coverage. Measles vaccines,
for instance, are highly efficacious vaccines [405] and it is crucial to emphasize
this in vaccine communications by health care workers, health agencies and
policymakers. With respect to burden of disease, it is important to stress the
severity and susceptibility of vaccine-preventable diseases and co-infections.
Especially so in the South African setting where the prevalence of HIV is
amongst the highest in the world [476].

Looking at the attribute importance from the analysis of the ethnicity-adjusted
samples, we observed relatively high values for the accessibility of the vaccine
(Figure 4.2). We found that it is essential to have vaccines available for free
and without a prescription. Currently, most vaccines are available at no cost in
government health care facilities. Some vaccines, however, are only available
in private health care facilities and are not cheap, (e.g., against chickenpox and
hepatitis A, and the MMR vaccine). See [277] for more information about the
South African public and private immunization schedules. It is essential to
keep vaccines conveniently available at an affordable price. Accessibility was
also an important attribute in other studies [36, 91, 138, 154, 338], although a
different specification of the attribute levels (out-of-pocket cost, cost per visit,
etc.) was used in these studies.

We tested covariate interactions with vaccine attributes in a systematic way and
found only one significant interaction between religion and vaccine accessibility
in the child model. Since measles vaccine is already offered free of charge in
South Africa, we think policymakers should look beyond religion to explain
low uptake in certain areas and provide accurate and timely information on
the attributes that matter most. Moreover, they should target hesitant people,
known to be looking for information about vaccines and infectious diseases.
If questions remain in hesitant groups, they could receive incorrect or biased
information from the internet, social media etc. [194].

The limited importance of perceived VRSE as observed in this study is peculiar,
given that VRSE was the most important attribute in a recent DCE about
vaccination behavior in Belgium [413]. Nevertheless, the specification of VRSE
in the latter study did not control for VRSE severity, i.e. it was only specified
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in terms of frequency. In the current study we explicitly specified that all
severe VRSE would be exceptional as vaccines for which severe VRSE can
occur frequently, will and should not be licensed.

4.5 Study limitations

DCE attributes and attribute levels were selected from a previous DCE [413],
whereas DCE guidelines [74, 213] recommend the use of qualitative methods.
Even though these attributes were not tailor-made for a specific population,
we were able to capture the relative importance our sample attached to six
generally accepted vaccine characteristics. This provides the opportunity for
policymakers to focus on a select number of vaccine characteristics in infor-
mation campaigns. Because the aim of our study was to assess the relative
importance of the vaccine attributes, we decided not to include an opt-out
option. An opt-out option could, nevertheless, be interesting in future research
to additionally retrieve trade-offs on vaccinating versus not vaccinating. Our
sample was unable to capture the educational attainment level of the South
African population. This is due to our decision to collect the data through
an online tool and the fact that we did not specify pre-defined quota on ed-
ucational attainment. Regarding ethnicity, our sample did not fully match
the population criteria. However, we investigated the main effects through a
bootstrap procedure generating attribute importance rankings with confidence
intervals for adjusted samples that matched the census population. With re-
spect to age groups, we matched the population distribution fairly well with
the exception of the oldest age group. This could be due to the use of an
online panel and our pre-defined sample quota of 50% having at least one child
below the age of 18 years. Moreover, the sampling frame, which requires an
electronic device with internet access, together with the fact that respondents
could only take the survey in English, will most likely have resulted in other,
but unobservable, sample imbalances as well. Indeed, the sampling frame is
likely to underrepresent people with a low socioeconomic status.
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4.6 Conclusion

We performed a discrete choice experiment to gain insights into vaccination
behavior in South Africa. We found vaccine effectiveness, vaccination coverage,
accessibility and burden of disease to be important attributes. Moreover, we
observed positive utility estimates for vaccination coverage, indicating peer
influence and social norms to be vital in vaccine decision-making, conditional
on people knowing about positive vaccination behavior by others in their circle
of acquaintances or in the population at large. Policymakers and health care
workers should emphasize the effectiveness of vaccines, stress the burden of
vaccine preventable diseases and encourage people to discuss their positive
vaccination experiences with their acquaintances. If coverage is sufficiently
high, (social) media campaigns reporting coverage are important to further
increase and maintain coverage and to reach herd immunity thresholds. These
campaigns can also be beneficial if they provide information on the burden
of disease (including information on burden of disease in counterfactual sce-
narios, if coverage were to decline). Such campaigns could also be well-timed
around outbreaks (stressing the severity and susceptibility due to low cov-
erage). Moreover, South African policymakers should keep vaccines free of
charge and available in all government clinics (as already the case for most
vaccines). Cost-effectiveness analyses should determine whether to provide
additional vaccines through the public health system.
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Table 4.3: Panel mixed logit model estimates of the Adult model:
mean and standard deviation (std dev) and significance of the at-
tribute effects obtained from likelihood ratio (LR) tests with a spec-
ified number of degrees of freedom (DF).

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

Vaccine effectiveness
50% -0.453 (0.031; 0.121)

141.246 1 < 0.0001
90% 0.453 (0.030; 0.121)

Population coverage (x10%) 0.113 (0.013; 0.070) 75.302 1 < 0.0001
Burden of disease

Rare & mild -0.366 (0.065; 0.096)

82.841 3 < 0.0001
Common & mild -0.391 (0.069; 0.084)
Rare & severe 0.228 (0.064; 0.069)
Common & severe 0.529 (0.065; 0.078)

Accessibility
Co-payment & prescription -0.347 (0.057; 0.090)

34.766 1 < 0.0001
Free & accessible 0.347 (0.041; 0.084)

Local coverage (x10%) 0.062 (0.012; 0.081) 20.241 1 < 0.0001
Accessibility*Province

Co-payment & prescription*Eastern Cape 0.385 (0.107; 0.065)

32.510 8 < 0.0001

Co-payment & prescription*Free State 0.044 (0.135; 0.066)
Co-payment & prescription*Guateng 0.042 (0.069; 0.087)
Co-payment & prescription*KwaZulu-Natal 0.134 (0.064; 0.060)
Co-payment & prescription*Limpopo 0.036 (0.255; 0.095)
Co-payment & prescription*Mpumalanga 0.333 (0.104; 0.069)
Co-payment & prescription*North West -0.394 (0.136; 0.081)
Co-payment & prescription*Northern Cape -0.303 (0.167; 0.090)
Co-payment & prescription*Western Cape -0.277 (0.057; 0.075)
Free & available*Eastern Cape -0.385 (0.095; 0.064)
Free & available*Free State -0.044 (0.162; 0.070)
Free & available*Guateng -0.042 (0.056; 0.083)
Free & available*KwaZulu-Natal -0.134 (0.082; 0.071)
Free & available*Limpopo -0.036 (0.226; 0.097)
Free & available*Mpumalanga -0.333 (0.139; 0.069)
Free & available*North West 0.394 (0.245; 0.069)
Free & available*Northern Cape 0.303 (0.192; 0.086)
Free & available*Western Cape 0.277 (0.079; 0.080)

Burden of disease*Internet
Rare & mild*not selected 0.253 (0.054; 0.073)

19.649 3 0.0002

Rare & mild*internet selected -0.253 (0.046; 0.071)
Common & mild*not selected -0.074 (0.056; 0.072)
Common & mild*internet selected 0.074 (0.055; 0.067)
Rare & severe*not selected -0.115 (0.059; 0.058)
Rare & severe*internet selected 0.115 (0.063; 0.061)
Common & severe*not selected -0.064 (0.053; 0.065)
Common & severe*internet selected 0.064 (0.042; 0.061)

Burden of disease*Relier
Rare & mild*disagree 0.070 (0.067; 0.106)

18.929 3 0.0003

Rare & mild*agree -0.070 (0.055; 0.068)
Common & mild*disagree 0.207 (0.073; 0.072)
Common & mild*agree -0.207 (0.063; 0.078)
Rare & severe*disagree 0.014 (0.055; 0.071)
Rare & severe*agree -0.014 (0.051; 0.073)
Common & severe*disagree -0.291 (0.060; 0.067)
Common & severe*agree 0.291 (0.058; 0.065)

Population coverage (x10%)*Occupational status
Population coverage (x10%)*not working 0.042 (0.013; 0.068)

11.703 1 0.0006
Population coverage (x10%)*working -0.042 (0.012; 0.065)

Mild VRSE*Internet
Common*not selected 0.099 (0.022; 0.058)

11.417 1 0.0007
Common*internet selected -0.099 (0.024; 0.053)
Rare*not selected -0.099 (0.024; 0.057)
Rare*internet selected 0.099 (0.023; 0.055)

Mild VRSE
Common -0.097 (0.026; 0.057)

8.056 1 0.0045
Rare 0.097 (0.027; 0.059)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute.
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Table 4.4: Panel mixed logit model estimates of the Child model: mean
and standard deviation (std dev) and significance of the attribute ef-
fects obtained from likelihood ratio (LR) tests with a specified number
of degrees of freedom (DF).

Term Mean estimate (std dev; sub-
ject std dev)

LR Chi-square DF P-value

Vaccine effectiveness
50% -0.583 (0.030; 0.084)

245.794 1 < 0.0001
90% 0.583 (0.030; 0.091)

Population coverage (x10%) 0.129 (0.010; 0.074) 121.966 1 < 0.0001
Burden of disease

Rare & mild -0.483 (0.077; 0.113)

112.268 3 < 0.0001
Common & mild -0.373 (0.052; 0.094)
Rare & severe 0.382 (0.072; 0.071)
Common & severe 0.474 (0.056; 0.075)

Local coverage (x10%) 0.098 (0.011; 0.070) 56.194 1 < 0.0001
Accessibility

Co-payment & prescription -0.681 (0.119; 0.148)
33.361 1 < 0.0001

Free & accessible 0.681 (0.074; 0.148)
Burden of disease*Household (HH)

Rare & mild*two parents HH 0.106 (0.071; 0.087)

20.013 3 0.0002

Rare & mild*one parent HH -0.106 (0.059; 0.085)
Common & mild*two parents HH 0.147 (0.053; 0.091)
Common & mild*one parent HH -0.147 (0.059; 0.098)
Rare & severe*two parents HH -0.200 (0.069; 0.066)
Rare & severe*one parent HH 0.200 (0.065; 0.068)
Common & severe*two parents HH -0.053 (0.053; 0.058)
Common & severe*one parent HH 0.053 (0.059; 0.075)

Mild VRSE
Common -0.116 (0.028; 0.065)

13.548 1 0.0002
Rare 0.116 (0.027; 0.057)

Accessibility*Religion
Co-payment & prescription*no answer 0.864 (0.750; 0.071)

26.506 7 0.0004

Co-payment & prescription*not religious -0.268 (0.196; 0.118)
Co-payment & prescription*Buddhism -0.936 (0.756; 0.101)
Co-payment & prescription*Christian 0.304 (0.125; 0.157)
Co-payment & prescription*Hindu 0.010 (0.294; 0.088)
Co-payment & prescription*Judaism -0.909 (0.478; 0.120)
Co-payment & prescription*Muslim 0.089 (0.230; 0.074)
Co-payment & prescription*other 0.846 (0.432; 0.085)
Free & available*no answer -0.864 (0.396; 0.075)
Free & available*not religious 0.268 (0.185; 0.114)
Free & available*Buddhism 0.936 (0.716; 0.108)
Free & available*Christian -0.304 (0.076; 0.149)
Free & available*Hindu -0.010 (0.354; 0.081)
Free & available*Judaism 0.909 (0.486; 0.108)
Free & available*Muslim -0.089 (0.254; 0.074)
Free & available*other -0.846 (0.417; 0.101)

Burden of disease*Rational
Rare & mild*agree -0.018 (0.058; 0.079)

13.642 3 0.0034

Rare & mild*disagree 0.018 (0.043; 0.079)
Common & mild*agree -0.187 (0.050; 0.072)
Common & mild*disagree 0.187 (0.045; 0.065)
Rare & severe*agree 0.087 (0.063; 0.058)
Rare & severe*disagree -0.087 (0.046; 0.059)
Common & severe*agree 0.118 (0.046; 0.063)
Common & severe*disagree -0.118 (0.040; 0.061)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute.
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Summary

Background. Increased vaccine hesitancy and refusal negatively affects
vaccine uptake leading to vaccine preventable disease reemergence. We
aimed to quantify the relative importance of characteristics people consider
when making vaccine decisions for themselves, or for their child, with spe-
cific attention for underlying motives arising from context, such as required
effort (accessibility) and opportunism (free riding on herd immunity).

Methods. We documented attitudes towards vaccination and performed a
discrete choice experiment in 4802 respondents in The United Kingdom,
France and Belgium eliciting preferences for six attributes: (1) vaccine effec-
tiveness, (2) vaccine preventable disease burden, (3) vaccine accessibility
in terms of co-payment, vaccinator and administrative requirements, (4)
frequency of mild vaccine-related side-effects, (5) vaccination coverage in
the country’s population and (6) local vaccination coverage in personal
networks. We distinguished adults deciding on vaccination for themselves
(‘oneself’ group) from parents deciding for their youngest child (‘child’
group).

Results. While all six attributes were found to be significant, vaccine
effectiveness and accessibility stand out in all (sub)samples, followed by
vaccine preventable disease burden. We confirmed that people attach more
value to severity of disease compared to its frequency and discovered that
peer influence dominates free-rider motives, especially for the vaccination
of children.

Conclusions. These behavioral data are insightful for policy and are essen-
tial to parameterize dynamic vaccination behavior in simulation models.
In contrast to what most game theoretical models assume, social norms
dominate free-rider incentives. Therefore policy-makers and healthcare
workers should actively communicate on high vaccination coverage, and
draw attention to the effectiveness of vaccines, while optimizing their
practical accessibility.
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5.1 Introduction

Vaccination remains a cornerstone of global public health, preventing about
2 to 3 million deaths each year [443]. However, its success is currently under-
mined by growing vaccine hesitancy and refusal. Sentiments underpinning this
have multi-faceted origins, not least distorted perceptions of severe vaccine
side-effects, much of which can be traced back to fraudulent research link-
ing measles-mumps-rubella (MMR) vaccination with autism [140, 193], and
misconceptions about the use of adjuvants in vaccines [433]. Others include
doubts about vaccine effectiveness [193, 217] and about our immune system’s
coping with the rising number of recommended vaccine antigens [174, 193].
More extreme attitudes are based on government and vaccine industry con-
spiracy theories [193], religious beliefs (e.g. Protestantism in the Dutch Bible
Belt [335]) and “back to nature” motives (i.e. preferring immunity acquired by
natural infection to vaccine-induced immunity, under the belief that “divine or
natural” risks are smaller and/or more “just” than those imposed by human
interventions) [193].

Even though vaccine controversies are not new [311, 369], the internet and
a variety of social media have amplified the spread of misinformation and
allowed the establishment of new online anti-vaccine communities [214]. Ac-
cording to a 2018 Gallup poll [131], only 40% and 59% of Eastern and Western
Europeans, respectively, believe vaccines are safe. In Northern Europe and
Northern America, these figures are higher at 73% and 72%, respectively [131].

As a result of these misperceptions, plunging vaccination rates and immunity
levels have been observed in recent years. Notably so for measles, which is a
highly virulent pathogen for which a safe and effective vaccine was already
approved by the Food and Drug Administration (FDA) in 1971 [63]. Indeed,
the European Centre for Disease Prevention and Control (ECDC) recently
reported the existence of a large pool of people in the EU that are susceptible
to measles due to low historical and current vaccination coverage. Only 4
countries achieved two dose measles vaccination coverage of at least 95% in
2017, compared to 14 countries in 2007. Unsurprisingly, measles resurgence has
recently been observed, with 44,074 cases in 30 EU member states between 2016
and March 2019 [119]. The same trend has been observed in the US, with 704
cases reported in the first four months of 2019 (even though the US declared
elimination of endemic transmission in 2000) [280, 306].

Mathematical and economic models have proven valuable to simulate and
evaluate the impact of prevention measures on the spread, burden and eco-
nomics of infectious diseases. These models inform and guide policy-makers
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to prepare for and respond to (re)emerging infectious diseases, particularly
when sufficient information from controlled experiments is lacking. However,
because of the reasons previously touched upon, the impact of prevention
measures and other policy interventions are subject to hosts’ compliance and
demand. In response, behavioral change models have been developed to in-
corporate dynamic behavior (i.e. the demand side of prevention measures)
into models for infectious disease transmission. As a result of circulating
controversies and – usually positive – externalities, vaccination models have
become particularly interesting to take dynamic behavior into account. Indeed,
vaccination usually results in positive externalities, often referred to as ‘herd
immunity’: successfully vaccinated individuals do not (or hardly) transmit the
pathogen to others. As such the marginal utility of vaccination decreases (non-
linearly) as coverage increases, and endemic transmission can often be halted
without vaccinating the whole population, a phenomenon which is crucial for
vulnerable individuals who cannot receive vaccination due to age or medical
reasons (e.g. too young or immunocompromised). Where positive externalities
exist, game theory applies. Hence, models have been developed in which
rational-behaving individuals are assumed to free-ride on ‘herd immunity’,
and therefore increasingly refuse vaccination when they perceive more mem-
bers of the population to be immunized. However, the majority of behavioral
change models in the published literature remains purely theoretical, lacking
parameterization with empirical data and a validation process [127, 411]. Con-
sequently, data for parameterization of behavioral change models are highly
desirable to construct improved models mimicking realistic vaccination be-
havior. This is generally recognized as one of the challenges for behavioural
change models [128].

Discrete choice experiments (DCEs) have proven successful to elicit preferences
and quantify the decision-making process with respect to vaccine characteris-
tics in multiple studies [36, 84, 91, 138, 154, 338, 413, 414]. Moreover, they are
well established as an instrument in health economic research in general [85].
A DCE is a quantitative surveying technique in which respondents make a
choice between two or more hypothetical profiles in consecutive choice sets.
Profiles are represented by attributes with (partially) differing attribute levels
[199]. In previous DCEs, vaccines were described using attributes such as
vaccine effectiveness [36, 84, 91, 154, 303, 413, 414], vaccine-related side-effects
(VRSE) [84, 91, 154, 303, 338, 413, 414] or in terms of vaccine price (whether or
not including costs of vaccine administration) [91, 138, 154, 338, 413, 414]. A
recent study found that DCEs correctly predicted influenza vaccination choices
on an aggregate level when taking scale and preference heterogeneities into
account [86].
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In this paper, we report on the findings of a DCE quantifying individual pref-
erences for vaccination attributes in Belgium, the United Kingdom (UK) and
France. We present these new results together with those of two separately
reported DCEs using an identical design, conducted in South Africa and The
Netherlands [172, 414]. We aim to: 1) generate and communicate behavioral
data with respect to vaccines in order to move from theory to data-driven
behavioral change models in infectious disease epidemiology, 2) assess to what
extent individual vaccination decisions are driven by social norms or peer
pressure as opposed to free-riding motives, 3) identify the vaccine charac-
teristics society values most, and 4) accommodate policy-makers and health
care professionals to select focal points in their communication to hesitant
individuals.
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5.2 Methods

We conducted a survey in France, the UK (both early December 2018) and
Belgium (May 2019). We selected these countries for a number of reasons. First
of all, no DCE had yet been performed for a general, unnamed vaccine, distin-
guishing between adults and children in any of these countries. Also, we were
interested in between-country differences comparing different backgrounds,
cultures and more specifically, a different history with respect to vaccination.
France was included in this study because it has been experiencing a lot of
vaccine resistance: one in three French inhabitants now believes vaccines are
unsafe, which is the highest fraction in the world [131]. More specifically,
there is a lot of vaccine resistance in France originating from safety concerns
regarding the pandemic A/H1N1 flu vaccine with spillovers to other vaccines
(e.g. MMR vaccine) [131, 308]. As a result, the French government expanded
the number of compulsory vaccines from 3 to 11 in 2018 [131]. The UK was
included because it has a history of vaccine scares with documented impact on
vaccine coverage for the whole cell pertussis vaccine in the 1970s and 1980s
[11] and MMR vaccine in the 2000s [140]. We also included Belgium, a country
with a more neutral vaccination history, achieving generally high and stable
vaccine coverage in young children [409]. However, regional disparities have
been observed to widen [391], and one in five Belgian citizens believe vaccines
are unsafe [131]. In order to facilitate broader between-country comparisons,
we report our results alongside those of two more studies using an identical
design in South Africa and The Netherlands, conducted in December 2017 and
June-July 2018, respectively, and published in detail elsewhere [172, 414].

The majority of the survey questions and the entire DCE design were kept the
same as in South Africa and The Netherlands. We adapted the survey questions
to reflect country-specific characteristics based on inputs from local experts,
for example with respect to the educational system and the organization of the
national immunization schedule. As such, we ended up with four versions of
the survey for the UK, France, French speaking Belgium, and Dutch speaking
Belgium. No physical samples were collected as part of this study and the study
protocol was approved by the ethical committee of the Antwerp University
Hospital (reference number: 15/2/12). We tested each survey version in a soft
launch in which we asked about 10% of the target sample to fill out the survey
and evaluate the comprehensibility of the questions. Afterwards, we launched
the survey in the sample population. The survey consisted of five sections:
1) background questions probing for age, gender, marital status, occupation,
smoking behavior, etc., 2) 21 attitudinal questions on vaccines where responses
were recorded on a five-point Likert scale, ranging from completely agree to
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completely disagree, 3) a DCE with 10 choice sets based on Verelst et al. [413],
including an introduction text with instructions and a sample choice set to
familiarize the respondents with the DCE, 4) four questions probing for relative
risk perceptions based on a survey by Bults et al. [50], and 5) a health literacy
test with three questions from Chew et al. [69]. Based on their background
characteristics, we allocated respondents to two distinct surveys: a ‘oneself’
group (without allocation restrictions) and a ‘youngest child’ group (only for
respondents having at least one child below the age of 18 years), the former
filling out the survey with respect to vaccination decisions for themselves, the
latter doing so for their youngest child. Preferences elicited in the youngest
child group reflect parents’ preferences with respect to vaccinations for their
youngest child. We opted for a sample size of about 1500 respondents per
country, based on previous DCEs with the same design [172, 413, 414]. We
gradually built each sample to better match the sample demographics to the
population demographics, and thus to obtain a more representative sample.
We recruited respondents from an online consumer panel applying an efficient
participant allocation algorithm. In total, 9339 respondents started the survey,
4802 of them completed the survey, 1213 chose not to complete it, 59 did
not meet the inclusion criteria (e.g., <18 years old), 119 were identified as
‘speeders’ (who filled out the survey much faster than a reference time) and/or
‘straight-liners’ (who filled out the same for each question), and 3146 were
halted after the first part of the survey with background questions when pre-
defined sample quota were reached. We incentivized participation through
credit rewards, transferable into coupons and gift vouchers. Only one member
per household could participate in the study. Country and group level sample
characteristics are displayed in Table 5.2.

The DCE was characterized by a Bayesian D-efficient design [199] of 50 choice
sets with 2 profiles described by 6 attributes with 3 varying and 3 constant
levels and optimized for the precise estimation of all main effects as well
as all two-way interactions between any of the six attributes and ‘vaccine
effectiveness’, ‘VRSE’ and ‘accessibility’. We divided the design into five
surveys of 10 choice sets that we distributed evenly between all participants.
We selected the attributes and attribute levels through a literature study, a focus
group study and a pilot study in Flanders, the details of which are published
in Verelst et al. [413]. We revised the description of VRSE by specifying the
severity of side-effects, keeping severe side-effects to be ‘highly unlikely’ in
the two profiles, and only varying the frequency of mild VRSE. This contrasts
with the original design in Verelst et al. [413], where we left the severity of
side-effects unspecified, but is the same as in Verelst et al. [414] and Hoogink
et al. [172]. We opted for this strategy since it prevents the participant from
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imagining levels regarding VRSE severity and it mimics real-life VRSE, because
vaccines with common severe side-effects should not be licensed. We included
population and local coverage as attributes to assess the magnitude of free-
riding behavior in the populations under study. Negative utility values for
higher coverage levels confirm free-riding behavior, as opposed to positive
utility values, in which case peer influence and social norms dominate. All
attributes and attribute levels are shown in Table 5.1.

Table 5.1: DCE attributes and levels.

Attribute Level description

1. Vaccine effectiveness
a) Protects 50% of vaccinated persons
b) Protects 90% of vaccinated persons

2. Burden of disease

a) The disease, against which the vaccine protects is rare and
often mild: hospitalisation is exceptional and the disease is not
life-threatening
b) The disease, against which the vaccine protects is rare and
often severe: often with hospitalisation and the disease is life-
threatening
c) The disease, against which the vaccine protects is common and
often mild: hospitalisation is exceptional and the disease is not
life-threatening
d) The disease, against which the vaccine protects is common
and often severe: often with hospitalisation and the disease is
life-threatening

3. VRSE
a) Mild side-effects commonly occur and severe side-effects are
highly unlikely
b) Mild side-effects rarely occur and severe side-effects are highly
unlikely

4. Accessibility

a) The vaccine is provided for free and is directly available at the
vaccinator (GP, well-baby clinic, school- or occupational physi-
cian)
b) The vaccine is not reimbursed and is only available with a
prescription

5. Local coverage
a) 30% of your acquaintances (friends and family) is vaccinated
b) 60% of your acquaintances (friends and family) is vaccinated
c) 90% of your acquaintances (friends and family) is vaccinated

6. Population coverage
a) 30% of the population in general is vaccinated
b) 60% of the population in general is vaccinated
c) 90% of the population in general is vaccinated

We analysed the DCE using the JMP Pro 14 Choice Platform [179] and applied
a Panel Mixed Logit (PML) modeling approach with 10,000 Bayesian iterations,
with the last 5,000 used for estimation. We distinguished between models
estimating the attribute effects – allowing for model comparison between study
populations – and models including interaction effects between the attributes
and respondent covariates – allowing for identifiable preference heterogeneity
within study populations. In the latter, we systematically estimated covariate
interactions one-by-one, keeping record of all the statistically significant model
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terms including the main effects. Afterwards, we estimated a joint model com-
bining all main effects and individually significant interactions. We dropped
insignificant interactions in an iterative process until we reached a model with
the most important covariates. We ranked the significant model terms by
importance using the normalized LogWorth statistic, i.e. -log10(p-value of the
LR-test), where the LR-test is short for the likelihood ratio test for significance
of a given model term. We used R [320] for cleaning the raw survey data and
creating the bar charts.
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5.3 Results

We managed to retrieve a quasi-representative sample of about 1600 survey
respondents in each country, as shown in Table 5.2. Women are slightly over-
represented in the samples from the UK and France. We found a representative
population with respect to age to be incompatible with having at least 750 re-
spondents with children below the age of 18. Moreover, concerning educational
attainment, the samples are also somewhat biased towards the higher educated,
especially so in France. This is likely because older French respondents, who
tend to be lower educated, are underrepresented in our sample. Note however,
that the youngest age groups are by definition lower educated since the cen-
sus data also include school-age teenagers (15-18 years). We investigated the
impact of mismatching sample characteristics by estimating covariate interac-
tions between the attributes and gender, educational attainment and region,
and found none of them to significantly influence our findings. Significant
covariate interactions with respondents’ age group are included and reported
in Appendix B.1.

