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Abstract

Ports worldwide operate in an uncertain environment and compete with nearby ports
to attract cargo. The extent of competition is influenced by the geographical location and
differentiated services offered at ports. In this paper, we study the flexible investment deci-
sion of two ports with an option to delay investment in a capacity level that is not ex-ante
determined. Ports compete on quantity (Cournot competition) under demand uncertainty
and congestion. In a leader-follower timing game, we consider both the entry deterrence and
accommodation strategies for the leader port. If one of the ports only has a limited cost
advantage, the leader role will be endogenous and will be the result of preemption. Uncer-
tainty is included in the model by a geometric Brownian motion, allowing us to analyse the
impact of growth and uncertainty (variability) independently. We find that higher growth,
uncertainty and port customers’ aversion to waiting lead to a larger project installed at a later
moment. If competition intensifies however, the option value of waiting is reduced, leading to
earlier investment, but surprisingly also in less capacity. Finally, if more shares of the ports
are publicly owned, the investment will be larger and take place earlier.

Highlights:

• The paper contributes to the strategic real options literature and to port capacity in-
vestment decision making.

• We consider congestion in the capacity investment decision of two competing ports under
uncertainty.

• Competition and small cost differences drive the leader’s investment threshold and ca-
pacity down, whereas the follower will invest later in more capacity.

• If more shares of the port are publicly owned, earlier and larger capacity investments
will be made.

Keywords: port capacity; port competition; heterogeneous ports; investment size and
timing; real options game; strategic real options.
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1 Introduction

In ports worldwide, important activities are performed to facilitate international and regional
trade, such as cargo handling (Verhoeven, 2015). In order to generate income and welfare, ports
need to attract throughput (Meersman et al., 2015; Xiao et al., 2012). However, they experience
competition from nearby ports with overlapping hinterlands to attract this cargo (De Langen et
al., 2012). Examples can be found all over the world: ports in the Hamburg-Le Havre range,
the Spanish ports, East-Asian ports and ports on the East and West Coast of the USA (Jacobs,
2007; Meersman & Van de Voorde, 2002; Yap et al., 2006; Ng, 2006; Cullinane et al., 2005). A
number of reasons cause this competition (De Langen, 2007). A port should strive to be part of
the logistics chain with the lowest generalised cost to serve the hinterland. Such a competitive
advantage increases the probability of the port handling the goods (Heaver et al., 2000; De Langen
et al., 2012; Talley et al., 2014). Location, service quality and efficiency play an important role
herein (Meersman et al., 2010). One of the critical problems in the port is congestion (Novaes et
al., 2012). Shipping lines are averse to the waiting time and logistics costs caused by delays. Since
delay costs depend on the goods transported, the aversion to waiting is different for each shipping
line (Blauwens et al., 2016; De Borger et al., 2008). As a result, ports tend to avoid congestion in
order to be competitive with respect to non-congested ports nearby.

In order to avoid congestion, ports can charge a higher price, leading to a demand reduction
(Xiao et al., 2013), or accommodate the demand by investing in additional cargo-handling capacity
(Meersman & Van de Voorde, 2014a; Xiao et al., 2012). Chang et al. (2012) used an economic
approach to balance all elements of capacity in a port, given the objectives of the port owners,
explicitly taking waiting time costs into account. The capacity investment decision is complicated
by a trade-off. Overinvestment wastes money on unused capacity. Oppositely, when insufficient
capacity is installed in the port, the user incurring congestion costs may move to a nearby port
(Alderton, 2008). An additional consideration is that a congestion-reducing capacity investment
in one port increases its own demand, but reduces the demand in the other port (Wan et al., 2013).
In this light, the port’s investment decision also depends on the decision of the competitor who
serves (a part of) the same hinterland. In this way, competition has an impact on the capacity
investment decision of ports (Huisman & Kort, 2015; Xiao et al., 2012). Therefore, the port needs
to endogenise the other port’s investment decision to avoid investing in capacity that is not used
due to the other port’s capacity serving part of the demand (Huberts et al., 2015).

The capacity decision is even more complicated by the fact that the demand faced by the port
is very uncertain (Vilko & Hallikas, 2012; Huisman & Kort, 2015). Many different sources of this
uncertainty have been identified by Balliauw et al. (2019), including not only the impact of the
financial crisis on global trade and the uncertain decisions of many actors in the logistics chain,
but also technological, environmental and regulatory changes. To correctly account for the value
of different sorts of managerial flexibility in capacity investment decisions under uncertainty in a
competitive environment, real options models have been widely explored in the literature (Dixit &
Pindyck, 1994; Bar-Ilan & Strange, 1996; Dangl, 1999; Aguerrevere, 2003; Hagspiel et al., 2016), in
combination with game-theoretic modelling (Azevedo & Paxson, 2014). More specifically, Herder
et al. (2011) highlighted the importance of considering the value of flexibility in port investments to
react to uncertainty. Hence, real options are needed, as traditional discounted cash flow methods
like the net present value rule cannot account for this option value (Trigeorgis, 1996). The options
considered in this paper are a flexible one-shot investment size and timing and a flexible throughput
level. The present paper extends the real options literature by determining the investment timing
and capacity choice in a continuous-time framework that simultaneously deals with competition
and volume flexibility.

The objective of this paper is to analyse how a port’s capacity investment is influenced by
a number of factors in the context of port competition and demand uncertainty. To this end,
the research question consists of a number of sub-questions: How is a port’s capacity investment
influenced by an increase in: 1) competition, 2) public money involvement, 3) congestion costs, 4)
uncertainty, 5) expected growth, and 6) the cost advantage of one port? In order to accurately
study the capacity investment decisions of the competing ports, a game-theoretic model including
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congestion and uncertainty is developed. In this sense, we extend the state-of-the-art in the field of
industrial organisation with a port-specific application, wherein congestion plays an important role
(De Borger & Van Dender, 2006; De Borger et al., 2008). This role of congestion was illustrated
by Xiao et al. (2012), who however omitted uncertainty from the analysis. Chen & Liu (2016) did
include this uncertainty in the analysis with endogenous capacity decisions, but used a uniform
distribution to model it.

We extend the literature of port capacity investment decisions under uncertainty by modelling
uncertainty using a stochastic process that allows analysing the impact of the expected growth and
uncertainty (variability) separately. Hence, we are able to better account for small growth after
an economic crisis, in combination with high uncertainty. Subsequently, next to the size, also the
timing of the investment decision matters. As opposed to the majority of the literature, we include
the timing decision and moreover allow for heterogeneous ports in a game where the ports do not
necessarily invest at the same time. In this way, our model accounts for entry deterrence and
preemption as additional strategies to the often solely considered accommodation strategy. Luo et
al. (2012) modelled the preemptive prices by the dominant port, but did not consider uncertainty
and congestion.1 In order to study a port context, we extend the real options model of Huisman
& Kort (2015) in three ways, to account for the cost of port congestion, differentiated services
offered by different ports (Bichou & Gray, 2005) and mixed ownership by both private and public
actors (Xiao et al., 2012). This allows deriving three new results (1, 2 and 3), demonstrating each
specific element’s impact on port capacity investment decisions.

As a result of our methodological additions, we are able to account for the frequently observed
phenomenon that port investments in two competing ports do not necessarily take place at the
same time, notwithstanding that simultaneous investment is also possible. In this setting, we find
that higher growth, uncertainty and port customers’ aversion to waiting lead to a larger project
installed at a later moment. However, if competition intensifies, the option value of waiting is
reduced, leading to earlier investment, but also in less capacity. Finally, we confirm in this setting
that an increase of public money involvement leads to an earlier and larger investment.

The paper is structured as follows. The next section describes the basic model for our two-
port setting and each port’s investment decision making objectives. Subsequently in Section 3,
the methodology and analysis are described. Since no closed-form solutions can be derived, the
numerical results with respect to the impact of competition combined with different government
ownership structures are give in Section 4. Sensitivity analysis in Section 5 identifies the impact
of other factors on the investment decision in a competitive setting. The final section presents
conclusions and avenues for future research.

2 The basic model

We consider two private or public service ports that compete to handle a flexible amount of
throughput, but offer differentiated services (Bichou & Gray, 2005). The next subsection deals
with the individual situation in, and the relevant information for each port. This is followed by a
discussion of the type of competition between both ports and the related game-theoretic modelling.
The model equations are summarised in Table 1.

