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Correlations in a confined gas of harmonically interacting spin-polarized fermions
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For a fermion gas with equally spaced energy levels, the density and the pair correlation function are
obtained. The derivation is based on the path integral approach for identical particles and the inversion of the
generating functions for both static responses. The density and the pair correlation function are evaluated
explicitly in the ground state of a confined fermion system with a number of particles ranging from 1 to 220,
and filling the Fermi level completely.@S1063-651X~98!12308-5#
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I. INTRODUCTION

The free energy and the static correlation functions o
gas of identical particles with equally spaced energy lev
can be calculated exactly@1–3#, using a combination of the
path integral method@4#, the method of symmetrized densi
matrices@5#, and inversion techniques for generating fun
tions @3,6#. The free energy, the internal energy, the spec
heat, the moments of inertia@7#, the density, and the pai
correlation function have been worked out earlier for co
fined bosons. For the fermion case, the free energy,
ground state energy, and the energy of the Fermi level w
also studied before@3#. Using the same formalism, in th
present paper we consider the density and the pair correla
function of a spin-polarized fermion gas with equally spac
energy levels. Most of the calculations are analytical, a
numerical work is only required for making the graphs. Ne
ertheless great attention had to be paid to the accurate c
lability of the expressions in view of the sign problem orig
nating from the statistics.

Inspired by recently observed Bose-Einstein condensa
@8–10#, much theoretical work has been done on boson m
els with equally spaced energy levels using other meth
@11–17#. Analogous models for fermions, taking into a
count the confinement as well as the statistics, have b
proposed and studied in Refs.@18,19# as a model for a quan
tum dot, and in Refs.@20,21# as a model for confined fer
mion alkali metal vapors.

The model that we used before, and that we also w
investigate in this paper, consists ofN identical particles
with massm in a harmonic one-body confinement potent
given by

V15
mV2

2 (
j 51

N

r j
2 , ~1.1!

and interacting with each other through a two-body poten
given by:

*Also at Universiteit Antwerpen~RUCA!, Groenenborgerlaan
171, B-2020 Antwerpen, and Technische Universiteit Eindhov
NL 5600 MB Eindhoven, The Netherlands.
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4 (
j ,l 51

N

~r j2r l !
2. ~1.2!

This model has been studied for distinguishable partic
@22#, where it turns out to be equivalent to a set of oscil
tors. Three oscillators have a frequencyV and are related to
the degrees of freedom of the center of mass; the remai
internal degrees of freedom oscillate with a frequen
w5AV22Ng. The model has led to some controversy wh
put in an occupation number version to deal with the sta
tics of the particles@23#. Avoiding the occupation numbe
representation by a direct projection on the symmetric
antisymmetric representations of the permutation groupSN ,
two things become clear: first the center-of-mass coordin
factorizes out, indicating the independence of the inter
degrees of freedom; and second the propagator assoc
with the center of mass remains invariant under projecti
indicating that the evolution of the center-of-mass degree
freedom of distinguishable or indistinguishable oscillato
are the same. This aspect of the model may be clarified
the introduction of the center-of-mass coordina
R5(1/N)( j 51

N r j into the two-body potential

V252
mNg

2 (
l 51

N

r l
21

mN2g

2
R2. ~1.3!

The rewritten two-body potential makes it clear that the c
ter of mass oscillates with a frequencyV5A(Ng1w2) that
is lower or higher than the frequencyw of the internal de-
grees of freedom depending on the sign ofg, which we
earlier denoted byv2 or 2v2 depending on the case. Fo
repulsiong.0, there is a stability constraint on the confin
ment potential:V has to be large enough to keep all th
repelling particles together.

Because this condition onV depends on the numberN of
particles, an approach with a fixed number of particles
mandatory from the very beginning, resulting in a constra
on the summation over the cycles in the cyclic decompo
tion of the permutations. We circumvented the complicatio
of this constraint by first transforming to generating fun
tions, and subsequently inverting the transforms to obtain
partition function, the density, and the pair correlation fun
,
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tion. The application of these mathematical techniques
among the main results of this paper. The fact that they al
one to derive explicit expressions for the density and the
correlation function of an interacting fermion system is a
an interesting result.

