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Correlations in a confined gas of harmonically interacting spin-polarized fermions

F. Brosens and J. T. Devredse
Departement Natuurkunde, Universiteit Antwerpen (UIA), Universiteitsplein 1, B-2610 Antwerpen, Belgium

L. F. Lemmens
Departement Natuurkunde, Universiteit Antwerpen (RUCA), Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
(Received 11 March 1998

For a fermion gas with equally spaced energy levels, the density and the pair correlation function are
obtained. The derivation is based on the path integral approach for identical particles and the inversion of the
generating functions for both static responses. The density and the pair correlation function are evaluated
explicitly in the ground state of a confined fermion system with a number of particles ranging from 1 to 220,
and filling the Fermi level completelyS1063-651X98)12308-5

PACS numbgs): 05.30—-d, 03.75.Fi, 32.80.Pj

I. INTRODUCTION my N
Vo== =2 (rj—n)? (1.2
The free energy and the static correlation functions of a =1

gas of identical particles with equally spaced energy Ievelsl_ : : o :
- : A his model has been studied for distinguishable particles
can be calculated exact[y—3], using a combination of the [22], where it turns out to be equivalent to a set of oscilla-

path integral methofk], the method of symmetrized density tors. Three oscillators have a frequerf@¢yand are related to

matrices[5], and inversion techniques for generating func- ) .
tions[3,6]. The free energy, the internal energy, the specificthe degrees of freedom of the center of mass; the remaining

heat, the moments of inerti&], the density, and the pair internal degrees of freedom oscillate with a frequency

correlation function have been worked out earlier for con-W= V{}°—Nv. The model has led to some controversy when

fined bosons. For the fermion case, the free energy, th ut in an occupation number version to deal with the statis-

ground state energy, and the energy of the Fermi level werlics of the particles[23]. AVOidmg the occupation numper
representation by a direct projection on the symmetric or

also studied befor¢3]. Using the same formalism, in the

present paper we consider the density and the pair correlatigtiSymmetric representations of the permutation gréup
function of a spin-polarized fermion gas with equally spaceotWO thmgs becqme_ clgar: first .the center-of-mass cot_)rdmate
energy levels. Most of the calculations are analytical, and@ctorizes out, indicating the independence of the internal
numerical work is only required for making the graphs. Nev_degrees of freedom; and second the propagator associated

ertheless great attention had to be paid to the accurate calcith the center of mass remains invariant under projection,

lability of the expressions in view of the sign problem origi- ndicating that the evolution of the center-of-mass degrees of

nating from the statistics. freedom of dlstlngmshable or indistinguishable osm_ll_ators
Inspired by recently observed Bose-Einstein condensatioff’® the same. This aspect of the model may be clarified by

[8—10], much theoretical work has been done on boson modthe mtrochiluctm_n of the center-of-_mass coordinate

els with equally spaced energy levels using other method&=(1/N)Zj—,rj into the two-body potential

[11-17. Analogous models for fermions, taking into ac-

count the confinement as well as the statistics, have been _ m_NYEN: r2+mN27R2 (1.3
proposed and studied in Refd8,19 as a model for a quan- 20 25! 2 ' '

tum dot, and in Refs[20,21] as a model for confined fer-

mion alkali metal vapors. The rewritten two-body potential makes it clear that the cen-

~ The model that we used before, and that we also wilker of mass oscillates with a frequenfy= \(Ny+w?) that
investigate in this paper, consists Bf identical particles s lower or higher than the frequeney of the internal de-
with massm in a harmonic one-body confinement potential grees of freedom depending on the sign yf which we

given by earlier denoted by»? or —w? depending on the case. For
5 N repulsiony>0, there is a stability constraint on the confine-
~mQ 2 ment potential:Q) has to be large enough to keep all the
Vi=— > LY :
=1 epelling particles together.