2.1 Individual port situations

The fact that ports offer differentiated services is mainly the result of the different geographic
locations of the ports, implying different distances to the hinterland. Moreover, each port being
organised differently adds to this service differentiation. Also their service levels as expressed by
their occupancy rates, with an impact on their prices, may differ (De Borger & Van Dender, 2006).
The product market’s heterogeneity is expressed through differentiation parameter δ in the inverse

1Ishii et al. (2013) also examine port competition and stochastic demand with the size and timing of capacity
investment. However, they did not consider the endogenous timing issue and the issue of entry deterrence or
preemption.
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demand function, giving rise to the full price, or gross willingness to pay, ρi for port i at time t
(Vives, 1999; Xiao et al., 2012; Kamoto & Okawa, 2014):

ρi(t) = X(t)−Bqi(t)− δBqj(t), (1)

with X being the demand shift parameter, qi the throughput of port i and qj the throughput of
port j (j 6= i). As a result of port services being differentiated products leading to different prices
in different ports, we do not make use of a single market demand function.

Depending on the location and services of the ports, parameter δ can vary between zero and
one. In the case of an isolated port not experiencing competition from another port, e.g., a sole
port on an island, δ would equal 0 and the model would simplify to a monopoly model. For two
ports at the same location and offering the same services, δ would equal 1. We do not dispose of
empirically estimated values for δ. However, to show its impact on the investment decision, we
study three different instances. Initially, δ is set to 0.6 to take the different characteristics of two
competing ports in a close range into account (e.g., Antwerp and Rotterdam in the Hamburg-Le
Havre range). This value is altered in the sensitivity analysis to 0.9, to account for ports situated
back to back but offering slightly different services, (e.g. Los Angeles (LA) and Long Beach in
California, Seattle and Tacoma in Washington, Vancouver and Prince Rupert in British Columbia,
or Gdynia and Gdansk in Poland), and to 0.3 to account for two ports that are situated further
from each other, possibly at different coast lines and with only partly overlapping hinterlands (e.g.
LA/Long Beach and New York/New Jersey in America, or Hamburg-Le Havre and Trieste/Koper
in Europe (De Langen, 2007)).

In order to model demand evolution and its uncertainty, intercept X follows a geometric
Brownian motion (GBM) with an independent parameter for the drift (economic growth, µ) and
the variability (uncertainty, σ):

dX(t) = µX(t)dt+ σX(t)dZ(t), (2)

with dZ the increment of a standard Wiener process.2 Additionally, the slope of the demand
function (B) will be normalised and set to 1. For the sake of readability, denoting the functional
dependence on time will be omitted in the remainder of the paper.

The full price involves not only the price paid in port i, pi, but also a cost incurred because
of congestion and resulting waiting times at high occupancy rates (Zhang & Zhang, 2006; Xiao et
al., 2012). Price pi can hence be written as

pi = X −Bqi − δBqj −AXqi/K2
i , (3)

with AXqi/K
2
i being the congestion unit cost term.3 Total congestion cost for port i then equals

AX(qi/Ki)
2, which is increasing in the occupancy rate (De Borger & Van Dender, 2006; De Borger

& De Bruyne, 2011; De Borger et al., 2005, 2007). The square of the occupancy rate, qi/Ki is
used as a proxy for the amount of waiting time. Queuing theory proves that waiting times start to
grow after 50 percent occupancy of the theoretical design capacity (Ki in port i) and increase more
than linearly beyond 80 percent (Blauwens et al., 2016). A is a monetary scaling factor to convert
delays to costs and is port-user and good-type dependent. Here A is set to 5 (see discussion below
in Section 3). The height of the congestion cost is also related to the uncertain price level. To this
end, we multiply with X. An important difference from the economic model of Dangl (1999) is

2Marathe & Ryan (2005) empirically show that the GBM is a good process to model demand for established
services such as the number of passengers in airline transportation. Moreover, Lindsey & De Palma (2014) highlight
the frequent use of a GBM in different papers in a transportation context. Finally, the example evolution in Figure
2 appears realistic when compared to the data of Vlaamse Havencommissie (2016). Important to note hereby is
that, although throughput in a particular seaport can diverge substantially from a GBM process for a substantial
period of time, this does not invalidate the general validity of the process to model evolutions in the market for
container throughput.

3Although congestion costs are modelled here on the demand side, a mathematically equivalent approach could
have been to model congestion at the supply side (i.e. to include it in the port’s costs), since congestion can impose
costs on both suppliers and customers of port capacity.
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that in this paper, design capacity Ki is not a hard constraint for the maximal throughput.4 This
adaptation is necessary to avoid unnecessary mathematical complexity. Realism is not to be lost
if A, the monetary scaling factor in the congestion cost, is sufficiently high. In that case, the price
would become too low to profitably operate if qi > Ki. This will be avoided as much as possible,
but in some emergency cases, the port has no other choice than to handle the additional cargo.
To have a realistic setting, A is set to 5. This results in a congestion cost height that discourages
full occupancy in most situations, but that does not prevent it de facto and that allows in some
exceptional cases for exceeding design capacity, at a high cost. Since in most cases, ports like to
avoid these high costs and because a nearby port with free capacity offers an alternative, such
high levels of occupancy are hardly encountered in reality as well as in our numerical simulations
of the described ports.

Since not only situations with two private ports are considered, but also with two public
ports, it is not sufficient to only consider annual profit (πi = (pi − c) · qi − chKi, with c the
marginal operational cost and ch the capital holding cost) maximisation, which is the objective
of a private port. Governments also consider positive externalities or local spillover benefits per
unit of throughput handled (e.g. employment and local industry growth), and consumer surplus
in their social welfare (SWi) maximisation (Xiao et al., 2012; Jiang et al., 2017). Social welfare
generated by port i is calculated as the sum of the profit of port i, the spillover benefits λ · qi and
a share sCS of consumer surplus generated by port i (CSi), since some governments only consider
the part that is relevant for the region they govern.5 To account for the fact that the two ports are
owned by a different, independent government, consumer surplus in port i is calculated as follows
(Xiao et al., 2012):

CSi(qi, qj) = CSi(qi) =

∫ qi

0

ρi(y, qj)dy − ρi(qi, qj)qi

=

∫ qi

0

(X −By − δBqj)dy − (X −Bqi − δBqj)qi

=
Bq2i

2
. (4)

This calculation reflects that the difference between the gross willingness to pay for each unit of
throughput in port i and the actual full price in port i is not affected by the throughput realised by
port j. In the case of two independent governments owning only shares of port i and j respectively,
qj is considered exogenous by port i.

The aggregated operational objective function Πi of port i is then the weighted sum of the
individual owner’s objectives, with the shares of ownership used as the weights. If the government
owns a share sG, and the private party hence 1−sG, of the port, the weighted operational objective
function of port i is composed as follows:

Πi(X,Ki, qi, qj) = (1− sG) · πi(X,Ki, qi, qj) + sG · SW (X,Ki, qi, qj)

= πi(X,Ki, qi, qj) + sG · λqi + sGsCS ·Bq2i /2. (5)

Based on the information provided by Coppens et al. (2007) and Benacchio & Musso (2001), the
average spillover benefits per unit of throughput, λ, is set to 40% of the marginal operational cost,
to account for the port’s spillover effects in the entire country. To analyse the impact of the share

4The impact of this change on the results in a monopoly setting is negligible. The disadvantage of the constraint
qi 6 Ki in a two-port setting is that more regions for qopti arise (e.g., one of the two ports at full capacity, both at
full capacity, etc.) and that the relative order of these regions is endogenous and capacity dependent. It could be
added to the model, but only complexity would increase and tractability would be reduced.

5The Antwerp city council, shareholder of the Port of Antwerp’s port authority, might only be interested in local
spillover benefits next to port profit, which in turn differs from the objectives of Rotterdam’s council. Similarly,
the Canadian government, shareholder of the Port of Vancouver, might or might not consider the CS of Chinese
shipping lines, having an influence on parameter sCS . To compare with a full social planner in each country, state
or city, we include instances with sCS set to 1. In Section 5, we also consider the case where one government may
own shares of both ports, giving rise to a different CSi calculation.
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of ownership on the investment decision, sG, is varied between 0 and 1 in our numerical simula-
tions. Hence, we consider a range of market structures, but in every case the two governments
own the same share of their respective ports, and attach the same weight to consumer surplus.6

Nonetheless, as higher sG and sCS lead to social welfare being taken more into account by the
ports, two public ports fully considering consumer surplus will generate the highest social welfare.

In this paper, we do not restrict our analysis just to ports that are homogeneous in costs, as is
often done in game-theoretic approaches. Here, the ports may differ in costs. The investment cost
of the project, Ii, and more specifically the fixed investment cost FCI,i is chosen to reflect the cost
difference of a similar project.7 This is illustrated by the example of Antwerp and Rotterdam.
In Antwerp, the Deurganckdok has been dug, whereas the Maasvlakte 2 in Rotterdam has been
constructed in open water through rainbowing sand, resulting in an FCI,2 that is 20 million euro
higher for this second project. These considerations give rise to a Stackelberg leader-follower
game, with the possibility of simultaneous investment under an entry accommodation strategy.
It is however impossible for the port with a cost disadvantage to become the leader. It will be
the follower, unless it chooses to invest simultaneously (Pawlina & Kort, 2006).8 Hence in this
paper, the difference in investment timing of both ports is endogenous, allowing for simultaneous
investment as well.