The paper is organized as follows. In Sec. II, we colle
the expressions obtained before for the fermion case, an
Sec. III we present the calculation of the density and the p
correlation function in a general theoretical setting. We sh
how to evaluate these response functions for a system w
minimal internal energy and a given number of particles.
Sec. IV, we discuss the results, and put the model into p
spective.

II. FERMION OSCILLATORS

In this section the basic formulas which have been
rived before for identical particles~bosons or fermions! are
summarized and rewritten in such a way that they are m
appropriate for dealing with fermions, in particular in vie
of the numerical treatment.

A. Recurrence relation approach

In our path-integral treatment@1#, a recurrence relation
was obtained for the partition functionZI(N) corresponding
to the degrees of freedom with frequencyw in the relative-
coordinate system. Introducingb5e2bw for brevity in the
notations, we found that

ZI~N!5
1

N (
m50

N21

jN2m21S b~1/2!~N2m!

12bN2m D 3

ZI~m!. ~2.1!

This recurrence relation applies for bosons (j511) and for
fermions (j521). The subscriptI refers to identical par-
ticles, which can be specified to be fermions~subscriptF) or
bosons~subscriptB). A similar recurrence technique wa
used in Ref.@2# to obtain the contribution of the relative
coordinate system to the spatial Fourier transform of the d
sity

ñq5
1

N(
l 51

N j l 21expS 2
\q2

4mw
coth

1

2
lb\wD

S 2 sinh
1

2
lb\wD 3

ZI~N2 l !

ZI~N!
.

~2.2!

The center-of-mass contribution introduces the factor

nq5expF2
\q2

4mN
S coth

1

2
b\V

V
2

coth
1

2
b\w

w
D G ñq .

~2.3!

For the Fourier transform of the pair correlation function, w
found that
re
w
ir

t
in
ir

w
a

n
r-

-

re

n-

gq5
1

N(
l 52

N ZI~N2 l !

ZI~N!

j l 21b~3/2!l

~12bl !3 (
j 51

l 21 FexpS 2
\q2

2mw

1

Ql , j~b! D
1j@Ql , j~b!#3expS 2

\q2

2mw
Ql , j~b! D G , ~2.4!

where

Ql , j5
12bl

~12bj !~12bl 2 j !
. ~2.5!

The center of mass does not contribute directly to the p
correlation function. It was shown in Ref.@3# that the actual
numerical implementation for fermions of Eq.~2.1! suffers
from a sign problem. Therefore, a generating function
proach, followed by an inversion of the transform, turned o
to be a more appropriate method of evaluation.

B. Generating function approach

The generating functionJF(b,u) for the partition func-
tion

JF~b,u!5 (
N50

`

ZF~buN!uN ~2.6!

was obtained before@3#. However, it should be noted tha
this function is a calculation tool to obtain the partition fun
tion ZF(buN), where the numberN of particles is given and
not subject to fluctuations. A discussion of this point can
found in Ref.@24#. This discussion points out what the di
ference is between an ensemble-based approach to the
lem ~see, e.g., Ref.@25#! and quantum statistics for a finit
number of particles. The generating function for the Four
transform of the density is

Gn~u,q!5 (
N50

`

ZF~buN!Nñqu
N. ~2.7!

The generating function for the Fourier transform of the p
correlation function is

Gg~u,q!5 (
N50

`

ZF~buN!N~N21!gqu
N. ~2.8!