Vaccine attitudes tended to be positive in general as represented in Figures
5.1 and 5.2 for a selection of general vaccine statements. We observed French
respondents in the ‘adult’ group to be relatively neutral towards the statements
“The people who are important to me think that I must get vaccinated” and “I
have confidence in the information about vaccinations that I receive from the
Government”. These sentiments appeared to be more negative in the ‘adult’
group than for the ‘child group’. In contrast, the respondents from the UK
were in general more agreeing on this selection of statements. The median UK
respondent strongly agreed with the statements “I think that getting vaccinated
against infectious diseases is wise” and “I think that getting vaccinated against
infectious diseases is important” in the ‘adult’ group, whereas in the ‘child’
group the median UK respondent strongly agreed with the statements “The
diseases that are vaccinated against can be very serious” and “I think that vac-
cinating my child according to the National Vaccination Program is important”.
Other ‘child’ group samples, on average, agree on all statements, though there
is a lot of variability within the samples. Attitudes from Belgian and Dutch
respondents were usually found in between the UK and the French sample
means. Details on all 21 attitudinal questions are presented in Appendix B.2.

All six attributes were found to be statistically significant in all five countries.
The normalized LogWorth values represent the relative importance of the at-
tributes in each country and subgroup, and are visualized in Figure 5.3. Two
attributes stand out: vaccine effectiveness and accessibility. Vaccine effective-
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Likert Scale

Strongly
Disagree
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Stronlgy
Agree

The diseases that are vaccinated
against can be very serious. 

I have confidence in the information
about vaccinations that I receive

from the Government. 

Getting vaccinated is the logical
thing to do 

The available vaccinations are
suited to protect my health 

The people who are important to
me think that I must get vaccinated 

I think that getting vaccinated against
infectious diseases is important

I think that getting vaccinated against
infectious diseases is wise

It is important to me that getting
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Figure 5.1: Likert scale responses for a selection of vaccination attitude
statements in the ‘adult’ group in France, The Netherlands, Belgium
and the United Kingdom.
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The diseases that are vaccinated
against can be very serious. 

I have confidence in the information
about vaccinations that I receive

from the Government. 

Vaccinating my child is the logical
thing to do 

The National Vaccination Program is good
for protecting my child's health. 
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me think that I must have my
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Figure 5.2: Likert scale responses for a selection of vaccination attitude
statements in the ‘child’ group in France, The Netherlands, Belgium
and the United Kingdom.
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Table 5.2: Sample characteristics and national statistics for Belgium, France
& The UK (*age groups from the survey are compared to age groups [15-29],
[30-49], [50-64] and [65-84] as reported in the 2011 census database [383].)

Characteristic Belgium United Kingdom France
Sample
(%)

Population
(%)

Sample
(%)

Population
(%)

Sample
(%)

Population
(%)

Gender
Male 50.2 49.1 45.8 49.1 40.7 48.4
Female 49.8 50.9 54.2 50.9 59.3 51.6

Age group (*)
18-34 26.6 22.9 24.8 24.9 27.1 23.5
35-49 26.4 34.7 36.4 34.7 39.6 34.2
50-65 25.4 24.0 26.9 22.7 24.6 24.2
66-85 21.6 18.4 12.0 17.7 8.8 18.1

Educational attainment
Primary education (ISCED 1) or

lower 8.3 14.6 <1 <1 1.1 17.5

Secondary education (ISCED 2+3) 55.6 49.6 58.4 70.0 72.2 58.3
Post-secondary or (post-)university

education (ISCED 4 or higher) 33.7 26.3 39.3 30.0 25.8 24.2

Other 2.4 9.5 1.8 <1 <1 <1
NUTS 1 region

Belgium
Flanders 57.4 57.5
Walloon Region 30.2 32.2
Brussels Capital Region 12.3 10.3

UK
North East 5.4 4.1
North West 10.0 11.2
Yorkshire and the Humber 8.6 8.4
East Midlands 6.6 7.2
West Midlands 9.7 8.9
East of England 8.9 9.3
London 11.2 12.9
South East 12.6 13.7
South West 8.3 8.4
Wales 6.3 4.8
Scotland 8.6 8.4
Northern Ireland 3.9 2.9

France
Région parisienne 16.3 18.3
Bassin parisien 22.1 16.6
Nord 5.6 6.2
Est 10.8 8.3
Ouest 12.9 13.2
Sud-Ouest 11.3 10.6
Centre-Est 10.0 11.8
Méditerranée 10.8 12.2
Départements d’Outre Mer 0.2 2.9

Sample size N=1602 N=1600 N=1600
‘Oneself’ N=1001 N=850 N=850
‘Youngest child’ N=601 N=750 N=750
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ness is the key characteristic for all survey respondents in the UK and South
Africa, but also for the ‘child’ group in The Netherlands. For the Belgian
population as well as the French ‘oneself’ group, accessibility was found to
be most important. The French ‘child’ group attached most importance to
burden of disease, whereas this was considered much less important by the
same subpopulation in the UK. We found local coverage and mild VRSE to be
also statistically significant but of limited importance in most study samples,
with a relative importance of 30% or less. Population coverage was found
to have more influence, especially so in the case of ‘child’ models, with the
Netherlands being an exception. Note that among all five countries mild VRSE
had the highest impact in vaccine decision-making in France and Belgium.
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Figure 5.3: Importance of all statistically significant (p-value <0.05)
main effects relative to the most important attribute. All five coun-
tries. Estimates for the Netherlands and South Africa are derived from
Hoogink et al. [172] and Verelst et al. [414].

For both population and local coverage, estimates were found to be positive for
all subsamples in all study countries (see Tables 5.3 to 5.5). Hence, respondents
were more inclined to choose a vaccine if it already had a high coverage in
their network of contacts and in the population at large. For example, for the
‘child’ group in France, a 10% increase in the population’s vaccination coverage
increases vaccine utility by 0.108 on average (see Table 5.5).

Vaccine effectiveness stands out as the most important attribute in the UK,
South Africa and in the ‘child’ group in the Netherlands. In Belgium and
France, we found vaccine effectiveness to be a crucial element as well, at a
relative importance of about 80% and 60% respectively. In all countries, vaccine
effectiveness was ranked more important, or equally important, in the ‘child’
group compared to the ‘oneself’ group.
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In contrast, vaccine accessibility was valued higher, or equally, in the ‘oneself’
group compared to the ‘child’ group in all countries, except for South Africa.
In addition, accessibility was the most important attribute in Belgium, and in
the ‘oneself’ group in France and the Netherlands.

The ‘child’ group in France cared most about the burden of the disease. This
attribute was also of considerable importance in the same group in the Nether-
lands. There are notable differences in valuation of this attribute between all
subgroups involved. Indeed, in the UK sample, the burden of disease was
valued at a relative importance of about 40% in the ‘oneself’ group and about
20% in the ‘child’ group. Whereas in the Netherlands, France and Belgium,
this attribute was valued at a relative importance of about 50% or more.

We observed a clear distinction between the ‘oneself’ group and the ‘child’
group with respect to population coverage. Indeed, both these indicators of
vaccination coverage were considered relatively more important for children
than for adults in all countries except the Netherlands. This implies that
when parents decide about vaccinating their child, they are more prone to
peer influence, than when adults (including parents) make these decisions for
themselves. Overall, both population and local coverage were considered most
important in France and South Africa and least important in the Netherlands
and the UK.

Mild VRSE and local coverage were, although statistically significant for all
subgroups, found to be of the relative lowest importance in most countries and
subgroups.

Attribute-level utility estimates are listed in Tables 5.3 to 5.5. As could be
expected, respondents in all study populations preferred the most a vaccine
with 90% effectiveness, that is free & accessible, protects against a common &
severe disease, rarely exhibits mild VRSE and for which vaccination coverage is
high. In addition, we consistently found disease severity to dominate frequency
of disease in all study samples.

The models including the attributes’ main effects as well as the most important
covariate interactions are provided in Appendix B.1. Vaccine-related attitude
statements were able to explain most preference heterogeneity. For example for
Belgium, in the ‘oneself’ model we discovered respondents agreeing (disagree-
ing) with the statement “The available vaccinations are suited to protect my
health” attached more (less) value to a vaccine with an efficacy of 90% (50%),
compared to the average (see Figure B.1 below). Moreover, we also found that
in the ‘oneself’ model for the UK, respondents indicating that they were at
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low risk of contracting measles, cared more about the vaccine being free &
accessible (see Figure B.3 above). The same is true for individuals agreeing
with “vaccinating my child is the logical thing to do” in the ‘child’ model for
the UK (see Figure B.4 above). For details on additional covariate interactions,
we refer to Appendix B.1.
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5.4 Discussion

The need for behavioral data in relation to infectious disease epidemiology and
prevention has been raised repeatedly over the past decade [127, 128, 411]. Our
multi-country series of DCEs generated highly valuable data for parameteri-
zation and validation of epidemiological models. This is because data-driven
hosts’ behavior derived from DCEs can be added to models mimicking the
spread of infectious diseases. For example, dynamic behavior can be modelled
through a utility function using prevalence utility estimates from the burden
of disease attribute. As such, the utility of a vaccine increases when a disease
becomes more prevalent. Similar dynamics can be modelled using the utility
estimates of population or local coverage. Moreover, exogenous shocks, such as
changing risk perceptions, can be introduced in such integrated models. Utility
estimates on vaccine effectiveness, accessibility, disease severity and mild VRSE
can facilitate data-driven introductions of exogenous shocks. Furthermore,
the multi-country character of our study allows modelling vaccination behav-
ior in five countries. However, an integrated model combining data-driven
vaccination behavior with infectious disease transmission dynamics, requires
the specification of a dichotomous vaccine outcome (to be vaccinated or not)
based on individual utilities derived from vaccine attributes. That is, a function
that derives vaccine uptake from utility associated with vaccination. Future
research will explore the specification of such vaccine uptake functions.

The positive estimates for both coverage attributes in all (sub)samples imply
social norms or peer influence are more important than free-rider incentives.
These findings confirm the positive coverage estimates reported in vaccination
DCEs in Australia [154] and in the US [138]. Overall, it seems unlikely that
respondents take externalities – such as herd immunity – into account when
making vaccine decisions. As such, game theoretical models characterizing
vaccine decisions as a strategic interaction between rational individuals, seem
inappropriate to capture real-life vaccination dynamics. If individuals do
include herd immunity effects in their decisions, it might very well be the
case that they behave altruistically and opt for vaccination, contributing to the
protection of vulnerable individuals. This was observed in several empirical
studies, such as the study by Skea et al. [364] reporting on ‘avoiding harm to
others’ incentives in the context of MMR vaccination in the UK. They found
parents on a chat forum to be critical towards parents not vaccinating their
healthy children, thereby putting vulnerable ones at risk. Altruistic motives
were also described in the papers by Hakim et al. [153] and Shim et al. [362] in
the context of influenza vaccination, and by Vietri et al. [421] about assessing
the extent of altruism with respect to HPV and influenza vaccination. Policy-
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makers and healthcare workers can influence vaccine hesitant individuals by
communicating high coverage levels, i.e. describing that “accepting the vaccine
is the mainstream thing to do”, in addition to other strategies (see Leask et al.
[220] for a framework on “communicating with parents about vaccination”).

Vaccine accessibility has proven highly significant in our study, as well as in
other studies [36, 91, 138, 154, 414], where it was, however, mostly described in
terms of out-of-pocket or total costs. For example, Wong et al. [452] performed
a DCE on mothers’ preferences for HPV vaccination in Hong Kong and found
a significant impact of out-of-pocket cost on the decision to receive the vaccine.
Poulos et al. [314] reported similar results with respect to traveler vaccines.
This has also been confirmed by observational studies. For instance, in a retro-
spective cohort study, Lefevere et al. [222] found both personal information
letters and removing out-of-pocket costs had a significant positive effect on
HPV vaccination initiation in Belgium.

Given the importance of vaccine accessibility, policy-makers can increase vac-
cine coverage by making vaccines easily available at an affordable price. There
is still significant room for improvement concerning adults (cfr. the ‘oneself
group’) who are often confronted with an expensive, complicated and time
consuming process of vaccination. Take for instance influenza vaccination in
Belgium, where individuals typically visit a GP for a prescription, then buy the
vaccine (often without reimbursement) at a pharmacy and lastly have to go
back to the GP to be vaccinated. Not surprisingly, influenza vaccine coverage
has usually been below 25% [386]. Adults cannot rely on the routine vaccina-
tion services available for children (e.g. well-baby clinics, child health clinics
or school health centres). In this respect, (expansion of) workplace vaccination
can play a vital role in facilitating vaccination for working-age adults. Policy-
makers should consider incentivizing employers to offer certain vaccines to
their employees at the workplace, e.g. influenza, and tetanus, diphtheria and
pertussis (Tdap) vaccination, or hepatitis A for employees working in the food
industry. Workplace vaccination may also prove useful in catch-up campaigns
which would, for example, be required to maintain measles elimination tar-
gets [129, 210, 393]. Note that for the ‘child’ group, accessibility was found to
be very important as well. Policy-makers should remain focused on making
vaccines as accessible as possible for both groups.

In line with previous studies [91, 414, 452], vaccine effectiveness was observed
to be of great importance in all models. Therefore its is essential that the
public should remain fully aware of the positive impact vaccines are having
on population health. According to a 2018 Gallup poll, the effectiveness of
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vaccines is perceived to be significantly more reliable than their safety. Of
the five countries included in our study, France scored worst with about 20%
of the population disagreeing that vaccines are effective, followed by The
Netherlands and South Africa both at 11% [131].

In a previous study in Flanders [413], we applied the same DCE design but did
not specify the severity of VRSE. The updated description in this study, varying
only mild VRSE and describing severe VRSE as being ‘highly unlikely’, shifted
the attribute’s importance from the highest rank in the earlier study, to one of
the lowest ranks in the current. Safety concerns with respect to vaccinations
remain crucial in vaccine misperceptions. VRSE may indeed occur, but are
mostly mild and clear up quickly [446]. In this study it became clear that
when respondents used realistic information on vaccine side-effects they cared
less about them while making vaccination decisions. Acknowledging the
existence of VRSE and providing risk and benefit information is recommended
when discussing safety concerns with potential vaccine recipients (or their
parents) [220]. The relative importance of burden of disease is more volatile
and appears to be country-specific. In the ‘child’ model for the UK, we found
it to be relatively unimportant, whereas for the same subpopulation in France,
burden of disease was most important. The severity of the infectious disease
was found to be more important than the frequency of the disease. This is in line
with Sadique et al. [338], who showed severity of both vaccine-preventable
disease and VRSE to be more important than their frequency. To address
concerns about the burden of disease and VRSE, healthcare workers as key
informants, should be well-versed in the general topic of vaccination and
should use standard guidelines for each vaccine and disease so that potential
vaccine recipients are consistently and well-informed. See also Leask et al.
[220], who provide a vaccine communication framework.
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5.5 Conclusion

In conclusion, we found slightly variable preferences for vaccine attributes be-
tween countries. Nonetheless, there are communalities in that people’s vaccine
decisions seem to depend in the first place on how they perceive the effective-
ness and risks of severe VRSE, as well as the burden of vaccine preventable
disease. Their decisions are also influenced significantly by how easy it is to
be vaccinated, in terms of effort and costs, by the possibility of mild VRSE
and by how many other people are being vaccinated. Especially vaccination
of the population in general is an important element when having a child
vaccinated. Therefore communication strategies on vaccination should not
forget to include information on vaccination rates, reflecting that vaccination
is still the norm, and non-vaccination remains exceptional. Contrary to what
most game theoretical models assume, this information would be an incentive
to receive vaccination, rather than to forego it intending to take a free ride.
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Table 5.3: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. Belgium

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

‘Oneself’ model
Accessibility

Co-payment & prescription -0.403 (0.020; 0.334)
326.606 1 < 0.0001

Free & accessible 0.403 (0.020; 0.316)
Vaccine effectiveness

50% -0.465 (0.024; 0.244)
252.171 1 < 0.0001

90% 0.465 (0.025; 0.210)
Burden of disease

Rare & mild -0.436 (0.045; 0.615)

243.682 3 < 0.0001
Common & mild -0.481 (0.047; 0.361)
Rare & severe 0.324 (0.037; 0.128)
Common & severe 0.593 (0.043; 0.174)

Population coverage (x10%) 0.081 (0.008; 0.099) 65.749 1 < 0.0001
Mild VRSE

Common -0.184 (0.019; 0.098)
57.931 1 < 0.0001

Rare 0.184 (0.020; 0.091)
Local coverage (x10%) 0.043 (0.008; 0.079) 17.977 1 < 0.0001

‘Youngest child’ model
Accessibility

Co-payment & prescription -0.472 (0.031; 0.346)
228.127 1 < 0.0001

Free & accessible 0.472 (0.029; 0.337)
Vaccine effectiveness

50% -0.571 (0.037; 0.245)
191.508 1 < 0.0001

90% 0.571 (0.039; 0.226)
Burden of disease

Rare & mild -0.370 (0.058; 0.463)

161.860 3 < 0.0001
Common & mild -0.613 (0.062; 0.418)
Rare & severe 0.307 (0.056; 0.284)
Common & severe 0.676 (0.061; 0.348)

Population coverage (x10%) 0.128 (0.012; 0.126) 93.449 1 < 0.0001
Mild VRSE

Common -0.234 (0.028; 0.137)
45.280 1 < 0.0001

Rare 0.234 (0.031; 0.129)
Local coverage (x10%) 0.071 (0.013; 0.123) 27.429 1 < 0.0001

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute.
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Table 5.4: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. United Kingdom

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

‘Oneself’ model
Vaccine effectiveness

50% -0.683 (0.035; 0.275)
425.353 1 < 0.0001

90% 0.683 (0.031; 0.277)
Accessibility

Co-payment & prescription -0.486 (0.023; 0.316)
360.260 1 < 0.0001

Free & accessible 0.486 (0.027; 0.292)
Burden of disease

Rare & mild -0.517 (0.049; 0.277)

189.172 3 < 0.0001
Common & mild -0.351 (0.051; 0.430)
Rare & severe 0.307 (0.045; 0.206)
Common & severe 0.561 (0.051; 0.239)

Population coverage (x10%) 0.096 (0.010; 0.118) 94.330 1 < 0.0001
Mild VRSE

Common -0.180 (0.024; 0.124)
50.290 1 < 0.0001

Rare 0.180 (0.025; 0.123)
Local coverage (x10%) 0.080 (0.010; 0.078) 47.291 1 < 0.0001

‘Youngest child’ model
Vaccine effectiveness

50% -0.591 (0.033; 0.243)
297.130 1 < 0.0001

90% 0.591 (0.033; 0.246)
Accessibility

Co-payment & prescription -0.309 (0.024; 0.233)
149.559 1 < 0.0001

Free & accessible 0.309 (0.024; 0.218)
Population coverage (x10%) 0.107 (0.009; 0.101) 94.979 1 < 0.0001
Local coverage (x10%) 0.097 (0.010; 0.094) 67.461 1 < 0.0001
Burden of disease

Rare & mild -0.198 (0.055; 0.266)

70.146 3 < 0.0001
Common & mild -0.344 (0.042; 0.305)
Rare & severe 0.187 (0.045; 0.178)
Common & severe 0.355 (0.053; 0.216)

Mild VRSE
Common -0.143 (0.026; 0.087)

30.732 1 < 0.0001
Rare 0.143 (0.026; 0.085)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute.
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Table 5.5: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. France

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

‘Oneself’ model
Accessibility

Co-payment & prescription -0.389 (0.026; 0.410)
238.254 1 < 0.0001

Free & accessible 0.389 (0.025; 0.383)
Vaccine effectiveness

50% -0.375 (0.030; 0.222)
131.380 1 < 0.0001

90% 0.375 (0.032; 0.218)
Burden of disease

Rare & mild -0.364 (0.052; 0.318)

122.873 3 < 0.0001
Common & mild -0.358 (0.042; 0.416)
Rare & severe 0.273 (0.048; 0.224)
Common & severe 0.449 (0.053; 0.187)

Population coverage (x10%) 0.079 (0.010; 0.131) 48.157 1 < 0.0001
Mild VRSE

Common -0.164 (0.027; 0.092)
44.450 1 < 0.0001

Rare 0.164 (0.025; 0.093)
Local coverage (x10%) 0.064 (0.010; 0.093) 33.480 1 < 0.0001

‘Youngest child’ model
Burden of disease

Rare & mild -0.369 (0.048; 0.300)

163.809 3 < 0.0001
Common & mild -0.474 (0.051; 0.323)
Rare & severe 0.331 (0.049; 0.202)
Common & severe 0.512 (0.048; 0.190)

Vaccine effectiveness
50% -0.430 (0.029; 0.231)

152.182 1 < 0.0001
90% 0.430 (0.034; 0.237)

Accessibility
Co-payment & prescription -0.314 (0.023; 0.278)

144.967 1 < 0.0001
Free & accessible 0.314 (0.025; 0.260)

Population coverage (x10%) 0.108 (0.010; 0.135) 88.489 1 < 0.0001
Mild VRSE

Common -0.180 (0.026; 0.098)
46.913 1 < 0.0001

Rare 0.180 (0.022; 0.095)
Local coverage (x10%) 0.078 (0.010; 0.086) 44.981 1 < 0.0001

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute.
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Summary

Introduction. Behavioral change models (BCM) are increasingly incor-
porated in models for the transmission of infectious diseases. However,
most of these models remain theoretical and lack representative data for
parameterization and validation. Measles vaccination is topical to include
in such models as it was confronted with a vaccine scare and the high
transmissibility requires a vaccination coverage of 95% or higher to halt
transmission in the population.

Methods. We presented a proof of concept study on how data from
discrete-choice experiments can be integrated to parameterize BCMs. More
specifically, we simulated the dynamic uptake of measles vaccine, in paral-
lel to a dynamic transmission model for the spread of measles in Flanders,
Belgium. We fitted vaccine utility data to a vaccine coverage function that
determines the uptake of measles vaccine in children at one year of age.
Measles disease dynamics are modelled using a deterministic ordinary dif-
ferential equation SIRV model including births and deaths. We investigate
the impact of 7 different behavioral scenarios on vaccine utility, vaccine
coverage and disease dynamics.

Results. The addition of a default BCM has no significant impact on
disease transmission and increases vaccine coverage slightly. Introducing
shocks, such as a permanent vaccine scare or suspending the vaccine from
the immunization schedule, causes recurring measles outbreaks in the
Flemish population. On the other hand, a temporary vaccine scare of 5
years and a lower risk perception of measles severity did not alter disease
transmission compared to the default simulation. A permanent vaccine
scare followed by a suspension from the schedule triggers volatility in
vaccine coverage ranging between 25% and 85%, with large outbreaks
reoccurring every few years.

Discussion. Even though the DCE estimates are helpful in the BCM pa-
rameterization, quite some theoretical assumptions still needed to be made.
Additional and recent behavioral surveillance data is needed to determine
the population’s perception on each vaccine attribute. When such data
becomes available, future work should include probabilistic sensitivity
analyses.
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6.1 Introduction

In 2018, 140,000 people died from Measles, with the majority of the fatalities
in low- and middle-income countries [444]. Measles is a highly virulent and
severe disease with a basic reproduction number of around 15-17 [12]. A
vaccine has been in use since the 1960’s. The vaccine is safe, effective and
inexpensive [444]. A vaccine coverage of 95% in the population at large is
required to halt the spread of the virus [171]. In addition, it is important that
unvaccinated individuals do not concentrate in so called susceptible clusters
[209], since they pose a risk for local outbreaks. Such outbreaks were observed
in an anthroposophic school in 2011 and in a prison in 2017 – both in Ghent
(Belgium) [40, 156]. Even though measles vaccine coverage was found to be
high and stable in Flanders, at 96.2% for MMR1 in 2016 [409], small outbreaks
have occurred in the past years [40, 156, 337]. However, it is uncertain to which
extent people still understand the clinical features of measles, compared to the
times when the virus was circulating (in a pre-vaccination era).

Measles vaccines are live-attenuated and cannot be administered to certain
individuals as a result of their health status (e.g. immunodeficient, pregnant
women etc.) or age (e.g. too young). As such, a high vaccination coverage,
inducing a strong herd immunity in the population, is of vital importance to
protect those who cannot be vaccinated. Unfortunately, even in Europe a large
pool of people remain susceptible to measles due to low historical and current
vaccination coverage [119].

As such, measles eradication remains challenging and requires more than the
availability of a safe and effective vaccine [171]. Indeed, outbreaks in Europe in
recent years still occurred due to immunity gaps [119]. Future outbreaks and
potential measles elimination or eradication therefore depend on whether a
sufficiently high vaccine coverage for the two doses of measles vaccine can be
reached [119]. Hence, the responsibility for measles control and elimination lies
to a large extent with the decisions parents make with respect to vaccination
for their children.

Prevention behavior – including, but not limited to vaccination decisions –
has increasingly been included in models for the transmission of infectious
diseases [411]. Measles vaccination has been included in such models, e.g. by
applying game-theory to measles vaccine decisions (e.g. [23, 31, 363]) or by
modelling the spread of information circulating among parents that need to
decide about measles vaccination for their children [99]. Many of these models
lack data-driven parameters and remain mostly theoretical – a concern that has
been echoed in the BCM literature in the last decade [127, 128, 411]
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In this chapter, we illustrate how discrete choice experiments can be used
in the parameterization of behavioral change models. We develop a BCM
in parallel to a compartmental deterministic model for the transmission of
measles in Flanders, Belgium. We elaborate on the coupled dynamics of
MMR vaccine uptake and the spread of measles in the Flemish population.
Even though the DCE data are useful to parameterize BCMs, some theoretical
assumptions remain. Please note that this chapter is included in this thesis
with as a main objective to illustrate the use of DCE data in behavioral change
models. As such, we do not aim to accurately predict measles outbreaks and
vaccine uptake in the Flemish population. A more complex transmission model
with stochastic features, age-classes and adaptive behavior is needed to more
accurately predict measles transmission. Moreover, additional detailed data
on risk perception is required to parameterize measles vaccine uptake and to
determine initial utility levels.
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6.2 Materials and methods

Modelling the spread of measles

We use a compartmental, deterministic model in order to simulate the spread
of measles in the population of Flanders. The schematic description of the
model is given in Figure 6.1. Newborns enter the population at a rate µ into
the susceptible compartment (S1). For all individuals that are x weeks of
age, a proportion η gets vaccinated and moves to the V compartment. The
remaining proportion (1-η) decides against measles vaccination and moves
to the S2 compartment in which they remain susceptible to the virus. In this
application, we set x to 52 weeks (or one year), which is the recommended
age for children to receive the MMR vaccine [27]. The proportion that decides
to get vaccinated (η) is guided by the behavioral change model, on which
we elaborate in further paragraphs. Infection occurs at a rate βI moving
individuals from the susceptible compartments (S1 and S2) into the infectious
compartment. People recover from measles at a rate σ. Regardless of the health
condition, in all compartments, individuals die at a rate µ, which is equal to
the birth rate, such that the population size remains constant over time.

The system of ordinary differential equations is given by:

dS1
dt = µ− βIS1 − µS1 − η S1

x − (1− η) S1
x

dS2
dt = (1− η) S1

x − µS2 − βIS2
dI
dt = βIS1 + βIS2 − µI − σI
dR
dt = σI − µR
dV
dt = η

x S1 − µV

Modelling vaccination behavior

The BCM described in this chapter is an integrated model that includes a
feedback mechanism between vaccine utility – which in turn determines vac-
cination coverage in toddlers at 52 weeks of age (η) – on the one hand, and
a disease transmission model on the other hand. We assume that in the ab-
sence of a BCM, there is no feedback mechanism, so that vaccine utility, and
hence coverage in toddlers, remains equal at current levels (96.2%). Vaccine
utility presents the value people attach to a vaccine, which is determined by
preferences (collected by means of a DCE described in Verelst et al. [413]
and Chapter 3) on the one hand, and (perceived) vaccine characteristics on
the other hand. Some vaccine characteristics in the BCM are assumed to be
constant (exogenous vaccine utility) whereas other characteristics are assumed
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Figure 6.1: Compartmental model used to simulate the transmission
of measles. Individuals are either susceptible (S1 or S2), successfully
vaccinated (V), infected (I) or recovered (R). Newborns are introduced
to the population at a rate µ. People die at the same rate µ such that
the population remains constant over time.

to change in response to disease dynamics (endogenous vaccine utility). The
latter characteristics are determined by the measles transmission model. We
will first elaborate on the assumptions of the vaccine utility function.