The investment cost functions of one single capacity project of respectively the port with a cost
advantage (project 1) and with a cost disadvantage (project 2) are graphed in Figure 1. These
functions are fourth order polynomials with a negative second order term. The parameters are
determined to reflect investment costs that are in line with Port of Antwerp (2016), Vanelslander
(2014), and Zuidgeest (2009). The concave-convex functions model the economies of scale in
investment size over the first part of the domain, and the boundary beyond which further expansion
is extremely costly because houses and extra land need to be expropriated. By expressing capacity
K in million TEU per year, Ii(K) is in million euro.

6We have not considered instances where the weights differ to ensure tractability of the calculations. Considering
competing ports that differ in ownership shares and objectives in asymmetric cases (e.g., a mixed duopoly) would
however be an interesting extension for future research.

7Fixed investment costs determine the intercept of the investment function. Capacity is determined by a number
of interrelated elements, such as quay length, berth size, number of cranes, terminal area, width, depth of the dock,
etc. (De Langen et al., 2018). By slightly adapting the amount of each element, costs and capacity will incrementally
increase, giving rise to a continuous investment cost function (Novaes et al., 2012).

8Only if the port with the cost disadvantage would have a higher number of shares owned by the government,
this result would not necessarily hold. Such cases are however not considered in our paper.
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Figure 1: Total investment cost functions for the two projects.

In Table 1, the full economic model is summarised. The price is expressed in euro per TEU.
The height of the marginal operational cost c(= 1) and the capital holding cost ch(= 0.5) are
expressed in euro per TEU as well, and are based on Vergauwen (2010), Meersman & Van de
Voorde (2014b), and Wiegmans & Behdani (2017). The drift (µ = 0.015) and the drift variability
(σ = 0.1) are estimated applying regression analysis with an exponential growth model on the
annual container throughput in the ports of Antwerp and Rotterdam from 2010 to 2015 (Vlaamse
Havencommissie, 2016). The growth rate observed is between 1.5 and 2% and is significant at
the 5% level, respectively being the base case and sensitivity analysis alteration. The root of the
squared error of the regression results in a standard deviation of 15%, justifying the 10% for σ,
and its increase to 15% in the sensitivity analysis. The discount rate is set to 0.06 (Aguerrevere,
2003).
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Table 1: Model overview.

Variables
pi = price in port i
qi = throughput in port i
Ki = capacity in port i

Inverse demand function (∀i): pi = X −Bqi − δBqj −AX qi
K2

i

B(= 1) = slope
δ(= 0.6) = product differentiation parameter
A(= 5) = monetary scaling factor of congestion cost

Demand shift parameter X: dX(t) = µX(t)dt+ σX(t)dZ(t)
t(=annual) = time horizon
Z = standard Wiener process
µ(= 0.015) = drift of Z
σ(= 0.1) = drift variability of Z

Total cost (∀i) TCi = cqi + chKi

c(= 1) = constant marginal operational cost
ch(= 0.5) = cost to hold one unit of capital in place

Investment cost (∀i) Ii = FCI,i + γ1Ki − γ2K2
i + γ3K

3
i + γ4K

4
i

FCI,i(= 80, 100) = fixed investment cost of port 1 and 2 respectively
γ1(= 180) = first order coefficient
γ2(= 19) = coefficient reflecting investment economies of scale
γ3(= 0) = omitted third order coefficient
γ4(= 0.12) = coefficient reflecting boundary of project size

Operational objective function (∀i) Πi = πi + sG · λqi + sGsCS · CSi
πi = annual profit of port i =piqi − TCi
λ(= 0.4) = spillover benefit per unit qi
CSi = consumer surplus in port i, i.e. Bq2i /2
sG(∈ [0; 1]) = share of port owned by the government
sCS(∈ [0; 1]) = share of total CSi taken into account by the government

2.2 Game-theoretic modelling of competition

The leader could opt for an entry deterrence or accommodation strategy. Under each strategy,
the game structure is slightly different, as we explain in this subsection. The occurrence of each
strategy is discussed in Subsections 3.3 and 3.4.

As opposed to the majority of the literature, we do not limit the analysis to both ports investing
simultaneously. When the leader invests in sufficient capacity at the moment the market is not
large enough to accommodate two ports, the leader is deterring the entry of the follower to a later
moment. In this way, we discern a four-stage game in case of entry deterrence (Huberts et al.,
2015). In the first stage, the leader invests in a capacity KL as soon as its relevant investment
threshold XL

T is reached for the first time from below at time TL; see Figure 2. In line with the
terminology of Huberts et al. (2015), the first port to enter the market, i.e. the leader, becomes the
incumbent after investment. If this initial investment is sufficiently large, it will be entry-deterring,
to delay the follower’s investment. If the leader’s initial investment were relatively small, it would
be entry-accommodating to allow simultaneous follower investment. This is described below in a
three-stage game. In the second stage of the four-stage game, immediately after the first stage,
the incumbent starts to operate under a temporary monopoly at its optimal throughput level,
q(X,KL, 0). This throughput level is flexible, and depends on X(t). In the third stage, when
the market has grown sufficiently until XF

T is reached at time TF, the follower will invest in KF.
This size is not only dependent on the timing of the follower’s investment, but also conditional
on the investment size of the leader. Once the follower invests, the incumbent loses its monopoly.
Both ports will now operate at their optimal throughput level, given the level of the other port,
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their capacity investment size and the state of the market X. In this light, both ports compete in
quantities, leading to a Cournot equilibrium.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

20

30

40

50

60

70

80

TL

XL
T

TF

XF
T

t (in years)

X (in euro per TEU)

Figure 2: Exemplary evolution of demand shift parameter X (following a GBM with X(t = 0) = 30,
µ = 0.015 and σ = 0.1) over time, showing the relationship between optimal timing (TL and
TF) and the threshold for X (XL

T and XF
T ) of the leader and the follower port.

Following Wan & Zhang (2013), we consider ports to compete on quantity (i.e., Cournot
competition). In general, which model of competition is applicable to a particular industry depends
largely on its production technology. In Cournot competition, firms commit to quantities, and
prices are then adjusted to clear the market (i.e., the committed quantities) implying the industry
is flexible in price adjustments, even in the short run. On the other hand, in Bertrand (price)
competition, capacity is unlimited or easily adjusted in the short run. There are some good reasons
to believe that quantity competition may be more realistic than price competition in the case of
ports. For instance, Quinet & Vickerman (2004, p. 263) remarked:

”The general idea which emerges from the theoretical analysis is that when transport
capacities are high, or can be enlarged through the transfer of capacity from other
locations, and the services provided are not differentiated, then competition is likely to
be of a Bertrand type, based on price. [. . . ] If, on the other hand, capacity is difficult
to increase, then competition is likely to be of a Cournot type, based on quantities.
This is the case found, for example, in rail, maritime or inland waterway transport.”

The main reason for why port capacity is difficult to change (relative to the ease and rapidity
with which prices can be adjusted) is that port capacity investment is lumpy, time-consuming and
irreversible, which is consistent with our present set-up described above. Moreover, it involves
high investment costs, including high fixed costs of designing, scheduling and implementing in-
vestments.9 Indeed, with capacity constraints Van Reeven (2010) assumes quantity competition
between port terminal operators based on Kreps & Scheinkman (1983)’s argument of capacity-
constrained price competition yielding quantity competition. Furthermore, Menezes et al. (2007)
empirically estimated the market ”conduct parameters” with respect to port charges of the three
largest, competing Australian seaports. Our calculation based on their results indicates that at

9Here, we make abstraction of the fact that ports can increase capacity to a limited extent in the short run, e.g.
by increasing productivity or extending working hours. This approach is plausible when studying the investment
of market entrants.
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the 0.1 level of statistical significance, the hypothesis of price competition among the ports is re-
jected.10 As a result of Cournot competition, Wan & Zhang (2013) find that investment increases
the own port’s profit, which is not necessarily true under Bertrand competition (De Borger et al.,
2008). Additionally, we note that the use of quantity as a decision variable has been observed for
firms in the production of goods as well as for firms in the production of service (e.g., competition
among airlines or airports; see Zhang & Czerny (2012) for a recent survey of the literature).