The defining equations for the density and the pair corre
tion function

n~r !5
1

NK (
l 51

N

d~r2r l !L 5E dq

~2p!3
nqe

2 iq•r, ~2.9!

g~r !5
1

N~N21!K (
l 51,l 8Þ l

N

d~r2r l1r l 8!L
5E dq

~2p!3
gqe

2 iq•r ~2.10!

are taken over from Ref.@2#, and will be rewritten in a nu-
merically tractable form. In comparison to Ref.@2#, the nor-
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malization factor in the defining equation for the pair cor
lation function has been changed fromN to N(N21), such
that*d3r g(r )51. Considering a model ofN fermions with
parallel spin in a harmonic confinement potential, and wit
quadratic interparticle interaction as discussed in Sec. I,
following generating functions are obtained:

JF~u!5 )
n50

`

~11ub3/2bn!~1/2!~n11!~n12!

5expS (
l 51

`
~21! l 21~b3/2u! l

l ~12bl !3 D , ~2.11!

Gn~u,q!

JF~u!
5(

l 51

`
~21! l 21~ub3/2! l

~12bl !3
expS 2k2

11bl

12bl D ,

~2.12!

Gg~u,q!

JF~u!
5(

l 52

`

(
j 51

l 21
~21! l 21~ub3/2! l

~12bl !3

3FexpS 2
2k2

Ql , j
D2~Ql , j !

3exp~22k2Ql , j !G ,
~2.13!

with

k25
\q2

4mw
. ~2.14!

This means that for a system of noninteracting oscillat
with eigenfrequencyw, JF(u) is formally a ‘‘grand-
canonical partition’’ function. However, strictly speaking,
is not the grand-canonical partition function of the syste
with interaction for two reasons: first, one has to take
center-of-mass correction into account; and second
eigenfrequencyw in the relative coordinate system depen
on the number of particles. But,given w, the full mechanism
of generating functions in the relative coordinate system
applicable, provided afterwards that the necessary cente
mass corrections are taken into account.

C. Density and pair correlation function

From the Fourier transform ofGn(u,q) andGg(u,q), the
density in the relative coordinate system and the pair co
lation function can be obtained in real space:

ñF~r !5S mw

p\ D 3/2 1

N(
l 51

`
~21! l 11~ub3/2! l

~12b2l !3/2
expS 2r2

12bl

11bl D ,

~2.15!
-

a
e

s

e
e

is
of-

e-

gF~r !5S mw

2p\ D 3/2 1

N(
l 52

`
~2ub3/2! l

~12bl !3

3(
j 51

l 21

Ql , j
3/2~e2~1/2!~r2/Ql , j !2e2~1/2!r2Ql , j !,

~2.16!

where

r25
mwr2

\
. ~2.17!

Including the center-of-mass correction, the Fourier tra
form of Eq. ~2.2! has to be used instead ofñq , giving

nF~r !5S mw

p\ D 3/2 1

N(
l 51

`
~21! l 21~ub3/2! l

~12bl !3
Al

3/2e2r2Al,

~2.18!

with

Al5
1

w

V

coth
1

2
b\V

N
2

coth
1

2
b\w

N
1

11bl

12bl

. ~2.19!

D. Ground state correlations

The expressions for the density and the pair correlat
will be studied in the zero-temperature limitb→0, i.e., in the
ground state. The relation between the number of partic
and the fugacity implies:

N5 (
n50

`
1

2
~n11!~n12!

ub3/2bn

11ub3/2bn
52(

l 51

`
~2ub3/2! l

~12bl !3
,

~2.20!

in which case the chemical potentialm in the fugacityu
5ebm becomes the Fermi energy. Integrating the genera
functions as follows:

E
0

uGn~u8,q!

u8
du85 (

N50

`

ZF~N!nqu
N5JF~u!^nq&,

~2.21!

E
0

uE
0

u8Gg~u9,q!

~u9!2
du9du85 (

N50

`

ZF~N!gqu
N5JF~u!^gq&,

~2.22!

the Fourier transform of the density and the pair correlat
function become:
^nq&5
1

JF~u!
E

0

u 1

u8
JF~u8!(

l 51

`
~21! l 21~u8b3/2! l

~12bl !3
expS 2k2

11bl

12bl D du8, ~2.23!

^gq&5
1

JF~u!
E

0

uE
0

u8 1

~u9!2
JF~u9!(

l 52

`

(
j 51

l 21
~21! l 21~u9b3/2! l

~12bl !3 FexpS 2
2k2

Ql , j
D2~Ql , j !