Because this condition of depends on the numbBk of

and interacting with each other through a two-body potentiaparticles, an approach with a fixed number of particles is
given by: mandatory from the very beginning, resulting in a constraint
on the summation over the cycles in the cyclic decomposi-

tion of the permutations. We circumvented the complications

*Also at Universiteit Antwerpen(RUCA), Groenenborgerlaan of this constraint by first transforming to generating func-
171, B-2020 Antwerpen, and Technische Universiteit Eindhoventions, and subsequently inverting the transforms to obtain the
NL 5600 MB Eindhoven, The Netherlands. partition function, the density, and the pair correlation func-
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tion. The application of these mathematical techniques are 1 N Z,(N=1) §|—1b<3/2>||*1 G 1
among the main results of this paper. The fact that they allow qu—E / Ny [ ;( - — —)
one to derive explicit expressions for the density and the pair = V=2 Z(N)  (1-b)3 /=1 2mw Q, ;(b)
correlation function of an interacting fermion system is also
an interesting result. +§[Q|,j(b)]3eXF< _
The paper is organized as follows. In Sec. I, we collect
the expressions obtained before for the fermion case, and in
Sec. lll we present the calculation of the density and the paiYV
correlation function in a general theoretical setting. We show 1-p
how to evaluate these response functions for a system with a Q= : _
minimal internal energy and a given number of particles. In To(A-bh(1-b"))

Sec. IV, we discuss the results, and put the model into per- ) ) )
spective. The center of mass does not contribute directly to the pair

correlation function. It was shown in R€f3] that the actual
numerical implementation for fermions of E.1) suffers
Il. FERMION OSCILLATORS from a sign problem. Therefore, a generating function ap-
proach, followed by an inversion of the transform, turned out
fo be a more appropriate method of evaluation.

hq?
2mw

Q|,j(b)”, (2.9

here

(2.5

In this section the basic formulas which have been de
rived before for identical particle€osons or fermionsare
summarized and rewritten in such a way that they are more

appropriate for dealing with fermions, in particular in view B. Generating function approach

of the numerical treatment. The generating functio® g(8,u) for the partition func-
tion
A. Recurrence relation approach o
= = N
In our path-integral treatmertl], a recurrence relation Sr(B.u) NEO Ze(BIN)U (26

was obtained for the partition functidfy(N) corresponding

to the degrees of freedom with frequenayin the relative- was obtained beforg3]. However, it should be noted that

coordinate system. Introducing=e " for brevity in the this function is a calculation tool to obtain the partition func-

notations, we found that tion Zz(B|N), where the numbeN of particles is given and
not subject to fluctuations. A discussion of this point can be

: A NE N q[ BHPNT™ SW found in Ref.[24]. This discussion points out what the dif-
4(N)= Nmz:O § 1—pN-m Zi(m). (2.0 ference is between an ensemble-based approach to the prob-

lem (see, e.g., Ref.25]) and quantum statistics for a finite
number of particles. The generating function for the Fourier
This recurrence relation applies for bosos=(+ 1) and for  transform of the density is

fermions ¢=—1). The subscript refers to identical par- "

ticles, which can be specified to be fermigeabscriptF) or ~

bosons(subscriptB). A similar recurrence technique was gn(U,q)=N§=:0 ZF('B|N)quuN' 2.7
used in Ref[2] to obtain the contribution of the relative-

coordinate system to the spatial Fourier transform of the derifhe generating function for the Fourier transform of the pair
sity correlation function is

2

& lexp — ha cothll hw
. amw OBV
=N,

gg<u,q>=N§0Zp<ﬁ|N)N<N—1)gquN. 2.9

Zi(N) - The defining equations for the density and the pair correla-

. 1 3
(2 Slnh§|[3ﬁW) tion function

(2.2 N
1 dg »
n(r)=N E S(r—r)) =J 3Nge ar (2.9
The center-of-mass contribution introduces the factor =1 (2m)
1 N
1 1 g =——( > Sr—r+r)
hep coth> ghQ  cothz phw | | N(N_1)<|—1,|'¢| e
Ng=€x ~ 4mN Q - w Na- dq
2.3 =f e iar 2.1
2.3 3% (2.10

For the Fourier transform of the pair correlation function, weare taken over from Ref2], and will be rewritten in a nu-
found that merically tractable form. In comparison to Rg2], the nor-
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malization factor in the defining equation for the pair corre- mw\|321 7 (—ub®?
lation function has been changed frawnto N(N—1), such ge(r)= (2 ﬁ) N 7 3
that fd®r g(r)=1. Considering a model df fermions with & =2 (1-b)
parallel spin in a harmonic confinement potential, and with a -1
quadratic interparticle interaction as discussed in Sec. |, the % E Q3’2(e 2(p%1Q j) — o= (112p%Q i),
following generating functions are obtained:
- (2.1
EF(U): H (l+ub3/2bv)(1/2)(v+l)(v+2) where
v=0
2
o mwr
(—1)'Y(b%)! p2= . 2.17
=ex —_—, 2.1 f
p(zl [(1-b'")3 213