As a final remark to the described game, note that it is slightly, but not substantially, different
in case the leader invests when the market is large enough to accommodate two ports. We now
have a three-stage game, as stage 2 is omitted. In this situation, leader investment (stage 1) is
immediately followed by the follower’s investment (stage 3). Right after this investment, both
ports set again their optimal throughput levels under Cournot competition in stage 4.

3 Optimal investment strategies

With two heterogeneous competing ports making a decision to invest in new capacity, of which the
size and the timing are not ex-ante defined, the optimisation problem is solved backwardly using
dynamic programming. First, the decision of the follower is optimised, given the decision of the
leader. Subsequently, the optimal entry-deterring or entry-accommodating decision of the leader
is explicated, taking the information of the resulting follower’s optimal decision into account as
expressed by its reaction function.

3.1 A port’s throughput decision

First, port i’s optimal throughput quantity, once its investment is made, needs to be determined.
Differentiating the operational objective function Πi(X,Ki, qi, qj) w.r.t. qi leads to

qopti (X,Ki, qj) =


0, X < c− sGλ,
X + sGλ− c− δBqj

2
AX

K2
i

+ (2− sGsCS)B
, X > c− sGλ. (6)

Through the boundary value ensuring qopti > 0 in Eqs. (6) and (7), two regions for X are
identified for both ports: R1 = [0, c − sGλ) where throughput is zero and R2 = [c− sGλ,∞)
where throughput equals the optimal throughput. In this R2, throughput could exceed the design
capacity, but only at a substantial congestion cost. Hence, as opposed to Yang & Zhang (2012), we
do not consider just the interior solutions; rather we also allow corner solutions. By substituting
qoptj (X,Kj , qi) into qopti (X,Ki, qj), q

opt
i can be expressed in terms of X,Ki and Kj . The advantage

of the latter is that this value is dependent only on X once both investments are made, as opposed
to also being dependent on the continuously changing qj . This leads to

qopti (X,Ki,Kj) =



0, X ∈ R1,

(X + sGλ− c)(2
AX

K2
j

+ (2− sGsCS)B)

(2
AX

K2
i

+ (2− sGsCS)B)(2
AX

K2
j

+ (2− sGsCS)B)− δ2B2

, X ∈ R2.
(7)

For each region Rk, with k = {1, 2}, the resulting optimum of port i’s operational objective
function can be calculated as Πi(X,Ki, q

opt
i (X,Ki,Kj), q

opt
j (X,Kj ,Ki)). This is rewritten as

Πi(X,Ki,Kj).

10For studies using conduct parameters to assess the empirical relevance of certain oligopoly models to a particular
market, see, e.g., Bresnahan (1989), and Brander & Zhang (1990).
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3.2 The follower’s investment decision

To determine the follower’s optimal investment decision, an approach in line with the one of
Hagspiel et al. (2016) is adopted, with specific port-economic adaptations. Πi(X

F
T,i,K

F
i ,K

L
j ) at the

time port i invests after port j’s investment in KL
j , forms the input to calculate V F

i (XF
T,i,K

F
i ,K

L
j ),

the value of the investment project for port i for which it pays Ii(K
F
i ) when it invests at threshold

XF
T,i at time TF in capacity KF

i , given that the other port has invested in KL
j . The differential

equation for V F
i (XF

T,i,K
F
i ,K

L
j ) in a two-port setting is found by applying Bellman Equation and

Itô’s Lemma to

V F
i = E

∞∫
0

max
qi
{Πi(T

F + τ)}e−rτdτ. (8)

This results in

σ2

2
(XF

T,i)
2 ∂2V F

i

∂(XF
T,i)

2
(XF

T,i,K
F
i ,K

L
j ) + µXF

T,i

∂V F
i

∂XF
T,i

(XF
T,i,K

F
i ,K

L
j )

−rV F
i (XF

T,i,K
F
i ,K

L
j ) + Πi(X

F
T,i,K

F
i ,K

L
j ) = 0, (9)

with r the discount rate (Dixit & Pindyck, 1994).
The solution for each region Rk is given by

V F
i (XF

T,i,K
F
i ,K

L
j )|XF

T,i∈Rk
= V F

i,k(XF
T,i,K

F
i ,K

L
j )

= GF
i,(k,1)(K

F
i ,K

L
j ) · (XF

T,i)
β1 +GF

i,(k,2)(K
F
i ,K

L
j ) · (XF

T,i)
β2

+V
F

i,k(XF
T,i,K

F
i ,K

L
j ), (10)

with V
F

i,k(XF
T,i,K

F
i ,K

L
j ) the particular solution of differential equation (9) and Πi = Πi,k in each

region Rk. The roots β1 and β2 are equal to

β1 =

σ2

2
− µ+

√
(
σ2

2
− µ)2 + 2rσ2

σ2
> 1, β2 =

σ2

2
− µ−

√
(
σ2

2
− µ)2 + 2rσ2

σ2
< 0, (11)

whereas the boundary conditions are given by

V F
i (0,KF

i ,K
L
j ) = E

∞∫
0

−chKF
i e−rtdt =

−chKF
i

r

lim
XF

T,i→+∞

(
V F
i (XF

T,i,K
F
i ,K

L
j )− V F

i,2(XF
T,i,K

F
i ,K

L
j )
)

= 0

lim
XF

T,i

<→c−sGλ
V F
i (XF

T,i,K
F
i ,K

L
j ) = lim

XF
T,i

>→c−sGλ
V F
i (XF

T,i,K
F
i ,K

L
j )

lim
XF

T,i

<→c−sGλ

∂V F
i

∂XF
T,i

(XF
T,i,K

F
i ,K

L
j ) = lim

XF
T,i

>→c−sGλ

∂V F
i

∂XF
T,i

(XF
T,i,K

F
i ,K

L
j ).

(12)

The first two conditions are required since the term in β2 does not exist in region R1 because
it does not converge in X = 0 and the term in β1 does not exist in region R2 because it does not
take speculative bubbles into account (Dixit & Pindyck, 1994). These conditions lead to GF

i,(1,2)

and GF
i,(2,1) being equal to 0. The remaining two GF

i stand for the value of the option to switch

to the other region Rk, i.e. to start or stop operations (Dixit & Pindyck, 1994).
The follower’s investment problem objective function

max
TF
i >0,KF

i >0

{[
V F
i (XF

T,i,K
F
i ,K

L
j )− Ii(KF

i )
]

e−rT
F
i |X(t = 0) = X

}
, (13)

gives rise to the following option value maximisation

FF
i (XF

T,i) = max{e−rdtE(FF
i (XF

T,i)) + dFF
i (XF

T,i)),max
KF

i

[
V F
i (XF

T,i,K
F
i ,K

L
j )− Ii(KF

i )
]
}, (14)
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which allows determining the optimal timing and size. The inner maximisation of Eq. (14)
considers the project’s net present value as V F

i (XF
T,i,K

F
i ,K

L
j ) minus Ii(K

F
i ) in order to determine

the optimal capacity of the follower (K∗,Fi ) in terms of its timing threshold (XF
T,i) and the capacity

already installed by the other port (KL
j ). This optimal capacity needs to satisfy

∂V F
i

∂KF
i

(XF
T,i,K

∗,F
i ,KL

j ) =
∂Ii
∂KF

i

(K∗,Fi ), (15)

stating that capacity is added up to the point where the marginal added value of extra capacity
equals the marginal cost of extra capacity. Using the relevant smooth pasting and value matching
conditions on the outer maximisation of Eq. (14), the optimal follower’s timing threshold (X∗,FT,i )

can be determined in terms of its own installed capacity (KF
i ) and the capacity already installed

by the other port (KL
j ) (Dangl, 1999; Huisman & Kort, 2015; Hagspiel et al., 2016).

Solving the system {
X∗∗,FT,i (KL

j ) = X∗,FT,i (K∗∗,Fi (KL
j ),KL

j )

K∗∗,Fi (KL
j ) = K∗,Fi (X∗∗,FT,i (KL

j ),KL
j )

(16)

results in the investment decision optimal in both timing and size of the follower, only dependent
on KL

j of the leader. It is written as (X∗∗,FT,i (KL
j ),K∗∗,Fi (KL

j )). It is worth highlighting that
the timing of the leader has no impact on the follower’s decision, as opposed to the leader’s
investment size. Concerning timing, it only matters that the leader has invested (Huisman &

Kort, 2015). As a result, it could be that X∗∗,FT,i (KL
j ) < XL

T,i in case the leader plays an entry
accommodating strategy (see the next section). The investment strategy of the follower will then

be XL
T,i,K

∗,F
i (XL

T,i).

