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Abstract

This paper deals with the timing of technology adoption by a cost-
minimizing firm. Technological progress is assumed to reduce costs
and is modeled by a geometric Brownian motion. The firm may have
any number of options to switch to a more efficient technology. For
each switch, a distinet option value is identified, causing a delay in the
adoption of new technologies. As the value of each option increases
when the number of remaining technology switches is reduced, under-
estimating efficiency gains by future technology adopticns may result
in an additional (suboptimal) delay in the adoption of new technolo-
gles.

1 Introduction

In a recent publication, Farzin, Huisman & Kort (1998) addressed the prob-
lem of the optimal timing of technology adoption by a competitive firm when
technology choice is irreversible and the firm faces a stochastic innovation
process. Based on the well-documented observation that 'the adoption of
new technologies is a slow and incremental process’, the question is posed
‘what explains the apparently cautious approach of firms to technology adop-
tion' (Farzin et al., 1998, p.780). Apparently, firms are often very hesitant
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to adopt new technologies and wait to switch beyond the point where in-
vesting in the new technology results in a positive net-present-value (npv).
Using a standard production function h (v,#) = fv® in which v is a variable
input and # is the (stochastic) factor reflecting technological efficiency, they
assume that technology evolves according to a Poisson jump process. Both
the timing of the jumps in 8 and the size of each jump are considered to be
stochastic. The timing of the technology adoption is then derived from the
objective of profit-maximization over an infinite time-horizon.

In order to determine the value §* triggering a technology switch, a
backward recursive solution method is used, starting with a firm that has
only one option to switch to a new technology. For the latter case, they
find the interesting result that a new technology is adopted considerably
later than the traditional npv-rule suggests. The extra delay is caused by
the additional option cost at the time of adoption. Since the firm has only
one option to switch technology, no future gains can follow from further
technological progress after switching. Therefore firms will be hesitant to
exercise the option. Unfortunately, when the model is generalized for multi-
ple switches, no option value could be detected except for the last technology
switch in & sequence. As a result, it is concluded that new technology will be
adopted whenever the npv of the replacement is positive (except of course,
for the last switch). This is a somewhat disturbing result, since in general
there is no real limit on the number of technology switches. Therefore it
could be argued that the model of Farzin et al. does not really solve the
problem of delayed technology adoption.

In this paper, an alternative model will be presented to determine the
optimal timing of technology adoptions. The model uses a different speci-
fication for technological progress and is based on cost-minimization. The
purpose of this model is to offer an explanation for the cautious approach to
technology adoption as described earlier, for the case in which the operator
of the technology has an arbitrary finite or infinite number of switching op-
tions. First, we will show that the model identifies an option value for each
switch in technology. Such option value constitutes an additional cost to be
taken into account at each technology switch and therefore causes a delay in
the adoption of new technologies. Second, it will be demonstrated that the
value of this option to switch to a superior technology depends largely on
the number of switches taken into account by the operator of the technology.
As the number of options is reduced, the value of each option to switch to a
new technology increases considerably. Therefore, if the operator does not
fully take into account future options to switch to superior technology, he
will overestimate the value of the first option to replace and therefore cause



an additional (suboptimal) delay in the adoption of a new technology.

This paper is further structured as follows. In the next section, some re-
cent publications on replacement and the timing of technology adoption will
be reviewed. The main characteristics and the differences with the present
analysis will be commented. Section 3 then proceeds with an argumentation
for the use of a geometric Brownian motion to moedel technological progress.
The actual problem of technology adoption will be analyzed in section 4,
where two distinct cases will be identified. The first involves a single option
to switch technology (single-shot technology adoption), discussed in section
5, the second involves a series of options (revolving technology adoption),
discussed in section 6. The characteristics of the solution are further exam-
ined in section 7, followed by a summary of the main conclusions.

2 Some recent literature

The process of technology adoption is a well-known micro-economic problern,
closely related to the theory of capital replacement. The role of technological
progress was especially emphasized by authors as Terborgh (1949), Alchian
(1952) and Smith (1966). More recently, the problem was addressed by
Howe & McCabe (1983), Mauer & Ott (1995) and the author {1998). The
growing attention for the role of uncertainty and the use of option-theory
to study real investments (See e.g. Dixit & Pindyck, 1994 and Trigeorgis,
1996) highlighted the problem again in recent years.