3exp~22k2Ql , j !Gdu9du8. ~2.24!
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A straightforward but tedious calculation shows the mathematical equivalence between the expressions obtained in
sion approach and those obtained by integrating the generating functions. For the density this calculation proceeds a

(
N50

`

ZF~N!nqu
N5 (

N50

`

ZF~N! (
k5N

`
u11k~21!2N1k

~11k!

~b2N111k!3/2

~12b2N111k!3
expS 2k2

11b2N111k

12b2N111kD
5 (

k50

`

(
N50

k

ZF~N!
u11k~21!2N1k

~11k!

~b2N111k!3/2

~12b2N111k!3
expS 2k2

11b2N111k

12b2N111kD
5 (

k50

`

(
N50

k

ZF~N!
u11k~21!2N1k

~11k!

~b2N111k!3/2

~12b2N111k!3
expS 2k2

11b2N111k

12b2N111kD
5 (

k50

`

u11k(
l 50

k

ZF~k2 l !
~21! l~bl 11!3/2

~11k!~12bl 11!3
expS 2k2

11bl 11

12bl 11D
5 (

N51

`

uN(
l 51

N

ZF~N2 l !
~21! l 21~bl !3/2

N~12bl !3
expS 2k2

11bl

12bl D
ob

ed
-

es

n as

to

er-

ch
hat
or

nq5
1

N(
l 51

N ZF~N2 l !

ZF~N!

~21! l 21~bl !3/2

~12bl !3
expS 2k2

11bl

12bl D .

The equivalence for the pair correlation function can be
tained along the same lines.

III. DENSITY IN THE GROUND STATE

In this section the ground state density will be calculat
thereby introducing the Fermi level explicitly. Simulta
neously, the sum rules will be checked.

A. Fourier transform of the density at low temperature

Starting from the generating function~2.12!, the series
expansion of the exponent inGn(u,q)ek2

as a Taylor series
in b gives

Gn~u,q!ek2

JF~u!
5 (

n50

`
~22k2!n

n!

3 (
k50

`
G~k131n!

G~k11!G~31n!

ub~3/2!1n1k

11ub~3/2!1n1k
,

~3.1!

for which the analytic continuation has to be found as
function of the fugacityu5ebm for b5e2b\w arbitrarily
small. If L denotes the lowest unoccupied level, this expr
sion becomes, usingub3/25b2L1a ~with a→01):

Gn~u,q!ek2

JF~u!
5 (

n50

`
~22k2!n

n! (
k50

`
G~k131n!

G~k11!G~31n!

3
b2L1a1n1k

11b2L1a1n1k
. ~3.2!
-

,

a

-

In the low-temperature limit (b→0) it is clear that
b2L1a1n1k/(11b2L1a1n1k) tends to zero for2L1n1k
>0, and to unity if2L1n1k,0. For T→0 the summa-
tions can then be restricted ton<L21 andk<L212n, and
Gn(u,q)ek2

/JF(u) becomes a polynomial in (22k2):

Gn~u,q!ek2

JF~u!
5 (

n50

L21
~22k2!n

n! (
k50

L212n
G~k1n13!

G~k11!G~n13!

5 (
n50

L21
G~L13!

G~L2n!G~n11!G~n14!
~22k2!n.

~3.3!

We note in passing that this expression can also be writte
(1/6)L(L11)(L12)1F1(12L;4;2k2), where 1F1 denotes
the confluent hypergeometric function which is related
the generalized Laguerre polynomialsLn

a(z)5@(1
1a,n)/n! #1F1(2n;11a;z), where (a,n)[a(a11)•••(a
1n21)5)k50

n21(a1k)5@G(a1n)/G(a)#.
For q50, one readily findsGn(u,0)/JF(u)5N. One then

obtains fromñq5G1(u,q)/G1(u,q50), in the limit T→0,

ñq5expS 2
1

4

\q2

mwD (
n50

L21
6G~L !