3.3 The leader’s investment decision

The leader port with the cost advantage needs to decide on its own optimal timing and capacity,
taking the calculated reaction function of the follower into account. There are three investment
alternatives for the leader. First, if the market is initially large, the leader could invest in an
entry accommodating capacity, which is low enough so that the follower can profitably invest at
the same time and serve a part of the market as well (Huisman & Kort, 2015). If the market is
initially smaller and the leader has a large cost advantage, it is also possible to invest in a capacity
that is higher, so that the entire market is served at the moment of investment, the unrestricted
entry deterrence threshold. In this case, entry of the follower is deterred to a later moment, when
the market will have grown and it will have become also for this port profitable to invest. If the
cost differences are rather small however, both ports could strive to be the first to invest. The
leader’s investment then occurs at the preemption point of the port with the cost disadvantage,
where its follower value, V F

2 − I, equals its leader value V L
2 − I. This is called the preemption

equilibrium. All of these strategies are calculated and discussed in greater detail in the following
subsections.

3.3.1 Entry deterrence

To derive the optimal investment decision of the leader, we first determine the value of this port
after its investment V L

i (XL
i ,K

L
i ). If the leader chooses the entry deterring strategy by investing

in such a high capacity that it (temporarily) serves the entire market, this value is made up of two
parts. Since leader investment can only be optimal in region R2, the investment value is given by:

V Ldet
i,2 (XL

i ,K
L
i ) = V M

i,2(XL
i ,K

L
i )−

(
XL
T,i

X∗∗,FT,j (KL
i )

)β1

·(
V M
i,2(X∗∗,FT,j (KL

i ),KL
i )− V F

i,2(X∗∗,FT,j (KL
i ),KL

i ,K
∗∗,F
j (KL

i ))
)
, (17)
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for XL
T,i ∈ R2. As demonstrated by Huisman & Kort (2015), the monopoly value V M(XL

i ,K
L
i )

is corrected for the reduced profit stream once the follower invests. This follower investment will
always take place in region R2 as well, since this is the only region wherein it is optimal for the
follower to invest. Eq. (17) indicates that the leader has an incentive to invest in more capacity,
which leads to further delaying the follower’s entry. In that way, the leader can take advantage,
because it earns the higher monopoly profit for a longer time. The monopoly value V M

i,k(XL
i ,K

L
i )

in region R2 can be calculated like in Dangl (1999), with the exception that here only two regions
are retained and that hence G2,1 in R2 is set to zero.

The correction to the monopoly value is calculated as the discounted future reductions of
the profit flows due to the investment of the follower.11 The same stochastic discount factor as
Huisman & Kort (2015), (

XL
T,i

X∗∗,FT,j (KL
i )

)β1

, (18)

is used here. However, the discounted future reductions of the profit flows are more complicated
to explicate than in the case of Huisman & Kort (2015), because of output flexibility and the two
resulting regions for Πi. In that light, we consider the correction as a reduction of the residual
value of the project after the follower’s investment. As a result, we calculate it as the difference in
value V for the leader between being the sole active port and the duopoly situation at the moment
the follower invests. The value at the moment that both ports have invested is calculated using
Eq. (10) with port i being the leader and port j the follower. The solution takes into account
that the follower invests in its own optimal size based on the capacity installed by the leader.12

It is interesting to note that each V in Eq. (17) contains a term of the form GS
i,(k,l)X

βl , with

S the role (L or F) of port i, k the region and l = {1, 2} to account for the possibility of X
crossing the boundary between R1 and R2. The value matching and smooth pasting conditions
automatically hold for V Ldet

i . This is because these conditions need to be imposed for V M
i,1(XL

i ,K
L
i )

and V M
i,2(XL

i ,K
L
i ) (see Hagspiel et al. (2016)) and because the correction terms are the same for

each region. The latter is because the follower will always invest only in the profitable region 2,
giving rise to a sequential problem.13

Analogous to the previous section, V Ldet
i (XL

i ,K
L
i ) and Ii(K

L
i ) together allow calculating the

optimal capacity K∗,Ldet

i for a given timing (XL
T,i), whereas the relevant value matching and

smooth pasting conditions for FLdet
i (XL

T,i,K
L
i ) lead to the optimal unrestricted timing X∗,Ldet

T,i as

a function of installed capacity (KL
i ). Combining both leads to (X∗∗,Ldet

T,i ,K∗∗,Ldet

i ), the investment

decision optimal in both timing and size for the leader playing the entry deterrence strategy.14

According to Huisman & Kort (2015) however, the leader can only play the deterrence strategy
when X ∈ [Xdet

T,1, X
det
T,2]. Xdet

T,1 on the one hand is calculated as the lowest X wherefore an optimal

K∗,Ldet

i exists. On the other hand, Xdet
T,2 is defined as X∗,FT,j (K∗,Ldet

i (Xdet
T,2)) = Xdet

T,2.

In this light, it should always be verified that X∗∗,Ldet

T,i ∈ [Xdet
T,1, X

det
T,2] to make sure that this

optimal entry deterrence strategy is feasible and indeed deters the follower. In the case of suffi-
ciently large cost differences, the leader will wait to invest until the optimal deterrence threshold
is reached if X(t = 0) < X∗∗,Ldet

T,i , whereas the port will invest right away if X(t = 0) > X∗∗,Ldet

T,i

11Alternatively, the correction term could be written as +

(
XL

T,i

X
∗∗,F
T,j

(KL
i )

)β1
·(

V F
i,2(X∗∗,F

T,j (KL
i ),KL

i ,K
∗∗,F
j (KL

i )) − VM
i,2(X∗∗,F

T,j (KL
i ),KL

i )
)

, as V F
i,2 replaces VM

i,2 after the follower’s investment.

12This reasoning is analogous to VM
1 (XT ,K) = V

M
1 + (XT /XT,boundary)β1 ·(

VM
2 (XT,boundary,K) − V

M
1 (XT,boundary,K)

)
, where the correction expresses the possibility of X crossing

XT,boundary to enter a different region Rk.
13XT,boundary < X∗∗,F

T,j .
14This is the outcome of the joint optimisation of X

∗,Ldet
T,i and K

∗,Ldet
i , without timing nor size being dependent

on Ki and X respectively.
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3.3.2 Entry accommodation

It may occur that entry deterrence is not the optimal strategy for the port to follow. This is the
case when the market is initially large enough to accommodate two operating ports. Then the
leader does not have the incentive to overinvest in order to delay the follower’s investment, since
it would be too costly to do so. Consequently, it is better for the leader port to invest in less
capacity than what would be optimal under entry deterrence.

Under entry accommodation, the value function of the leader is different than under entry
deterrence, because the follower invests right away and there is no V M-term. It is however similar
to Eq. (10), as the two ports invest at the same time (Huisman & Kort, 2015). The difference is
that the capacity of the other port, i.e. the follower, is now endogenous, since it depends on the
capacity of the leader and the given threshold, which is by definition equal to the timing of the
leader. The value of the leader now becomes:

V Lacc
i (XL

T,i,K
L
i ) = V F

i (XL
T,i,K

L
i ,K

∗,F
j (XL

T,i,K
L
i )) (19)

The accommodation strategy can only be played when the market is large enough such that
X ∈ [Xacc

T,1,∞), with Xacc
T,1 6 Xdet

T,2 and Xacc
T,1 defined as X∗,FT,j (K∗,Lacc

i (Xacc
T,1)) = Xacc

T,1 (Huisman &
Kort, 2015).

It is moreover possible to determine whether it is optimal to play the deterrence or accommo-
dation strategy if X ∈ [Xacc

T,1, X
det
T,2]. In case Xacc

T,1 < Xdet
T,2, there exists an X̂T ∈ [Xacc

T,1, X
det
T,2]

for which it holds that for X < X̂T , it is optimal for the leader to play the entry deter-
rence strategy, while for X > X̂T the entry accommodation strategy is optimal.15 X̂T satisfies
V Ldet
i (X̂T ,K

∗,Ldet

i (X̂T ))− I(K∗,Ldet

i (X̂T ) = V Lacc
i (X̂T ,K

∗,Lacc

i (X̂T ))− I(K∗,Lacc

i (X̂T )).