In a first step we selected respondents from Flanders in the “child” group, i.e.
individuals that made hypothetical decisions about vaccinating their youngest
child. Afterwards, we identified survey respondents that fully disagreed with
the statement “Vaccination is mostly a good way to protect individuals against
a disease, when a vaccine is available against this disease”. We found 16 out of
828 (1.9%) to be such respondents. It is assumed in our model that this propor-
tion will never opt for vaccination as they indicate to be strongly against. In
addition, there are toddlers that cannot be vaccinated for medical reasons (e.g.
immunodeficiency), which we did not explicitly account for [27]. As such, the
maximal achievable vaccine coverage in our BCM equals 98.1%. We estimated
a Panel Mixed Logit (PML) model using the Hierarchical Bayes technique in
the JMP 14 Pro Choice platform [179] (10,000 Bayesian iterations, with the last
5000 used for estimation) for all model main effects, using the remaining survey
responses (N=812). We assumed normally distributed preference parameters
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Table 6.1: Transmission model parameters

Symbol Parameter Value Source

N Population size Flanders 6, 552, 967 [375]
Newborns in Flanders per year 64, 336 [376]

µ Weekly birth/mortality rate 0.0001888047 Calculated from [375, 376]
X Age at vaccination (in weeks) 52 [27]
R0 Basic reproduction number 16 [12]
σ Recovery rate 1/(8/7) = 0.875∗ [155]
β Effective contact rate (σ + µ) ∗ R0 = 14 Calculated from [12, 155, 375, 376]

Initial values at t=o
St=0

1 Susceptible (≤52 weeks of age) 0.0098 [375, 376]
St=0

2 Susceptible (>52 weeks of age) 0.0703 1− St=0
1 − It=0 − Rt=0 −Vt=0

It=0 Infected 1.5260 ∗ 10−7 Assumption†
Rt=0 Recovered 0.5618 Calculated from [166, 371]
Vt=0 Vaccinated 0.3581 Calculated from [166, 371]

Note: All time steps and rates are calculated per week. All disease states are expressed as a fraction of the total
Flemish population. *Mean infectious period of 8 days. †Corresponds to one infected case in the Flemish
population.

without correlation between the attributes. Random parameters control for
unobserved heterogeneity in the respondents’ preferences. The results of the
PML model can be found in Table 6.2.

In a next step, we constructed the behavioral change model, based on DCE de-
rived utilities. We distinguished between endogenous behavioral parameters

Table 6.2: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests.

Term Mean estimate
(std dev; subject std dev) LR Chi-square DF P-value

Vaccine effectiveness
320.225 1 < 0.000150% -0.659 (0.036; 0.292)

90% 0.659
VRSE

439.770 1 < 0.0001Common -0.637 (0.031; 0.261)
Rare 0.637

Accessibility
382.846 1 < 0.0001Co-payment & prescription -0.564 (0.029; 0.315)

Free & available 0.564
Burden of disease: frequency

43.427 1 < 0.0001Frequent 0.221 (0.034; 0.197)
Rare -0.221

Burden of disease: severity
275.839 1 < 0.0001Severe 0.619 (0.035; 0.738)

Not severe -0.619
Global coverage (x10%) 0.099 (0.010; 0.093) 71.866 1 < 0.0001

Note: Mean estimates corresponding to the last level of an attribute are calculated as minus the sum of the
estimates for the other levels of the attribute.
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and exogenous behavioral parameters. Endogenous parameters have a link
with the transmission model, whereas exogenous parameters are parameter-
ized independently from the transmission model and can be used to introduce
exogenous shocks to the public’s behavior.

Exogenous vaccine utility

1. Vaccine effectiveness. In a recent Gallup poll about attitudes to vaccines,
5% of the Belgian respondents disagreed that vaccines are effective [131]. In
addition, using data from a large outbreak in Germany, measles vaccine was
indeed found to be very effective [405]. As such, we set the utility level for
vaccine effectiveness as follows:

Utotal
VE = 0.95 ∗U90%

VE + 0.05 ∗U50%
VE

Utotal
VE = 0.95 ∗ 0.659 + 0.05 ∗ (−0.659)

Utotal
VE = 0.5934

The perception of measles vaccine effectiveness can be changed as a result of
an exogenous shock leading to a change in vaccine utility within the range:
−0.659 < Utotal

VE < 0.659.

2. Vaccine related side-effects (VRSE). In the same Gallup poll, 21% of Bel-
gians disagreed with the fact that vaccines are safe [131]. The specification of
VRSE in the DCE in Flanders was limited to the frequency of the side-effects.
As such, in the absence of utility values of the severity of VRSE, it is assumed
that vaccine safety relates only to the frequency (or probability) of VRSE. Hence,
we follow a similar process to derive the current utility value for VRSE:

Utotal
VRSE = 0.79 ∗Urare

VRSE + 0.21 ∗U f requent
VRSE

Utotal
VRSE = 0.79 ∗ 0.637 + 0.21 ∗ (−0.637)

Utotal
VRSE = 0.3697

In case of a vaccine scare, for example, the utility value can decrease as an
exogenous shock up to a minimum value of -0.637, in which all individuals
would perceive VRSE to be frequent.

3. Vaccine accessibility. MMR vaccination is included in the Flemish immu-
nization schedule and offered at no cost at the well-baby clinic (at age 52 weeks)
and through a system of school doctors and nurses (currently at 11 years of age)
[27]. As such, the MMR vaccine is free & available for all Flemish individuals,
and is likely to stay in the basic immunization schedule for the foreseeable
future, unless measles eradication could be reached. Hence, the utility value of
accessibility is set as:
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Utotal
ACCESS = U f ree&available

ACCESS , such that: Utotal
ACCESS = 0.564

If need be, an exogenous shock can be introduced when measles vaccine would
require a prescription or when a co-payment is introduced.

Endogenous vaccine utility

4. Burden of disease: frequency. The DCE estimates suggest that when the
prevalence of a disease increases, so does the utility of the vaccine preventing
this disease. A paper by Bauch & Bhattacharyya [23], reports on such a feedback
mechanism. As such, we coupled this endogenous parameter to the number of
measles infections in the disease transmission model. Naturally, the perceived
likelihood of contracting measles is depending on a persons’ own vaccination
status. We assume here that individuals have some memory about infectious
disease outbreaks. In the absence of a clear relation between actual prevalence
and perceived prevalence, we modelled the proportion that perceived measles
as a frequent disease (i.e. increased susceptibility), as the proportion of the past
52 weeks that had more than 2 measles cases reported.

Pt
common = no o f weeks in [t−52;t] f or which I≥2

52

Ut
PREV = Pt

commonUcommon
PREV + (1− Pt

common)Urare
PREV

In the first time steps of the simulation, the value of Pt
common is derived by the

number of weeks that were already simulated.

5. Burden of disease: severity. In our survey in May 2019, 52.74% of the
respondents perceived measles as a ‘severe’ or ‘very severe’ disease [416]. Perry
& Halsey found that measles case-fatality rate (CFR) in developing countries
has decreased to a value below 1% [310]. However, when a high number
individuals get infected – e.g. because of clusters of susceptible individuals in
schools or households [40, 209] – fatal cases may occur. In the BCM – roughly
approximating the findings by Perry & Halsey – this translates to a jump in
the perception of measles severity up to ‘severe’ for every individual in the
population, for weeks with 1,000 cases or more. We assume an exponential
decay of this perception over 5 years up to a proportion of 52% that always
perceives measles as a severe disease. This proportion was set at 52% since this
is the only data we have available on measles perception in Flanders. Moreover,
setting this proportion around a value of 50% results in a neutral impact of
the severity attribute to the utility function. More data about measles severity
perception is required to accurately parameterize our model.

Pt
severe = 0.5274
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When there are 1 000 or more infected cases in one week, Pt
severe takes a value

derived from an exponential function up to the point (t) where it reaches
Pt

severe = 0.5274:

Pt
severe = e−γt with γ = −ln(0.5274)

5∗52

Note that when the threshold of 1 000 cases is exceeded within 5 years of the
previous exceedance, the proportion that perceives measles as severe is again
set at 100% and the exponential decay is reset to t = 1. Ut

SEVERITY is derived
as follows:

Ut
SEVERITY = Pt

severeUsevere
SEVERITY + (1− Pt

SEVERITY)U
not severe
SEVERITY

Ut
SEVERITY = Pt

severe0.619 + (1− Pt
severe)− 0.619

Ut=0
SEVERITY = 0.0339

6. Population coverage. Verelst et al. [413] found social norms to dominate
free-rider considerations such that when coverage in the population at large
increases, the likelihood of vaccinating oneself or one’s children increases as
well. Therefore, we included the global coverage attribute into vaccination
behavior as a lagged cumulative effect of what others did in the past (i.e. based
on η in previous weeks). We assumed people would base their decision on
how other parents decided about measles vaccination in the past year. As such,
we calculated the ‘coverage utility’ as follows:

ηt = ηt−53+ηt−52+...ηt−1
52

Ut
COVERAGE = ηt ∗ 0.99, such that 0 ≥ Ut

COVERAGE ≥ 0.99

At the start of the simulation, we set the coverage to 96.2% (η at t=0),which
corresponds to the observed MMR1 coverage in Flanders in 2016 [409]. For
1 ≥ t ≥ 52, ηt is calculated as the average coverage over time t.

Total vaccine utility

Adding up the utility of all vaccine attributes, both exogenous and endogenous,
we come up with a population level utility for measles vaccine in time t.

Ut = Utotal
VE + Utotal

VRSE + Utotal
ACCESS︸ ︷︷ ︸

exogenous

+Ut
PREV + Ut

SEVERITY + Ut
COVERAGE︸ ︷︷ ︸

endogenous

We fitted the current utility level (2.3079), maximum utility level (3.69) and
minimum utility level (-2.70) to a coverage of 98.06%, 100% and 0% respectively
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for 98.1% the Flemish population, excluding the proportion that we excluded
and assumed would never vaccinate (1.9%).

We fitted an exponential function to three data points under the following
assumptions (1) at the maximal possible utility level (3.69), we assume that
everyone in the general population will let their child become vaccinated, (2)
at the minimum possible utility level (-2.70), we assume no-one will become
vaccinated, (3) in the current utility situation (2.3079), 96.2% of the population
at large is vaccinated, which corresponds to a 98% coverage in the population
excluding the ‘refusers’ (1.9%).

The relation between total vaccine utility and coverage in the non-refusing
population (−r) was found to be as follows:

Covt
−r(U

t) = 1

1+e
−Ut

0.5347434
− 0.00372971

Such that the coverage in the total population is:

ηt = Covt
−r(U

t) ∗ 0.981

Modelling scenarios

We investigated the impact of different behavioral scenarios on the disease
spread, the utility levels (Ut) and the vaccination coverage in the target popu-
lation (ηt). More specifically, we analyzed the following scenarios:

1. BCM from the start. In this default scenario we run the BCM in parallel
with the transmission model for measles from the start of the simulation.
The vaccine coverage is set to 96.02% at the start of the simulation, and is
determined by the BCM (i.e. the vaccine’s utility) in further time steps.

2. No BCM. In the absence of a BCM, the proportion that vaccinates their
youngest child remains equal to the current observed vaccination coverage:
ηt = 0.962. This scenario was included in order to assess the impact of adding
a BCM to the measles transmission model, compared to a traditional approach
of keeping vaccine utility and coverage constant over time.

3. Vaccine scare from the start. This scenario is similar to the first scenario
except that the exogenous utility value of VRSE is set to the value in which
everyone perceives VRSE to be frequent. This induces an exogenous shock,
with VRSE utility reducing to −0.637 throughout the entire simulation. All
endogenous behavior changes, are determined by the BCM.
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4. A temporary vaccine scare. While in the latter scenario the vaccine scare
remains equal throughout the entire simulation, this scenario assessed the
impact of a temporary vaccine scare which reduces the VRSE utility to −0.637
for a limited time throughout the simulation. We aimed to see how vaccine
coverage gets restored once the vaccine confidence is set back to its initial
levels. More specifically, we imposed a vaccine scare 5 years after the start of
the simulations (t=260), that lasts for 5 years.

5. Suspension from basic immunization schedule. In this scenario we looked
at the implications of taking the MMR vaccine out of the basic immunization
schedule. In that case, parents would be confronted with a rather wearisome
process of: i) visiting a physician in order to get a prescription, ii) visit the
pharmacy and pay for the vaccine themselves, iii) visit a physician to administer
the vaccine to their child. This scenario is implemented through an exogenous
shock in the BCM by setting the UACCESS equal to the level “co-payment
& prescription”, such that the utility decreases to Utotal

ACCESS = −0.564. This
exogenous shock is implemented at the start of the simulations (t = 0).

6. Severity decay to 5%. In this scenario, we deviated from the BCM descrip-
tion with respect to disease severity. Instead of returning to a level of 52% that
perceives measles as a severe disease, after a 5 year exponential decay, in this
scenario, we assumed an exponential decay up to 5% after 5 years of less than
1,000 cases per week. Since we alter an endogenous utility variable, we keep
this value equal during the entire course of the simulation. At the start of the
simulation, Pt

severe = 0.52 up to a point that the threshold of 1,000 cases per
week is reached. Afterwards, the proportion that perceives measles as a severe
disease is derived as follows:

Pt
severe = e−γt with γ = −ln(0.05)

5∗52

After the 5 year decay, Pt
severe was held constant at 0.05 up to the point where

the threshold was reached again and the behavioral process was repeated.

7. Vaccine scare & suspension. In this scenario we combined a vaccine scare
from the start of the simulation followed by a suspension of the vaccine from
the basic immunization schedule. It is assumed here that the public influence
on the misperception of the frequency of VRSE is at such high levels that the
policymakers suspend the vaccine program and that it is only available at the
pharamacy at the full expense of the patient. Whereas the vaccine scare is
implemented from the start of the simulation, the suspension is implemented
from week 156 (3 years) and stays in place until the end of the simulation.
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The simulations were performed in Python 3 [407]. The utility values were
estimated in JMPPro 14 [179].
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6.3 Results

In Figure 6.2, the utility dynamics are depicted for all scenarios. The charts are
split to clearly visualize the different utility levels. First of all, in the default
simulation (scenario 1: a BCM from the start), the utility levels were found to
be higher, compared to the “No BCM” scenario (scenario 2), the latter in which
the vaccine’s utility – and thus vaccination uptake – remains constant. In all
scenarios, we observe a large outbreak at about one year in the simulation
(Figure 6.4). This drives the vaccine’s utility in the default scenario up to a level
above three (see Figure 6.2a, where the utility levels overlap for the default
situation (scenario 1) and the temporary scare (scenario 4)). This peak in utility
is driven by the endogenous parameters: prevalence, severity and coverage,
that all increase the vaccine’s utility. When the outbreak is over, the utility level
in scenario 1 stabilizes to about 2.3 – which is higher than the constant utility
in scenario 2 – due to the population coverage dynamics taking into account
what others have done in the past. In the absence of any new outbreaks, the
utility remains equal at this level. The implications on vaccine coverage are
however minimal. In Figure 6.3a, we observed the coverage under the default
BCM (1) to be only slightly higher than in a scenario without a BCM (2): 96.4%
versus 96.2%, respectively. As such, there are no notable differences in the
transmission of measles, which can be seen in Figures 6.4a and 6.4b.

A permanent vaccine scare (scenario 3) reduces the vaccine utility significantly
(6.2a) in the absence of large measles outbreaks. This in turn causes vaccine
coverage to decrease to levels below 90% as can be seen in Figure 6.3a. Since
a sufficiently high coverage is required to halt the spread of measles, large
outbreaks are simulated in the years following low coverage in the target
population, which is shown in Figure 6.4c. As a result of such outbreaks,
vaccine utility and subsequently coverage, quickly increase again to default
(scenario 1) levels through the endogenous utility parameters. When the
outbreak is over, the coupled behavior-transmission cycle is repaeted.

The temporary vaccine scare of 5 years (scenario 4) remains insufficient to
trigger a long term impact on utility (Figure 6.2a). The vaccine coverage is
lower for a 5-year cohort and rises back when the vaccine scare is over – as can
be seen in Figure 6.3a – but remains insufficient to cause further outbreaks in
the simulation (Figure 6.4d). The latter is probably due to the homogeneous
mixing hypothesis which is implicitly assumed in the compartmental model
we applied in this study.

Suspension of the measles vaccine from the immunization schedule (scenario
5) has a strong impact on the vaccine’s utility levels over time as can be seen in
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Figure 6.2b. As a result, the vaccine coverage in the target population drops
below 90% in the absence of recent outbreaks (Figure 6.3b). Unsurprisingly
outbreaks occur every few years as can be seen in Figure 6.4e. Additionally, we
observed that the time between outbreaks reduces with every new outbreak.

In scenario 6, we assumed the proportion that perceives measles as a severe
disease to reduce to 5% after the first outbreak, compared to 52% in the default
situation (scenario 1). In Figure 6.2b, we see the impact on measles vaccine
utility, which reduces to about 1.7, compared to 2.4 in the default BCM scenario.
The impact on vaccine coverage is rather limited with a vaccine coverage
converging to about 94%, compared to 96% in the baseline situation (Figure
6.3b). This reduction in vaccine coverage seems to be insufficient to trigger
further outbreaks in the transmission model (Figure 6.4f), except for the initial
one that we observed in all scenarios.

We observed persistent outbreaks in scenario 7, in which the vaccine scare
followed by a suspension drives utility below zero after the initial outbreak
(Figure 6.2b). This fall in utility, is followed by recurrent ups and downs in
vaccine utility as a result of persistent measles outbreaks (Figure 6.4g). This is
because vaccine coverage in the target population is volatile as well – ranging
between 80% and 25% (Figure 6.3b) – which in turn is driven by the vaccine’s
utility. As such the BCM – with a very low coverage in the absence of measles
cases – induces large measles outbreaks every 10-12 years.



158 CHAPTER 6. A BCM FOR MEASLES IN FLANDERS

(a) Measles vaccine utility for scenarios 1 to 4. DEFAULT represents a
BCM from the start (scenario 1).

(b) Measles vaccine utility for scenarios 1 and 5 to 7. DEFAULT repre-
sents a BCM from the start (scenario 1).

Figure 6.2: Utility levels through time for all scenarios, compared to a
DEFAULT, which is defined as a BCM from the start (scenario 1).
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(a) Measles vaccine coverage for scenarios 1 to 4. DEFAULT represents
a BCM from the start.

(b) Measles vaccine coverage for scenarios 1 and 5 to 7. DEFAULT rep-
resents a BCM from the start.

Figure 6.3: Coverage levels in the target population through time for
all scenarios, compared to a DEFAULT, which is defined as a BCM
from the start (Scenario 1)
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6.4 Discussion

We demonstrated the usefulness of DCE data to parameterize vaccination
BCMs in parallel to a disease transmission model. Even though this study pri-
marily demonstrates a proof of concept, it provides insights in the dynamics of
vaccine uptake and measles outbreaks under a transparent set of assumptions.
Note that this type of BCM can be applied to a variety of transmission models
and pathogens for which a vaccine is available, i.e. its use is not limited to
compartmental deterministic models for the spread and vaccination of measles.

High and stable vaccine coverages have been observed in Flanders since 2005
[409]. Hence, in this study we observed that the addition of a default BCM
(scenario 1) has similar consequences on the spread of measles in Flanders,
compared to a situation without BCM (scenario 2). Note however, that the
transmission model we used has quite some limitations, e.g. the susceptible
population (S1 & S2) gets infected very early in the simulation in a large
outbreak – with about 13,000 infected cases per week at the peak of the infection.
As such, a very large fraction becomes immune in the early stages of the
simulation, even though this immunity comes at the expense of significant
morbidity and likely a dozen fatalities.

Nevertheless, when introducing exogenous shocks to the BCM, recurrent out-
breaks were observed. When a vaccine scare was implemented from the start
of the simulation (scenario 3), or when the measles vaccine got suspended from
the immunization schedule (scenario 4), outbreaks appeared to reoccur as a
result of coupled behavior-transmission dynamics. A vaccine scare followed
by a suspension of the vaccine from the immunization schedule (scenario 7)
would impose significant pressure on healthcare systems, with 23,000 infected
cases per week at the peaks, every few years.

Orenstein et al. found in 2000 that measles eradication is possible and is
within our future [294]. They identified 6 potential impediments to eradiction:
“(1) lack of political will in some industrialized countries, (2) transmission
among adults, (3) increasing urbanization and population density, (4) the
HIV epidemic, (5) waning immunity and the possibility of transmission from
subclinical cases, and (6) risk of unsafe injections” [294]. However, by now
it has become clear that other impediments remain. Among other factors –
such as logistical challenges [42] or early maternal antibody waning [224] –
suboptimal vaccine uptake has been one of the major contributors to sustained
outbreaks in Europe [119].

Infectious disease modellers need to incorporate dynamic vaccine uptake in
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order to accurately predict infectious disease dynamics. Naturally, eradication
of an infectious disease ultimately depends on whether a sufficiently high
vaccine coverage can be reached and future outbreaks or resurgence can be
halted. As such, assessing the feasibility of eradicating an infectious disease by
vaccination, requires to take behavioral changes into account as well. Health
economic analyses rely heavily on such transmission models in order to assess
the cost-effectiveness of vaccination programs. When assuming a constant
vaccination coverage or setting the coverage to the most optimal value – thereby
neglecting individuals’ behavioral changes – health economic evaluation is
prone to estimation errors.

Indeed, the cost-effectiveness of measles vaccination is highly sensitive to sub-
optimal vaccine coverage, even when this coverage is just below the target.
When herd immunity fails, even at a district level, sustained outbreaks jeop-
ardise immunization efforts of the past and necessitate measles vaccination
to continue over the next years. The health economic consequences in such
outbreaks are significant encompassing, among others, increased mortality,
increased healthcare costs to treat infected cases and the costs of continued im-
munization efforts to prevent future outbreaks. These costs would be averted
if global measles eradication can be reached.

A paper from 2010 reported that global measles eradication has the potential
to save about $1.5bn in treatment and prevention costs in addition to 1 million
deaths averted each year [294]. Moreover, a 2011 study found measles eradica-
tion by 2020 to be most cost-effective, compared to mortality reduction goals
set by the WHO [225]. In both studies, vaccination behavior was not taken
into account. Yet, given the voluntary nature of measles vaccination in many
countries, policymakers have limited control over the ultimate feasibility of
measles elimination or eradication.

DCE estimates were already applied to parameterise HIV prevention uptake
in South Africa in a 2016 study by Terris-Prestholt et al. [388]. They found that
DCE-based uptake provided more nuanced projections for HIV interventions
(TPrEP and condom use) and thus should be used to inform model based
cost-effectiveness analyses. A bias of up to 50% was found when DCE-based
uptake and substitution estimates were not included in economic analyses
[388]. A similar methodology was applied in another study estimating the cost-
effectiveness of HIV and pregnancy prevention technologies in South-Africa
[319]. Both studies used a static transmission model.



162 CHAPTER 6. A BCM FOR MEASLES IN FLANDERS

Study limitations

Data is still scarce and we still need to rely on a set of assumptions. We
retrieved data about which vaccine attributes people attach more/less value
to, but we have limited information about risk perceptions and how these
perceptions are altered as a result of infectious disease outbreaks. As such, risk
perception surveillance data is needed in order to fully parameterize the BCM
we introduced in this chapter. Additionally, a reliable relation between vaccine
utility and coverage in the target population requires additional research.

An updated DCE should explicitly query for variations in the vaccine’s sever-
ity of VRSE as it was found to be of crucial importance in a DCE study on
vaccination by Sadique et al. [338]. This attribute would clearly be of interest
to model measles vaccine uptake as it was – and to some extent still is – con-
fronted with the perception that MMR vaccine would cause autism, as a result
of a fraudulent paper published in 1998 [140]. A vaccine scare could be more
easily integrated in a BCM if VRSE severity estimates were available. For some
people, there are other motivations that drive their vaccination decision. When
these vaccine related aspects are not included as DCE attributes or levels, we
cannot control for these aspects in the BCM.

We only looked at immunity derived from natural infection and from a first
dose of MMR vaccine. A more realistic measles model should also include
immunity derived from maternal antibodies and from a second dose of MMR
vaccine – which in Flanders is administered at the age of 10 years [27] – espe-
cially when such a model would be fitted to historical data.

A thorough probabilistic sensitivity analysis is necessary to incorporate uncer-
tainty in the analysis. A confidence interval around the utility estimates could,
for example, be instrumental in such a sensitivity analysis. These are provided
by default in a PML model. Additionally, a stochastic transmission model with
much more detail is needed to accurately simulate measles transmission in
highly immunized populations.
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(a) Measles transmission for scenario 1:
BCM from the start

(b) Measles transmission for scenario 2: No
BCM

(c) Measles transmission for scenario 3:
Vaccine scare from the start

(d) Measles transmission for scenario 4:
Temporary vaccine scare

(e) Measles transmission for scenario 5:
Suspension from immunization schedule

(f) Measles transmission for scenario 6:
Severity decay to 5%

(g) Measles transmission for scenario 7:
Vaccine scare followed by suspension

Figure 6.4: Transmission models for all scenarios.
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Summary

Background. Each year, about 10% of unvaccinated adults contract
seasonal influenza, with half of this proportion developing symptoms.
As a result, employers experience significant economic losses in terms of
employee absenteeism. Influenza vaccines can be instrumental in reducing
this burden. Workplace vaccination is expected to reduce employee absen-
teeism more than linearly as a result of positive externalities. It remains
unclear whether workplace influenza vaccination yields a positive return
on investment.

Methods. We simulated the spread of influenza in the seasons 2011-12
up to 2017-18 in Belgium by means of a compartmental transmission
model. We accounted for age-specific social contact patterns and included
reduced contact behavior when symptomatically infected. We simulated
the impact of employer-funded influenza vaccination at the workplace
and performed a cost-benefit analysis to assess the employers’ return
on workplace vaccination. Furthermore, we look into the cost-benefit of
rewarding vaccinated employees by offering an additional day off.

Results. Workplace vaccination reduced the burden of influenza both on
the workplace and in the population at large. Compared to the current
vaccine coverage – 21% in the population at large – an employee vaccine
coverage of 90% could avert an additional 355 000 cases, of which about 150
000 in the employed population and 205 000 in the unemployed population.
While seasonal influenza vaccination has been cost-saving on average at
about e10 per vaccinated employee, the cost-benefit analysis was prone to
significant between-season variability.

Conclusions. Vaccinated employees can serve as a barrier to limit the
spread of influenza in the population, reducing the attack rate by 78% at
an employee coverage of 90%. While workplace vaccination is relatively
inexpensive (due to economies of scale) and convenient, the return on
investment is volatile. Government subsidies can be pivotal to encourage
employers to provide vaccination at the workplace with positive externali-
ties to society as a whole.
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7.1 Introduction

Absenteeism from work causes a large economic burden to society. Seasonal
influenza accounts for a significant share of this burden [351]. Indeed, in unvac-
cinated adults the attack rate for seasonal influenza is estimated to be around
10%, with about half of the cases experiencing symptoms [368]. Furthermore,
the timing and intensity of influenza epidemics have been successfully linked
to patterns in employee absenteeism [418]. More importantly, seasonal in-
fluenza causes considerable mortality and morbidity to society as a whole, in
particular to vulnerable subgroups in the population (e.g. older age groups and
pregnant women). Prevention measures such as vaccination and antivirals can
limit the burden of influenza in the population. Nevertheless, yearly influenza
vaccine effectiveness is uncertain due to, among others, the potential mismatch
between vaccine and circulating strains [394].