Contrary to Farzin et al., the work of Mauer and Oft deals with sev-
eral kinds of uncertainty. Aside from technological progress, the impact of
uncertainty about operating costs, tax regimes etc. is examined. Their spec-
ification of technological progress by means of a Poisson-process is similar
to the single-switch model of Farzin et al., but they only consider a single
jump in the state of technology, after which the new technology will remain
in operation indefinitely. Grenadier & Weiss (1997) also examine the tim-
ing of technology adoption, using a different specification for technological
progress. They also treat technological progress as a jump process, but they
agsume & discrete jump in the available technology appears when some vari-
able following a Brownian motion hits a predefined barrier. Their analysis
is restricted to two replacements, but they allow lagging, i.e. it is possible
to adopt a technology different from the most recent one.

The approach in this paper is somewhat different from the work men-
tioned before. Technological progress will be treated as a continuous process
(more exactly: a geometric Brownian motion). As in the work of Farzin et



al., any number of technology switches will be examined. However, it will
be demonstrated that there is a distinct option value at each stage of the
adoption process. Consequently the traditional npv-rule does not apply.
We will also show that the optimal timing of technology adoption is severely
influenced by the number of switches in the chain.

The instruments used in this paper are closely related to the ones used
to analyze financial options. The case in which & single technology switch
is allowed is comparable to an American financial option with an infinite
expiration date. Not exercising the option causes a cost in the form of
inefficient production. An important difference is created when allowing
for multiple switches. In that case exercising the option to adopt a new
technology automatically creates a new option. In the case where multiple
subsequent switches are considered, these form a stream of nested options.
In order to determine the optimal time to exercise the first option, the value
of all subsequent options has to be known. The solution method for this
problem is reminiscent of Dixit & Pindyck (1994, p.319) and is similar to
the one used by Farzin et al. (1998) for a Poisson-process and Bethuyne
(1998) for a deterministic model. Starting from a simple model with only
one technology switch, an optimal switching rule will be determined using
a recursive solution method.

The mathematical techniques used in this paper are described in various
works. We can refer to the standard work of Pindyck (1991), Dixit (1993),
Dixit & Pindyck (1994), Kamien & Schwartz (1995) and Ingersoll (1987).
The latter work, together with the work of Cox & Miller (1972) and Karlin
& Taylor (1971, 1975) can also be helpful for the understanding of some of
the more advanced features of stochastic processes.

3 Technological progress

Technological progress has an impact on production in various ways, often
also in ways that are very difficult to analyze in a purely mathematical
form. Technology can improve the output of equipment while costs remain
unchanged, or it can reduce costs while leaving production unaffected. Also,
it could modify the characteristics (quality, durability, ...) of the cutput, ...
The kind of technological progress considered here only affects costs. We
will assume that the output of the equipment is unaffected, in quantity as
well as in quality. Furthermore we will assumme that the effect of technology
on costs can be described by an index & which follows a geometric Brownian
motion: df = —gfdt + o8 dz, where dz describes a Wiener process. In this



gense, technological progress can be considered as a form of input cost un-
certainty as described by Pindyck (1993), who also uses a Brownian motion
to model uncertainty. The negative sign of the drift-rate refers to the fact
that technological progress reduces costs. Of course the Brownian motion
may not always be the best type of stochastic process to model technological
progress. For instance, in the case where technology advances in a less con-
tinuous way and is more susceptible to sudden jumps caused by inventions,
Polsson processes may indeed be the better choice.

However, in other instances the use of a Brownian motion to model tech-
nological progress can easily be motivated. A variable following a Brownian
motion will change continuously following a certain trendline. This is clearly
the case with certain types of technology, where knowledge is gathered grad-
ually. However, the Brownian motion also allows brief movements against
the trendline. This would imply a regression of technology, making more
recent technology less efficient than older technology. At first sight this may
‘seern counter-intuitive, but on further inspection it is not that unrealistic.
Indeed, although it could be argued that knowledge is cumulative and a
regression in knowledge hardly ever occurs, it should not be forgotten that
6 represents the cost of the latest technology. A certain technology can in-
corporate more knowledge and be technically more efficient than a previous
one and still cost more. Therefore over sufficiently short intervals of time,
small regressions in the effect of technology on costs may seem very well in
line with reality, while over larger periods of time it can be expected that
the most recent technology will be also the most cost-efficient. A geometric
Brownian motion has the additicnal advantage that the rate of technological
progress remains constant, This is not the case with for instance a Poisson
process, where the absolute size of the jumps is constant. The Poisson-
specification of Farzin et al. implies that over a long period of time, the
relative advantages of technological progress diminish and tend to zero.