3.3.3 Preemption

In the case of a small cost asymmetry between the ports, both ports have an incentive to be the
first investor (Corchón & Marini, 2018). At the optimal investment threshold X∗,Ldet

T,i of the first

port with the cost advantage, the project value V L
1 − I1 of being the leader for this port is higher

than the discounted value of being the follower V F
1 −I1. If the same holds for the second port, this

follower would then prefer to become the leader. The second port could achieve this by investing
at an X that is infinitesimally smaller than X∗,Ldet

T,i : X∗,Ldet

T,i − ε, with ε an infinitesimal small

positive number. The first port would then invest at X∗,Ldet

T,i − 2ε to remain the leader. This
process of epsilon preemption as described by Huisman & Kort (2015) would continue until the
preemption threshold XP

T for which it holds that

V L
2 (XP

T ,K
∗,L
2 (XP

T ))− I2(K∗,L2 (XP
T )) =

(
XP
T

X∗∗,FT,2 (K∗,L1 (XP
T ))

)β1

·[
V F
2 (X∗∗,FT,2 (K∗,L1 (XP

T )),K∗∗,F2 (K∗,L1 (XP
T )),K∗,L1 (XP

T ))− I2(K∗∗,F2 (K∗,L1 (XP
T )))

]
. (20)

At this point, the port with the cost disadvantage is indifferent between the role of the leader and
that of the follower. The cost advantage for the other port leads to its leader value at this point
still being higher than its discounted follower value. Hence, at this point no further preemption
will take place, and port 1 will act as the leader and invest at XP

T in K∗,L1 (XP
T ) to preempt port

2, whose investment will be deterred. However, if X < X∗∗,Ldet

T,i < XP
T , the port with the cost

advantage would invest at its deterrence-optimum and the preemption point would be insignificant.

3.4 A synthesis of the leader’s and follower’s strategies

As the previous subsections illustrated, the leader port can choose from three different investment
strategies. The choice it will make, depends on the initial state of the market as expressed by X.
In this subsection, we discuss these possible strategies using a number line for X in Figure 3.

15In case Xacc
T,1 = Xdet

T,2, X̂T = Xacc
T,1 = Xdet

T,2.
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Assuming that X is initially very small, i.e. below Xdet
T,1, no profitable investment is possible

for any port at the beginning. As soon as X > Xdet
T,1, the leader could profitably invest in an

entry-deterring quantity. However, it will not decide to do so, since waiting is an even more
valuable strategy. As soon as X = XP

T and assuming that XP
T < X∗∗,Ldet

T,i due to relatively small
cost differences between the ports, the port with the cost advantage will decide to invest in the
optimal entry-deterring quantity K∗,Ldet

1 (XP
T ). If it would not do so, the other port would invest

first to preempt the port with the cost advantage, who would then become the follower. This
would for the cost-advantaged firm imply a lower value than if it would be the leader. However,
if the preemption point would be higher than the optimal investment threshold of the leader due
to a larger cost advantage, the leader could wait longer until X reaches X∗∗,Ldet

T,i ∈ [Xdet
T,1, X

det
T,1].

At that point, the port with the cost advantage can invest at its unrestricted leader threshold, i.e.
entry deterrence with K∗∗,Ldet

i being the amount of capacity.

If X would initially exceed min{XP
T , X

∗∗,Ldet

T,i }, the leader would invest right away. The in-
vestment strategy and related capacity are dependent on the actual value of X. As long as
X < Xacc

T,1 6 Xdet
T,2, the optimal instantaneous investment for the leader would be the deterrence

strategy, which is at the same time the only feasible strategy. If X > Xdet
T,2 > Xacc

T,1, it would
be optimal for the leader to invest right away in an entry-accommodating strategy, which is in
this situation, again, the only feasible strategy. If X ∈ [Xacc

T,1 6 Xdet
T,2], both the deterrence and

accommodation strategies are feasible. If X < X̂T , the deterrence strategy is more profitable,
while if X > X̂T , accommodation is the most profitable strategy to play. As a result, a higher X̂T

decreases the probability that the leader will invest in an entry-accommodating capacity level.
The decision of the follower is easier to determine. If the leader invests in an entry deterring

capacity, the follower would wait with investment until X reaches its optimal threshold, which is
X∗∗,FT,i . At that point, it would invest in the corresponding optimal capacity K∗∗,Fi . Both depend
on the capacity of the leader, as described in Section 3.2. If the leader would invest in an entry-
accommodating quantity, the follower would invest at the same time in its corresponding optimal
capacity K∗,Fi (XLacc

T,j ) as calculated before.

4 Impact of competition and ownership on investment de-
cisions

In this section, the previously described methodology is applied to a two-port setting specified by
the parameters in Table 1. We calculate the specific XT,i and Ki from Figure 3 that are required
to describe the full domain of possible decisions for both the leader and the follower port. In order
to examine the impact of competition intensity and answer research sub-question 1), we vary the
product differentiation parameter δ from 0.6 to 0.9 for intensified competition and to 0.3 for less
competition with more diversified port services. For each δ, the analysis is carried out under three
different ownership structures: a private port, a public port taking full consumer surplus into
account and a port that is 50% owned publicly by a government taking 50% of port i’s generated
consumer surplus into account. This allows answering research sub-question 2). The resulting
investment decisions for port 1 (the leader) and port 2 (the follower) are given in Tables 2 - 4.

The first threshold to be discussed is the preemption point XP
T . In the numerical simulations,

with a sufficiently low cost advantage for port 1, the preemption point is always below the un-
restricted investment threshold for the leader. This implies that when X is initially below the
preemption point, the port with the cost advantage will wait until X reaches XP

T to invest in an
entry deterring capacity, in order to preempt the follower. If government involvement is higher
in both ports, the preemption threshold will be lower too, since more accounting for social wel-
fare increases the projects’ attractiveness. The willingness to invest of each port increases. As
a result, epsilon preemption will continue further to lead to a lower preemption threshold. In
order to preempt port 2, port 1 needs to invest earlier. The impact of intensified competition
(through a lower product diversification) on the timing of the preemption point is as expected,
namely a lower XP

T -threshold. Since port 2’s incentive to become the leader is larger, following a
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0 Xdet
T,1 XP

T X∗∗,Ldet

T,i
Xacc
T,1 X̂T Xdet

T,2

XT,i

Figure 3: Number line with the leader’s critical investment thresholds.

Table 2: Investment strategies of the leader (port 1: XT,1,K
∗,Ldet/acc

1 (XT,1) ) and follower (port 2: (X∗∗,F
T,2 (K

∗,Ldet/acc

1 (XT,1)),K∗∗,F
2 (K

∗,Ldet/acc

1 (XT,1)))) for
each characteristic XT,i in Figure 3.

sG, sCS Port role Xdet
T,1 XP

T X∗∗,Ldet

T,i Xacc
T,1 X̂T (acc) X̂T (det) Xdet

T,2

0, 0 Leader (1) 10.65, 5.14 32.75, 10.35 (36.24, 10.79) 48.72, 12.02 48.84, 12.04 48.84, 12.19 48.91, 12.20
−→ Follower (2) (41.16, 11.50) (46.89, 11.91) (47.38, 11.94) (48.72, 12.02) 48.84, 12.04 (48.90, 12.03) (48.91, 12.03)

0.5, 0.5 Leader (1) 10.08, 5.14 30.97, 10.34 (34.68, 10.83) 47.89, 12.15 48.06, 12.17 48.06, 12.36 48.16, 12.38
−→ Follower (2) (39.57, 11.54) (45.67, 12.00) (46.28, 12.05) (47.89, 12.15) 48.06, 12.17 (48.15, 12.17) (48.16, 12.17)

1, 1 Leader (1) 8.56, 5.14 25.93, 10.39 (30.49, 11.10) 47.75, 12.90 48.48, 12.99 48.48, 13.46 48.96, 13.52
−→ Follower (2) (35.22, 11.83) (43.06, 12.53) (44.34, 12.64) (47.75, 12.90) 48.48, 12.99 (48.85, 12.99) (48.96, 13.00)

Parameter values: A = 5, B = 1, δ = 0.6, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI,1 = 80, FCI,2 = 100, γ1 = 180, γ2 = 19, γ3 = 0, γ4 = 0.12.

Source: Own calculations.

Table 3: Investment strategies of the leader (port 1: XT,1,K
∗,Ldet/acc

1 (XT,1) ) and follower (port 2: (X∗∗,F
T,2 (K

∗,Ldet/acc

1 (XT,1)),K∗∗,F
2 (K

∗,Ldet/acc

1 (XT,1)))) for
each characteristic XT,i in Figure 3 under higher product diversification.

sG, sCS Port role Xdet
T,1 XP

T X∗∗,Ldet

T,i Xacc
T,1 X̂T (acc) X̂T (det) Xdet

T,2

0, 0 Leader (1) 10.58, 5.14 35.12, 10.71 (36.57, 10.89) 43.19, 11.61 43.20, 11.61 43.20, 11.65 43.20, 11.65
−→ Follower (2) (39.79, 11.38) (42.75, 11.59) (42.84, 11.59) (43.19, 11.61) 43.20, 11.61 (43.20, 11.61) (43.20, 11.61)

0.5, 0.5 Leader (1) 10.01, 5.14 33.31, 10.69 (34.93, 10.90) 41.88, 11.68 41.89, 11.69 41.89, 11.73 41.90, 11.74
−→ Follower (2) (38.18, 11.42) (41.34, 11.65) (41.46, 11.66) (41.88, 11.68) 41.89, 11.69 (41.90, 11.69) (41.90, 11.69)

1, 1 Leader (1) 8.50, 5.14 28.12, 10.74 (30.45, 11.08) 39.04, 12.13 39.11, 12.13 39.11, 12.25 39.15, 12.26
−→ Follower (2) (33.78, 11.68) (37.91, 12.04) (38.20, 12.06) (39.04, 12.13) 39.11, 12.13 (39.15, 12.13) (39.15, 12.13)

Parameter values: A = 5, B = 1, δ = 0.3, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI,1 = 80, FCI,2 = 100, γ1 = 180, γ2 = 19, γ3 = 0, γ4 = 0.12.