In most developed countries, influenza vaccination is currently recommended
for individuals aged 60-65 and older [178]. However, in the United States
of America (US) all individuals older than 6 months are targeted to receive
vaccination [64] and in the United Kingdom (UK) children were recently in-
cluded in routine flu vaccination as well [282]. In Belgium, next to health care
workers and risk groups (e.g. chronically ill and people older than 65 years of
age), health authorities recommended to vaccinate everyone between 50 and
65 years of age [135]. Despite the economic impact of employee absenteeism,
influenza vaccine is usually not reimbursed, nor conveniently available for
healthy employees. Unsurprisingly, uptake of influenza vaccine in Belgium
remains relatively low. Each year, only about 20% of the population at large is
vaccinated and about 60% of the elderly [386].

The benefits of employee vaccination translate in a reduction of disease, di-
rectly in vaccinated persons, but indirectly also in the work and other social
contacts of vaccinated persons. Indeed, successfully vaccinated individuals
contribute to herd immunity as they are unable to transmit the pathogen to
their social contacts (see Fine et al. [114]). Therefore, absenteeism is expected
to reduce more than linearly. Workplace vaccination can be instrumental in
reaching a higher influenza vaccination coverage for several reasons, among
which: convenience for vaccinnees (e.g. no GP visit and no out-of-pocket
cost), economies of scale and a potential return on investment for employers.
However, this return on investment is not fully explored yet.

Economic analyses are typically limited to risk groups and focus on societal
or health care payer perspectives. Influenza immunization programs in such
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risk groups are often found to be cost-effective [390]. However, with respect
to employer funded vaccination, employees usually do not belong to a risk
group. In addition, the majority of the costs related to influenza absenteeism
and workplace vaccination are borne by the employer. Research focussing
on the perspective of the employer is relatively scarce and is often limited to
healthcare settings.

Few analyses have been performed on the economics of workplace influenza
vaccination. Lee et al. [221] performed an economic analysis of employer-
sponsored workplace vaccination for the prevention of seasonal and pandemic
influenza in the US. Others compared the absenteeism of vaccinated and
non-vaccinated employees in single companies [54, 223, 290, 345]. Bridges
et al. [44] describe a double-blind, randomized, placebo-controlled trial on
the effectiveness and cost-benefit of influenza vaccination of healthy workers.
However, studies that apply a dynamic transmission model are lacking.

Nevertheless, because of herd immunity induced at the workplace and in the
community, the use of a dynamic transmission model is most appropriate to
capture all the benefits of workplace vaccination [297]. Dynamic transmission
models account for the positive externalities of herd immunity by accounting
for the infectious cases, vaccination and force of infection varying over time.
The latter is linked to social contact behavior [425], which depends on age and
temporal factors [448]. In addition, health state also plays an important role
on social contact behavior [406]. Eames et al. found significant reductions
in social contact behavior of symptomatic cases in the UK during the 2009
influenza pandemic [109]. The impact of this adaptive social contact behavior
on transmission dynamics was found to be of high importance [349].

In this study, we estimated the cost-benefit of employer-funded influenza
vaccination in Belgium with a dynamic transmission model. We accounted for
reduced social contact behavior when cases are symptomatically infected. The
model is fitted to incidence data from 2011-12 up to 2017-18. The predicted
burden of disease under different scenarios (e.g. vaccine coverage) is used
to assess the employers’ return on investment. Finally, we calculated the
cost-benefit of rewarding vaccinated employees by offering an additional day
off.



7.2. MATERIALS AND METHODS 169

7.2 Materials and methods

Transmission model

We built on a compartmental transmission model developed by Santermans
et al. [349] to simulate the spread of influenza in the Belgian population
for flu seasons 2011-12 up to 2017-18. The model structure is presented in
Figure 7.1 and each compartment is subdivided by age and employment status
(employed versus unemployed), which is based on data obtained from StatBel
[374]. We used five age groups: [0-4], [5-19], [20-44], [45-64] and 65+ years
of age. At the beginning of the simulation, a proportion µ gets vaccinated
(V) with an inactivated influenza vaccine, which we assumed to be an all-
or-none vaccine with an efficacy of ε, (0 ≤ ε ≤ 1). The force of infection,
λ, represents the rate at which individuals are infected at time t, moving a
proportion of the susceptible population to the exposed compartment (E).
All exposed individuals (E) are initially asymptomatically infected (Ia

1) at a
rate γ. In a next step, a proportion φ becomes symptomatic (Is) at a rate θ,
while the remaining proportion stays asymptomatic (Ia

2). In line with the work
of Santermans et al. [349], we applied a different degree of infectiousness
to symptomatic versus asymptomatic infection. Likewise, the recovery rate
distinguishes symptomatic (σs) from asymptomatic (σa) cases, moving people
to the recovered (R) compartment. An overview of the model parameters is
presented in Table 7.1 with corresponding references.
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Figure 7.1: Model structure to simulate the transmission of influenza.
Individuals are either susceptible (S), successfully vaccinated (V), ex-
posed to influenza (E), infectious (I) or recovered (R). Superscripts dis-
tinguish between symptomatic (s) or asymptomatic (a) infection. Each
compartment is split into age- and work-specific sub-compartments. Pa-
rameter values and model features are provided in the main text and
table 7.1.

We estimated the transmission probability using the social contact hypothesis
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by Wallinga et al. [425] with proportionality factors qa and qs for asymp-
tomatically and symptomatically infected individuals, respectively. In order to
include seasonal transmission dynamics, we applied a sinusoidal function to
the model’s force of infection as described in Goeyvaerts et al. [141]. The force
of infection is specified as:

λ = βs ∗ Is + βa ∗ (Ia
1 + Ia

2) ∗ z(t),

βs = qs ∗Ms/N ∗ z(t)

βa = qa ∗Ma/N ∗ z(t)

z(t) = 1 + δsin((2π(t− t0))/365)

with the social contact matrix Ms representing the contact behavior of symp-
tomatically infected individuals and Ma the contact behavior for individuals
in any other health state. We derived the social contact matrices from Belgian
social contact survey data [276] using the socialmixr package in R [130] and
distinguished between social contact behavior during holidays and regular (i.e.
non-holiday) periods. In order to incorporate adaptive social contact behavior
when people are symptomatically infected (e.g. staying home from work or
school), we applied location-specific reduction rates from a UK survey during
the 2009 influenza pandemic [109]. The observed reductions are mostly driven
by individuals staying at home, thereby limiting their social contact behavior
elsewhere. Based on the social contact matrix for healthy and asymptomatic
individuals (Ma), we calculated Ms as follows:

Ma = Mhome + Mschool & work + Mtransport + Mleisure + Mother,

Ms = Mhome + 0.09Mschool & work + 0.13Mtransport + 0.06Mleisure + 0.25Mother

Social contact matrices for regular and holiday periods and the corresponding
age-specific reduction due to illness are presented in Figure 7.2. For example,
individuals between 5 and 19 years of age have more contacts with each other
during regular periods compared to holidays (left vs. right) Moreover, during
regular periods, these contacts are reduced by 82% when individuals contract
symptomatic influenza. The reduction is lower during holiday periods.
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Figure 7.2: Social contact behavior by age during regular (left) and
holiday (right) periods. The colors represent the daily average number
of contacts Mij between an individual of age i (horizontal axis) with an
individual of age j (vertical axis). The percentages represent the reduction
in social contacts when symptomatically infected.

Incidence and vaccine effectiveness data

The transmission model was first calibrated to reproduce the observed in-
fluenza incidence in Belgium from 2011-2018. Data were obtained from the Na-
tional Reference Centre for Influenza in terms of reported influenza-like-illness
(ILI) cases per 100 000 individuals, the number of cases tested for influenza
and number of positive influenza cases per week. We aggregated the ILI data
into the selected age groups and calculated a weekly proportion of positive
cases for each flu season (from week 40 until week 39 the year after). Due to
data-sparseness, we could not calculate the proportion of positive cases by age.
Season-specific vaccine effectiveness estimates were based on primary care
data from the I-MOVE multi-center case-control study [204]. We used the point
estimates for the age-specific vaccine effectiveness against any influenza for
our analysis and substituted the negative values by zero (i.e. no effect). All
vaccine effectiveness estimates are provided in Table 7.2. Vaccine coverage for
influenza in Belgium was retrieved from [386] to calibrate our transmission
model.

Parameter estimation

We estimated five model parameters (see Table 7.1) for each season via an
active learning approach with 3 iterations [141, 449]. To start, we sampled 50
000 values for each parameter according to a Latin Hypercube design. For
each parameter set, we scored the predicted age-specific incidence with the
reference data by shape of the curve (using weighted least-squares (WLS)) and
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the relative difference in total incidence (i.e. the difference in the area under
the curve). We selected parameter sets in this two-objective optimization based
on the Pareto front according to both scores. We aggregated the parameter
ranges from the Pareto front subset per season, extended this range by ±10%,
and used this to sample parameter values in the next iteration. We applied a
maximum least-square score of 106 to remove the simulations with a matching
total incidence but totally different timing (shape). After 3 iterations, we
selected the parameter set from the pareto front with the lowest WLS score and
a relative difference in incidence of maximum 5%.

Cost-benefit analysis

The employers’ cost of vaccinating employees consists of both direct and
indirect costs related to vaccination: cost of the vaccine, cost of administration
and a productivity cost for employees spending time to receive the vaccine,
which we assumed to be 30 minutes (Table 7.1). In total, the cost per vaccinated
employee was less than e40. We extracted Belgian employment statistics such
as the year-specific mean gross wage and the employed population by age from
Statbel [372]. We corrected for part-time employees, public holidays, weekends
and 27 additional holidays (average obtained from [401]) to obtain a working
day probability of 55.8%. The direct cost of absenteeism per day per employee
was estimated to be 8.6% of the gross monthly income as reported by Securex,
a Belgian HR services agency [418]. As such, the cost per day of absenteeism
depends on the year-specific wage and ranged between e274 and e306. We
opted for a conservative approach in which the total cost of absenteeism only
accounted for direct costs. This is in line with the marginal productivity theory
of wage determination in which the market for labor is in equilibrium when
the marginal cost of labor (i.e. wage cost) equals the marginal product of
labor. The impact of adding an indirect cost of absenteeism was analyzed in
a scenario analysis. The absenteeism per employee is based on the relative
incidence of symptomatic cases in the employed compartment. The total cost
is based on the costs of the vaccination program and the costs of employee
absenteeism. The cost-benefit is then calculated as the difference between the
total cost with intervention and the total costs without any vaccination of the
employed population.

Employee vaccination

The estimated season-specific transmission parameters were kept constant
when modeling the impact of different levels of employee influenza vaccination
funded by the employer. We fixed the age specific coverage in the unemployed
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population to the observed coverage in 2013 throughout all simulations [386].
We varied the vaccination coverage in the employed population between
10% and 90% for each season, assuming that all vaccination of the employed
population is administered at the workplace and funded by their employer.
We assessed the number of averted cases in the employed and unemployed
population compared to the reference without vaccination of the employed
population. We evaluated the costs and benefits of the vaccination program
per employee and for all Belgian employers combined.

Scenario analyses

We ran univariate scenario analyses to elaborate on parameter uncertainty and
provide an overview in Table 7.3. First of all, we wanted to investigate the
impact of increasing and decreasing the reporting rate by 10% in scenario 1 and
2, since information about this parameter is lacking. In addition, the vaccine
effectiveness estimates we used from the I-MOVE study are low compared to
other estimates in the literature [302]. Therefore, we applied more optimistic
vaccine effectiveness estimates in scenario 3, equal to the highest observed
effectiveness by age for each simulated season. Furthermore, we investigated
the impact of adding indirect costs of absenteeism to the economic analysis
(e.g. the cost of interim replacement, overtime being more expensive and other
organizational costs). We assumed this indirect cost to be equal to the direct
cost of absenteeism in scenario 4. A recent report estimated this indirect cost to
amount between 2.5 and 3 times the direct cost of absenteeism [418]. As such,
scenario 4 is still relatively conservative. Finally, in scenario 5, we looked at
the impact of removing the sinusoidal function from the force of infection –
thereby neglecting the seasonal character of influenza transmission – by setting
z(t) = 1 during the parameter estimation and health economic evaluation.

Employee incentives

We investigated whether there is scope for incentives in order to persuade
employees to get vaccinated, for example by giving vaccinated employees an
additional day off or other rewards paid for by the employer. We look into
the maximum amount of employee incentives by calculating the benefit-cost
ratio per vaccinated employee as a function of the influenza vaccine coverage
among all employed individuals.
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7.3 Results

We used a dynamic transmission model to inform cost-benefit analyses of
employer-funded influenza vaccination. We first present our model dynamics
and results for the conservative scenario. Afterwards, we report our scenario
analyses that are more/less in favor of influenza vaccination and demonstrate
the impact of model assumptions and parameter uncertainty.

We estimated the impact of different vaccination strategies on the burden of
seasonal influenza. Figure 7.3 shows the predicted incidence of symptomatic
cases (orange line) for 2015-16 using the observed vaccine coverage and the
reference data on influenza incidence (orange dots). The grey lines present the
predicted incidence if 0% up to 90% of all employees were vaccinated. As cov-
erage among employees increases, the peak and total number of symptomatic
flu cases decreased. Moreover, the peak was delayed when coverage increased.
The holiday periods slowed down the transmission at the beginning of the
epidemic, whereas the Easter break in April caused a steeper decline at the end
of the epidemic.
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Figure 7.3: Predicted seasonal influenza incidence for 2015-16 by em-
ployee vaccine coverage (lines) and reference data (dots). Parameter
estimates from the conservative scenario were used for these results.

Workplace vaccination decreased the number of cases both in the employed
and the unemployed population. Herd protection plays an important role such
that vaccinated employees can serve as a barrier to limit the spread of influenza
in the entire population, beyond the employed population. The number of
averted cases – each season, average over all seasons – in the employed and
unemployed population is given in Figure 7.4. Note that we used no vacci-
nation of the employed population as a reference. The second bar in both
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figures represents the impact of the observed vaccine coverage in the total
(21%), employed (16%) and unemployed population. As such, we predicted
that on average over 60 000 symptomatic cases have been averted each season,
of which 55% in the employed population and 45% in the unemployed pop-
ulation. This intervention translated, on average, into a reduction of 15% in
the symptomatic cases on the workplace. The relative fraction of cases averted
in the unemployed population increased with vaccine coverage among em-
ployees. If employers could increase the coverage among employees to 90%,
they could avert up to 415 000 symptomatic cases of seasonal influenza in the
population, of which about 185 000 in the employed population.
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Figure 7.4: Symptomatic and asymptomatic seasonal influenza cases
averted for different workplace vaccine coverages (each season, aver-
age over all seasons). The coverage in the employed population and total
population is shown on the x-axis. We applied parameter estimates from
the conservative scenario and no vaccination of the employed population
as a reference.

The cost-benefit analysis from the employers’ perspective showed a lot of
between-season variability. Figure 7.5 presents that in some seasons (e.g. 2012-
13 and 2017-18) vaccination is an investment with a high return, whereas for
other seasons (e.g. 2011-12 and 2013-14) there is a net loss when vaccinating
the workforce. Due to herd immunity kicking in, we observed a small decrease
in the return on investment when the coverage in the employed population
increased, though the overall results and conclusions are stable within sea-
sons. Considering the seven seasons, we calculated that seasonal influenza
vaccination has been cost-saving with an average net savings of around e10
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per vaccinated employee. For the Belgian economy as a whole, this translated
in an average cost-saving of about e6.2 million when applying the observed
coverage. If 90% of the employed population would have been vaccinated
against seasonal influenza, on average e30 million would have been saved
from the employers’ perspective, each season.

As coverage increases in Figure 7.5b, the marginal benefit of employee vacci-
nation decreases, especially so for coverages from 70% and higher. In essence,
when a high fraction of employees is successfully vaccinated against influenza,
they can no longer transmit the disease to colleagues, and the marginal ben-
efit of vaccination decreases. As such, the optimal investment in employee
vaccination between 2011-18 would have been reached at a coverage of 70%.
Nevertheless, additional vaccination in employees can still have a pivotal
role in protecting their children, parents, partner and other social contacts, as
touched upon in previous paragraphs. Hence, herd immunity manifests in the
protection of both unemployed individuals and unvaccinated co-workers.

Scenario analyses

We analyzed parameter uncertainty in scenario analyses and present the cost-
benefit per employee in Figure 7.6.
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Figure 7.5: Cost-savings per vaccinated employee and total savings
for different levels of employee vaccination in different influenza sea-
sons. Conservative scenario.
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Reporting rate of 60%. If we assumed that the reported incidence accounted
for only 60% of the total symptomatic incidence, more cases could potentially
be saved and the average cost-savings increased up to e20 per vaccinated
employee. For the seasons 2011-12, 2013-14 and 2016-17 a lower reporting rate
did not significantly influence cost-savings since these seasons were either low
in cases or the vaccine had only a very limited effectiveness.

Reporting rate of 80%. When we assumed that the reported incidence ac-
counted for 80% of the total symptomatic incidence, the average net-benefit
decreased. Indeed, employee vaccination in 2016-17 would have caused a
net-loss, whereas it was found to be cost-neutral in the conservative scenario.
On average, the net-benefit was lower but remained positive at all coverages.

Increased vaccine effectiveness. If we fixed vaccine effectiveness to the re-
ported, age-specific maxima between 2011 and 2018, we observed large in-
creases in the net-savings. As such, employee vaccination would have been
cost saving for all seasons up to a coverage of 50%. For two seasons, we pre-
dicted a net-cost for an employee coverage of 70% and above. Up to a coverage
of 50% employers saved on average more than e40 per vaccinated employee.
In total, the net-benefit could have been up toe100 million at a coverage of 70%.
Additional vaccination would imply a lower return since the marginal costs
exceed the marginal benefits in a population that is already highly immunized.
That is, given that vaccines were assumed more effective in this scenario, herd
protection effects kicked in sooner. As such, the average net-benefit per em-
ployee started decreasing at lower vaccine coverages compared to the reference
scenario.

Indirect cost of absenteeism. The scenario in which we included an indirect
cost of absenteeism equal to the direct cost of absenteeism resulted in higher
cost savings. On average, the cost-benefit would have been up to e50 per
vaccinated employee, with a maximum of e150 in the season 2012-13.

Seasonal force of infection. When the seasonal nature of influenza transmis-
sion was not taken into account, we estimated an average net loss. While
vaccination still delayed the peak of the infection, it had a lower impact on the
number of cases. As a result, the model predicted many cases in summer. This
is in contrast with the literature on seasonal influenza dynamics in temperate
climate countries such as Belgium [387].
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(b) Reporting rate 60%
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(c) Reporting rate 80%
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(e) Indirect costs of absenteeism
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Figure 7.6: Scenario analysis of the predicted cost-savings per vacci-
nated employee per season.
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Vaccine incentives

The average daily wage in Belgium was about e300 between 2011 and 2018.
Given that the average net-benefit per vaccinated employee in the conservative
scenario did not exceed e60 for any season-coverage combination, it was never
found beneficial to reward vaccinated employees with an extra day off. At
an average net-benefit of e10 per vaccinated employee, there is only a lim-
ited financial margin to create incentives for employees to accept vaccination.
Furthermore, none of the univariate scenario analyses predicted cost-savings
in the range of the estimated cost for a day off. Only a combination of lower
reporting rates with increased vaccine efficacy and/or considering indirect
costs increases the average cost-saving per employee and, as such, the financial
margin to create incentives for employees.
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7.4 Discussion

We simulated influenza vaccination as an employer-funded intervention and
calculated the averted costs of symptomatic employees interrupting their pro-
fessional activities. We started from the observed coverage in Belgium and
predicted what the impact would have been of increased coverage levels. We
found that workplace influenza vaccination was on average cost saving using
conservative model assumptions. Substantial differences between seasons were
found, implying that the decision for employers to vaccinate their workforce is
an annually recurring gamble, which could result in significant losses or gains.
This is because some seasons tend to be mild with very few cases (such as in
2011-12) or, in some seasons, the vaccine strains were not well matched to the
circulating strains. Note that the season-specific characteristics determined
to the largest extent the average cost savings per vaccinated employee, as
opposed to the vaccination coverage itself. As such, an employer’s decision
making process is to a large extent independent of what all other employers
decide. When Belgian employers decide to give incentives to their employees
they should limit the incentives to an amount between e7 and e11 per vacci-
nated employee, in order for the intervention to be cost-neutral, based on our
conservative approach. Alternatively, they can give larger incentives to only a
few vaccinated employees by using a lottery system. The maximum potential
savings were estimated to be in the order of e32 million for all employers
combined, assuming 70% vaccine coverage in employees. When comparing
this to the current vaccine coverage of 16%, there is still a lot of money left
on the table, especially in seasons with a high burden and a sufficiently high
vaccine effectiveness.

Though currently not considered as a target group for influenza vaccination,
employees can play a vital role in reducing the disease and economic burden of
influenza. Vaccinating employees substantially reduces the number of cases at
the workplace: directly, in vaccinated employees and indirectly in coworkers
through herd immunity, thereby reducing absenteeism. Moreover, we observed
positive externalities – of which the costs are borne by the employers – to the
unemployed population as well. Indeed, vaccinated employees have a lot of
contacts with individuals of all ages as observed in Figure 7.2, such as their
partner, children, parents and in general with members of their community. As
such they can efficiently fulfill their role as barriers to pathogen transmission in
society (i.e. herd protection). There are about 4.7 million working individuals
in Belgium, which is only 41% of the total population. Even at an employee
coverage of 50%, more than 100 000 symptomatic cases could be prevented
on average per season in the unemployed population through indirect protec-
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tion, which represents 1/3rd of all symptomatic infections in the unemployed
population. If all employers would have motivated their employees to get
vaccinated and reached 90% coverage, on average 78% of all symptomatic
cases would have been prevented, of which almost 230 000 (-74%) cases in the
unemployed population and 185 000 (-84%) cases among their employees. Em-
ployee vaccination is an interesting intervention from which society, employers
and employees all reap the benefits. Previous research from the health care
payer perspective found children, health care workers, pregnant women and
the elderly to be important target groups for influenza vaccination in Belgium,
rather than the general working adult population [30, 38]. However, from
the employers’ perspective, including the cost of absenteeism, the cost-benefit
results change.

Government subsidies can be pivotal to encourage employers to provide and
stimulate influenza vaccination at the workplace. Especially so to decrease
the losses in seasons with a net-loss, such as the seasons 2011-12 and 2012-13.
Given the low cost of vaccination at the workplace (around e36 per vaccinated
employee) and the spill-overs to society, employees could serve as an impor-
tant target group and provide a safety net for vulnerable subgroups of the
population and those that cannot receive the vaccine for medical reasons.

We stress the importance of incorporating social contact patterns for healthy
and symptomatic individuals. Reduced social contact behavior for symptomat-
ically infected employees has a significant, dampening, influence on the spread
of seasonal influenza [349]. The reduction in transmission could be even larger
if susceptible employees also limit their social contacts when seasonal influenza
peaks. Teleworking, for example, could be interesting for employers to reduce
the prevalence of seasonal influenza at the workplace and reduce absenteeism.
Teleworking is unfeasible in a number of sectors and industries, but it was
estimated to be, at least partially, possible for 50% of the employees in the US
[4]. Interestingly, people that do come to work when they are symptomatically
infected, are also less productive [365], reinforcing the importance of staying
home when showing influenza symptoms.

This paper, documents to our knowledge the first economic evaluation of em-
ployee vaccination using a dynamic transmission model and adaptive contact
behavior. Lee et al. [221] split their analysis into cost-benefit analyses for the
22 major occupational groups in the US and found influenza vaccination to be
cost-saving for the employer for serologic attack rate scenarios of 20% or higher
(i.e. pandemics). However, they did not take into account asymptomatic cases
and a reduced transmission of influenza when symptomatically infected em-
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ployees stay home. The majority of non-placebo-controlled, non-randomized
studies that were performed in single companies also found cost-saving results
for the employer. A study at a Malaysian petrochemical company concluded
that workplace vaccination accrues both financial and health benefits, and that
financial benefits increased proportionally to vaccination coverage [345]. Simi-
lar studies were performed at a financial services company in Essex, UK [223]
and a manufacturing company in Minnesota, US [290]. All of these studies
found vaccination to significantly reduce absenteeism. However, employ-
ees were vaccinated on a voluntary basis in these studies, requiring caution
when interpreting the results, as they are prone to selection bias. Burckel et al.
[54] performed an economic modeling study using employment data from a
pharmaceutical-chemical company in Brazil. They estimated vaccination to be
cost saving at $35.45 in 1997, assuming a rather high vaccine efficacy (between
70% and 89%). In sensitivity analyses, the break-even vaccine-efficacy was
found to be 32.5% [54].

The study of Bridges et al. [44] found that if the vaccine strains matched
with the circulating strains and the vaccine effectiveness was 86%, workplace
vaccination would reduce the lost workdays by 32% per vaccinated employee.
However, the economic analysis of such a vaccination program resulted in a
net cost of $11.17 per person, compared to no vaccination. When the strains
differed, the societal cost increased to $65.59 per person and no decrease in
absenteeism was observed. As such, the authors conclude that “vaccination of
healthy adults younger than 65 years is unlikely to provide societal benefits
in most years” [44]. Another clinical trial with trivalent nasal live attenuated
influenza vaccine (LAIV) [284] reported a decrease of 18% in work loss and a
break-even cost of $43.07 per person vaccinated. None of these studies took
reduced social contact behavior into account.

In the scenario analysis, we noticed the relatively high importance of vaccine
effectiveness. The vaccine effectiveness that was used in the conservative sce-
nario, derived from the I-MOVE study [204], is rather low compared to vaccine
efficacy reported in the literature [302]. The economic value of innovative
vaccines against seasonal influenza, such as a universal flu vaccine, highly
depends on their effectiveness. Moreover, there are no guarantees that the
industry would be able to supply an additional 4 million vaccines at current
production capacities.

This study is limited by the uncertainty on influenza incidence and vaccine
effectiveness. We performed scenario analyses to handle parameter uncertainty
and present a range of possible outcomes, though a single estimation whether
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employer funded vaccination is cost-saving is lacking. Other parameters, such
as the relative infectiousness of asymptomatic cases, background immunity
and the proportion of symptomatic cases have been estimated based on age-
specific incidence. We performed a extensive parameter estimation to prevent
local optima, but more data on one of these parameters would improve the
estimation of others due to correlations. The age categories in our transmission
model were restricted to the data on social distancing due to symptomatic
illness from the UK. Additional data on symptomatic contact behavior in
different countries would improve the accuracy of transmission models in
general. Finally, additional epidemiological data on the influenza incidence and
the correlated absence at work with and without vaccination or teleworking,
would improve this cost-benefit analysis.

In conclusion, we performed a cost-benefit analysis of employer funded in-
fluenza vaccination using a dynamic transmission model. We used Belgian data
and observed large between-season differences in terms of incidence, vaccine
efficacy and return on investment. We compared the cost of prevention with
the cost of employee absenteeism and found that employer funded influenza
vaccination was on average cost-saving between 2011 and 2018. The impact on
society as a whole is substantial through herd immunity effects and even more
promising with next-generation influenza vaccines [279].
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Table 7.1: Model parameters and notation. Parameter values are based
on literature, assumptions or presented by their initial ranges in the
parameter estimation (see text).