G~11n!G~41n!G~L2n!

3S 2
\q2

2mwD n

~3.4!

The Fourier transform of the density, including the cent
of-mass correction, readily follows from Eq.~2.2!. It essen-
tially modifies the spatial decay, not the polynomial whi
arises from the fermion statistics. Taking into account t

coth 1
2b\V→1 and coth1

2b\w→1 for b→`, it follows that

nq5expS 2
1

4

\q2

mWD (
n50

L21
6G~L !

G~11n!G~41n!G~L2n!

3S 2
\q2

2mwD n

, ~3.5!
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with

W5w
N

N211
w

V

. ~3.6!

B. Ground state density

The probability density of the fermions can be obtain
from the Fourier transformnF(r )5*@dq/(2p)3#nF,qe

2 iq•r.
Using Eq. ~3.5!, the angular integrations are readily pe
formed, and the remaining radial integrations are of the fo
E
0

`

k112ne2k2
sin~2ka!dk

5
1

2
e2a2

(
j 50

n S 112n
2 j D ~21!n2 ja112n22 jG~ j 1 1

2 !.

The duplication ruleApG(2 j 11)54 jG( j 1 1
2 )G( j 11) al-

lows us to rewriteG( j 1 1
2 ) in gamma functions with an in-

teger argument. After some algebraic manipulations, on
left with
he

lar
nF~r !5S mW

p\ D 3/2

e2~W/w!r2

(
j 50

L21
6G~L !G~212 j !

G~11 j !G~41 j !G~L2 j !S 2
2W

4w D j

(
n50

j
1

G~ j 2n11!G~212n!S 24
W

w
r2D n

. ~3.7!

The remaining double sum represents a polynomial inr2, the numerical evaluation of which presents no difficulties. T
probability density in the originr 50 becomes

nF~0!5S mW

p\ D 3/2

(
j 50

L21 S 2
1

2

W

w D j 6G~L !G~212 j !

G2~11 j !G~41 j !G~L2 j !
, ~3.8!

in which the remaining sum can be identified to be the hypergeometric series2F1@ 3
2 ,12L;4;2(W/w)#, although this knowl-

edge still requires further numerical treatment.

1. Sum rule for the density

One can check that the density satisfies the relation*dr nF(r )51, as it should. For that purpose, performing the angu
integrations, one is left with

E dr nF~r !5
24

Ap
(
j 50

L21 S 2
1

2

W

w D j G~L !G~212 j !

G~11 j !G~41 j !G~L2 j ! (n50

j
~24!n

G~ j 112n!G~212n!
E

0

`

e2r2
r212ndr

56(
j 50

L21 S 2
1

2

W

w D j G~L !G~212 j !

G~11 j !G~41 j !G~L2 j ! (n50

j
~21!n

G~2n1 j 11!G~11n!
.

For j 50, the summation overn yields 1, whereas forj .0 the summation overn gives the binomial series (121) j50.
Therefore,

E dr nF~r !56S 2
1

2

W

w D j G~L !G~212 j !

G~11 j !G~41 j !G~L2 j ! U
j 50

51,

and the required sum rule is indeed satisfied.

2. Mean square distance

An analogous calculation allows one to calculate the mean square distance to the origin,^r 2&F5*dr r 2nF(r ), and to derive
a scaling factorA^r 2&F appropriate for distances. Similar to the procedure for the sum rule above, one finds

^r 2&F5
3\

mW(
j 50

L21 S 2
1

2

W

w D j G~L !G~212 j !

G~11 j !G~41 j !G~L2 j ! (n50

j

~21!n
312n

G~ j 112n!G~11n!
.

Separating out the contribution ofj 50 to the summation, one is left with

^r 2&F5
3\

mWF1

2
1 (

j 51

L21 S 2
1

2

W

w D j G~L !G~212 j !