Source: Own calculations.
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Table 4: Investment strategies of the leader (port 1: XT,1,K
∗,Ldet/acc

1 (XT,1) ) and follower (port 2: (X∗∗,F
T,2 (K

∗,Ldet/acc

1 (XT,1)),K∗∗,F
2 (K

∗,Ldet/acc

1 (XT,1)))) for
each characteristic XT,i in Figure 3 under lower product diversification.

sG, sCS Port role Xdet
T,1 XP

T X∗∗,Ldet

T,i Xacc
T,1 X̂T (acc) X̂T (det) Xdet

T,2

0, 0 Leader (1) 10.71, 5.14 31.15, 10.14 (36.28, 10.80) 55.27, 12.52 55.76, 12.57 55.76, 12.93 56.08, 12.96
−→ Follower (2) (42.40, 11.61) (50.87, 12.23) (52.09, 12.32) (55.27, 12.52) 55.76, 12.57 (56.02, 12.56) (56.08, 12.57)

0.5, 0.5 Leader (1) 10.13, 5.14 29.43, 10.13 (34.79, 10.86) 55.20, 12.73 55.94, 12.80 55.94, 13.26 56.43, 13.31
−→ Follower (2) (40.82, 11.66) (49.81, 12.36) (51.29, 12.46) (55.20, 12.73) 55.94, 12.80 (56.33, 12.80) (56.43, 12.80)

1, 1 Leader (1) 8.61, 5.14 24.64, 10.22 (30.90, 11.23) 60.33, 14.02 64.82, 14.46 64.82, 15.64 68.30, 16.03
−→ Follower (2) (36.44, 11.97) (47.88, 13.02) (50.89, 13.27) (60.33, 14.02) 64.82, 14.46 (66.66, 14.49) (68.30, 14.61)

Parameter values: A = 5, B = 1, δ = 0.9, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI,1 = 80, FCI,2 = 100, γ1 = 180, γ2 = 19, γ3 = 0, γ4 = 0.12.

Source: Own calculations.
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relative increase in the leader value as compared to the follower value, port 1 needs to advance
its investment further to preempt port 2. The impact on the size of the investment is however
remarkable. The earlier leader investment in order to preempt the follower implies investing at
the moment that the market has a smaller size, which results in the leader installing less capacity.
The optimal leader capacity investment size as a function of the timing increases however with
the amount of competition. As a result of increased competition, the leader would invest in more
capacity than what would be optimal under a monopoly setting in order to delay follower entry for
a longer time, leading to a prolonged monopoly position (Huberts et al., 2014). This explains why
follower investment is later and hence larger when there is more competition, notwithstanding the
leader’s earlier investment timing under the preemption strategy. The findings are summarised in
the following results, which are derived numerically, since closed-form analytical results could not
be obtained.

Result 1 Intensified competition and resulting preemption not only leads to earlier investment
of the leader, but also to less capacity installed. The follower however invests later and in more
capacity.

If there are large cost differences, the leader is able to invest at the unrestricted threshold
X∗∗,Ldet

T,i . The impact of competition on this optimal timing threshold is ambiguous and limited.
The impact of an increase of public money involvement however is clearer:

Result 2 An increase of public money involvement leads to an earlier unrestricted investment in
more capacity.

Result 2 confirms the finding of Asteris et al. (2012), namely that public companies invest sooner
and in more capacity than private companies. As soon as the initial X is high enough (above
X̂T ), the market is so profitable that the cost-disadvantaged port will also invest immediately.
This implies that entry accommodation becomes the most profitable strategy for the leader. The
leader will invest in less capacity than under entry deterrence, because then there is no incentive
to prolong the monopoly period. The thresholds indicating the beginning of the accommodation
region and the end of the deterrence region increase with a higher δ. As previously noted, if
the competitive impact of the other port increases, the leader has a larger incentive to deter the
follower from entry. This can be done through investing in more capacity to delay the follower’s
investment. The impact of public involvement on the two boundaries is ambiguous. Additionally,
(increased) public money involvement and product diversification both widen the interval wherein
both strategies (entry deterrence and accommodation) are possible. This is caused by a combi-
nation of effects. Due to public money involvement, investment becomes more beneficial for both
ports. Since it is more profitable for the leader, deterrence is feasible over a longer time span, but
because investment is also more profitable for the follower, at the same time it is more difficult to
deter entry.

The follower’s decision does not depend on the initial value of X and the different thresholds.
It only depends on the capacity choice of the leader. If the leader has invested in more capacity,
the follower will invest later, independent of the timing of the leader. The reason is that the
leader has been able to capture a larger share of the market. Hence the follower needs to await
more market growth in order to be able to invest profitably. Given the positive relationship
between timing and size, the follower will not only invest later, but also invest in more capacity.
If relatively more public money is involved, the follower will ceteris paribus invest earlier in more
capacity. This observation is analogous to the leader’s decision. If the port services are more
homogeneous, leading to increased competition, the negative impact of the leader’s activity on
the follower’s price is higher. As a result, the follower needs to wait longer in order to be able
to invest profitably. Again, the installed capacity will be larger. The reason is that under more
intense competition, investment by the leader has more effect on the follower’s profitability. By
consequence, it requires less effort of the leader to reduce profitability of the follower, thus making
entry deterrence a relatively easier strategy to follow.
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Table 5: Investment strategies of the leader (port 1: XT,1,K
∗,Ldet/acc

1 (XT,1) ) and follower (port 2: (X∗∗,F
T,2 (K

∗,Ldet/acc

1 (XT,1)),K∗∗,F
2 (K

∗,Ldet/acc

1 (XT,1)))) for
each characteristic XT,i in Figure 3 under different parameter changes.

Parameter

change Port role Xdet
T,1 XP

T X∗∗,Ldet

T,i Xacc
T,1 X̂T (acc) X̂T (det) Xdet

T,2

Base case Leader (1) 10.08, 5.14 30.97, 10.34 (34.68, 10.83) 47.89, 12.15 48.06, 12.17 48.06, 12.36 48.16, 12.38
−→ Follower (2) (39.57, 11.54) (45.67, 12.00) (46.28, 12.05) (47.89, 12.15) 48.06, 12.17 (48.15, 12.17) (48.16, 12.17)

A = 4 Leader (1) 9.41, 5.14 27.56, 10.07 (31.29, 10.61) 44.57, 12.05 44.75, 12.07 44.75, 12.30 44.86, 12.31
−→ Follower (2) (36.36, 11.40) (42.25, 11.89) (42.90, 11.94) (44.57, 12.05) 444.75, 12.07 (44.85, 12.07) (44.86, 12.07)

σ = 0.15 Leader (1) 9.81, 5.14 41.32, 11.86 (49.36, 12.78) N/A N/A N/A N/A
−→ Follower (2) (60.52, 14.06) (80.77, 15.67) (84.30, 15.93) N/A N/A N/A N/A

σ = 0.14 Leader (1) 9.88, 5.14 38.62, 11.48 (44.84, 12.21) 78.10, 15.18 78.70, 15.23 78.70, 15.51 79.12, 15.55
−→ Follower (2) (53.93, 13.34) (68.11, 14.47) (70.02, 14.61) (78.10, 15.18) 78.70, 15.23 (79.02, 15.25) (79.12, 15.25)

µ = 0.02 Leader (1) 8.89, 5.14 33.08, 11.23 (38.09, 11.90) 62.51, 14.42 62.89, 14.45 62.89, 14.70 63.15, 14.73
−→ Follower (2) (45.38, 12.95) (56.10, 13.91) (57.44, 14.02) (62.51, 14.42) 62.89, 14.45 (63.10, 14.46) (63.15, 14.46)

µ = −0.01 Leader (1) 15.59, 5.14 33.29, 8.89 (36.07, 9.20) 43.35, 9.60 43.54, 9.61 43.54, 9.93 43.69, 9.95
−→ Follower (2) (39.22, 9.44) (42.67, 9.57) (42.97, 9.58) (43.35, 9.60) 43.54, 9.61 (43.68, 9.61) (43.69, 9.61)

FCI,2 = 116.3 Leader (1) 10.07, 5.14 (34.74, 10.84) (34.74, 10.84) 51.33, 12.51 51.51, 12.53 51.51, 12.74 51.63, 12.75
−→ Follower (2) (42.24, 11.87) (49.20, 12.38) (49.20, 12.38) (51.33, 12.51) 51.51, 12.53 (51.61, 12.53) (51.63, 12.53)

Single government Leader (1) 10.06, 5.14 31.46, 10.41 (34.70, 10.83) 46.29, 12.03 46.40, 12.04 46.40, 12.19 46.46, 12.19
−→ Follower (2) (39.24, 11.51) (44.61, 11.92) (45.06, 11.95) (46.29, 12.03) 46.40, 12.04 (46.46, 12.04) (46.46, 12.04)

Base case parameter values:
A = 5, B = 1, δ = 0.6, c = 1, ch = 0.5, µ = 0.015, σ = 0.1, r = 0.06, FCI,1 = 80, FCI,2 = 100, γ1 = 180, γ2 = 19, γ3 = 0, γ4 = 0.12, sG = 0.5, sCS = 0.5.