Notation Parameter Value Source
Transmission model

Age groups (years) [0-4], [5-19], [20-44], [45-64] and
65+

Average population size (2011-
2018)

637951, 1888883, 3629810,
2994236, 1977824 [371]

1/γ Incubation period (days) 2.0 [349]
1/θ Latent period (days) 1.5 [349]
1/σs Clinical infected period (days) 5.6 [349]

1/σa Subclinical infected period
(days) 1 [349]

Number of infected cases intro-
duced in the population to start
the simulation

10 Assumption

φ Proportion symptomatic Initial range: 0.10 - 0.90 Estimated

qs Proportionality factor symp-
tomatic cases Initial range: 0.05 - 0.095 Estimated

qr Relative infectiousness of asymp-
tomatic cases Initial range: 0 - 1 Estimated

X
Background immunity acquired
by previous infection or immu-
nization (population fraction)

Initial range: 0 - 0.50 Estimated

ti
Introduction of infectious cases
into the dynamic model Initial range: week 30 - 3 Estimated

qa Proportionality factor asymp-
tomatic individuals qa = qs ∗ qr

Reporting rate 70% (in scenario analysis 60%
and 80%) [368]

µ
Vaccine coverage unemployed
population by age group

1.90%, 2.73%, 10.90%, 21.25%,
59.63% [386]

µ
Vaccine coverage employed pop-
ulation 16% (weighted average by age) [386]

ε Vaccine effectiveness see Table 7.2 [204]
Economic analysis

Average gross monthly income
per season (from 2011-2012 till
2017-2018)

e3192, e3258, e3300, e3414,
e3445, e3489, e3558 [372]

Direct cost absenteeism (per day) 0.086 x average gross income [418]
Indirect cost absenteeism (per
day)

0 (scenario analysis: 1x direct
cost absenteeism) Assumption

Vaccine cost per vaccinated em-
ployee including administration e17.30 [261]

Productivity loss per vaccine ad-
ministration (hours) 0.5 Assumption

Indirect cost per vaccinated em-
ployee

0.5 x direct cost absenteeism per
day / 7.60 Assumption

Total cost per vaccinated em-
ployee e35.33 – e37.43 Calculation

Average no. of working days per
week 3.9063

Calculated
from
[373, 401]

Employment rate by age group 0%, 1.42%, 71.95% , 59.39% , 0% [374]
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Table 7.2: Vaccine effectiveness against any influenza type by age
group and season. The mean vaccine effectiveness is shown with the
upper and lower limit of the 95% confidence interval. The estimates for
2011-12 are reported in three age groups due to data spareness.

Season Age group Effectiveness (%)
2011-12 All ages 5.3 [-21.0 ; 25.8]

0-19 years 15.2 [-73.1 ; 58.5]
20-64 years 19.9 [ -12.0 ; 42.7]
65+ years 0.2 [ -60.5 ;37.9]

2012-13 All ages 50.0 [ 37.0 ; 60.3]
0-19 years 35.6 [ -1.8 ; 59.2]
20-44 years 63.9 [ 34.2 ; 80.2]
45-64 years 48.5 [ 23.8 ; 65.3]
65+ years 58.5 [ 29.8 ; 75.4]

2013-14 All ages 23.2 [ -4.7 ; 43.7]
0-19 years 8.0 [ -84.8 ; 54.2]
20-44 years 20.2 [ -62.5 ; 60.8]
45-64 years 23.1 [ -31.9 ; 55.1]
65+ years 42.1 [ -10.9 ; 69.8]

2014-15 All ages 26.6 [ 13.6 ; 37.6]
0-19 years 28.1 [ -2.2 ; 49.5]
20-44 years 44.7 [ 12.4 ; 65.2]
45-64 years 31.3 [ 8.6 ; 48.4]
65+ years 3.9 [ -30.8 ; 29.4]

2015-16 All ages 19.3 [ 4.0 ; 32.2]
0-19 years -10.6 [ -58.5 ; 22.8]
20-44 years 36.2 [ -1.7 ; 60.0]
45-64 years 37.1 [ 13.9 ; 54.0]
65+ years 8.2 [ -33.0 ; 36.7]

2016-17 All ages 28.4 [ 17.5 ; 37.9]
0-19 years 33.1 [ 1.0 ; 54.7]
20-44 years 45.2 [ 20.6 ; 62.1]
45-64 years 29.0 [ 8.7 ; 44.8]
65+ years 17.7 [ -4.5 ; 35.1]

2017-18 All ages 30.0 [ 19.8 ; 39.0]
0-19 years 52.1 [ 33.1 ; 65.7]
20-44 years 50.8 [ 27.3 ; 66.7]
45-64 years 19.4 [ -1.7 ; 36.1]
65+ years 25.4 [ 4.8 ; 41.5]

Table 7.3: Scenario analyses

Parameter Conservative
scenario

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Reporting rate 70% 60% 80% 70% 70% 70%
Vaccine effec-
tiveness (ε)

Seasonal Seasonal Seasonal Max Seasonal Seasonal

Indirect cost of
absenteeism

None None None None Labor cost None

Force of infec-
tion (z(t))

Seasonality Seasonality Seasonality Seasonality Seasonality Constant





CHAPTER 8
General discussion

This discussion is written in April 2020, in the midst of the COVID-19 pandemic,
with more than 3 million cases globally and the official global death toll at
200,000 on 28 April 2020. It has increasingly become clear that human behavior
cannot be neglected in the dynamics of infectious diseases and the ultimate
burden of the disease [404]. Indeed, in the absence of antivirals or treatment,
or a vaccine, most interventions to prevent COVID-19 infections are centred
around social distancing (e.g. staying at home), increased hygiene (e.g. hand
washing), wearing face masks etc., all of which rely on the public’s willingness
to adapt their behaviour [66]. Note that, as opposed to what many BCMs
assume, during the COVID-19 pandemic, a lot of prevention measures – and
thus the public’s behavioral changes – are legally enforced. As such, the
focus of behavioral research in the context of infectious diseases should be
extended from solely voluntary prevention behavior to hosts’ compliance with
government interventions [45].

At the same time, this outbreak shows that behavior changes serve a greater
purpose than solely preventing outbreaks. Indeed, the current mitigation
strategies aspire to: i) ‘flatten the curve’ not to overload hospitals, ICU wards
and respirators [13, 26, 417], ii) buy time for antivirals and vaccines to become
available [13, 26, 417], iii) protect vulnerable individuals with underlying health
conditions that are prone to severe infection [13, 26], iv) reduce the burden of
disease by pushing the effective reproduction number below 1 [13], v) provide
a safe working environment – with special attention for essential industries
(e.g. hospitals, pharmacies, the food industry etc.) [299], and many more. The
feasibility of reaching these targets is contingent on the public’s behavior and
compliance.

Vaccination against vaccine-preventable diseases has similar objectives: reduce
the burden of the disease, providing a safety net for vulnerable individuals
that cannot receive vaccination etc. As we noticed in the DCE studies with
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respect to vaccination behavior (described in Chapters 3 to 5), people are not
purely self-centred individuals that take rational decisions in order to maximize
their own well-being. That is, individuals tend to follow social norms and are
prone to peer influence [416]. When social distancing, increased hand-washing
and wearing face masks will be perceived as the social norm, this will likely
incentivize others to adopt such behaviors. At the same time, we know that
when vaccines become available, some individuals might still decide against it,
e.g. because they perceive the disease as being mild, or they may be afraid of
adverse reactions [291].

At this point, it remains uncertain whether infected individuals acquire long-
term immunity agains the SARS-Cov-2 virus [300]. In the absence of antiviral
treatments and a vaccine, the most important intervention we can rely on today,
is individuals’ behavior change. Even when vaccines do become available,
i) it is unlikely that the production capacity is sufficient to vaccinate enough
individuals to acquire herd immunity in the near future [244] – and thus
behavioral interventions will still be at place, and ii) individual behavior will
remain crucial in terms of vaccine acceptance, hesitancy or refusal.

Behavioral challenges in infectious disease transmission remain. Not only in
today’s COVID–19 pandemic, but also in future epidemics and for vaccine-
preventable diseases that require sustained immunization efforts. In the re-
mainder of this discussion, we will elaborate on the main findings of this thesis,
the strengths and limitations, future work and a general conclusion.



8.1. MAIN FINDINGS OF THIS THESIS 189

8.1 Main findings of this thesis

We opted to discuss the findings of this thesis in a more general sense, linking
the findings of the different chapters in a selection of overarching topics we
deemed essential to elaborate on. For a discussion of chapter-specific findings,
we refer to the discussion sections included at the end of each chapter.

First of all we discuss how behavioral change models have evolved from ra-
tional and strictly theoretical game theory models to more realistic models
including social norms and peer influence. Next, we elaborate on how data
scarcity has been a challenge to the development of superior BCMs and how we
generated data to parameterize such models. In the remainder of this discus-
sion, we elaborate on the risks of neglecting behavioral change in transmission
models and the health economic analysis of infectious disease interventions
and why researchers and policymakers should look beyond vaccine hesitancy
in their efforts to increase – or maintain high levels of – vaccination coverage.

Characterizing vaccine behavior: From homo economicus to homo
sapiens?

The idea of strategic interaction and free-riding behavior in the context of
vaccination – or infectious disease prevention in general – stems from game
theory. Game theory is a mathematical approach to decision-making between
perfectly rational ‘participants’ that maximize their ‘pay-offs’ by incorporating
each other’s decisions when making their own (see Gibbons [137] for an intro-
duction to game theory). A classic application to game-theory is the ‘prisoners’
dilemma’ [137]. In game-theoretical applications of vaccination behavior, such
as the model of Bhattacharyya and Bauch [32], it is assumed that individuals
‘will take a free ride’ and delay or refuse vaccination while relying on herd
immunity, i.e. the indirect immunity provided as an externality of the vac-
cination decisions of others [114]. Individuals are typically represented as
rational decision-makers – also referred to as ‘homo economicus’ – that aim to
maximize an economic objective function.

We systematically reviewed behavioral change models (BCM) for infectious
disease transmission in Chapter 2. We introduced a BCM classification based
on how information is translated into behavioral change. Models assuming
perfectly rational individuals and ‘free-riders’ have become obsolete. Indeed,
an evolution has been observed in the literature towards more realistic models
– characterizing decision-makers as ‘homo sapiens’ that are prone to behav-
ioral flaws – including the impact of social norms, rumours or peer influence
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[411]. For example, in the BCM by Shim et al., altruistic motives in vaccine
decision-making have been incorporated [362]. They included survey data
on influenza vaccination and found that including altruistic motives can shift
vaccination coverage towards the ‘community optimum’, thereby significantly
reducing total cost, morbidity and mortality in the community [362]. Observa-
tional research confirms the relevance of altruism in the context of vaccination
decisions [153, 364, 421]. Other studies have integrated imitation behavior to
BCMs maximizing an economic objective function. Often a Fermi function
is added to such analyses, which incorporates the idea that individuals tend
to do what they did in the past – also referred to as the status quo bias [395].
In the majority of today’s BCMs some form of irrational behavior has been
introduced [411].

It is striking that behavioral change theories – such as the health belief model
or the theory of planned behavior introduced in Chapter 1 – are insufficiently
explored in the characterization of prevention behavior in epidemiological
BCMs. That is, we are only aware of very few studies that explicitly build on the
health belief model in the characterization of individuals’ preventive behavior
in a BCM (e.g. [108, 190]). Yet, the knowledge and experience from such
behavior change theories could be instrumental in resolving at least some of
the challenges BCMs are facing, such as predicting the response to interventions
and health campaigns, or assessing the extent of explicitly modelling behavior
[128]. Whereas social norms are often explicitly taken into account, free-rider
incentives were, to our knowledge, never described in any behavior change
theory in the context of medical psychology or anthropology. On the other
hand, one could argue that such incentives are implicitly integrated in the
“perceived susceptibility” or “behavioral beliefs” constructs. That is, prevalence-
elastic demand, as attested in the DCE studies, connects vaccination coverage
in society to vaccination intentions via perceived susceptibility to disease (as
described in Chapter 6). Nevertheless, susceptibility to disease was, in this
thesis, always found less influential in vaccination decisions compared to the
severity of the disease [416].

The importance of including social norms – or peer influence – in BCMs was
confirmed in all DCE study samples described in Chapters 3 to 5. That is,
population (or global) and local coverage estimates were consistently found to
positively influence vaccines’ utility, such that vaccines that already reached a
high coverage were found to be preferred to vaccines with a lower coverage
in the target population [172, 413, 414, 416]. This is in line with other DCE
studies in Australia [154] and in the US [138]. One could argue that free-riding
behavior was implicitly observed through VPD frequency specified within the
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burden of disease attribute. That is, individuals attached a lower value to a
vaccine when the VPD is less prevalent. However, for all PML models in this
thesis, we found disease frequency to be relatively unimportant compared to
disease severity. Even though a behavioral feedback mechanism was observed
between disease prevalence and vaccine utility, it remains unlikely that explicit
free-rider incentives are to be held responsible.

This behavioral feedback mechanism was included in the BCM application
to measles in Flanders in Chapter 6. In addition to disease frequency, we
included endogenous vaccine utility variables for – the perception of – disease
severity and for population coverage. Vaccine effectiveness, VRSE and vaccine
accessibility were added as exogenous parameters to measles vaccine utility.
As such, in our data-driven approach, we characterized human vaccination
behavior as a multi-criteria decision including both rational (e.g. time and
monetary cost) and irrational (e.g. peer influence) traits. With respect to the
categories proposed in Chapter 2, this model would be categorized under
‘information threshold’ and ‘information as a dynamic parameter’.

The findings of our DCE studies and other observational research, together
with the dynamics of realistic BCMs, can be helpful in guiding health poli-
cies with respect to vaccination. Policymakers and healthcare workers should
communicate high vaccine coverage levels to make it clear that vaccination is
still the norm. This can be helpful in sustaining high – or reaching increased –
vaccine coverage [216]. A vaccination campaign in combination with commu-
nication about uptake can trigger a positive dynamic and persuade hesitant
individuals to accept vaccination. Beware that social norms or peer influence
also work in the opposite direction such that a sudden decrease in vaccine
coverage can result in suboptimal coverages in the years to follow [413]. In
addition, stressing the need for high coverage and herd immunity as a safety
barrier to protect vulnerable individuals from infection can stimulate vaccine
uptake. Indeed, Vietri et al. [421] found social responsibility to be an incentive
for vaccination in a qualitative study in the US.

Beware that the nature of behavior change included in Chapter 7 is different
than the behavioral changes in the other chapters in this thesis. That is, in
the economic analysis of workplace influenza vaccination, we incorporated
dynamic behavior in response to illness. In contrast, we focussed on prophy-
lactic behavioral changes in the rest of this thesis. Nevertheless, staying at
home when showing signs of influenza can be an effective measure to dampen
disease spread [208]. At least part of the reduction in contacts can be attributed
to the physical inability to go about normal activities. Indeed, the Health-
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Related Quality of Life (HRQoL) in terms of mean health utility in influenza
outpatients was estimated at 0.6142, whereas mean utility for inpatients was
estimated at 0.5851 [463]. However, hospitalization rates were estimated to
be relatively low (between 0.184 and 0.644 per 1000) for people of working
age [473]. Another factor that could have an impact on limiting social contacts
could be the fact that, in Belgium, many workplaces require a sick note from a
GP within the first week of absence [400]. Finally, another reason for limiting
social contacts might be that individuals have an altruistic motive and want
to protect vulnerable individuals from infection. Future social contact studies
should query for symptomatic individuals’ motivations for limiting their social
contacts. This information would be useful for policymakers and to design
interventions to convince people of the benefit of staying home when they are
symptomatically infected.

Behavioral change data

The need for data to parameterize behavioral change models has been echoed
in the literature for the past decade [127, 128]. In Chapter 2, we systematically
reviewed behavioral change models for infectious disease transmission and
found that many BCMs remain to a large extent theoretical, lacking data-driven
parameterization and a validation process [411]. That is, only 15% of the in-
cluded studies used any data for parameterization or validation [411]. Weston
et al. [438] conducted a similar review including 42 papers published between
2002 and 2015. They found about half of the studies they included to have incor-
porated behavioral data [438]. More recently, some advances have been made
in the field with respect to data-driven behavior. For example, Gozzi et al. [143]
proposed the use of Influweb data from Italy to characterize behavioral changes
as a response to seasonal influenza. They analyzed the responses of the survey
distinguishing between three behavioral classes: no, only moderately, and
significant change in behavior [143]. Data from the InfluenzaNet network are
promising to quantify such behavior changes in relation to seasonal influenza
transmission and is collected in a large set of countries: including Spain, France,
Italy, The UK, Germany, Sweden, Ireland, Portugal, Denmark and Switzerland
[304]. In addition to survey data, other sources of behavioral data can provide
promising opportunities to parameterize BCMs. For example, social media
data proved to be useful to assess vaccination sentiments as demonstrated by
Salathé et al. [342] and Kang et al. [189]. Indeed, the internet and social media
were identified as strong platforms to spread false information about vaccine
side-effects, conspiracy theories and other vaccine controversies [214].
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The DCE studies in Chapters 3 to 5 provide useful data to parameterise BCMs
and present additional insights in the relative importance of vaccine character-
istics in people’s vaccine decision making process. The use of DCE estimates in
the development of BCMs is to a certain extent bound to characterizing vaccine
behavior as a multi-criteria decision [413]. Preferences have been collected
in representative samples in five countries and can be applied in BCMs for
a selection of diseases for which a vaccine is available. Yet, in the BCM ap-
plication for measles in Flanders, described in Chapter 6, we observed quite
some assumptions still needed to be made. Even though we have retrieved
detailed data on how changing risk perceptions would influence a vaccine’s
utility, additional information is required on how risk perceptions change in
response to disease dynamics and how alterations in vaccine utility translate to
increases or decreases in vaccine uptake. We recommend researchers to exploit
available behavioral data to a maximum extent in parameterizing their models,
while communicating transparently on the assumptions taken for parameters
where data is lacking.

The studies by Terris-Prestholt et al. [388] and Quaife et al. [319] on HIV
prevention measures in South Africa provide a valuable framework for fully
integrated models evaluating infectious disease interventions. They included
DCEs to parameterize uptake and substitution of HIV prevention in the health
economic evaluation of topical pre-exposure prophylaxis (TPrEP) and can-
didate multi–purpose prevention technologies (MPTs) [319, 388]. However,
some inherent vaccination characteristics warrant a different approach when
applying such models to the economic evaluation of vaccination programs.
Among others, vaccination requires a binary decision inducing a relatively
long protection against the disease, there are only few alternatives available in
terms of pharmaceutical prevention measures, and vaccination has been – and
remains to date – challenged by vaccine controversies [105].

With respect to the DCE studies described in this thesis, the model estimates
cannot be directly applied to parameterize a vaccination intention (cfr. the
theory of planned behavior) or a vaccination health belief model. Nevertheless,
we believe an updated DCE design, eliciting preferences in accordance with
the constructs of the health belief model, could be useful to parameterize an
HBM for vaccine uptake. Logworth values could be instrumental in deter-
mining weights for the theory’s individual constructs, whereas attribute level
estimates could be informative to asses vaccination likelihood or probability.
In addition, such a model could introduce heterogeneity, by estimating model
interactions (e.g. based on demographic variables or past experiences with
vaccination or infection). A number of HBM constructs were integrated in the
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DCEs described in Chapters 3 to 5. That is, we queried for preferences related
to perceived severity (severity specified in the burden of disease attribute),
perceived susceptibility (frequency of the disease specified in the burden of
disease attribute), perceived benefits (vaccine effectiveness), and perceived bar-
riers (accessibility and VRSE attributes). The data we gathered, are thus lacking
preferences about “cues to action” and “self-efficacy” which are included in
the HBM. In contrast, the coverage attributes would be useful to parameterize
the importance of “normative beliefs”, which is an essential construct in the
theory of planned behavior [6]. In all but one study (outlined in Chapter 3),
we only queried about mild side-effects: this means we cannot parameterize
perceptions of severe side-effects, which have had a long history in the field
of vaccination [177]. Perceptions on severe VRSE would most likely be more
influential in people’s choices [338, 416]. Yet, even in an updated DCE design,
which matches model constructs to the parameterization of existing behav-
ioral change theories, quite some challenges in terms of data requirements
remain. That is, we would still need to gather data on the relation between
disease dynamics and changing risk perceptions. The COVID–19 pandemic,
has nevertheless created a unique opportunity to collect data about individuals’
perceptions. Indeed, a qualitative study about risk perception in Finland has
been constructive in tailoring risk communication and influencing behaviour
change [242].

Social contact data are intrinsically connected to close-contact infections and
are relatively easy to retrieve by means of social contact surveys [169, 276].
Social contact data have increasingly been integrated in the parameterisation of
infectious disease transmission models [165, 406, 425]. In addition, prophylactic
social distancing behavior can be parameterized by means of such data, as well
as decreased social contact behavior resulting from symptomatic infection. The
latter was demonstrated in the analysis of influenza workplace vaccination in
Chapter 7.

In Chapter 2, we found that the 2009 influenza pandemic has been an opportu-
nity for increased data collection on behavioral changes. When outbreak-driven
data collection will take place to a similar extent during the current COVID-19
pandemic, we can expect a lot of behavioral data to become available that bring
additional insights on the relation between behavior and disease dynamics.
In addition, these COVID-19 behavioral changes will be useful to parame-
terize outbreaks of other close-contact infections with similar characteristics.
Data on such behavioral changes (e.g. improved hand hygiene and social
distancing) as a result of fear of COVID-19 have already become available
[45, 46, 160, 451]. Note that behavioral data in the context of COVID-19 are
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likely prone to government interventions. As such, these data capture both
spontaneous voluntary behavioral changes as well as compliance to behavioral
interventions imposed by the government. Note that the latter type of models
was not included in the analysis in Chapter 2.

In the absence of adequate behavioral data, theoretical assumptions might
still be useful. Ignoring behavioral changes in the transmission of infectious
diseases and evaluation of prevention measures is probably worse than making
assumptions within a theoretical model in the first place. Transparency and
communication on assumptions and limitations remains key.

The risk of neglecting behavior

In the economic analysis of workplace influenza vaccination, described in
Chapter 7, we implemented data-driven adaptive social contact data for symp-
tomatically infected individuals [109]. Note that this type of behavioral change
fundamentally differs from preventive social distancing behavior. In the former
case, individuals alter their behavior as a result of experiencing symptoms and
thus are not able to go to work, see their friends an family etc., whereas for
prevention behavior this is a deliberate choice to reduce the odds of contracting
infection. Studies that fail to include altered contact behavior as a result of
infection, most likely overestimate the impact of intervention measures. Data
on altered contact behavior when experiencing symptoms can – as discussed
in earlier paragraphs – be collected through the use of social contact surveys,
in a similar fashion as the one performed by Eames et al. [109] or Mossong et
al. [276]. For more details about social contact surveys, we refer to a recent
systematic review by Hoang et al. [169].

In Chapter 6, we focussed on preventive behavioral changes instead. In this
proof-of-concept study, we integrated several behavioral scenarios with signifi-
cant impact on the future course of measles disease in Flanders. Introducing
a vaccine scare was sufficient to drive immunity levels below the required
threshold and trigger sustained outbreaks every few years. Similar dynamics
have been observed with respect to measles and pertussis in England & Wales
following the whole cell pertussis and MMR vaccine scares [23]. In countries
or regions with lower vaccine coverage, endogenous BCM dynamics may be
sufficient to reintroduce endemic transmission (e.g. due to a low risk percep-
tion of measles severity). As of August 29, 2019, four European countries lost
their elimination status: Albania, Czechia, Greece and the UK, while endemic
measles transmission remains in 12 countries of the region [289]. The surge of
measles cases in the European region was found to continue with more than
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80,000 cases in the first half of 2019 [289]. This resurgence is at least partially
attributable to suboptimal measles coverage in European countries [119]. This
is to say that the successes of interventions such as vaccination are in essence
dependent on human behavior and the public’s willingness to follow recom-
mendations. Neglecting human prevention behavior and assuming a constant
vaccination coverage based on expert opinion or past coverage levels can lead
to inaccurate predictions. Therefore, we believe it is essential to include be-
havioral change features in modelling infectious disease – to the very least in
sensitivity analysis to explore behavior-induced model uncertainties.

The introduction of BCMs in transmission models has been growing as de-
scribed in Chapter 2. However, the implementation of BCMs in the economic
analysis of infectious disease interventions is still scarce. By neglecting in-
tervention uptake in economic analyses, real-life outcomes may drastically
differ with model based estimates due to non-linearities between prevention
measures and disease burden. Indeed, due to positive externalities (i.e. herd
immunity), the relation between vaccination coverage and ICERs is non-linear.
When vaccine coverage remains suboptimal, or susceptible clusters remain
in parts of society, outbreaks can still occur and costly responses such as con-
tact tracing or increased vaccination efforts are required to counter endemic
transmission [145]. The cost of recent measles outbreaks in The Netherlands
(2700 reported cases), The UK (2458 reported cases) and The US (107 confirmed
cases) were estimated at $4.7 million, £4.4 million and between $2.7 million to
$5.3, respectively [136, 301, 380]. Note that these costs could have been avoided
when a sufficient vaccination coverage (> 95%) would have been reached in
these populations. Indeed, measles disease satisfies all biological conditions
to reach eradication [294]. As such, dynamic vaccinating behavior should be
taken into account to ensure realistic predictions of interventions and not to
underestimate economic costs. Because in the end, the success of interventions
is dependent on human behavior.

DCE-based uptake behavior has been successfully integrated in the impact
analysis and cost-effectiveness analysis of HIV prevention measures in South-
Africa. Terris-Pretholt et al. performed a DCE-based impact analysis of TPrEP
and found that “DCE-based impact predictions varied by up to 50% from
conventional estimates and provided far more nuanced projections” [388]. We
refer to the work of Quaife et al. for an integrated model using DCE-based
uptake of HIV prevention measures in a health-economic analysis [319].
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Looking beyond vaccine hesitancy

A lot of research on suboptimal vaccine coverage is focussed on interventions
addressing ‘vaccine confidence’, ‘vaccine acceptance’ or ‘vaccine hesitancy’
[104]. “Vaccine hesitancy refers to delay in acceptance or refusal of vaccines
despite availability of vaccination services. Vaccine hesitancy is complex and
context specific, varying across time, place and vaccines. It is influenced by
factors such as complacency, convenience and confidence” , as defined by a
WHO SAGE group on vaccine hesitancy [247]. At the same time the SAGE
group recognized that strategies beyond those targeted at addressing vaccine
hesitancy need to be developed in order to reach high vaccine demand [247].

By means of a DCE in five countries, we aimed to look beyond vaccine hesi-
tancy and quantify the public’s preferences with respect to different vaccine
characteristics. That is, the studies described in Chapter 3 to 5 are not focussed
on specific subsamples that delay or refuse vaccination, but instead quantify
preferences with respect to vaccination in the population at large. In addition,
we investigated preference heterogeneity by estimating covariate interactions.
Looking at normalized logworth estimates from DCEs in different subsamples,
we found that vaccination is a multi-criteria decision, i.e. vaccines’ utility is
determined by a combination of characteristics. More specifically, we found
vaccine effectiveness, accessibility and burden of disease to be the most impor-
tant vaccine attributes, followed by population coverage, mild VRSE and local
coverage [416].

Vaccine effectiveness

In Chapter 5, vaccine effectiveness was found to be the most important attribute
in vaccine decision-making in 5 out of 10 study populations. Fortunately, most
routine vaccines are very effective and protect 85 to 95% of recipients [447]. As
such, providing accurate and timely information about vaccine effectiveness
can be helpful in stimulating vaccine demand.