Including the center-of-mass correction, the Fourier trans-
form of Eq.(2.2) has to be used instead Bg, giving

Gn(U,0) _ < (=)' H(ub®?) p( ,1+D!
= exp —k

Be(w) 1 (1-b)® 1-b')’ mwi 321 5 (-1 b L
(212 nF(r): % lel (1_b|)3 | e I
Gy(u,q) % '-1 — 1)~ Y(ub¥?) | (2.18
Er(u) &= (1-b"3 with
2x? _ 1
X eX[(_a>_(Q|’j)Squ_2K2Q|,]‘)}, A|_ 1 1 . (219)
)] — —
w cothzﬁﬁQ cothzﬁﬁw 1+b
(2.13 = _ +
Q N N 1-b'
with
hqz D. Ground state correlations
2:4mw' (2.1 The expressions for the density and the pair correlation

will be studied in the zero-temperature linit>0, i.e., in the
This means that for a system of noninteracting oscillatorground state. The relation between the number of particles
with eigenfrequencyw, Eg(u) is formally a “grand- and the fugacity implies:
canonical partition” function. However, strictly speaking, it
is not the grand-canonical partition function of the system = (—ub*?
with interaction for two reasons: first, one has to take the N= E (V+1)(V+2)W Z (1-b"H)3"
center-of-mass correction into account; and second the (2.20
eigenfrequencyv in the relative coordinate system depends
on the number of particles. Bugjven w, the full mechanism in which case the chemical potential in the fugacity u
of generating functions in the relative coordinate system is= eP* becomes the Fermi energy. Integrating the generating
applicable, provided afterwards that the necessary center-ofunctions as follows:
mass corrections are taken into account.
j uga(u',q)
———du
o u

3/2bv

= > Ze(N)nguN=Z (u)(n,),
C. Density and pair correlation function o F q F(u) q>

From the Fourier transform df,(u,q) andGy(u,q), the (2.2
density in the relative coordinate system and the pair corre- o Go(U” q) o
lation function can be obtained in real space: jo . g(u”)’ ,’du’=é0 ZF(N)gquNzaF(u)(gq>,
~ ) (mw)?»/Zl 0 (_1)I+1(ub3/2)| % 1 b' (2.22
Ne(n=|—| =2 —————=— —

F mh) Ni=1  (1-p?)%? & 1+b' the Fourier transform of the density and the pair correlation

(2.19  function become:

= (-1 Hu'b¥?) ,1+b!
(ng)= = (u)f —Ee(u )EIWGX%—K 1 p

du’, (2.23

)I 1(urrb3/2)

1 ufu 1 . 2k?
R = " E E P I \3 _ 2 . ” '
(9) EF(U)fO fo (u”)ZHF(u )|: =1 (1-b"H3 {exp{ Ql,j) (Qup)"exp(=267Q,,) jdu"du’.  (2.29




PRE 58 CORRELATIONS IN A CONFINED GAS @ . . . 1637

A straightforward but tedious calculation shows the mathematical equivalence between the expressions obtained in the recur-
sion approach and those obtained by integrating the generating functions. For the density this calculation proceeds as follows:

* ) * e 1+k(_1)—N+k (b—N+1+k)3/2 1+b—N+1+k
2 Le(Ningut'= 3 Ze(N) 2 —5 (1_bNH+k)3exp(— 2 )

k 1+k —N+k ~N+1+ky3/2 ~N+1+k
u -1 b 1+b

2 7(N) (-1) ( ) oxd — k2

N=0 (1+k) (1—bN+1tk)3

u1+k -1 —N+k b7N+1+k 3/2 1+b N+1+k
2 7e(N) (-1 ( ) oxd —
N=0 (1+k) (1_b—N+1+k)3

K 1_b*N+l+k

Il
||M 8

1_b—N+1+k

Il
HM 8

1 b~ N+1+k

o k _\I(pl+1y32 1+1
:kzou“klzozF(k—)( D) p(—K21+b )

ex S
(1+k)(l_bl+l)3 1_bl+1
® N I—1/}1\3/2 I
(=1 (b)) 1+b
=2 uNY Ze(N-I)—————exp —k*——
NE=1 Zl a ) N(1—b")?3 “1p
|
or In the low-temperature limit {—0) it is clear that
b-tteatntki(1+p-Lretn+ky tends to zero for-L+n+k
1 N Ze(N—=1) (=1)'"%(b")3? 1+b =0, and to unity if—L+n+k<0. ForT—0 the summa-
Ng=1 - tions can then be restrictedte<sL — 1 andk<L —1—n, and
TN=L Ze(N) (1-b')3 “1-p