G~11 j !G~41 j !G~L2 j ! (n50

j

~21!n
312n

G~ j 112n!G~11n!G .
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Because (n50
j (2¸)n@(312n)/G(n11)G(2n1 j 11)#

5@3/G(11 j )#(12¸) j2@2/G( j )#(12¸) j 21¸, the limit ¸
→1 can easily be taken:

^r 2&F5
3

2

\

mW
1

3

4

\

mw
~L21!

5
3

2

\

m

w2W

Ww
1

3

4

\

mw
~L11!. ~3.9!

Hence the mean square distance of the spin-polarized fe
ons from the origin is proportional toL;N1/3 for N@1.

3. Numerical results

Having established the relevant distance scale, the sc
densitynF(r )/nF(0) is plotted in Figs. 1~for L51 –5) and 2
~for L56 –10) as a function ofr5rAmw/\ for the case of
noninteracting fermions (W5V5w). The density in the ori-
gin for these cases is given in Table I. The density profi
can be compared with those obtained in Ref.@21#, because
the canonical ensemble and the quantum statistical part
function lead to the same predictions for this model provid

FIG. 2. Scaled densitynF(r )/nF(0) as a function of
r5rAmw/\ for the lowest unoccupied levels characterized
L56, 7, 8, 9, and 10.

FIG. 1. Scaled densitynF(r )/nF(0) as a function of
r5rAmw/\ for the lowest unoccupied levels characterized
L51, 2, 3, 4, and 5.
i-

led

s

n
d

the number of particles is given. Actually, we did not make
detailed comparison because our calculation is done for
ground state, while the calculations of Ref.@21# were done
for finite temperature. Nevertheless the results for comple
filled Fermi levels look very similar. The plots can also b
made for the interacting caseVÞw, but the differences are
minor. For repulsive interactions the condition 0<w<V has
to be taken into account. From the defining equation~3.6! for
W, this leads to

N

N21
<

W

w
<1, ~3.10!

and therefore the center-of-mass contribution to the den
is washed out by the other degrees of freedom, except f
very limited number of fermions.

IV. PAIR CORRELATION FUNCTION
IN THE GROUND STATE

In this section we will repeat the same analysis as in S
III, but for the pair correlation function.

TABLE I. Number of particlesN and density in the origin for
the lowest unoccupied energy levels characterized byL51, . . .,10.

L N (p\/mw)3/2nF(0)

1 1 1
2 4 1/4
3 10 1/4
4 20 1/8
5 35 1/8
6 56 5/64
7 84 5/64
8 120 7/128
9 165 7/128
10 220 21/512

FIG. 3. Reduced pair correlation function g(r )
5gF(r )(p\/2mw)3/2 as a function ofr5rAmw/\ for the lowest
unoccupied levels characterized byL52,3, . . .,10, indicated by the
numbers in the corresponding curves.
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A. Ground state expressions

In contrast to the calculation of the density, which w
obtained from its Fourier transform, the calculation of t
pair correlation function is easier in real space, starting fr
Eq. ~2.16!. Because of the decay proportional toe2(1/2)r2
, we

expect thatgF(r )e(1/2)r2
is a polynomial inr , which we want

to be able to compute with sufficient accuracy in the lo
temperature limitb→0. From Eq.~2.16! one readily obtains
low-

on has

that it

to
ctual

orrelation

A,
gF~r !e~1/2!r2

S mw

2p\ D 3/2 5
1

N~N21!(l 51

`

(
j 51

`
~2ub3/2! j

~12bj !3/2

~2ub3/2! l

~12bl !3/2

expF1

2
r2S 12

1

Qj 1 l , j
D G2expF1

2
r2~12Qj 1 l , j !G

~12bj 1 l !3/2
. ~4.1!

Expanding the exponential in a power series, and introducing the Taylor series forQj 1 l , j @Eq. ~2.5!# and for the denomi-
nators, the resulting 5-tuple series expansion can be rearranged in such a way that it can be summed in the limitb→0. The
mathematical details of this derivation are given in Appendix A. The following expression was obtained for the
temperature limit:

gF~r !5
e2~1/2!r2

N~N21!S mw

2p\ D 3/2

(
j 50

L21

(
k50

j

(
l 50

j
~r2/2!k1 l

G~k11!G~ l 11!G~L2 j !G~11 j 2 l !G~11 j 2k!