In the BCM application to measles in Flanders – described in Chapter 6 – we
held perceptions of vaccine effectiveness high and constant as an exogenous
parameter. Vaccine utility would however drastically decrease if vaccine ef-
fectiveness would be perceived lower, which is to a certain extent the case
for influenza vaccines. When the perception of vaccine effectiveness would
decrease to 50% for the population at large, compared to 90%, vaccine utility
would fall by a number higher than was observed in the vaccine scare scenario.
Unsurprisingly, each year only 44% of the target group gets vaccinated against
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seasonal influenza, whereas in the Belgian population at large, a coverage of
about 20% is reached [386].

We analyzed the cost-benefit of workplace influenza vaccination in Chapter 7
and found vaccine efficacy to be essential in the scenario analysis. If influenza
vaccines would have reached an effectiveness of about 50 to 60% in every
season, vaccination would have been cost saving in all seasons [415]. We need
better influenza vaccines to i) increase influenza vaccine coverage, thereby
protecting vulnerable individuals in the population, ii) reduce volatility in
employers’ return on workplace influenza vaccination, iii) expand the oppor-
tunity to incentivize employees, and iv) to improve the general perception
of all vaccines’ effectiveness (i.e. as a positive externality to overall vaccine
effectiveness perception). General vaccine effectiveness perception was found
to be on the lower side in France – with 20% disagreeing that vaccines are
effective [131]. In Belgium, the same study found 5% to disagree with the same
vaccine effectiveness statement.

Accessibility

In Chapter 5, vaccine accessibility was found to be the most important attribute
in 4 out of 10 populations: the ‘oneself’ groups in The Netherlands, France
and Belgium and the ‘youngest child’ group in Belgium [416]. In addition,
we found in the DCE study in Flanders, described in Chapter 3, that 40%
of the respondents in the child group indicated that they do not question
vaccination, it is just something they do when it is offered to them [413]. So
just by offering vaccines conveniently, a substantial coverage can already
be reached, irrespective of other vaccine characteristics. Therefore, policy-
makers can stimulate vaccine uptake by making vaccines easily available at an
affordable price.

Note that the relative importance of vaccine accessibility was highest in the
adult populations deciding about vaccinations that would be administered to
themselves. Ironically, in most healthcare systems, adults’ vaccination services
are organized in a less accessible way, compared to the vaccination for infants.
Also for the Belgian healthcare system, where infant vaccination is usually
organized through a system of well-baby clinics and school physicians, while
adult vaccination usually requires a prescription, two visits to the GP, a visit to
the pharmacy and a co-payments for both the GP visits and the vaccine [413].
Note that Tdap boosters are available at the GP at no cost for adults (except for
the co-payment of the GP visit).
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In Chapter 7 we looked into the economic evaluation of influenza vaccination
on the workplace. Workplace vaccination was found to be, on average, a
cost-saving intervention to businesses that – in addition – creates important
externalities to society as a whole [415]. We discussed in earlier paragraphs
how altruistic motives could be an extra incentive for working individuals to
accept this vaccine [153, 364, 421]. In addition, workplace influenza vaccination
is relatively cheap, comes with significant economies of scale and is very
convenient for employees. The age of the vast majority of employed individuals
warrants a better immune response to the vaccine, compared to the elderly
[315]. Furthermore, employees are most likely part of a considerable social
network – including individuals from different generations – in which the virus
can spread. As such, they form efficient barriers to reduce transmission in the
population at large [415]. Apart from yearly influenza vaccination, workplace
vaccination can be valuable in reaching sufficiently high coverages for Tdap
boosters, in catch-up campaigns or in the final steps of eradication efforts.
Hence, we believe that workplace vaccination serves as an efficient system –
that is yet insufficiently explored – to increase vaccine coverage in adults of
which society, employers and employees all reap the benefits.

Vaccination remains attractive if it is offered at first contact with the vaccinator,
while being offered to large groups simultaneously. Well-baby clinics and
school-based vaccination programs remain crucial in reaching high coverages
among infants and children. Yet, for adult vaccinations there is still a lot of
room for improvement.

Burden of disease

DCE studies indicated that individuals prefer vaccines that protect against
severe [338, 416] and frequent vaccine-preventable disease (VPD) [416]. In the
French ‘youngest child’ group burden of disease was even found to be the
most important attribute, as detailed in Chapter 5. While having a prominent
role in almost all BCMs that we systematically reviewed in Chapter 2, disease
prevalence was found relatively unimportant compared to disease severity
among all study populations [416]. Vaccination is to a certain extent victim
of its own successes. Individuals may not be able to imagine a world in
the absence of vaccination since they are no longer – or only sporadically –
confronted with VPD burden. As such, many will lack the ability of creating a
realistic perception about VPD frequency and severity. Moreover, the benefits
of vaccination are impossible to be evaluated from an individual perspective.
At the same time (perceived) risks of side-effects are visible, even though these
are mostly short lived and mild (e.g. swelling at injection site, mild fever
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or headache) [103]. In addition, vaccination is prone to omission bias. That
is, individuals tend to be more risk averse to action – vaccinating at the risk
of VRSE – than inaction – not vaccinating at the risk of contracting a VPD
[16, 94, 103, 327].

When individuals are confronted with VPD resurgence, apart from increased
perception to disease susceptibility, they might perceive the VPD to be more
severe as well. The latter was observed after a measles outbreak in France
[392]. Both disease frequency as well as severity may feed into the behavioral
feedback mechanisms and were introduced as endogenous behavioral features
in the BCM for measles in Flanders in Chapter 6. In scenario analysis, we
implemented a decay function with a lower limit of only 5% of the Flemish
population perceiving measles as a severe disease. Even though the vaccination
coverage was lower compared to the default scenario, it was insufficient to
cause large outbreaks. Nevertheless, it remains crucial for healthcare workers
to provide accurate and timely information about VPDs’ burden of disease in
order to align vaccine recipients’ perceptions with reality.

Vaccine coverage, social norms and peer influence

We integrated data-driven peer influence for measles vaccination uptake in
Flanders in Chapter 6 such that current vaccination decisions are influenced
by the decisions of peers in the recent past. Population and local coverage
were consistently found to be significant in vaccination decisions among all
study populations [416]. In addition, we found estimates to be positive, rather
than negative, indicating that decisions are driven by social norms rather than
free-rider incentives. Linking back to the importance of social norms, peer
influence and altruism in the context of vaccination, detailed in the first section
of this discussion, it remains crucial to communicate that vaccination is still
the norm.

Vaccine related side-effects (VRSE)

In Chapter 6, we simulated the impact of three vaccine scare scenarios: a
temporary vaccine scare, a vaccine scare from the start of the simulation and a
vaccine scare from the start followed by a suspension of the vaccine from the
immunization schedule. The first two scenarios had a strong impact on vaccine
utility and vaccine coverage causing recurrent measles outbreaks in the Flemish
population. Note that in this model application, we applied the DCE estimates
from the Flemish study (Chapter 3), where we did not specify, nor controlled
for VRSE severity. Nevertheless, when VRSE were correctly specified – stating
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severe VRSE as highly unlikely – they appeared relatively unimportant for all
study subsamples, compared to other vaccine characteristics [416].

Even though vaccination has a long and rich history of controversies, and the
level of controversy remains high today [177], vaccine choices are not solely
determined by (the perception of) VRSE. Nevertheless, it is of great importance
for healthcare workers to follow guidelines when confronted with vaccine
hesitant individuals. The guidelines by Leask et al. provide a stepwise and
tailored approach to communicate with such individuals [220]. The work of
Healy et al. also proves useful to communicate with vaccine-hesitant parents in
a non-confrontal way [163]. Communication may be focussed on individuals
in the so-called “vaccine hesitancy continuum” as proposed by the WHO
SAGE on vaccine hesitancy [296]. The role of healthcare workers remains
crucial in providing honest information about parents’ concerns with respect
to vaccination.
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8.2 Strengths and limitations

Systematic review on behavioral change models

We systematically reviewed behavioral change models for infectious disease
transmission in Chapter 2. We started our analysis in 2010 where a previous
review ended [127] and included 178 studies for a full text analysis. As with any
systematic review, our search string strikes a balance between completeness
and feasibility. It came to our attention that we did not retrieve some studies
that would satisfy our eligibility criteria. Nevertheless, we provided important
insights in recent advances in the field and identified notable challenges that
remain.

Discrete choice experiments to quantify vaccination behavior

This thesis provides valuable insights in the quantification of vaccination be-
havior. We collected vaccination behavior data in a multitude of countries
distinguishing between vaccination decisions in adults and vaccination deci-
sions for individuals’ youngest child. We assessed preference heterogeneity by
systematically estimating covariate interactions for all DCE subsamples. Nev-
ertheless, multiple testing issues may have played a role in the final selection
of covariates included in each model. In addition, survey respondents, when
filling out the DCE, had to make a decision between two vaccines. I.e. they had
to assign a preference to one of the two described vaccines while not having
the option to refuse vaccination.

DCE guidelines specify to perform a qualitative study (e.g. a focus group or
interviews) in order to select attributes and attribute levels [74, 213]. We per-
formed such a qualitative study in Flanders (described in Chapter 3) and kept
a similar design for other study populations. By not performing a qualitative
study for each study population, we might have missed importance attributes.
A study by Determann et al. reports on such between-country disparities with
respect to altruism considerations [92]. However, we decided to keep the DCE
design equal in order to evaluate the impact of the same vaccine characteristics
in a selection of countries. Moreover, when essential attributes would have
been neglected in the DCEs, this would still provide useful insights in the
relative importance between the attributes included.

DCEs query for stated preferences. That is, the participants make choices about
vaccination in an artificially constructed situation: study participants sit behind
a screen and are provided a narrowly defined information set. Nevertheless,
no participant was ever actually inoculated after making a choice. There is a
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lack of research assessing the external validity of DCEs. Recent studies by de
Becker-Grob et al. found that a DCE could correctly predict influenza vaccine
uptake when taking heterogeneity into account [86, 87]. A study by Lambooij
et al. tested DCE validity in the context of hepatitis B vaccination and found
a correspondence of 80% between stated and revealed preferences [212]. In
addition, a systematic review and meta-analysis by Quaife et al. found DCEs
to produce reasonable predictions of health-related behaviors. Nevertheless,
the authors warn that there is a great need for further empirical research to
externally validate DCE findings [318].

We did not include an attribute on the severity of VRSE in any of the DCE
studies, which would be required to more accurately simulate a vaccine scare in
a BCM application – such as the proof-of-concept described in Chapter 6. When
comparing the DCE results from Flanders (Chapter 3) with the DCE results
described in the multi-country study (Chapters 4 and 5), we observed the
importance of specifying VRSE severity in DCEs. That is, the VRSE attribute
importance shifted from being the most important attribute in the Flemish
study, to one of the least important attributes in the multi-country study. We
altered the specification of the VRSE in the latter study to the frequency of mild
VRSE, keeping severe VRSE frequency at ‘highly unlikely’ in both attribute
levels. In addition, VRSE severity was found to be of key importance in vaccine
decisions in the UK [338].

Unfortunately, we did not include all model constructs for the health belief
model, or the theory of planned behavior to fully parameterize either of these
models. Additional data would be required to assess how information influ-
ences beliefs and, in turn, these beliefs affect attitudes or intentions, which in
the end influence behavior.

Lastly, we did not include the recommendation by healthcare providers in any
of our DCE studies. A characteristic that was found to be of great importance
in a study by Dorell et al. [100].

A proof-of-concept to parameterize BCMs

Even though we used a data-driven approach to parameterize the behavioral
change model introduced in Chapter 6, for a considerable number of parame-
ters we still had to rely on assumptions. The BCM is currently limited to the
attributes that were included in the DCE in Flanders in Chapter 3. If circum-
stances other than the vaccine characteristics included in the DCE would no
longer hold, for instance the recommendation of GPs, this would not have
an effect on the vaccine’s utility level, vaccine coverage in the target group,
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and disease dynamics. Moreover, in order to more accurately model measles
transmission in a highly vaccinated population, a stochastic model is required.

Flanders is a region with typically a high and stable vaccination coverage
[409]. As such, in the integration of our DCE results in a BCM, we had to
introduce a number of unprecedented and possibly unrealistic scenarios. That
is, just adding a BMC to a default situation seemed insufficient to set up a
behavioral feedback mechanism that causes measles outbreaks. This confirms
an observation we made in the systematic review (Chapter 2), namely that
many BCM assumptions are often chosen to justify a theory. However, we
aimed to transparently state the assumptions we made, we set the baseline
simulation at the most realistic scenario using observational data as much as
possible, and repeatedly indicated the proof-of-concept character of the study.

An economic analysis of workplace influenza vaccination

We simulated the spread of influenza in Belgium using a compartmental age-
structured model taking both asymptomatic transmission as well as adaptive
behavior of symptomatically infected individuals into account. The role of
asymptomatic transmission was found to be essential in assessing the feasibility
of control measures in an outbreak by Fraser et al. [121]. Indeed, given that
these individuals do not realize that they are infected, they are unlikely to alter
their behavior and further spread the pathogen in the population and on the
workplace. Moreover, we simulated influenza using a dynamic transmission
model, which is advised in the economic analyses of immunization programs
[297]. A probabilistic sensitivity analysis (PSA) is currently lacking and would
have provided additional insights in the uncertainty of the economic analysis.

Even though we stressed the importance of taking dynamic vaccine uptake into
account, we did not do so for the influenza analysis in Chapter 7. Nevertheless,
in the baseline simulation we found the average cost-savings per vaccinated
employee to be relatively unfazed by the overall vaccination coverage. The
importance of taking dynamic vaccine uptake into account becomes larger for
scenarios with a higher vaccine effectiveness, in which herd immunity effects
kick in at lower coverages compared to the baseline.
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8.3 Future work

An updated systematic review on behavioral change models might provide
additional insights in how data has been used in the literature between 2015
and 2020. In the light of the recent pandemic, it might be interesting to in-
clude BCMs that model compliance with government interventions, such as
restrictions in movement and wearing face masks.

In future work, we should optimize the DCE setup and specification. The
addition of a no-choice option could be helpful in setting up a binary vaccine
outcome as a function of vaccine attributes. The latter was missing when we de-
signed a proof-of-concept of using DCE data to parameterize BCMs in Chapter
6. In addition, an updated DCE study could focus on the parents of newborns,
or parents planning to expand their family in order to retrieve a more targeted
sample of individuals that were recently – or will soon be – confronted with
these decisions for their children. However, it remains challenging to retrieve a
sufficiently large sample to accurately estimate people’s preferences.

Alternatively, an updated survey design could first probe for attitudinal re-
sponses after which – for the remainder of the survey – people get assigned
to different DCE questionnaires. As such, separate vaccine utility estimates
can be retrieved based on general vaccination attitudes (e.g. refusing, hesitant,
accepting). This way, increased heterogeneity can be assessed, which up to
now was mostly included by estimation of model covariate interactions and
not yet applied in the proof-of-concept in Chapter 6.

In order to project the impact of a vaccine scare on a vaccine’s utility, coverage
and disease dynamics, one should probe for VRSE severity in an updated
DCE design. Even though the true frequency of severe VRSE is highly excep-
tional, the public’s perception might differ significantly from reality. These
misperceptions, such as the alleged – but repeatedly refuted – link between
MMR vaccine and autism or HPV suspension in Japan based on anecdotal
adverse events, have a tremendous effect on vaccination behavior [23, 140, 159].
As such, the VRSE attributes should be updated to four levels, including all
prevalence-severity combinations.

A data-driven specification of a vaccine-uptake function is needed to link
vaccine utility estimates to uptake in the target population. A no-choice DCE
can be instrumental in setting up such a function, as discussed in previous
paragraphs. However, beware that the specification of such a relation between
vaccine utility and coverage is time-sensitive and requires regular validation.
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Combining data from cross-sectional surveys, longitudinal studies on the re-
lation between information dynamics (e.g. burden of disease or VRSE) and
risk perception, together with additional insights on how such perceptions
shape vaccination decisions, would be required to further develop an inte-
grated and parameterized BCM, for example by building on the structure of
the model introduced in Chapter 6. In terms of data collection, additional
research should look at a broad spectrum of potential elements that might in-
fluence individuals’ perceptions with respect to vaccination, and which moves
beyond reported infectious disease statistics. Media coverage about infectious
disease outbreaks, social media spreading information about vaccine-related
side-effects, or past vaccination experiences could, for example, be shaping
individuals’ perceptions. Qualitative studies have already been used to gather
beliefs and attitudes towards childhood vaccination [264]. At the same time,
additional research is required to identify and integrate cognitive biases in
the context of vaccination BCMs. Confirmation bias was already successfully
integrated in a BCM developed by Voinson et al. [423]. Bond & Nolan provide
a better understanding on differences in risk perceptions between immunizers
and non-immunizers in the context of theories of decision making under un-
certainty, while special attention has been given to cognitive biases [39]. They
performed a qualitative study in 45 Australian parents and categorized factors
that influence vaccine decision-making according to the Health Belief Model,
subjective perception risk and risky decision-making theories [39]. Indeed, we
believe behavioral change theories, such as the HBM or TPB, are instrumental
in designing conceptual models, as they identify a variety of behavioral con-
structs that are relevant in the context of prevention interventions. Historical
data from vaccine-scares could in addition be useful to accommodate a fitting
procedure for unknown behavioral parameters, or to validate model findings.
The latter was demonstrated in a paper by Bauch & Bhattacharyya [23]. Note
that preference heterogeneity, e.g. based on demographic characteristics or past
experiences, should ideally be taken into account to better predict observed
vaccination uptake and, consequentially, disease dynamics.

When more data becomes available, a probabilistic sensitivity analysis (PSA)
should be performed to investigate parameter uncertainty in the model pro-
posed in Chapter 6. Standard errors from the PML models can be useful in
providing parameter ranges for vaccine utility. When data on people’s percep-
tions and a vaccine uptake function has become available, uncertainty should
be investigated for these parameters as well. We deemed it unnecessary to in-
clude a PSA at the current stage of the model. Furthermore, for the cost-benefit
analysis of workplace influenza vaccination, a PSA would provide additional
insights in the parameter uncertainty.
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A more elaborate model should track and monetize the spillover effects of
employee vaccination to the unemployed and society as a whole to get a better
idea of the total economic picture of workplace influenza vaccination. This
way, one can also calculate the magnitude of subsidies the government could
provide to stimulate both employers and employees.

In the future, data-driven BCMs should be integrated in the economic analysis
of immunization programs.
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8.4 Conclusion

Reaching a vaccination coverage of 100% will often be infeasible since some
individuals will refuse vaccination while others cannot be vaccinated as a result
of medical conditions (e.g. immunodeficiency or pregnancy) or age (e.g. too
young). However, for many pathogens it is not required to vaccinate everyone
due to (mostly positive) externalities, often referred to as ‘herd immunity’.
Policymakers and researchers should look at herd immunity as an asset rather
than a liability. Indeed, following the results described in Chapters 3 to 5, we
found no evidence for free-rider incentives in any study population [416]. In
contrast, peer influence, social norms and altruism were consistently found to
increase vaccines’ value to the public. Communicating that vaccination is still
the norm, while refusals are exceptional, is important in maintaining a high –
or increasing – vaccination coverage.

When confronted with vaccine hesitant individuals, guidelines can provide a
stepwise and tailored approach to communicate with such individuals [163,
220]. However, policymakers need to look beyond vaccine hesitancy in order to
reach optimal immunization coverages. More specifically, vaccine effectiveness,
vaccine accessibility and VPD burden were found to be key. With respect to
vaccines’ accessibility, there is a lot of room for improvement for vaccines
aimed at the adult population. Workplace influenza vaccination provides an
efficient alternative to time consuming visits to both GP and pharmacy, in
addition to being a safety barrier to vulnerable individuals in the population
at large. Moreover, we need better influenza vaccines to reduce volatility in
employers’ return on workplace vaccination and to increase coverage.

As for other vaccine characteristics, the majority of the marketed vaccines
warrant a high value to the vast majority of the population. Indeed, vaccines
provide safe and effective protection against harmful diseases and generally
reach high coverage levels [446]. Communication strategies are needed in
order to align the public’s perceptions with vaccination realities and to counter
vaccine controversies increasingly spread through the internet and social media
[105, 214, 343].

Health economists and infectious disease modellers cannot risk neglecting
behavioral changes due to non-linearities in prevention uptake and disease
dynamics. Increased data collection is needed at the interface between risk
perception and disease dynamics. Where available, data-driven BCMs are
preferred to theoretical models. However, purely game-theoretical models are
obsolete. To the very least, modelers should include behavior-induced model
uncertainties in a sensitivity analysis.



Summary

Infectious diseases pose a significant threat to global health and prosperity
as recently evidenced by the COVID–19 pandemic. As a result, prevention
and control of infectious diseases are essential for public health and welfare.
Preventing between 2 and 3 million deaths each year, vaccination remains
a cornerstone of this endeavor [443]. Vaccination usually results in positive
externalities, often referred to as ‘herd immunity’: successfully vaccinated indi-
viduals do not (or hardly) transmit the pathogen they were vaccinated against
to others. As such the marginal utility of vaccination decreases (non-linearly)
as coverage increases, and endemic transmission can often be halted without
vaccinating the whole population, a phenomenon which is crucial for vulnera-
ble individuals who cannot receive vaccination due to age or medical reasons.
Mathematical and economic models have proven valuable to simulate and eval-
uate the impact of prevention measures on the spread, burden and economics
of infectious diseases [297]. These models inform and guide policy-makers to
prepare for and respond to (re)emerging infectious diseases, particularly when
sufficient information from controlled experiments is lacking. However, the im-
pact of prevention measures and other policy interventions are subject to hosts’
compliance and demand. That is, decades of progress made in control and
prevention of infectious diseases are currently under threat by a worldwide in-
crease in vaccine hesitancy and refusal [217]. The number of people perceiving
vaccines as unsafe or unnecessary is growing, fueled by a false sense of security
due to a decline in vaccine-preventable diseases, amplification of anti-vaccine
messages through social media [105] and continued anti-vaccine exploitation
of a fraudulent paper linking the measles-mumps-rubella vaccine to autism
[140]. In response, behavioral change models (BCMs) have been developed to
incorporate dynamic behavior (i.e. the demand side of prevention measures)
into models for infectious disease transmission [127, 411]. Since vaccination
yields positive externalities, game theory applies. Hence, BCMs have been
developed in which rational-behaving individuals are assumed to free-ride
on ‘herd immunity’, and therefore increasingly refuse vaccination when they
perceive more members of the population to be immunized. However, many
challenges remain in the development of BCMs that can accurately predict the
uptake of preventive measures [128].

In Chapter 2, we present the results of a systematic review on BCMs for infec-
tious disease transmission published in the period 2010–2015. We included
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178 papers for full-text analysis out of 5759 unique records resulting from
our search string. We observe an increasing trend in published BCMs, fre-
quently coupled to (re)emergence events, and propose a categorization by
distinguishing how information translates into preventive actions. Behaviour
is usually captured by introducing information as a dynamic parameter or by
introducing an economic objective function, either with or without imitation.
Approaches using information thresholds and exogenous behaviour formation
are also popular. We further classify according to disease, prevention mea-
sure, transmission model (we distinguish population, metapopulation and
individual-level models) and the way prevention impacts transmission. We
found that only 15% of studies used any real-life data for parameterization
or validation. Despite recent advancements, we remain concerned that most
models are purely theoretical and lack representative data and a validation
process.

In response to the findings in Chapter 2, we aimed to study the relative im-
portance of characteristics people consider when making vaccine decisions for
themselves, or for their child, with specific attention for underlying motives
arising from context, such as required effort (accessibility) and opportunism
(free riding on herd immunity). We documented attitudes towards vaccination
and performed a discrete choice experiment in Flanders, Belgium, South Africa,
France, The Netherlands and The United Kingdom of which we described the
results in Chapters 3 to 5. We elicited preferences for six attributes: (1) vaccine
effectiveness, (2) vaccine-preventable disease (VPD) burden, (3) vaccine acces-
sibility in terms of co-payment, vaccinator and administrative requirements, (4)
frequency of (mild) vaccine-related side-effects, (5) vaccination coverage in the
country’s population and (6) local vaccination coverage in personal networks.
While all six attributes were found to be significant, vaccine effectiveness and
accessibility stand out in all (sub)samples, followed by VPD burden. Though
statistically significant in all study samples, VRSE frequency appeared rela-
tively unimportant when we specified severe VRSE to be highly unlikely. In
addition, respondents attached more value to severity of VPD compared to its
frequency. In contrast to what most game theoretical models assume, social
norms dominate free-rider incentives.

Measles vaccination is topical to include in BCMs as it was confronted with
a vaccine scare and the high transmissibility requires a vaccination coverage
of 95% or higher to halt transmission in the population. In Chapter 6, we
presented a proof of concept study on how data from DCEs can be integrated
to parameterize BCMs. More specifically, we simulated the dynamic uptake
of measles vaccine, parallel to a dynamic transmission model for the spread
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of measles in Flanders, Belgium using the results of the DCE described in
Chapter 3. We fitted vaccine utility data to a vaccine coverage function that de-
termines the uptake of measles vaccine in children at one year of age. Measles
transmission dynamics are modelled using a deterministic ordinary differ-
ential equation model including births, deaths and vaccination (SIRV). We
investigate the impact of 7 different behavioral scenarios on vaccine utility,
vaccine coverage and disease dynamics. The addition of a default BCM has
no significant impact on disease transmission and increases vaccine coverage
slightly. Introducing shocks, such as a vaccine scare or suspending the vaccine
from the immunization schedule, causes recurring measles outbreaks in the
Flemish population. A temporary vaccine scare of 5 years and a lower risk
perception of measles severity did not alter disease transmission compared
to the default simulation. A vaccine scare followed by a suspension from the
schedule triggers volatility in vaccine coverage ranging between 25% and 85%,
with large outbreaks reoccurring every few years.

We included social distancing behavior in an economic analysis of workplace
vaccination in Chapter 7. Each year, about 10% of unvaccinated adults con-
tracts seasonal influenza, with half of these individuals developing symptoms.
As a result, employers experience significant economic losses in terms of em-
ployee absenteeism. Influenza vaccines can be instrumental in reducing this
burden. Workplace vaccination is expected to reduce employee absenteeism
more than linearly as a result of positive externalities. We simulated the spread
of influenza in the seasons 2011-12 up to 2017-18 in Belgium by means of a
compartmental transmission model. We accounted for age-specific social con-
tact patterns and included reduced contact behavior when symptomatically
infected. We simulated the impact of employer-funded influenza vaccination
at the workplace and performed a cost-benefit analysis to assess the employers’
return on workplace vaccination. Furthermore, we looked into the cost-benefit
of rewarding vaccinated employees by offering an additional day off. Work-
place vaccination reduced the burden of influenza both in the workplace and
in the population at large. Compared to the current vaccine coverage – 21%
in the population at large – an employee vaccine coverage of 90% could avert
an additional 355,000 cases each year, of which about 150,000 in the employed
population and 205,000 in the unemployed population. While, on average, sea-
sonal influenza vaccination has been cost-saving at about e10 per vaccinated
employee, the cost-benefit analysis was prone to significant between-season
variability.