4 Technology adoption

Consider an operator that currently uses equipment of technology 6. As-
sume that the cost of production with this equipment can be expressed as:

m(fo) = mfy Q)

where m is a constant. Let C(6y;8y) be the expected present value of the
production cost at ¢ over an infinite time-horizon, for an operator using



technology 8g, when the state of the most recent technology is &; (6o is a pa-
rameter and will be mentioned only when useful). If the firm cannot switch
to the more advanced technology, C{6;) will simply be %fl (in which ¢ is
the interest rate}, i.e. the perpetual operating cost of the existing equip-
ment. However, we will assume that the operator has one or more options to
switch to a more efficient technology m (8;) = m#b, at a cost P (0;) = Pb;.
Therefore C(#;) will be smaller than T because of potential gains from
the technology switch.

Assume that the state of technology 6 follows a stochastic process. At
any time before the replacement the expected present value of all future
costs C(8;) can be divided in immediate operating cost m#fg dt over the next
infinitesimal period of time and (expected) future costs & [C (@4qt)] in the

following manner:
& [C (Brta)]

14idt @)
Because the right-hand side expresses the cost as it appears before replace-
ment, we will call it the continuation cost. The first term (the immediate
operating cost mfg dt) is certain because it depends on the known state of
technology €. The second term is the expected present value of all future
cost at t-+dt. Expectations are taken with respect to the state of technology
dt units of time from the present.

Multiplying by 1-+4dt and omitting terms of order 2 in dt, the objective
function takes the form:

O(Qt) = ?7190 dt +

Or after rearranging and omitting subscript ¢:

i0(8) = iy + L9 0 (4)
dt

Eq.(4) is a differential equation, expressing the evolution of costs in rela-
tion to the underlying stochastic variable 8. The total cost of operating the
present equipment and its future challengers over an infinite time horizon
has an expected present value of C'(9), with a corresponding opportunity
cost of ¢C (#). The cost of keeping the defending equipment in operation can
be split in immediate (operating) costs and the expected change in future
costs due to technological progress and deterioration. Notice the analogy
with the return on stocks and bonds (which of course is maximized instead
of minimized). The expected return of stocks or bonds can also be split
in an immediate return (dividends or coupons) and the expected change in



value (capital gains). The source of e [dC (8)] is to be found in changes in
the state of available technology. If there were no opportunity to replace
the defending technology with a technologically more advanced challenger,
g [dC (8)] would simply be zero.
Let ©(9) be the (expected) present value of all future costs at the time
a new technology 9 is adopted, including the switching cost P# itself and
all costs incurred afterwards. The specific nature of 2(#) will be of major
importance for the optimal timing of the switch and will depend on the
number of technology switches available to the operator. The cost of the
operator can now be expressed as:
m—fﬁl + %ﬂ%% for 8 > 0*
cf) = (5)
£(6%) for 8 < 0*

in which at any time, § is the lowest value of € reached before that moment
and §* is the critical value of # triggering a technology switch.

The differential dC (#) in this expression deserves some further attention,
since it involves the stochastic variable 6. Following Itd’s lemma {see the
appendix for more details):

dC (6) = (—gacf () + %52920" (9)) dt + 06C (6) dz (6)

As long as § > 0%, substituting eq.(6) in objective function (5) expresses
iC (6) as: ‘

iC () = mbqy ~ g8C"'(6) + —é02920"(9) (N

The result is a Cauchy differential equation. In appendix a general solution
to this equation is determined, of the form:

C(f) = 373?9 + R0+ 02 (8)

In which Fj represent the (still unknown) constants of integration and -,
are the (real) roots of the characteristic equation corresponding to this dif-
ferential equation:

1 g 1 g\ 2%
7_j:”§+"&"§i\/(§+}‘§) ;2“ (9)

Notice that the smallest of both roots v; < 0 and the largest v, > 1.



The cost C(8) of operating the present equipment and all succeeding
challengers over an infinite time horizon breaks down in two components:
m—f‘l and Fy 0714+ F,072. If the state of technology did not change, replacement
would never occur and the cost would be the simple constant perpetuity m—f‘l
reflected by the first component. The second component however is caused
by the fact that at some point, when a Brownian motion hits a barrier, action
may be undertaken. In this case, a replacement with cost ({@*) will occur
when @ hits a lower barrier §*. When the state of technology degenerates
{8 — o0) the operator will simply keep the defender perpetually.