3S G2S 5

2
1 j 2k2 l DGS 1

2
1L2 j 1k1 l D

GS 5

2
2kDGS 5

2
2 l DGS 3

2
1k1 l D 2

~21!k1 lG2S 5

2
1 j DGS 1

2
1L2 j D

GS 5

2
1 l DGS 5

2
1kDGS 3

2D D . ~4.2!

The behavior in the origin is determined fromk50 andl 50, and obviously results in the expected resultgF(0)50. In Fig.
3, the pair correlation function of the spin-polarized fermions is shown as a function ofr for various Fermi levels.

B. Sum rule for the pair correlation function

An important check on the validity of the derivation above is provided by the condition that the pair correlation functi

to satisfy the sum rule*dr gF(r )51. Performing the angular integrations, and using*0
`r2(r2/2)k1ne2(1/2)r2

dr5A2G( 3
2

1n1k), one obtains

E dr gF~r !5
2

N~N21!Ap
(
j 50

L21

(
k50

j

(
l 50

j G2S 5

2
1 j 2k2 l DGS 1

2
1L2 j 1k1 l D

G~k11!G~ l 11!G~L2 j !G~11 j 2 l !G~2k111 j !GS 5

2
2kDGS 5

2
2 l D

2
2

N~N21!Ap
(
j 50

L21

(
k50

j

(
l 50

j ~21! l 1kG2S 5

2
1 j DGS 3

2
1 l 1kDGS 1

2
1L2 j D

G~k11!G~ l 11!G~L2 j !G~11 j 2 l !G~2k111 j !GS 5

2
1 l DGS 5

2
1kD .

We checked analytically, forL52,3, . . .,10, that these summations indeed yield 1, and therefore are rather confident
holds in general.

C. Fourier transform

Although it is possible to calculate the Fourier transform ofgF(r ), this calculation is rather involved, and it is easier
evaluate the zero-temperature limit ofgq directly from the generating function along the same lines as above. The a
calculation proceeds along the same lines as for the density, the Fourier transformation of the density, and the pair c
function itself: expand the expressions in powers ofb, and study the analytic continuation ofGg(u,q) in the fugacity
u5ebm for ub3/25b2L1a. The calculation only differs in the details from the three examples in Sec. III A, III B, and IV
and it seems pointless to report the full details of the calculation. Again, usingk25\q2/4mw, the result is
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Gg~u,q!e2k2

JF~u!
5S (

n50

L21
G~L13!

G~11n!G~L2n!G~41n!
~22k2!nD 2

2
1

6
L~L11!~L12!

2 (
j 51

L21
1

G~L2 j ! (m51

j
1

mG~2m111 j ! (
n5 j 11

m1 j
~22k2!n

G2~n2 j !

G~22 j 1n1L !

~n2m!G~31n!G~ j 2n1m11!

One readily checks that this expression indeed has the correct long wavelength limit

Gg~u,0!

JF~u!
5S 1

6
L~L11!~L12! D 2

2
1

6
L~L11!~L12!5N~N21!. ~4.3!

With the normalization implied by the defining equation~2.10!, one finds the following polynomial ink2 from gq
5Gg(u,q)/Gg(u,q50):

Ngqe
2k2

5S 1

6

G~L13!

G~L !
1 (

n51

L21
G~L13!

G~11n!G~L2n!G~41n!
~22k2!nD 2

2
1

6

G~L13!

G~L !

2 (
j 51

L21

(
n51

j
~22k2!n1 j

G2~n!

G~21n1L !

G~L2 j !G~31n1 j ! (m5n

j
1

~n1 j 2m!mG~ j 2m11!G~m112n!
. ~4.4!