In conclusion, policymakers and researchers should look at herd immunity
as an asset rather than a liability. Indeed, following the results described in
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Chapters 3 to 5, we found no evidence for free-rider incentives in any study
population [416]. In contrast, peer influence, social norms and altruism were
consistently found to increase vaccines’ value to the public. Communicating
that vaccination is still the norm, while refusals are exceptional, is important to
maintain – or even increase – high vaccination coverage. When confronted with
vaccine hesitant individuals, guidelines can provide a stepwise and tailored
approach to communicate with such individuals [220]. However, policymakers
need to look beyond vaccine hesitancy in order to reach optimal immunization
coverages. More specifically, vaccine effectiveness, vaccine accessibility and
VPD burden were found to be key in guiding people’s vaccination decisions.
With respect to vaccines’ accessibility, there is a lot of room for improvement
for vaccines aimed at the adult population. More specifically, workplace in-
fluenza vaccination provides an efficient alternative to time consuming visits
to both GP and pharmacy, in addition to being a safety barrier to vulnerable
individuals in the population at large. With respect to other characteristics,
vaccines warrant a high value to the vast majority of the population. Indeed,
vaccines provide safe and effective protection against harmful diseases and
generally reach high coverage levels [446]. Communication strategies are
needed in order to align the public’s perception with scientific evidence and
to counter vaccine controversies increasingly spread through the internet and
social media [105, 214, 343]. Furthermore, health economists and infectious
disease modellers should not neglect behavioral changes due to non-linearities
between prevention uptake and disease dynamics. Increased data collection
is, however, needed at the interface between risk perception and disease dy-
namics. If data are available, data-driven BCMs are preferred to theoretical
models. Though, purely game-theoretical models have become obsolete. To
the very least, modellers should include behavior-induced model uncertainties
in a sensitivity analysis.



Samenvatting

Infectieziekten vormen een aanzienlijke bedreiging voor de gezondheid en
welvaart wereldwijd, zoals ook blijkt uit de huidige COVID–19 pandemie.
Preventie en bestrijding van infectieziekten zijn bijgevolg essentieel voor de
volksgezondheid en het algemeen welzijn. Vaccinatie voorkomt jaarlijks 2
tot 3 miljoen doden en blijft tot op heden een fundamenteel instrument voor
de preventie van infectieziekten [443]. Vaccinatie wordt meestal gekenmerkt
door positieve externaliteiten, vaak ook ‘kudde-immuniteit’ of ‘groepsimmu-
niteit’ genoemd. Dit mechanisme zorgt ervoor dat succesvol gevaccineerde
individuen de ziekteverwekker waartegen ze gevaccineerd werden niet (of
nauwelijks) kunnen overdragen aan anderen. De endemische verspreiding
van een infectieziekte kan op deze manier vaak stopgezet worden zonder de
hele bevolking te vaccineren. Dit fenomeen is cruciaal omdat het bescherming
biedt voor kwetsbare individuen die vanwege hun leeftijd of door medische
redenen niet gevaccineerd kunnen worden.

Het gebruik van wiskundige en economische modellen is waardevol gebleken
om de impact van preventiemaatregelen op de verspreiding, ziektelast en
economische aspecten van infectieziekten te simuleren en te evalueren [297].
Deze modellen helpen beleidsmakers om zich voor te bereiden – en te reageren
– op uitbraken van nieuwe en bestaande infectieziekten, met name wanneer
voldoende informatie uit gecontroleerde experimenten ontbreekt. De impact
van preventiemaatregelen en andere beleidsinterventies zijn echter afhankelijk
van de bereidheid tot naleving, de individuele vraag naar preventiemidde-
len (zoals bijvoorbeeld vaccins), en het algemeen gedrag van de doelgroep.
Meer bepaald worden decennia aan voortgang die geboekt is bij de bestrijding
en preventie van infectieziekten momenteel bedreigd door een wereldwijde
toename van terughoudendheid en weigering van vaccins [217]. Het aantal
mensen dat vaccins als onveilig of onnodig beschouwt neemt toe, aangewak-
kerd door een vals gevoel van veiligheid als gevolg van een afname van door
vaccinatie te voorkomen ziekten, toename van anti-vaccinatieberichten via
sociale media [105] en voortdurende uitbuiting van een frauduleus artikel dat
het mazelen-bof-rubella-vaccin koppelt aan autisme [140]. Als reactie hierop
zijn gedragsveranderingsmodellen ontwikkeld om dynamisch gedrag (d.w.z.
de vraagzijde van preventiemaatregelen) op te nemen in modellen die de over-
dracht van infectieziekten nabootsen [127, 411]. Derhalve tracht men de impact
van bepaalde preventieve maatregelen op de ziektedynamiek accurater te
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voorspellen. Aangezien vaccinatie positieve externaliteiten oplevert, staat spel-
theorie vaak centraal in de karakterisering van gedragsveranderingsmodellen.
In zulke modellen wordt er vaak aangenomen dat zich rationeel gedragende
individuen vrijbuitersgedrag vertonen door te rekenen op ‘kudde-immuniteit’
en daarom in toenemende mate vaccinatie weigeren wanneer ze zien dat meer
leden van de bevolking worden geı̈mmuniseerd.

In Hoofdstuk 2 presenteren we de resultaten van een systematische review
over gedragsveranderingsmodellen in de context van infectieziekten, die wer-
den gepubliceerd in de periode 2010-2015. Uit de 5759 unieke publicaties die
resulteerden uit onze zoekopdracht, hebben we van 178 artikelen de volledige
tekst geanalyseerd. We zien een stijgende trend in gepubliceerde gedragsver-
anderingsmodellen, vaak als reactie op geobserveerde uitbraken van bepaalde
infectieziekten. We stellen een categorisering voor door te onderscheiden hoe
informatie zich in deze modellen vertaalt in preventieve acties. We zien dat
gedrag meestal wordt geı̈ntegreerd door informatie als een dynamische para-
meter te introduceren, of door een functie met een economisch objectief toe te
voegen, die al dan niet rekening houdt met imitatiegedrag. Ook benaderingen
met informatie-drempelwaarden en exogene gedragsvorming zijn populair.
We classificeren verder volgens ziekte, preventiemaatregel, transmissiemodel
(we onderscheiden populatie-, metapopulatie- en individu-gebaseerde model-
len) en de manier waarop preventie de transmissie beı̈nvloedt. Bovendien
ontdekten we dat in slechts 15% van de publicaties gebruik gemaakt werd van
geobserveerde (i.e. real-life) data voor de parameterisering of validatie van het
gebruikte model. Ondanks recente vorderingen blijven we dus bezorgd dat
de meeste modellen puur theoretisch zijn en geen representatieve gegevens
gebruiken, noch een validatieproces ondergaan.

Als reactie op de bevindingen in Hoofdstuk 2, wilden we het relatieve belang
bestuderen van kenmerken die mensen overwegen bij het nemen van beslissin-
gen omtrent vaccinatie voor zichzelf of voor hun kind. We hadden daarbij in
het bijzonder aandacht voor onderliggende motieven die voortkomen uit de
context, zoals vereiste inspanning (i.e. toegankelijkheid) en opportunisme (i.e.
vrijbuitersgedrag door kudde-immuniteit). We bevraagden de houding ten
opzichte van vaccinatie en voerden een discrete keuze-experiment uit om het
relatieve belang van verschillende kenmerken die beslissingen omtrent vacci-
natie kunnen beı̈nvloeden te onderzoeken. Dit deden we in Vlaanderen, België,
Zuid-Afrika, Frankrijk, Nederland en het Verenigd Koninkrijk. De resultaten
van deze studies staan beschreven in de Hoofdstukken 3 tot en met 5. We
verzamelden voorkeuren met betrekking tot 6 vaccin-specifieke kenmerken: (1)
werkzaamheid van het vaccin, (2) de ernst en frequentie van de door vaccinatie
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te voorkomen ziekte, (3) toegankelijkheid van het vaccin in termen van eigen
bijdrage, vaccinator en administratieve vereisten, (4) frequentie van (milde)
vaccin-gerelateerde bijwerkingen, (5) vaccinatiegraad onder de bevolking van
het land en (6) lokale vaccinatiegraad in persoonlijke netwerken. Hoewel alle
zes attributen significant bleken te zijn, werden voornamelijk de werkzaamheid
en de toegankelijkheid van het vaccin als essentieel beschouwd in alle studie-
populaties, gevolgd door de ziektelast van de te voorkomen ziekte. Bovendien
hechtten de respondenten meer waarde aan de ernst van de door vaccinatie te
voorkomen ziekte dan aan de frequentie ervan. Hoewel statistisch significant
in alle studiepopulaties, bleek de frequentie van (milde) vaccin-gerelateerde
bijwerkingen relatief onbelangrijk van zodra we specificeerden dat ernstige
bijwerkingen steeds zeer zeldzaam zijn. In tegenstelling tot wat de meeste
speltheoretische modellen aannemen, domineren sociale normen ten opzichte
van vrijbuitersgedrag, als drijfveer voor vaccinatiebeslissingen. Een vaccin
met reeds een hoge vaccinatiegraad – zowel in de algemene bevolking als in
persoonlijke netwerken – werd namelijk meer gewaardeerd dan een vaccin
met een lage vaccinatiegraad.

Vaccinatie tegen mazelen is geschikt om op te nemen in gedragsveranderings-
modellen omdat deze in het verleden geconfronteerd werd met een “vaccine
scare” (i.e. een angst voor het vaccin ) en omdat de hoge overdraagbaarheid
van mazelen een vaccinatiegraad van 95% of hoger vereist om de overdracht in
de populatie een halt toe te roepen. In Hoofdstuk 6 presenteren we een proof
of concept-studie over hoe gegevens van discrete keuze-experimenten gebruikt
kunnen worden om gedragsveranderingsmodellen te parametriseren. Meer
bepaald simuleerden we de dynamische couverture van het mazelenvaccin, pa-
rallel aan een dynamisch transmissiemodel voor de verspreiding van mazelen
in Vlaanderen (België) met behulp van de resultaten van het discrete keuze-
experiment dat werd beschreven in Hoofdstuk 3. We hebben de schattingen
met betrekking tot het marginaal nut van vaccins afgestemd op een functie die
de vaccinatiegraad van het mazelenvaccin bij kinderen van één jaar oud be-
paalt. De transmissiedynamiek van mazelen wordt gemodelleerd door middel
van een deterministisch differentiaalvergelijkingsmodel dat rekening houdt
met geboorten, sterfgevallen en vaccinatie. Meer bepaald werd er gebruik
gemaakt van een SIRV model. We onderzoeken de impact van 7 verschillende
gedragsscenario’s op het maatschappelijk nut van vaccins, de vaccinatiegraad
en de ziekteverspreiding. De toevoeging van een standaard gedragsverande-
ringsmodel – zonder exogene schokken – heeft geen significante invloed op de
algehele verspreiding van de ziekte en verhoogt de vaccinatiegraad zelfs enigs-
zins. Het introduceren van exogene schokken, zoals een “vaccine scare” of het
schorsen van vaccinatie tegen mazelen uit het standaard vaccinatieprogramma,
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veroorzaakt herhaalde uitbraken van mazelen bij de Vlaamse bevolking. Een
tijdelijke “vaccine scare” van 5 jaar en een lagere risicoperceptie van de ernst
van de mazelen veranderen de transmissiedynamiek niet in vergelijking met
de standaardsimulatie. Een “vaccine scare” gevolgd door een schorsing van
het vaccinatieprogramma tegen mazelen veroorzaakt schommelingen in de
vaccinatiegraad tussen de 25% en de 85%, met grote uitbraken om de paar jaar.

De economische evaluatie van vaccinatieprogramma’s is tevens essentieel voor
beleidsmakers in het kader van prioritering van schaarse middelen binnen
de gezondheidszorg en speelt een belangrijke rol in de beslissing tot (gedeel-
telijke) terugbetaling van vaccins. In hoofdstuk 7 hebben we gereduceerd
contactgedrag opgenomen in een economische analyse over vaccinatie op de
werkplek. Elk jaar geraakt ongeveer 10% van de niet-gevaccineerde volwas-
senen geı̈nfecteerd met seizoensgriep, waarbij de helft van deze personen
symptomen ontwikkelt. Als gevolg hiervan ervaren werkgevers aanzienlijke
economische verliezen door ziekteverzuim. Influenzavaccins kunnen een
belangrijke rol spelen bij het verminderen van deze last. Vaccinatie op de
werkplek zal naar verwachting het ziekteverzuim van werknemers meer dan
lineair doen verminderen als gevolg van – eerder beschreven – positieve ex-
ternaliteiten. We simuleerden de verspreiding van influenza in de seizoenen
2011-12 tot 2017-18 in België door middel van een compartimenteel transmis-
siemodel. We hielden rekening met leeftijdsspecifieke sociale contactpatronen
en met gereduceerd contactgedrag bij symptomatisch geı̈nfecteerden. We si-
muleerden de impact van door de werkgever gefinancierde griepvaccinatie
op de werkplek en voerden een kosten-batenanalyse uit om het rendement
van vaccinatie op de werkplek te berekenen. Verder hebben we gekeken naar
de kosten-batenverhouding van het belonen van gevaccineerde medewerkers
door hen een extra vrije dag aan te bieden. Vaccinatie op de werkplek ver-
minderde de ziektelast van griep, zowel op de werkplek als bij de algemene
bevolking. Vergeleken met de huidige vaccinatiegraad – 21% in de algemene
bevolking – zou een vaccinatiegraad van 90% bij werknemers elk jaar 355.000
bijkomende griepgevallen kunnen voorkomen, waarvan ongeveer 150.000 on-
der de werkende bevolking en 205.000 onder de rest van de bevolking. Hoewel
vaccinatie tegen seizoensinfluenza gemiddeld een kostenbesparing opleverde
van ongeveer e10 per gevaccineerde werknemer, was de kosten-batenanalyse
onderhevig aan aanzienlijke variabiliteit tussen de verschillende seizoenen.

In het kader van vaccinatiegedrag zouden beleidsmakers en onderzoekers
kudde-immuniteit als gevolg van vaccinatie dus eerder als een positief dan
negatief fenomeen moeten beschouwen. Inderdaad, op basis van de resulta-
ten beschreven in de hoofdstukken 3 tot 5, vonden we in geen enkele van de
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studie-populaties indicaties voor vrijbuitersgedrag [416]. Daarentegen bleken
groepsinvloeden, sociale normen en altruı̈sme consequent de gepercipieerde
waarde van vaccins te verhogen in de algemene bevolking. Communicatie
die duidelijk maakt dat vaccinatie nog steeds de norm is – en dat weigeringen
uitzonderlijk zijn – is belangrijk om een hoge vaccinatiegraad te behouden
of deze zelfs te verhogen. Wanneer men geconfronteerd wordt met mensen
die aarzelen of weigerachtig zijn om te vaccineren, kunnen richtlijnen een
stapsgewijze en op maat gemaakte benadering bieden om met dergelijke per-
sonen te communiceren [220]. Om een optimale immunisatiegraad te bereiken,
moeten beleidsmakers zich echter niet beperken tot personen die aarzelen
of weigerachtig tegenover vaccinatie staan. Meer in het bijzonder bleken de
werkzaamheid van het vaccin, de toegankelijkheid van het vaccin en de ziek-
telast van de te voorkomen ziekte, de sleutel te zijn bij het informeren van
individuen in hun vaccinatiebeslissingen. Wat betreft de toegankelijkheid
van vaccins is er veel ruimte voor verbetering bij vaccins die gericht zijn op
de volwassen bevolking. Meer specifiek biedt vaccinatie tegen influenza op
de werkplek een efficiënt alternatief voor tijdrovende bezoeken aan zowel
de huisarts als de apotheek, en draagt het bovendien bij aan een belangrijke
veiligheidsbarrière voor kwetsbare individuen in de algemene bevolking. Wat
betreft de overige kenmerken, zou er een hoge waarde aan vaccins worden ge-
hecht door de overgrote meerderheid van de bevolking. Vaccins bieden immers
een veilige en effectieve bescherming tegen schadelijke ziekten en bereiken
over het algemeen een hoge vaccinatiegraad [446]. Communicatiestrategieën
zijn nodig om de perceptie van het publiek af te stemmen op het aanwezige
wetenschappelijk bewijs en om vaccin-controverses tegen te gaan die steeds
vaker via het internet en sociale media worden verspreid [105, 214, 343]. Bo-
vendien mogen gezondheidseconomen en modelleerders van infectieziekten,
gedragsveranderingen niet negeren gegeven de gevolgen van het niet-lineaire
verband tussen de opname van preventiemaatregelen en ziektedynamiek. Er
is echter meer wetenschappelijke gegevensverzameling nodig op het raakvlak
tussen risicoperceptie en ziektedynamiek. Als zulke gegevens beschikbaar zijn,
genieten gedragsveranderingsmodellen die gebaseerd zijn op data de voorkeur
tegenover louter theoretische modellen. Puur speltheoretische modellen zijn
echter achterhaald. Modelleerders zouden op zijn minst gedragsgeı̈nduceerde
modelonzekerheden moeten opnemen in een sensitiviteitsanalyse.
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95. E. M. Donadiki, R. Jiménez-Garcı́a, V. Hernández-Barrera, P. Sourtzi, P. Carrasco-Garrido,
A. L. de Andrés, I. Jimenez-Trujillo, and E. G. Velonakis. Health belief model applied to
non-compliance with hpv vaccine among female university students. Public Health, 128(3):
268–273, 2014.

96. C. Dong, Q. Yin, W. Liu, Z. Yan, and T. Shi. Can rewiring strategy control the epidemic
spreading? Physica a-Statistical Mechanics and Its Applications, 438:169–177, 2015.

97. A. d’Onofrio and P. Manfredi. Vaccine demand driven by vaccine side effects: Dynamic
implications for SIR diseases. Journal of Theoretical Biology, 264(2):237–252, 2010.

98. A. d’Onofrio, P. Manfredi, and P. Poletti. The impact of vaccine side effects on the natural
history of immunization programmes: An imitation-game approach. Journal of Theoretical
Biology, 273(1):63–71, 2011.

99. A. d’Onofrio, P. Manfredi, and P. Poletti. The Interplay of Public Intervention and Private
Choices in Determining the Outcome of Vaccination Programmes. PLoS one, 7(10), 2012.

100. C. Dorell, D. Yankey, A. Kennedy, and S. Stokley. Factors That Influence Parental Vaccina-
tion Decisions for Adolescents, 13 to 17 Years Old National Immunization Survey–Teen,
2010. Clinical pediatrics, 52(2):162–170, 2013.

101. M. Drummond. Twenty years of using economic evaluations for drug reimbursement
decisions: what has been achieved? Journal of health politics, policy and law, 38(6):1081–1102,
2013.

102. M. F. Drummond, M. J. Sculpher, K. Claxton, G. L. Stoddart, and G. W. Torrance. Methods
for the economic evaluation of health care programmes. Oxford university press, 2015.
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Supplementary information

Chapter 3

Summary

This appendix contains methodological details of the Bayesian D-efficient
survey design of the DCE in Chapter 3: “Vaccination behavior in Flanders”.
Moreover, we added the results of a PML model that decomposed the
burden of disease attribute into severity of disease and frequency of (or
susceptibility to) the vaccine-preventable disease.
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A.1 Bayesian D-efficient partial profile design

The design of the DCE, shown in Table A.1, includes five surveys of 10 choice
sets with two alternative vaccination programs. The choice sets in each survey
were assigned in a random order to the respondents. Each survey was com-
pleted by about 218 respondents in the adult group and about 166 respondents
in the child group. The choice sets are described by six attributes, three of
which have varying levels and the remaining three constant levels. The levels
of the varying attributes are indicated in yellow. The constant attributes are
shown to present vaccine profiles in full as well as to enable estimating all
two-way interactions between the attributes ‘vaccine effectiveness’, ‘VRSE’ and
‘accessibility’. In each survey each attribute is varying in five choice sets and
constant in five choice sets.
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Table A.1: Five surveys of the Bayesian D-efficient partial profile de-
sign.

Survey Choice set
Vaccine
effective-
ness

Burden of
disease VRSE Accessibility Local cov-

erage
Population
coverage

1 1 50% Rare &
mild Rare

Co-payment
& prescrip-
tion

60% 30%

1 1 50% Rare &
mild Frequent

Co-payment
& prescrip-
tion

30% 90%

1 2 90% Rare &
mild Frequent

Co-payment
& prescrip-
tion

60% 60%

1 2 90% Rare &
mild Rare Free & acces-

sible 90% 60%

1 3 90% Common
& severe Rare Free & acces-

sible 30% 30%

1 3 90% Rare & se-
vere Rare Free & acces-

sible 60% 90%

1 4 50% Rare & se-
vere Frequent

Co-payment
& prescrip-
tion

60% 90%

1 4 50% Rare &
mild Frequent Free & acces-

sible 60% 30%

1 5 50% Rare & se-
vere Frequent Free & acces-

sible 60% 90%

1 5 50% Rare &
mild Rare

Co-payment
& prescrip-
tion

60% 90%

1 6 90% Rare &
mild Frequent

Co-payment
& prescrip-
tion

30% 30%

1 6 50% Rare &
mild Frequent Free & acces-

sible 30% 60%

1 7 90% Common
& mild Frequent

Co-payment
& prescrip-
tion

90% 60%

1 7 50% Common
& mild Frequent Free & acces-

sible 60% 60%

1 8 90% Rare & se-
vere Frequent Free & acces-

sible 90% 90%

1 8 50% Rare & se-
vere Rare Free & acces-

sible 90% 60%

1 9 50% Common
& severe Rare

Co-payment
& prescrip-
tion

90% 30%

1 9 90% Common
& mild Rare

Co-payment
& prescrip-
tion

60% 30%

1 10 50% Common
& severe Rare

Co-payment
& prescrip-
tion

90% 90%

1 10 90% Rare &
mild Frequent

Co-payment
& prescrip-
tion

90% 90%
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Table A.1 Continued: Five surveys of the Bayesian D-efficient partial
profile design.

Survey Choice set
Vaccine
effective-
ness

Burden of
disease VRSE Accessibility Local cov-

erage
Population
coverage

2 1 50% Common
& mild Frequent

Co-payment
& prescrip-
tion

60% 60%

2 1 50% Common
& mild Frequent Free & acces-

sible 30% 30%

2 2 90% Common
& severe Rare Free & acces-

sible 60% 90%

2 2 90% Common
& severe Frequent

Co-payment
& prescrip-
tion

30% 90%

2 3 50% Rare & se-
vere Frequent

Co-payment
& prescrip-
tion

30% 60%

2 3 50% Common
& mild Frequent

Co-payment
& prescrip-
tion

60% 90%

2 4 90% Rare &
mild Rare Free & acces-

sible 30% 90%

2 4 90% Rare & se-
vere Frequent Free & acces-

sible 30% 60%

2 5 90% Common
& severe Frequent

Co-payment
& prescrip-
tion

90% 30%

2 5 90% Rare &
mild Rare Free & acces-

sible 90% 30%

2 6 50% Rare & se-
vere Rare Free & acces-

sible 60% 90%

2 6 90% Rare & se-
vere Rare

Co-payment
& prescrip-
tion

60% 60%

2 7 90% Common
& severe Frequent

Co-payment
& prescrip-
tion

60% 60%

2 7 50% Common
& severe Rare

Co-payment
& prescrip-
tion

60% 30%

2 8 90% Rare &
mild Frequent Free & acces-

sible 30% 60%

2 8 50% Rare &
mild Rare Free & acces-

sible 90% 60%

2 9 50% Common
& severe Frequent

Co-payment
& prescrip-
tion

90% 60%

2 9 90% Rare &
mild Frequent

Co-payment
& prescrip-
tion

60% 60%

2 10 90% Rare & se-
vere Rare

Co-payment
& prescrip-
tion

30% 60%

2 10 50% Common
& severe Rare Free & acces-

sible 30% 60%
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Table A.1 Continued: Five surveys of the Bayesian D-efficient partial
profile design.

Survey Choice set
Vaccine
effective-
ness

Burden of
disease VRSE Accessibility Local cov-

erage
Population
coverage

3 1 50% Common
& mild Rare Free & acces-

sible 60% 90%

3 1 50% Common
& mild Rare

Co-payment
& prescrip-
tion

30% 30%

3 2 90% Rare & se-
vere Frequent Free & acces-

sible 30% 90%

3 2 90% Rare & se-
vere Rare Free & acces-

sible 60% 30%

3 3 90% Rare & se-
vere Rare

Co-payment
& prescrip-
tion

90% 90%

3 3 90% Common
& mild Rare Free & acces-

sible 90% 30%

3 4 90% Rare & se-
vere Rare Free & acces-

sible 30% 30%

3 4 90% Common
& severe Frequent Free & acces-

sible 90% 30%

3 5 50% Rare &
mild Rare

Co-payment
& prescrip-
tion

90% 60%

3 5 50% Common
& mild Frequent Free & acces-

sible 90% 60%

3 6 90% Rare & se-
vere Frequent

Co-payment
& prescrip-
tion

30% 90%

3 6 50% Rare & se-
vere Frequent Free & acces-

sible 90% 90%

3 7 90% Common
& severe Frequent

Co-payment
& prescrip-
tion

30% 90%

3 7 50% Common
& severe Rare

Co-payment
& prescrip-
tion

30% 60%

3 8 90% Common
& mild Frequent

Co-payment
& prescrip-
tion

30% 30%

3 8 50% Common
& mild Rare Free & acces-

sible 30% 30%

3 9 90% Rare &
mild Frequent Free & acces-

sible 60% 90%

3 9 50% Rare & se-
vere Frequent Free & acces-

sible 60% 30%

3 10 50% Rare & se-
vere Rare

Co-payment
& prescrip-
tion

30% 30%

3 10 90% Rare &
mild Rare

Co-payment
& prescrip-
tion

90% 30%
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Table A.1 Continued: Five surveys of the Bayesian D-efficient partial
profile design.

Survey Choice set
Vaccine
effective-
ness

Burden of
disease VRSE Accessibility Local cov-

erage
Population
coverage

4 1 50% Rare &
mild Rare

Co-payment
& prescrip-
tion

30% 90%

4 1 50% Rare &
mild Frequent

Co-payment
& prescrip-
tion

60% 30%

4 2 90% Common
& severe Frequent Free & acces-

sible 30% 30%

4 2 90% Common
& severe Rare

Co-payment
& prescrip-
tion

30% 60%

4 3 90% Rare &
mild Rare Free & acces-

sible 60% 60%

4 3 90% Common
& mild Rare Free & acces-

sible 90% 90%

4 4 50% Rare &
mild Frequent Free & acces-

sible 90% 60%

4 4 50% Common
& mild Frequent

Co-payment
& prescrip-
tion

30% 60%

4 5 90% Rare & se-
vere Frequent Free & acces-

sible 90% 30%

4 5 90% Common
& mild Rare

Co-payment
& prescrip-
tion

90% 30%

4 6 50% Common
& severe Frequent Free & acces-

sible 60% 90%

4 6 90% Common
& severe Frequent

Co-payment
& prescrip-
tion

60% 30%

4 7 90% Rare &
mild Rare

Co-payment
& prescrip-
tion

90% 90%

4 7 50% Rare &
mild Rare Free & acces-

sible 60% 90%

4 8 90% Common
& mild Frequent Free & acces-

sible 60% 90%

4 8 50% Common
& mild Rare Free & acces-

sible 30% 90%

4 9 50% Common
& severe Frequent

Co-payment
& prescrip-
tion

30% 90%

4 9 90% Common
& mild Frequent

Co-payment
& prescrip-
tion

30% 60%

4 10 50% Common
& severe Rare Free & acces-

sible 60% 60%

4 10 90% Common
& mild Frequent Free & acces-

sible 60% 60%
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Table A.1 Continued: Five surveys of the Bayesian D-efficient partial
profile design.