This information can be used to determine the constants of integration
Fy and the barrier 8*. When ¢ = 6" the following boundary condition must
hold {wvalue-matching condition):

C(0%) = Fi@" + Faf's + 3’%‘2’2 = Q6% (10)
If the state of technology degenerates (# — o0) , no action will occur and
the cost will be the perpetual operating cost of the defender:
lim C(6) = lim (Flﬁ'h Byl 4 @2) - ™% (11)
f-s00 o0 7 2
which serves as the second boundary condition. Since v, > 1, eq.{11) implies
that Fy = (. For simplicity, we will denote the remaining constant as F
instead of Fy and the remaining root as v instead of ;.

This still leaves eq.(10) with two unknown variables, namely the remain-
ing constant of integration F' and the unknown barrier *. However, for the
barrier #* to be an optimal stopping point, the continuation cost is required
to be tangent to the terminal cost function: C'(6%) = Q' (6") (also called the
smooth-pasting condition - see e.g. Dixit, 1993, p.34). Therefore F and 0*
can then be found solving the system:

cy = FoT 4 ﬁfﬁ — 06 (12)

Clery = yFe = (9% (13)

Notice that F@*" is the cost reduction due to the option to replace the
defender. Obviously when the state of technology degenerates (8 — o), the
option becomes worthless!. A further comment on the endpoint function
£2(8) is in order now. At this stage of the analysis, we still assume that the
operator considers only one technology adoption.

*Notice also that the value of the option to replace is only defined for # > 8%, since F°
is determined using the information that the diffusion process followad by 8 is terminated
at 6%,



5 Single~shot technology adoption

If the operator has only one option to adopt a new technology, the terminal
cost £2{0) consists of the net-installation cost of the new technology and the
cost of operating the new technology perpetually:

Q(6) = (% + p) 6 (14)

Using this information, from eq.(13) we can determine the value of the con-
stant F = (B4 P) %Q*UMAT). Notice that for values of 8" > 0, F is neg-
ative. This is indeed what could be expected, since the option to replace
should be a cost-reduction vis-d-vis the situation where the old technology
is maintained perpetually. Substituting the result of F' in eq.(12) shows the
following switching value of 6:

* Y f - =1
8 —m’}/“l(l%m> Qomf By (15)

Substituting the constant F' and the previous result for 8* in eq.(12) gives
the minimal expected cost at the moment the switch is made (6 = 6%):

oot YT EY )

The optimal switching value 8" in eq.(15) is homogenous of degree 0 in P
and m. Let ¢ = 3;—1, then eq.(15) can also be written as:

3’590 = ¢ (? + P) o* (17)

This format allows an interesting interpretation. The left-hand side of
eq.(17) represents the cost of operating the original technology perpetually.
The right-hand side contains (apart from the factor ¢) the cost of adopting
the new technology P and the cost of operating it perpetually.

The result implies that the new technology will be adopted considerably
later than the normal npv-rule suggests. Indeed, applying the npv-rule would
lead to a technology switch at € = 8ypy satisfying Ir-*-?-?@ = (It 4+ P) Bnpv-
Due to uncertainty and future growth-potential, replacement will be post-
poned until the cost of the old technology is a factor ¢ > 1 higher than
the cost of the new technology. For reasonable values of the different pa-
rameters in the problem, this implies that the new technology has to be



substantially more efficient before it is adopted. The result even remains
when the evolution of technology is certain instead of stochastic, since:
lim ¢ =lim et = E’_jﬁ (18)
g—+{ oGy 7
which transforms the result of eq.{17) into a result determined elsewhere for
deterministic replacement models (Bethuyne, 1998).

It is an important observation that the optimal switching value 8* is
uniquely determined by the ratio of switching cost and instantaneous op-
erating costs P/m, which allows to characterize a technology by a single
ratio and creates a direct and easy to interpret link between the timing of
technology adoption and the intenstty® the equipment is used with. Indeed,
as equipment of given technology is used less intensively, the ratio of capital
over operating costs will rise. The cost ratio of old and new technology
% = £} is a decreasing function of P/m, implicating that new technology
will be adopted first by the most intensive users. Notice that for very low
intensities the adoption of new technology can be postponed quite long. In-
deed, in the limit /Iim (6*/8y) = 0. When switching costs P becomes

marginal compared to operating costs m, there will be still be a considerable
delay in the adoption of new technology, since P/hm (6*/60) = ¢7F < L.