Further simplifications are not easy to obtain, but this expression does not present numerical problems.
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V. CONCLUSION AND DISCUSSION

In this paper we have shown that the density and the
correlation function of the spin-polarized fermion oscillat
model can be calculated taking exactly the statistics of
particles into account. We studied explicitly the ground st
correlations of this confined fermion system for a set of p
ticle numbers that correspond with fully occupied Fermi le
els. One of the reasons for this limitation is that there is
additional simplification in the algebra, which is already
dious. Another reason is that this choice allows one to co
pare results calculated by inverting generating functions w
results based on the iteration of the partition function. Fo
limited number of Fermi levels (L52,3,4) both methods
have been used to check the results depicted in the figu

The wiggles of the density as a function of the distan
from the center are more pronounced, with an increas
number of particles, and are therefore clearly related to
increasing density of states at the Fermi level. Also, the tr
that the most probable distance between a pair of ferm
decreases while the range of distances wherever the pair
be found increases with an increasing number of particle
worthwhile to point out. The mean distance and its varian
are also calculated, because these quantities also provid
portant averages needed to perform a Jensen–Feyn
variational calculation for a confined system of fermio
with a realistic interparticle potential and/or a more comp
confining potential. The model has also some importanc
itself, because it can be used to test new approaches to M
Carlo simulations of interacting fermions such as many-bo
diffusion @24,26,27#.

In summary we have been able to calculate the thermo
namics and the static response functions of the harm
model for a finite number of fermions without any recour
ir

e
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-
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-
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h
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to the thermodynamical limit or to the theory of ensembl
Our approach is fully quantum mechanical, and relies on
probability assignment for quantum systems in equilibriu
and as required by the statistics on the projection on
symmetric ~bosons! or antisymmetric representation of th
permutation group. Of course the generating function te
nique borrowed from the mathematics of stochastic p
cesses together with path integral methods are essenti
the formulation as well as in the evaluation of the thermod
namical quantities and the static response functions.

ACKNOWLEDGMENTS

Discussions with W. Krauth, F. Laloe¨, and Y. Kagan are
acknowledged. Part of this work was performed in the fram
work of the FWO Project Nos. 1.5.729.94, 1.5.545.9
G.0287.95, G.0071.98, and WO.073.94N~Wetenschap-
pelijke Onderzoeksgemeenschap over ‘‘Laagdimension
systemen,’’ Scientific Research Community of the FWO
‘‘Low Dimensional Systems’’!, the ‘‘Interuniversitaire
Attractiepolen—Belgische Staat, Diensten van de Ee
Minister—Wetenschappelijke, Technische en Culturele a
gelegenheden,’’ and in the framework of the BOF NOI 19
projects of the Universiteit Antwerpen. F. B. acknowledg
the FWO for financial support.

APPENDIX: MATHEMATICAL DETAILS OF THE PAIR
CORRELATION FUNCTION

In this appendix, a possible way to derive the low
temperature limit~4.2! from Eq. ~4.1! is given. We first ex-
pand the exponentials in Eqs.~4.1! in a power series, fol-
lowed by filling outQj 1 l , j . This leads to
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Using the binomial series@bl(12bj )1bj (12bl)#n5(k50
n (k

n)blkbj (n2k)(12bj )k(12bl)n2k, and the Taylor series expan-
sion

1

~12bj !n13/2
5(

l 50

`
bjl

l !

GS n1
3

2
1 l D

GS n1
3

2D
for b→0, one obtains the following quite involved series expansion
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The summations overl and j can readily be performed, and usingub3/25b2L1a the result can be written as

gF~r !e~1/2!r2
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The analysis of the zero-temperature limitb→0 then proceeds similarly to that for the density. The fraction
b2L1a1k1p1q/(11b2L1a1k1p1q) tends to unity ifk1p1q<L21, and to zero otherwise. This means that the summations
can be restricted tok<L212q,p<L212q2k, and q<L21. A similar analysis applies tob2L1a1n1m1q/(1
1b2L1a1n1m1q), leaving a polynomial inr2/2 for T→0:
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Also, the summations overp andm can be done analytically. These are of the form
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and hence, after some manipulations with the summation indices,
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