Survey Choice set
Vaccine
effective-
ness

Burden of
disease VRSE Accessibility Local cov-

erage
Population
coverage

5 1 90% Common
& severe Rare

Co-payment
& prescrip-
tion

60% 90%

5 1 90% Common
& severe Frequent Free & acces-

sible 60% 60%

5 2 50% Rare & se-
vere Frequent

Co-payment
& prescrip-
tion

90% 60%

5 2 50% Rare & se-
vere Rare Free & acces-

sible 30% 60%

5 3 90% Rare & se-
vere Rare

Co-payment
& prescrip-
tion

90% 30%

5 3 90% Common
& mild Rare

Co-payment
& prescrip-
tion

30% 90%

5 4 90% Common
& mild Rare Free & acces-

sible 30% 60%

5 4 90% Common
& severe Rare

Co-payment
& prescrip-
tion

30% 30%

5 5 50% Common
& severe Frequent

Co-payment
& prescrip-
tion

60% 60%

5 5 50% Common
& mild Rare

Co-payment
& prescrip-
tion

90% 60%

5 6 90% Common
& severe Rare Free & acces-

sible 30% 60%

5 6 50% Common
& severe Rare Free & acces-

sible 90% 30%

5 7 90% Rare &
mild Frequent Free & acces-

sible 60% 30%

5 7 50% Rare &
mild Frequent

Co-payment
& prescrip-
tion

30% 30%

5 8 90% Rare & se-
vere Frequent

Co-payment
& prescrip-
tion

60% 30%

5 8 50% Rare & se-
vere Rare

Co-payment
& prescrip-
tion

60% 60%

5 9 90% Common
& mild Frequent

Co-payment
& prescrip-
tion

90% 90%

5 9 50% Common
& severe Frequent Free & acces-

sible 90% 90%

5 10 50% Common
& severe Rare Free & acces-

sible 90% 30%

5 10 90% Rare &
mild Frequent Free & acces-

sible 90% 30%
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A.2 Multivariate normal prior parameter distribution for the
Bayesian D-efficient partial profile design

To construct the Bayesian D-efficient partial profile design for the vaccination
DCE shown in Appendix A.1, we used a multivariate normal prior distribution
that reflects the prior beliefs about the unknown parameter values associated
with the levels of the six attributes. Based on expert interviews and literature
review, we ranked the six attributes in descending order of importance and
specified mean parameter values and variances for the multivariate normal
prior distribution.

Table A.2 shows the six attributes in descending order of expected importance.
Based on the listed ranks, we specified prior mean utility values for the main
effects of the attributes. The more important an attribute, the greater the a
priori mean utility values specified for the main effects of that attribute. We
adopted the same ordering of the attribute levels as in Table 5.1, where they
are ranked from least to most favored. We had no preconception of people’s
preferences for both coverage attributes, which corresponds to specifying zero
mean utility values. The preference direction for the levels of these attributes
could be either increasing (i.e. higher coverage leads to more willingness to
vaccinate) or decreasing. The a priori mean utility values associated with the
levels of each attribute are symmetric around zero, and thus sum to zero. The
latter is imposed by the effects-type coding used for the attribute levels, which
means that the levels of the 2-level attributes ‘vaccine effectiveness’, ‘VRSE’
and ‘accessibility’ are coded as 1 and -1, the levels of the 3-level attributes ‘local
coverage’ and ‘population coverage’ are coded as [1 0], [0 1] and [-1 - 1] and
the levels of the 4-level attribute ‘burden of disease’ are coded as [1 0 0], [0 1 0],
[0 0 1] and [-1 -1 -1].

Table A.2: A priori order of importance of the main effects of the six
attributes and conversion into mean utility values used in the multi-
variate normal prior distribution.

Rank Attribute Prior mean

Level a Level b Level c Level d

1 Vaccine effectiveness -0.8 0.8

2 Burden of disease -0.6 -0.2 0.2 0.6

3 VRSE -0.4 0.4

4 Accessibility -0.3 0.3

5 Local coverage 0 0 0
5 Population coverage 0 0 0
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We also specified prior variances and covariances around the mean utility
values for the attributes’ main effects. We used values of 0.09 for all attribute
levels, because this preserved the preference ordering for the levels of an at-
tribute as much as possible. Following Kessels et al. [197] we specified negative
covariances of -0.045 for the 3-level attributes and -0.03 for the 4-level attribute
so that we also obtained variances of 0.09 for the derived utility values associ-
ated with the last level of each attribute. We computed these covariances using
prior correlations of -1/2 for the 3-level attributes and of -1/3 for the 4-level
attribute. In the absence of prior information for the interaction effects between
‘vaccine effectiveness’, ‘VRSE’ and ‘accessibility’, we specified zero mean utility
values for these. For ease of computation, we also assumed zero prior variances
around the utility values for the interaction effects, allowing for no uncertainty
around these values. This implies that the prior parameter specification of the
interaction effects corresponds to a local instead of a Bayesian approach.
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A.3 Panel mixed logit estimates with decomposition of the
burden of disease attribute
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Table A.3: Panel mixed logit model estimates (means and standard deviations) and significances of the attribute effects obtained
from likelihood ratio (LR) tests. Adult Model without and with decomposition of the burden of disease attribute.

Term Mean estimate (std dev; subject std dev) LR Chi-square P-value
No decomposition Decomposition No decomposition Decomposition No decomposition Decomposition

VRSE
Common -0.563 (0.023; 0.058) -0.542 (0.021; 0.049)

640.612 644.003 < 0.0001 < 0.0001
Rare 0.563 0.542

Accessibility
Co-payment & prescription -0.410 (0.023; 0.058) -0.398 (0.015; 0.103)

412.568 412.431 < 0.0001 < 0.0001
Free & accessible 0.410 0.398

Vaccine effectiveness
50% -0.487 (0.023; 0.075) -0.469 (0.019; 0.08)

358.211 353.218 < 0.0001 < 0.0001
90% 0.487 0.469

Burden of disease
Rare & mild -0.423 (0.042; 0.070)

218.655 < 0.0001
Common & mild -0.313 (0.042; 0.049)
Rare & severe 0.204 (0.040; 0.034)
Common & severe 0.532
Mild -0.356

210.109 < 0.0001
Severe 0.356 (0.023; 0.061)
Rare -0.076 (0.022; 0.042)

13.714 0.0002
Common 0.076

VRSE*age group
Common*[18-34] 0.215 (0.028; 0.044) 0.215 (0.029; 0.044)

57.915 58.679 < 0.0001 < 0.0001

Common*[35-49] 0.022 (0.035; 0.051) 0.018 (0.039; 0.051)
Common*[50-64] -0.133 (0.033; 0.051) -0.138 (0.033; 0.053)
Common*[65-85] -0.104 -0.095
Rare*[18-34] -0.215 -0.215
Rare*[35-49] -0.022 -0.018
Rare*[50-64] 0.133 0.138
Rare*[65-85] 0.104 0.095

Population coverage (x10%) 0.055 (0.007; 0.044) 0.054 (0.007; 0.044) 45.431 44.013 < 0.0001 < 0.0001
Local coverage (x10%) 0.047 (0.008; 0.040) 0.049 (0.007; 0.040) 31.638 35.721 < 0.0001 < 0.0001

Note: Mean estimates corresponding to the last level of an attribute, either as a main effect or involved in an interaction, are calculated as minus the sum of the estimates for the other levels of the attribute.
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Table A.3 Cont. Panel mixed logit model estimates (means and standard deviations) and significances of the attribute effects
obtained from likelihood ratio (LR) tests. Adult Model without and with decomposition of the burden of disease attribute

Term Mean estimate (std dev; subject std dev) LR Chi-square P-value
No decomposition Decomposition No decomposition Decomposition No decomposition Decomposition

Burden of disease*age group
Rare & mild*[18-34] -0.161 (0.061; 0.089)

48.614 < 0.0001

Rare & mild*[35-49] -0.001 (0.083; 0.094)
Rare & mild*[50-64] -0.081 (0.081; 0.074)
Rare & mild*[65-85] 0.228
Common & mild*[18-34] -0.096 (0.060; 0.074)
Common & mild*[35-49] 0.073 (0.068; 0.070)
Common & mild*[50-64] -0.134 (0.050; 0.067)
Common & mild*[65-85] 0.157
Rare & severe*[18-34] 0.105 (0.055; 0.056)
Rare & severe*[35-49] -0.107 (0.076; 0.055)
Rare & severe*[50-64] 0.053 (0.059; 0.050)
Rare & severe*[65-85] -0.051
Common & severe*[18-34] 0.152
Common & severe*[35-49] 0.029
Common & severe*[50-64] 0.162
Common & severe*[65-85] -0.343
Mild*[18-34] -0.110

41.816 < 0.0001

Mild*[35-49] 0.056
Mild*[50-64] -0.127
Mild*[64-85] 0.181
Severe*[18-34] 0.110 (0.038; 0.072)
Severe*[35-49] -0.056 (0.035; 0.052)
Severe*[50-64] 0.127 (0.034; 0.061)
Severe*[65-85] -0.181

Note: Mean estimates corresponding to the last level of an attribute, either as a main effect or involved in an interaction, are calculated as minus the sum of the estimates for the other levels of the attribute.
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Table A.3 Cont. Panel mixed logit model estimates (means and standard deviations) and significances of the attribute effects
obtained from likelihood ratio (LR) tests. Adult Model without and with decomposition of the burden of disease attribute

Term Mean estimate (std dev; subject std dev) LR Chi-square P-value
No decomposition Decomposition No decomposition Decomposition No decomposition Decomposition

Burden of disease*traditional media
Rare & mild*not selected 0.126 (0.033; 0.054)

17.930 0.0005

Rare & mild*selected -0.126
Common & mild*not selected 0.044 (0.034; 0.049)
Common & mild*selected -0.044
Rare & severe*not selected -0.024 (0.044; 0.032)
Rare & severe*selected 0.024
Common & severe*not selected -0.146
Common & severe*selected 0.146
Severe*not selected -0.072 (0.021; 0.100)

12.973 0.0003
Severe*selected 0.072
Mild*not selected 0.072
Mild*selected -0.072

Note: Mean estimates corresponding to the last level of an attribute, either as a main effect or involved in an interaction, are calculated as minus the sum of the estimates for the other levels of the attribute.
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Table A.4: Panel mixed logit model estimates (means and standard deviations) and significances of the attribute effects obtained
from likelihood ration (LR) tests. Child Model without and with decomposition of the burden of disease attribute.

Term Mean estimate (std dev; subject std dev) LR Chi-square P-value
No decomposition Decomposition No decomposition Decomposition No decomposition Decomposition

VRSE
Common -0.516 (0.027; 0.118) -0.526 (0.023; 0.117)

452.542 453.259 < 0.0001 < 0.0001
Rare 0.516 0.526

Accessibility
Co-payment & prescription -0.447 (0.026; 0.155) -0.460 (0.020; 0.142)

384.639 384.679 < 0.0001 < 0.0001
Free & accessible 0.447 0.460

Vaccine effectiveness
50% -0.519 (0.034; 0.121) -0.535 (0.024; 0.130)

315.617 317.892 < 0.0001 < 0.0001
90% 0.519 0.535

Burden of disease
Rare & mild -0.614 (0.052; 0.090)

255.510 < 0.0001
Common & mild -0.283 (0.036; 0.103)
Rare & severe 0.271 (0.041; 0.045)
Common & severe 0.627
Mild -0.468

245.297 < 0.0001
Severe 0.468 (0.029; 0.075)
Rare -0.182 (0.027; 0.058)

42.844 < 0.0001
Common 0.182

Population coverage (x10%) 0.077 (0.009; 0.053) 0.078 (0.009; 0.055) 69.391 69.469 < 0.0001 < 0.0001
Local coverage (x10%) 0.058 (0.008; 0.052) 0.062 (0.009; 0.051) 35.822 36.225 < 0.0001 < 0.0001

Note: Mean estimates corresponding to the last level of an attribute, either as a main effect or involved in an interaction, are calculated as minus the sum of the estimates for the other levels of the attribute.
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Table A.4 Cont. Panel mixed logit model estimates (means and standard deviations) and significances of the attribute effects
obtained from likelihood ration (LR) tests. Child Model without and with decomposition of the burden of disease attribute.

Term Mean estimate (std dev; subject std dev) LR Chi-square P-value
No decomposition Decomposition No decomposition Decomposition No decomposition Decomposition

Burden of disease*acceptor
Rare & mild*agree 0.114 (0.041; 0.168)

18.069 0.0004

Rare & mild*disagree -0.114
Common & mild*agree 0.092 (0.037; 0.116)
Common & mild*disagree -0.092
Rare & severe*agree -0.064 (0.038; 0.046)
Rare & severe*disagree 0.064
Common & severe*agree -0.142
Common & severe*disagree 0.142
Severe*agree -0.112 (0.024; 0.388)

17.210 < 0.0001
Severe*disagree 0.112
Mild*agree 0.112
Mild*disagree -0.112

Note: Mean estimates corresponding to the last level of an attribute, either as a main effect or involved in an interaction, are calculated as minus the sum of the estimates for the other levels of the attribute.
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Summary

This appendix contains details on the PML models including covariate
interaction effects of the DCE described in Chapter 5: “No such thing as
a free-rider?”. Moreover, we added the responses to the vaccine attitude
statements in Belgium, France, The United Kingdom and The Netherlands.
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B.1 PML model estimates including covariate interaction
effects

In this appendix, we provide the results of the PML models including the most
important covariate interactions. We estimated six of such models: for each
country (Belgium, The UK and France) and for each target group (‘oneself’ and
‘child’ groups). For each model, we first displayed the significant covariate
effects by means of a bar chart (Figures B.1 to B.6), including a 95% confidence
interval. The PML details are provided in Tables B.1 to B.6.
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Figure B.1: Marginal utilities for significant covariate interactions
with disease burden (above) and vaccine effectiveness (below). ‘One-
self’ model, Belgium.



B.1. PML MODEL ESTIMATES INCLUDING COVARIATE INTERACTION
EFFECTS 277

Table B.1: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. ‘Oneself’ model Belgium, including covariate
interactions

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

Accessibility
Co-payment & prescription -0.433 (0.024; 0.376)

327.736 1 < 0.0001
Free & accessible 0.433 (0.022; 0.370)

Burden of disease
Rare & mild -0.484 (0.058; 0.187)

257.965 3 < 0.0001
Common & mild -0.565 (0.049; 0.132)
Rare & severe 0.476 (0.054; 0.099)
Common & severe 0.573 (0.054; 0.159)

Vaccine effectiveness
50% -0.452 (0.038; 0.153)

192.235 1 < 0.0001
90% 0.452 (0.030; 0.144)

Population coverage (x10%) 0.086 (0.009; 0.125) 66.439 1 < 0.0001
Mild VRSE

Common -0.179 (0.024; 0.112)
58.630 1 < 0.0001

Rare 0.179 (0.022; 0.101)
Vaccine effectiveness*Protective†

50%*agree -0.113 (0.027; 0.162)

18.087 1 < 0.0001
50%*disagree 0.113 (0.028; 0.162)
90%*agree 0.113 (0.025; 0.127)
90%*disagree -0.113 (0.024; 0.140)

Local coverage (x10%) 0.049 (0.009; 0.084) 18.079 1 < 0.0001
Burden of disease*Age

Rare & mild*[18-34] -0.179 (0.087; 0.210)

33.439 9 0.0001

Rare & mild*[35-49] -0.043 (0.096; 0.251)
Rare & mild*[50-65] 0.212 (0.087; 0.254)
Rare & mild*[65+] 0.010 (0.105; 0.269)
Common & mild*[18-34] -0.020 (0.081; 0.174)
Common & mild*[35-49] -0.154 (0.099; 0.223)
Common & mild*[50-65] -0.173 (0.087; 0.200)
Common & mild*[65+] 0.347 (0.089; 0.246)
Rare & severe*[18-34] 0.112 (0.085; 0.140)
Rare & severe*[35-49] 0.188 (0.088; 0.146)
Rare & severe*[50-65] 0.001 (0.079; 0.170)
Rare & severe*[65+] -0.301 (0.068; 0.135)
Common & severe*[18-34] 0.087 (0.080; 0.146)
Common & severe*[35-49] 0.009 (0.095; 0.174)
Common & severe*[50-65] -0.040 (0.079; 0.185)
Common & severe*[65+] -0.056 (0.076; 0.143)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute. †Protective: “The
available vaccinations are suited to protect my health.”
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Figure B.2: Marginal utilities for significant covariate interaction with
accessibility. ‘Youngest child’ model, Belgium.

Table B.2: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. ‘Youngest child’ model Belgium, including
covariate interactions

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

Vaccine effectiveness
50% -0.584 (0.033; 0.238)

192.237 1 < 0.0001
90% 0.584 (0.041; 0.230)

Burden of disease
Rare & mild -0.380 (0.063; 0.342)

163.220 3 < 0.0001
Common & mild -0.621 (0.064; 0.458)
Rare & severe 0.359 (0.054; 0.256)
Common & severe 0.642 (0.068; 0.351)

Accessibility
Co-payment & prescription -0.375 (0.043; 0.182)

94.231 1 < 0.0001
Free & accessible 0.375 (0.044; 0.177)

Population coverage (x10%) 0.132 (0012.; 0.138) 93.690 1 < 0.0001
Mild VRSE

Common -0.229 (0.030; 0.140)
45.361 1 < 0.0001

Rare 0.229 (0.029; 0.134)
Local coverage (x10%) 0.074 (0.014; 0.120) 27.390 1 < 0.0001
Accessibility*Severity VPD†

Co-payment & prescription*agree -0.159 (0.042; 0.178)

18.556 1 < 0.0001
Co-payment & prescription*disagree 0.159 (0.037; 0.179)
Free & accessible*agree 0.159 (0.037; 0.185)
Free & accessible*disagree -0.159 (0.037; 0.175)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute. †Severity VPD: “The
diseases that are vaccinated against can be very serious.”
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Figure B.3: Marginal utilities for significant covariate interactions
with accessibility (above) and VRSE (below). ‘Oneself’ model, United
Kingdom.
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Table B.3: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. ‘Oneself’ model United Kingdom, including
covariate interactions

Term Mean estimate (std dev;
subject std dev)

LR Chi-
square

DF P-value

Vaccine effectiveness
50% -0.720 (0.037; 0.301)

431.561 1 < 0.0001
90% 0.720 (0.034; 0.296)

Burden of disease
Rare & mild -0.545 (0.053; 0.310)

192.478 3 < 0.0001
Common & mild -0.368 (0.055; 0.438)
Rare & severe 0.327 (0.046; 0.219)
Common & severe 0.586 (0.056; 0.259)

Accessibility
Co-payment & prescription -0.360 (0.040; 0.124)

121.213 1 < 0.0001
Free & accessible 0.360 (0.040; 0.120)

Population coverage (x10%) 0.099 (0.010; 0.128) 94.070 1 < 0.0001
Mild VRSE

Common -0.225 (0.027; 0.087)
66.328 1 < 0.0001

Rare 0.225 (0.028; 0.089)
Local coverage (x10%) 0.084 (0.010; 0.080) 48.389 1 < 0.0001
Accessibility*Measles susceptibility†

Co-payment & prescription*low risk -0.257 (0.042; 0.167)

39.611 2 < 0.0001

Co-payment & prescription*average risk 0.005 (0.050; 0.143)
Co-payment & prescription*high risk 0.252 (0.067; 0.133)
Free & accessible*low risk 0.257 (0.045; 0.168)
Free & accessible*average risk -0.005 (0.046; 0.129)
Free & accessible*high risk -0.252 (0.061; 0.134)

Mild VRSE*Bad if others don’t vaccinate‡

Common*agree 0.095 (0.022; 0.091)

17.408 1 < 0.0001
Common*disagree -0.095 (0.026; 0.093)
Rare*agree -0.095 (0.025; 0.088)
Rare*disagree 0.095 (0.025; 0.094)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute.†Measles
susceptibility: “How high do you estimate the risk that you will get measles during the
next 12 months?” ‡Bad if others don’t vaccinate: “I think it is bad if people do not get
vaccinated within the National Vaccination Program.”
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Figure B.4: Marginal utilities for significant covariate interac-
tions with accessibility (above) and vaccine effectiveness (below).
‘Youngest child’ model, United Kingdom.
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Table B.4: Panel mixed logit model estimates (means and standard
deviations) and significances of the attribute effects obtained from
likelihood ratio (LR) tests. ‘Youngest child’ model United Kingdom,
including covariate interactions

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

Vaccine effectiveness
50% -0.494 (0.039; 0.159)

144.973 1 < 0.0001
90% 0.494 (0.039; 0.152)

Population coverage (x10%) 0.112 (0.010; 0.107) 95.334 1 < 0.0001
Local coverage (x10%) 0.100 (0.012; 0.100) 68.070 1 < 0.0001
Burden of disease

Rare & mild -0.204 (0.048; 0.275)

71.456 3 < 0.0001
Common & mild -0.359 (0.046; 0.316)
Rare & severe 0.198 (0.050; 0.174)
Common & severe 0.365 (0.046; 0.223)

Accessibility
Co-payment & prescription -0.209 (0.032; 0.140)

40.391 1 < 0.0001
Free & accessible 0.209 (0.035; 0.130)

Mild VRSE
Common -0.146 (0.025; 0.094)

31.056 1 < 0.0001
Rare 0.146 (0.023; 0.092)

Vaccine effectiveness*Logical†

50%*agree -0.176 (0.036; 0.137)

26.399 1 < 0.0001
50%*disagree 0.176 (0.038; 0.130)
90%*agree 0.176 (0.036; 0.142)
90%*disagree -0.176 (0.036; 0.136)

Accessibility*Logical†

Co-payment & prescription*agree -0.166 (0.035; 0.132)

25.668 1 < 0.0001
Co-payment & prescription*disagree 0.166 (0.030; 0.134)
Free & accessible*agree 0.166 (0.036; 0.136)
Free & accessible*disagree -0.166 (0.035; 0.127)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute. †Logical:
“Vaccinating my child is the logical thing to do.”
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Figure B.5: Marginal utilities for significant covariate interactions
with accessibility (both charts). ‘Oneself’ model, France.
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Table B.5: Panel mixed logit model estimates (means and standard de-
viations) and significances of the attribute effects obtained from like-
lihood ratio (LR) tests. ‘Oneself’ model France, including covariate
interactions

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

Accessibility
Co-payment & prescription -0.429 (0.035; 0.115)

215.395 1 < 0.0001
Free & accessible 0.429 (0.031; 0.106)

Vaccine effectiveness
50% -0.403 (0.030; 0.237)

137.847 1 < 0.0001
90% 0.403 (0.031; 0.228)

Burden of disease
Rare & mild -0.409 (0.051; 0.399)

125.353 3 < 0.0001
Common & mild -0.358 (0.048; 0.455)
Rare & severe 0.295 (0.050; 0.260)
Common & severe 0.472 (0.052; 0.231)

Mild VRSE
Common -0.184 (0.025; 0.097)

48.017 1 < 0.0001
Rare 0.184 (0.025; 0.102)

Population coverage (x10%) 0.083 (0.011; 0.143) 47.914 1 < 0.0001
Accessibility*Age

Co-payment & prescription*[18-34] 0.282 (0.060; 0.092)

42.015 3 < 0.0001

Co-payment & prescription*[35-49] 0.052 (0.052; 0.113)
Co-payment & prescription*[50-65] -0.080 (0.045; 0.159)
Co-payment & prescription*[65+] -0.254 (0.052; 0.157)
Free & accessible*[18-34] -0.282 (0.050; 0.092)
Free & accessible*[35-49] -0.052 (0.049; 0.120)
Free & accessible*[50-65] 0.080 (0.050; 0.174)
Free & accessible*[65+] 0.254 (0.058; 0.149)

Local coverage (x10%) 0.069 (0.010; 0.098) 34.527 1 < 0.0001
Accessibility*Peer influence†

Co-payment & prescription*agree 0.116 (0.026; 0.118)

27.529 1 < 0.0001
Co-payment & prescription*disagree -0.116 (0.028; 0.109)
Free & accessible*agree -0.116 (0.028; 0.110)
Free & accessible*disagree 0.116 (0.027; 0.107)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute. †Peer influence:
“The people who are important to me think that I must get vaccinated.”
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Figure B.6: Marginal utilities for significant covariate interaction with
burden of disease. ‘Youngest child’ model, France.
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Table B.6: Panel mixed logit model estimates (means and standard
deviations) and significances of the attribute effects obtained from
likelihood ratio (LR) tests. ‘Youngest child’ model France, including
covariate interactions

Term Mean estimate (std dev;
subject std dev)

LR Chi-square DF P-value

Vaccine effectiveness
50% -0.450 (0.028; 0.233)

151.953 1 < 0.0001
90% 0.450 (0.031; 0.273)

Accessibility
Co-payment & prescription -0.330 (0.024; 0.316)

145.020 1 < 0.0001
Free & accessible 0.333 (0.023; 0.296)

Burden of disease
Rare & mild -0.333 (0.055; 0.249)

124.816 3 < 0.0001
Common & mild -0.483 (0.056; 0.227)
Rare & severe 0.322 (0.059; 0.178)
Common & severe 0.494 (0.051; 0.177)

Population coverage (x10%) 0.092 (0.014; 0.090) 47.444 1 < 0.0001
Mild VRSE

Common -0.187 (0.024; 0.112)
47.161 1 < 0.0001

Rare 0.187 (0.024; 0.104)
Local coverage (x10%) 0.081 (0.011; 0.092) 45.150 1 < 0.0001
Burden of disease*Positive develop-

ment after infection†

Rare & mild*agree 0.190 (0.060; 0.216)

27.754 3 < 0.0001

Rare & mild*disagree -0.190 (0.055; 0.167)
Common & mild*agree 0.140 (0.058; 0.201)
Common & mild*disagree -0.140 (0.057; 0.200)
Rare & severe*agree -0.207 (0.055; 0.147)
Rare & severe*disagree 0.207 (0.055; 0.164)
Common & severe*agree -0.123 (0.047; 0.158)
Common & severe*disagree 0.123 (0.056; 0.376)

Population coverage (x10%)*Confidence
in vaccine info‡

Population coverage (x10%)*agree 0.062 (0.014; 0.084)
19.992 1 < 0.0001

Population coverage (x10%)*disagree -0.062 (0.013; 0.087)

Note: Mean estimates corresponding to the last level of an attribute are calculated as
minus the sum of the estimates for the other levels of the attribute. †Positive
development after infection: “Experiencing infectious diseases contributes to positive
mental and physical development.” ‡Confidence in vaccine info: “I have confidence in
the information about vaccinations that my care provider (*care provider is your GP or
child healthcare professional/paediatrician) gives me.”
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B.2 Responses to vaccine attitude statements

We display the responses of vaccine attitude statements by country (Belgium,
France, The UK and The Netherlands) and by subgroup (‘oneself’ and ‘child’
group). These attitudinal statements were not queried in the South African
study [414]. Furthermore, we distinguished between statements regarding
‘General vaccine sentiments’ (Figures B.7 and B.9), and ‘Social norms & herd
protection’ (Figures B.8 and B.10).
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do not have to think about for long 

The diseases that are vaccinated
against can be very serious. 

I think that getting vaccinated against
infectious diseases is necessary

I think that getting vaccinated against
infectious diseases is important

I think that getting vaccinated against
infectious diseases is wise

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

o
o
o
o

o
I

FR
NL
BE
UK

mean
median
75% quantile
95% quantile

Figure B.7: Likert scale responses to general vaccine statements in the
‘oneself’ group
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Social norms & herd protection

Likert Scale
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Figure B.8: Likert scale responses to statements with respect to social
norms and herd protection in the ‘oneself’ group
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General vaccine sentiment

Likert Scale
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Figure B.9: Likert scale responses to general vaccine statements in the
‘youngest child’ group
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Social norms & herd protection

Likert Scale
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child vaccinated 
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Figure B.10: Likert scale responses to statements with respect to social
norms and herd protection in the ‘youngest child’ group
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