Gn(u, q)e“ZIEF(u) becomes a polynomial in{2«?):

The equivalence for the pair correlation function can be ob- G.(u, q)e L-1

(—2:)" " T(k+n+3)
tained along the same lines.

nl & T(k+1)I(n+3)

HF(U) n

I
L O

Ill. DENSITY IN THE GROUND STATE = I'(L+3)

In this section the ground state density will be calculated, I(L=n)I'(n+1)I'(n+4)
thereby introducing the Fermi level explicitly. Simulta- 3.3
neously, the sum rules will be checked. '

(—2&2)".

Il
||M

We note in passing that this expression can also be written as
(1/6)L(L+1)(L+2),F,(1—L;4;2«?), where ;F; denotes

the confluent hypergeometric function which is related to
Starting from the generating functiof2.12), the series the generalized Laguerre polynomiald ,%(z)=[(1

expansion of the exponent i§,(u,q)e*” as a Taylor series +a,n)/nt];F1(—n;1+a;2), where @,n)=a(a+1)---(a

A. Fourier transform of the density at low temperature

in b gives +n—1)=IM}_j(a+k)=[T'(a+n)/T(a)].
Forg=0, one readily find¥j,(u,0)/E(u)=N. One then
Go(u,q)es” 2 2K2)n obtains fromn,=Gy(u,q)/G;(u,q=0), in the limit T—0,
Er(W) i . 1 A2\ ' 6T (L)
 T(k+3+n)  ub@2+ntk Ne=€XR = 2 mw/ & T(1+mT 4+ (L—n)
X T(k+1)T(3+N) 14 yp@2 ik’ A"
(3.2 (_ 2mw) 34

The Fourier transform of the density, including the center-
of-mass correction, readily follows from E¢R.2). It essen-
tially modifies the spatial decay, not the polynomial which
arises from the fermion statistics. Taking into account that

coth38:0—1 and cothyBhiw—1 for B— o, it follows that

Gn(u,q)eK:i (-2, T(k+3+n) 146%|'& 6I'(L)
Er(u) %o nl & Tk+DI(E+n) Na= &R = 2 mw| & T(A+m I (4+n)(L-n)

p-Lta+tn+k 52 _ﬁ_qz n
2mw/ '’

for which the analytic continuation has to be found as a
function of the fugacityu=eP* for b=e A" arbitrarily
small. If L denotes the lowest unoccupied level, this expres-
sion becomes, usingb®?=b~""¢ (with a—07):

(3.5

1+ b—L+a+n+k'
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with o
J K120~ sin(2xa)di
N 0
W=w—— . (3.6)
W 1 L& [1+2n . o
N—1+ Q =§ efa jzo ( 2J )(_:I.)njalJanZ]l'*(J +%)

B. Ground state density

The probability density of the fermions can be obtainedThe duplication ruley=I'(2j+1)=4T(j+3)T(j+1) al-
from the Fourier transfornm,:(r)=f[dq/(2w)3]npyqe*iq". lows us to rewritel(j + 3) in gamma functions with an in-
Using Eq. (3.5, the angular integrations are readily per-teger argument. After some algebraic manipulations, one is
formed, and the remaining radial integrations are of the fornmeft with

K 1wy
A TG-nrDr2r2m| *wr| - 3.7

MW 32 ' er(L)r(2+2)) [_2wW
nF(r):<_\f;\I) e A D@ DL D) aw

The remaining double sum represents a polynomialnthe numerical evaluation of which presents no difficulties. The
probability density in the origim=0 becomes

mwW 32t 1wyl BT (2+2))
nF(O)_(%V) ;0<_EW) T2(1+ )T (4+))T(L-])’ 38

in which the remaining sum can be identified to be the hypergeometric sétiés,1—L;4;2(W/w)], although this knowl-
edge still requires further numerical treatment.
1. Sum rule for the density

One can check that the density satisfies the relafiin n:(r)=1, as it should. For that purpose, performing the angular
integrations, one is left with

L-1
2
e P 2+2ndp

2 ( 1W)j r(LT(2+2j) i (—4)"
fdr ”F(r)_\/_;jzo 2w TA+)HI@A+)T(L—)& T(j+1-n)T(2+2n) Jo
Li( 1w)j T(LI2+2)) o (—1)"
~02 | T2 W) T+ @+ HI(L—]) T(—n+j+ DI (1+n)"

For j=0, the summation oven yields 1, whereas foj>0 the summation oven gives the binomial series (11)=0
Therefore,

) ( 1 W\ r(Lr2+2j) _
f dr ne(r)=6 ‘EW) F(1+)Ta+Hr—j) j:o_l'

and the required sum rule is indeed satisfied.