The value of the option to adopt the new technology is expressed as:
FO7 = (T—? + P) %9*1""’91’ (19)

Since a decrease of the intensity of utilization lowers both operating cost
m and the value of the switching value #*, the option looses value for low-
intensity users.

For a numerical illustration, we assume a drift-rate of technological
progress of g = 3% and a standard deviation of the Wiener-process o = 5%.
The interest-rate is set at 5%. The operator has the option the switch to
a new technology, but this technology adoption is of the single-shot type
(i.e. no further technology switches are allowed afterwards) and the switch
itself costs PO. The value of §* is determined for P/m taking values 0 , 1
4, 10 and 25, as illustrated in the next table. We also report values of
Smce O = 1, the value of F can be directly interpreted as the value of the
option to replace at ¢ = 0 and & L expresses the option value relative to the

20mne way to define intensity of utilization is the rate at which output is produced using
equipment of a certain technology, relative to its maximum oufput rate.
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Pim=0 | Pim=1 | Pm=4 | PPm=10 | P/m =25
g 60.142%| 57.278%] S0.119%1 40.095%| 26.730%
iF/m | -18506%| -17.1929%| -14.055%]| -10037%] -5444%

Figure 1: Table 1. Single-shot technology adoption

cost of using the existing technology perpetually (or the relative expected
cost-savings due to the option to adopt a better technology later). For com-
pleteness, v = —1.509 and ¢! = 0.601 (which are unaffected by P/m).

For known values of P and m, the problem can also be represented
graphically as in figure 1. It illustrates the value of the C(#) (ie. the
present value of all future costs) and the stochastic factor 6. In order not
to complicate the figure unduly, we only represent the case for P = 1000
and m = 100. In this case, the horizontal represents the present value of

2500 74 |
(mfi + P8 :
7 m/i
2000 /
I oot weer
/ e e —
1500 e

/
——T1C () (o =0.05->020)

Costs

MR
/

500 /

00 02 04 06 08 LO 12 t4 16

Figure 2: Continuation and terminal cost in the single-shot technology adop-
tion model
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the operating costs if the old were to be maintained indefinitely, namely
2 = 2000. The upward sloping straight line represents the present value of
Lho costs incurred when the more advanced technology is installed instead:
(P -+ Z£) 8 = 3000.6. To the right of 6* = 0.40095 it is optimal to maintain

the old technology. The value of the C(8) is then 2 (% 4 P)g*1=1g7 4

mQ Mo (the curved lines in figure 1). The first term represents the value of
the option to replace, represented by the vertical difference between the
horizontal line and the curved line. Notice that there are four different
levels of C'(#) in figure 1, corresponding to different values of the standard
deviation in the stochastic process ( o = .05, .10, .15 and .20). The lower
the standard deviation, the higher the level of the objective function. In
6 = §*, the curved line is tangent to the upward-sloping line, as is required
in the value-matching and the smooth-pasting conditions. An increase in the
standard deviation shifts the point of tangency to the left, thus postponing
the technology switch.

Finally, it is now also possible to analyze the sensitivity of 8 to changes
in the degree of uncertainty, the rate of technological growth and the ratio
of P/m. The results of 8* for g and o ranging from 0 to 10% and for P/m
ranging from 0 to 25 are given in figure 2. If g = ¢ = 0, there will be
no option value and §* = fypy. As g and o increase, the corresponding
effect on 0* can easily be found in figure 2. As expected, the switching
technology 8" decreases for higher values of P/m. It turns out that the level
of the switching technology is more sensitive to changes in the growth-rate
of technological progress than to changes in its standard deviation. Also,
the relative effect of uncertainty seems to decrease with higher values of g.

6 Revolving technology adoption

The next step will be to generalize the model by increasing the number
of possible technology switches, thus transforming the one-shot model in a
revolving technology adoption model. We will consider a finite chain of n
subsequent replacements and derive optimality conditions for each technol-
ogy switch in the process in a backward recursive way. Obviously, the last
switch in the chain can be considered as a simple single-shot replacement
problem.

Let t,-1 be the time when the one but last technology was put in op-
eration, and let the level of technological progress at that moment be 0, 1.
At this moment the operator faces a single-shot technology adoption model

12
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Figure 3: Switching technology in function of g and ¢ for different values of
Pim
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with optimal values of § and C:

o = ,}—ZE (c@o + ij-)"l 6 n (20)
o, = Ty o)

as in the previous section, in which:
Dy = 1 (22)
o) e

The role of the coefficient $g will become clear when evaluating the preceding
replacement decisions.