Source: Own calculations.
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5 Impact of other parameters on investment decisions

In order to analyse the impact of the height of congestion costs (A), uncertainty (σ), growth (µ)
and investment cost difference between the two ports (as expressed by FCI,i) on the investment
decision, each time we alter the respective parameter and compare it to the base case (where
δ = 0.6 and sG = sCS = 0.5). In this light, the outcomes in Table 5 allow answering research
sub-questions 3) to 6).

If the port customers are more averse to waiting, the willingness to pay is lower for the same
utilisation rate. As a reaction, the following result holds:

Result 3 Both the leader and the follower port will invest in more capacity, but at a later moment
if the customers are more averse to waiting.

The reason is that in order to make up for the less profitable project, the port will delay its
investment until the market is profitable enough to install the project. This goes hand in hand
with a larger investment in order to reduce the occupancy rate. This allows at the same time
taking better advantage of the investment size scale economies.

If the economic environment is more uncertain, both ports benefit from waiting longer to invest,
in order to gain more information. This confirms the frequent real options observation:

Result 4 Increased uncertainty not only leads to waiting longer before investment due to a higher
option value of waiting, but also to more capacity installed.

However, this effect is lower under competition, since competition has a negative impact on the
option value of waiting. Next to the common real options result, uncertainty also has another
effect. It might even be that due to high uncertainty, entry accommodation is no longer a feasible
strategy. If uncertainty goes up, the value of waiting for the follower rises. This makes that for
sufficiently high values of uncertainty, the follower always waits whenever the leader invests. This
implies the absence of an accommodation region. Because higher uncertainty implies that the
follower invests later, the leader is a monopolist for a longer time in the deterrence region. This
makes deterrence more attractive for the leader, implying that Xdet

T,1 can be lower.
If average growth is higher, both ports need to install substantially more capacity, in order

to be able to accommodate the future demand without too much congestion. However, a larger
investment requires a larger market, implying later investment. This result is summarised as
follows:

Result 5 Increased growth leads to investing later, in more capacity.

Additionally, the Xdet
1 threshold will be lower as well, since the project is more attractive, and the

port will be willing to install the project earlier. However, also the impact of negative economic
growth needs some attention:

Result 6 If growth is negative, the port will need to wait for a higher threshold to be reached,
in order to be able to install the project profitably. Due to the negative growth rate, reaching this
threshold is much less probable. Moreover, the project will be much smaller, since future demand
is expected to decrease.

Since the leader’s project will be much smaller, the follower speeds up investing, but, also due to
declining market size, in a smaller capacity level.

The impact of a cost advantage increase for the leader, such that FCI,2 increases, is that the
leader can wait longer to invest in order to still deter or preempt the follower. The reason is
that the follower needs to wait longer (as expressed through a higher XT ) in order to be able to
profitably invest in capacity, due to its higher investment cost. This leads to both ports not only
investing later, but also in more capacity. As a consequence, the following result holds:

Result 7 When the cost advantage becomes large enough, preemption no longer takes place.
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In such a case, the role of each port is ex-ante determined. The first port (leader) can invest at its
unrestricted leader threshold, while at this point the follower value of the second port is at least
as high as its leader value. Additionally, it is observed that Xdet

T,1 slightly decreases. The leader
knows that it will benefit for a longer time of its monopoly position due to the FC-cost increase
for port 2. As a result, investing in capacity becomes profitable earlier.

Throughout this paper, the analyses were made under the assumption that the public owner
involved in port i differs from the public owner involved in port j. However, it is worthwhile to
check the robustness of our analysis in case the same government would own a share of port i and
j, which could be the case if those two ports are located in the same country or province. In such
a case, the government would consider the consumer surplus of both ports, CSi+j , which under
product differentiation equals CSi+j(qi, qj) = B/2 · (q2i + 2δqiqj + q2j ) (Singh & Vives, 1984). As

a result, CSi in Eq. (4) would no longer be valid, as it needs to be replaced by B/2 · (q2i + δqiqj).
The consumer surplus of the other port would equal B/2 · (q2j + δqiqj), so that the sum of both
equals CSi+j(qi, qj). Implementing this in our model yields the investment strategies in the last
two lines of Table 5, indicated by ’single government’. The effect on the calculated investment
decisions is limited and is qualitatively similar to the effect of a decreased impact of the other
port’s throughput quantity qj on the own port’s price pi, mathematically expressed as a decrease
of δ.

6 Conclusions and future research

Many examples of competing ports, operating in an uncertain environment, exist. Depending on
the geographical situation and services offered, the amount of competition may however differ. In
this paper, we have analysed how inter-port competition under uncertainty interacts with other
typical port characteristics while influencing the port capacity investment decision. We not only
allow for simultaneous investment when the leader invests in an entry-accommodating capacity,
but also address the possibility for the leader to deter entry in a leader-follower timing game.
Uncertainty is modelled by a GBM, which allows analysing the impact of growth and uncertainty
independently.

We find that when competition is more intense, the option value of waiting is reduced because
each port has a larger incentive to invest before the other port. As a result of this earlier investment,
it will be smaller as well. The same effect on the timing is observed when government involvement
increases. The consideration of social welfare in the operational objective function leads to a more
attractive project. As a result, the port will invest earlier, and also in more capacity. If growth
expectations are higher, it is beneficial to wait longer and benefit from the larger market and
higher price. As a result, more capacity will be installed at this later timing. The same holds
for more uncertainty, since the option value of waiting and gaining more information increases
with uncertainty. Subsequently, we show that if the customers are less waiting-time averse, less
capacity is needed, and because the project is more attractive due to higher full prices, the port
will want to invest earlier. Finally, we show that if the cost advantage of the leader is small enough,
both ports are seeking to preempt each other. If the cost difference is large enough however, the
cost-advantaged port is guaranteed of its leader role, so that it can invest at its unrestricted leader
threshold.

Some limitations are present in the model too, which allow additional model extensions in
future research. The impact of intra-port competition on the investment decision is beyond the
scope of this paper, but would be an interesting subject of a follow-up study. Additionally, it
takes time to build the infrastructure, during which the market evolves in an uncertain way.
As a result, the exposure to risk is larger in reality than accounted for in the presented model.
Additionally, a difference in time to build between two ports, e.g., due to a different political and
legal environment, may also impact competition. In this light, adapting the model of Aguerrevere
(2003) to a port setting provides an interesting way for further research. Moreover, the current
model neglects the option to expand. When the port is already active, it might want to mitigate
the already present congestion, with its detrimental effect on the port customers’ willingness to
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pay, in order to increase profitability of the port operations in the future. Another limitation of
the model is the assumption of the project being built at once. Many port expansion projects are
deployed in stages, each one at the time when the market has grown sufficiently. The modelling
approach of Chronopoulos et al. (2017) is able to account for phased investment and needs to
be considered in the next stage of this research. Finally, more differences between the two ports
may be considered, such as different objectives and ownership shares. In line with Result 2, we
expect the port with a higher public ownership share to invest earlier in more capacity, since the
project is more attractive due to the fact that social welfare is taken more into account. Moreover,
port investment decisions are influenced by the government’s port development doctrine. Where
this paper accounts for the properties of the Anglo-Saxon and European (Continental) doctrine
with individual ports, respectively private and at least partly public ports, the results may well be
different under the Asian doctrine (Bennathan & Waters, 1979; Lee & Flynn, 2011). Considering
the centrally planned development of multiple ports, possibly encompassing cross-subsidisation
may alter the findings. Hence, this would be an interesting extension of our paper to allow for
comparison with Chen et al. (2017).
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