2. Mean square distance

An analogous calculation allows one to calculate the mean square distance to the(of}gis,fdr r2ng(r), and to derive
a scaling factor\/<r2>F appropriate for distances. Similar to the procedure for the sum rule above, one finds

3% - 1w\ T(LN(2+2)) j 3+2n
<r2>F_ < (

F(l+])F(4+])F(L—])z (= (j*+1-nIl(Q+n)’

Separating out the contribution p&0 to the summation, one is left with

sh[1 'S 1wl TLre+2)) ’ 3+2n
(= VV{ +21( ) F(1+J)F(4+J)F(L—J)2 F(j+1—n)F(1+n) '
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1.25 L L TABLE I. Number of particlesN and density in the origin for
the lowest unoccupied energy levels characterizetdl by, . . .,10.
1007 L N (i /mw)¥2n¢(0)
S 0.75 1 1 1
£ 2 4 1/4
T osol 3 10 1/4
4 20 1/8
5 35 1/8
0257 6 56 5/64
7 84 5/64
0.00 : 8 120 7/128
9 165 71128
p 10 220 21/512

FIG. 1. Scaled densityng(r)/ng(0) as a function of

p=rymw/# for the lowest unoccupied levels characterized by ) o )
L=1, 2, 3, 4, and 5. the number of particles is given. Actually, we did not make a

detailed comparison because our calculation is done for the
Because  SI_ (—x)"(3+2n)/T(n+1)[(—n+j+1)] ground state, while the calculations of RE21] were done
=[3/F(1+j)](17— %) —[2IT(})](1— %) "%, the limit x fprfinite temperature. Neverth_ele_ss the results for completely

filled Fermi levels look very similar. The plots can also be

1 can easily be taken:
- y made for the interacting cage+w, but the differences are

3 7 3 4 minor. For repulsive interactions the conditios@/<() has
(re=z —+—-—(L—-1) to be taken into account. From the defining equat®) for
F2mwW 4 mw
W, this leads to
A L LA (3.9
2m Ww 4 mw ’ ' N W . a1
——<—=< .
N1 w =L (3.10

Hence the mean square distance of the spin-polarized fermi-
ons from the origin is proportional th~ N for N>1.

and therefore the center-of-mass contribution to the density

is washed out by the other degrees of freedom, except for a
Having established the relevant distance scale, the scalaery limited number of fermions.

densityng(r)/ng(0) is plotted in Figs. Xfor L=1-5) and 2

(for L=6-10) as a function op=rmw/# for the case of

noninteracting fermionswW/= Q =w). The density in the ori- IV. PAIR CORRELATION FUNCTION

gin for these cases is given in Table I. The density profiles IN THE GROUND STATE

can be compared with those obtained in Refl], because

the canonical ensemble and the quantum statistical partitio

function lead to the same predictions for this model provide

3. Numerical results

In this section we will repeat the same analysis as in Sec.
I, but for the pair correlation function.

125 L L L 0.25 L L L .
1.00 - 0.20 -
S 0.751 0.15 -
€ =
= =
£ 0.50 0.10 -
0.25 0.05 -
0.00 T T T 0.00
0 1 2 3 4 0
% p
FIG. 2. Scaled densityng(r)/ng(0) as a function of FIG. 3. Reduced pair correlation function y(r)
p=rymw/ for the lowest unoccupied levels characterized by =gg(r)(7%/2mw)*? as a function ofp=r/mw/% for the lowest
L=6, 7, 8, 9, and 10. unoccupied levels characterized by 2,3, .. .,10, indicated by the

numbers in the corresponding curves.
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A. Ground state expressions Eq.(2.16. Because of the decay proportionakto¥27*, we
In contrast to the calculation of the density, which wasexpect thage(r)e(V?#” is a polynomial irr, which we want
obtained from its Fourier transform, the calculation of theto be able to compute with sufficient accuracy in the low-
pair correlation function is easier in real space, starting fromemperature limib— 0. From Eq.(2.16 one readily obtains