Next assume that at t,.q, the operator has just installed new equipment
and has left two options to adopt new technology. The objective will now
be to choose the timing of both switches in order to minimize costs. In
the continuation region (i.e. as long as no replacement is carried out) the
minimal cost will again be of the form:

Gt () = GOy + 7002 (24)

(G is a constant). As in the single-shot problem, we assume that the operat-
ing cost at time ;s is mfy.2. For the first technology switch, the terminal
cost is now determined by the optimal solution of the single-shot problem
Ci 4 and the switching cost Pé,_1:

Oy (Bnt) = Oy + Py = (?@1 + P) 6 s (25)

Hence, the value-matching and smooth-pasting condition look as follows:

1
GO, + 22 = (“?'@1 “!"P) ra (26)
NGO ?@NLP (27)

The value-matching condition states that at the time of replacement, the
cost involved with continuing to operate technology fn-2 has to be equal
to the cost of switching and operating the new technology #n—;. Solving

14



eq.(26} and (27) for G and 6}, and substituting in the cost function (24)
gives the following results:

. _ Y iP\ 1
e v | (‘I’l + m) B2 (28)
. mby,—
2 = 2, (29)
With: . - y
- .p
By = = (-«ﬂm> (@1 + L.) +1 (30)
- Y\r—1 m
We can push the problem even further to 3, 4, ... n replacements, using

the same solution method. Soon a pattern in the solutions will become
apparent. The results are illustrated in the following table.

: -1 __ 9;»~g‘~!~1 # )
7 £ = Trs n—j ®;
0 nte 1
1 2 (@ +2)7

v—1 0 ™ v—1

W@l % (——-1——)2”7 (‘11){} -} %5)7 +1
229, | 4 (54)

)

n — 1| =2 (@ﬂ_g + ﬁ)—l mhp, .| L (...3:",)
)

. w1
no | (B 2) | e, |1 (2

The pattern in the solutions is now clear and is in a format that can
easily be incorporated and analyzed on its numerical characteristics in a
spreadsheet program. The counter j represents the number of remaining
technology switches at each stage, so n — j represents the rank number of '
the installed technology (starting with 0). The most important result is
the series of values of f;l in the second colummn. This coefficient compares
the levels of the replacing and installed technology at the time of replace-
ment. Notice the bar over the denominator 8,..;, indicating that the value
of the technological cost-index of the installed technology is known a priori,
whereas the state of technological progress triggering replacement ),_;,
has to be determined in the optimization process.

15



7 Main characteristics of the solution‘

In a situation where the operator has n options to switch technology, the
optimal timing of the first switch is determined solely by the state of the
installed technology relative to the replacing technology. As can be found in
the second column of the last row in the table, when the existing equipment
is of technology g, i will be replaced at the time technology has become a

oy -1
factor £7) = ;ﬁwl- (@nwg + %) more efficient (i.e. less costly). Applying
the npv-rule would lead to a clearly different result. Indeed, the npv of
the technology switch would become positive, if C} ( ) + P87 =

— QTNPV lypv
m—f"l‘ Using the results from the table, applying npv to determine the first
triggering value 87, ., this would lead to a ratio:

Ed
] 91

iP\"}
nNPY _g_g’v = ((E)n"“i + ,r—n“) (31)

The difference in both ratios (the factor ¢~ < 1) reflects the option-value
of postponing the technology switch at each stage.

To obtain a better understanding of the mechanism involved in this re-
volving technology adoption model, we can resume the numerical exam-
ple. In the limit, when an infinite number of replacements is allowed and
when replacement costs are marginal in relation to operating costs (n — oo,
P/m — (), it is optimal to use the most efficient technology at all times.
Indeed, as the number of replacements increases:

lim 2= i €xt =1
T 00, P/ m—s{} 91 n—s o, P/m—0

This is an expected result, because when there are no costs involved in
switching technology and an infinite number of switches is allowed, the best
solution is to work with the most advanced technology at all times. As the
ratio of 8 and &, tends to unity, this means that replacement will take place
each time there is an improvement in the technology at hand. However, this
does not imply that the time-interval between replacements will tend to
zero nor that the most recent equipment will be used at all times. Indeed,
it can never be optimal to replace at times when the state variable € is
increasing. Therefore replacement will take place whenever & is decreasing
and remain stationary otherwise. The limiting case without replacement
costs is of course mainly of academic interest. For further analysis and
graphical representation, we will resume the example from section 5.
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Figure 4: Absolute and relative cost-index of the switching technology for
n =2 10.

Values for 5;&1 are determined and illustrated in figure 3 for j ranging
from 0 o 10. Also the evolution of 8, _; is depicted for starting values Gy=1
when the operator has 10, 8, 6, 4, and 2 options to switch technology. Figure
3 can be interpreted as follows. Curve AB represents gjq}l, which is the
relative advantage of the switching technology as opposed to the existing
technology. If we take e.g. the case with 6 switches, the first switch will
take place when technology has reduced costs to 43.360% of their original
starting level (point C' in figure 3). Notice that the absolute cost-index
fr—; and the relative cost-index 5;“4}1 coincide in point C since the first
technology in the cycle has unit-cost: p = 1. The second replacement in
the cycle occurs when technology reduced costs again to 43.360% of their
original value, which reduces the absolute cost-index to 0.188, as indicated
by point D. The value of g;;&i depends on the number of switches, although
it is clear in the figure that for this case its value converges very quickly as
the number of switches increases. In fact, in this example there is only a
small noticeable endpoint-effect for the last technology switch.

The sensitivity of the results for a cycle of 6 replacements to changes in
P/m are represented in figure 4. The relative improvement in costs at the
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Figure 5: Sensitivity of 6* to changes is in the ratio P/m

time of switching 5}-‘;1 is represented by the dashed lines in the figure. The
highest line represents the values for P/m = 0, the lowest for P/m = 25.
The line AB is equivalent to the line AB in the previous figure. It turns
out that convergence of 53-“4}1 appears very soon for relatively high values of
P/m. However, as P/m approaches zero, convergence (in this case to unity)
appears only for a large number of replacements. For these cases, with
small switching costs or large operating costs, it is extremely important
that the operator of the technology uses a correct estimate of the number
of switching options. If the operator does not take fully into account future
options to switch to superior technology (n is underestimated), then #* will
be underestimated and the technology switch will be delayed unduly. This
could be an additional explanation for the apparent delay in the timing of
technology adoptions.

In general, as the number of switches in the cycle increases, the succes-
sive steps in technology become smaller. Higher values of the capital cost
P and lower values of the operating cost m increase the steps and will thus
prolong the time between successive technology switches. The value of the
technological cost-index 6,,—; is represented in figure 4 by the full lines. No-
tice that £, = 63, as indicated by the vertical line. As an illustration, a
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Figure 6: Example of a stochastic technology replacement cycle (n = 6)

(possible) outcome of such cycle of 6 technology adoptions is depicted in
figure 5 for P = 1000 and m = 100. The chart depicts the evolution of
the operating cost of the most recent technology in function of time. The
horizontals show operating cost of the installed technology, when technology
switches are chosen in an optimal way. For instance, the operator will use
technology fg until # has decreased to 43.360% of its original level. Operat-
ing cost until that moment are 100 per unit of time, afterwards 43.360 per
unit of time (until the next switch).

The exact time of a technology adoption in a stochastic case like this,
cannot be determined in advance. However, the expected economic life of
an existing technology can be determined as the solution of a first-passage
time problem. For a variable following a geometric Brownian motion, the
distribusion of the first tirne this variable passes a certain barrier is well
known in the literature. We can refer to Cox & Miller (1972), Ingersoll
(1987), and Mauer & Ott (1995) for the solution of the first-passage time
problem. Therefore we also calculated the point at which 53-""1 converges for
values of g ranging from 1.5% to 15% for some different values of P/m (for
practical calculations, we assumed convergence when the numerical value of
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Figure 7: Expected economic life for different values of ¢ and P/m (numer-
ical example)

gj-l changed less than 0.01%). Say &} is the value to which ¢ ;71 converges
as the number of remaining replacements increases to infinity (formally:

0@1:1_1}13O f;;l = 6;""1). In that case it is possible to determine the expected
economic life of the first technology when infinite switches are allowed, as

the expected first-passage time for # to evalve from 1 to £

a2\
e(L>=(~g~~§-) in (61) (32)

In figure 6 the expected first-passage time for this example is represented in
function of g for five different values® P/m. The figure shows some inter-
esting results. As could be expected, an increase in the rate of technological
progress accelerates technology switches. However, a reduction in the ratio
of capital and operating costs decelerates technology adoption. It should
be clear from this that the optimal timing of technology adoption does not
only depend on the characteristics of the technologies involved, but also on

#The curve for P/m = { is not depicted because economic life for this case was too
close to zero for all values of g.
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the characteristics of operation: technology that should be replaced for a
high-intensity user may still have value for low-intensity users.

& Conclusions

In this paper, the optimal timing of technology adoption was examined when
technology evolves stochastically, using stochastic dynamic programming
and option theory. A technology adoption model was developed using a
geometric Brownian motion to model the effect of advances in technology
on the cost of equipment. ‘

The conditions for optimal technology adoption were derived, using a
dynamic program of nested optimal stopping problems. In the case where
there is only one technology switch (the single-shot problem), the result
shows some similarities with an American financial option with infinite ex-
piration date. The single-shot case then served as the terminal cost for
the preceding problem, with two options to replace. Nesting more of these
problems resulted in the revolving technology adoption model, for which an
optimum was determined. The main result of this procedure is the conclu-
sion that at the time a new technology is adopted, the capital and operating
cost of the challenging technology have to be considerably lower than sug-
gested by the npv-rule before replacement is optimal, due to the value of the
option to replace. Contrary to the work of Farzin et al. (1998), a distinct
option-value could be determined at each stage of the switching cycle.

Furthermore, for short planning horizons the exact timing of the replace-
ment proved to be rather sensitive to the number of remaining replacement
options in the cycle. This conclusion is important for several reasons. First,
an underestimation of the number of available switching options by the oper-
ator of the technology will result in lower values of the switching technology
and hence in result in an additional {suboptimal) delay in the timing of
technology adoption. This seems most likely to occur when the switching
cost is low relative to the operating cost. The stated result is also important,
because in the literature on technology adoption, use is often made of an
extremely limited number of technology switches (We referred e.g. to Mauer
& Ott (1995), who use only one technology switch, and Grenadier & Weiss
(1997), using two switches). Obviously, omitting further options to switch
results in biased switching values.

A numerical example was developed, demonstrating that the timing of
the technology adoption was especially sensitive to changes in the growth-
rate of technological progress and to a lesser extend to the uncertainty sur-
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rounding this process. The expected economic life of a technology using an
infinite number of switches could be determined as the solution of an ex-
pected first-passage time problem. Since the switching technology is largely
determined by the ratio of capital and operating costs, and since this ratio
depends (among others) on the intensity with which equipment is used, the
timing of technology adoption depends on both the characteristics of the
technology and its operation.

9 Appendix

I£ & follows a stochastic process of the form df = —gfdi + ofdz in which dz
represents a Wiener process, then according to 1£6’s lernma, the differential
of a function of 8 - say C () - is, contrary to 'normal’ deterministic caleulus:

dC (8) = C"(§) df + %c" (8) d6* (33)

As dz represents a Wiener process, dz = nv/dt in which n is a standard-
normally distributed variable, the expression of dC () includes an additional
term in d6°. Substituting dz in df and df in dC (8) , omitting all terms in
dt of a degree higher then 1 and using the fact that dz? = dt, we find:

dC (6) = (—-gQC" (6) + 5076°C" (9)) dt 400 @)dx  (34)

For more details on Itd’s lemma, see e.g. Dixit [4], Dixit & Pindyck [5] or
Kamien & Schwartz [10].
Substituting this result in eq.(4), we find the differential equation:

%52920"(9) — gBC'(6) ~ iC (6) = —mby (35)

which is a special form of a second-order differential equation with variable
coefficients, known as a Cauchy equation. This equation can be transformed
in a form with constant coeflicients by substituting € = ¢". In that case:

dC dCdr 1dC

B md b (36)
o Loy _1(dc_do (&)
dg> — de\edr) @ \dr? dr

Substituting (36) and (37) in the differential equation transforms it into:
2
5 [C"(r) = C'r)] - 9C'(7) = iC (7) = ~mby (38)
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Which can be rearranged as:
o2 o?
?OH(T) - (g + "":q"'") C{T) —iC (7) = —mby (39)

Let A = "—; and B = — (g + %2-), then the characteristic equation of the
corresponding homogenous differential equation is:

Ay +By—i=0 (40)

This equation has two distinet real roots:

1 g 1 g\* 2%
’Yj“‘w“—z'“f‘-c;_—gi\/(*i—{*p) +E (41)

The solution to the homogenous differential equation is then:

Ch = M + e (42)

where F; are constants. The complete solution to the general differential
equation consists of Uy plus a particular solution of the general problem Cy,.
Fortunately the right-hand side of the general differential equation is of a
well-known type, so we can state immediately C, is of the form C, = F3.
Substitution of this particular solution in the general differential equation

reveals that Fy = mgﬁ.
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