1 1 1
QF(r)e(”z)"Z_ 1 % i (—ub32)i (_ub3/2)|exr{§p2(1— Qi+l,j) —eXp{Epz(l—QjH’j) 3
(M)B/Z CNIN-L)&E & (1—b)32 (1—b')372 (1—_biTH (4.2
2h

Expanding the exponential in a power series, and introducing the Taylor seri€s.fof [Eq. (2.5)] and for the denomi-
nators, the resulting 5-tuple series expansion can be rearranged in such a way that it can be summed irbth® lifiite
mathematical details of this derivation are given in Appendix A. The following expression was obtained for the low-
temperature limit:

,3—(1/2),)2 mw\ 321 J (pZ/Z)kH
gF(r):N(N—l)(m> & e T(k+ DL+ DI(L— I (1+]—DI(1+]—K)
r? E+j—|<—|)r 1+|_—j+|<+| (—1)kFIT2 §+j)r E+|_—j)
2 2 2 2
x 5 5 3 5 5 3 “.2
F(E—k>l“<§—l)l“ §+k+| T E‘H r §+k T E)

The behavior in the origin is determined frdos O andl =0, and obviously results in the expected regt0) =0. In Fig.
3, the pair correlation function of the spin-polarized fermions is shown as a functiprfafvarious Fermi levels.

B. Sum rule for the pair correlation function

An important check on the validity of the derivation above is provided by the condition that the pair correlation function has

to satisfy the sum rulgdr ge(r)=1. Performing the angular integrations, and usjifgp?(p/2)<*"e~(¥20°dp= 2T (3
+n+Kk), one obtains

5 | 1 .
L1 ] r? —+J—k—|)1“ S+L—j+k+l
f dr ge(N-——=3 3 3 & =
) N NC D) a2 6 (2 5 5
NIN=DNmIZ0 K020 1 )1+ D (L= )T (L4 = I (—k+ 14 )T E—k)r(§—|)
5 3 1
L-1 | (—1)'+k1“2(§+j |5 +1+k|T| 5 +L-]

2
T N(N=1) 7S 22 ;

5~I—k |
2

I'(k+ )T (1+1)T(L—})T(1+]— DT (—k+1+])T g+|

We checked analytically, foL=2,3,...10, that these summations indeed yield 1, and therefore are rather confident that it
holds in general.

C. Fourier transform

Although it is possible to calculate the Fourier transforngg(r), this calculation is rather involved, and it is easier to
evaluate the zero-temperature limit @f directly from the generating function along the same lines as above. The actual
calculation proceeds along the same lines as for the density, the Fourier transformation of the density, and the pair correlation
function itself: expand the expressions in powersbofand study the analytic continuation ¢f(u,q) in the fugacity
u=eP* for ub¥?>=b~" The calculation only differs in the details from the three examples in Sec. Il A, Il B, and IV A,
and it seems pointless to report the full details of the calculation. Again, ugirgiq?/4mw, the result is
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|-
(—2k2)" —EL(L+1)(L+2)

Gou.ge ('S I(L+3)
Er(u) & T@+nI(L—nI(4+n)

1 1 M (— 242 r(2—j+n+L)
>

L=j)m=1 mI'(—m—+1+j)nZF41 r'3(n—j) (n—m)I'(3+n)I'(j—n+m+1)

L-1
_,21 I(

One readily checks that this expression indeed has the correct long wavelength limit

Qg(u,o)_(l 21 _
Z0) gLLTD(L+2) | —L(L+1)(L+2)=N(N-1). 4.3

With the normalization implied by the defining equati¢®.10, one finds the following polynomial inc® from dq
=Gg(u,9)/Gy(u,q=0):

1T(L+3) & I'(L+3 2 1T(L+3
Nget—| LT+ 5 (L+3) (| _LTLF3)

d 6 I'(L) =y F(A+n)'(L—n)'(4+n) 6 I'(L)
i EJ: (—2k2)"1 T(2+4n+L) 1 "
=ia=t r3n) FL=pHrE+n+jazh (n+j—mml(-m+1)(m+1-n)’ '

Further simplifications are not easy to obtain, but this expression does not present numerical problems.
|
V. CONCLUSION AND DISCUSSION to the thermodynamical limit or to the theory of ensembles.

. . Our approach is fully guantum mechanical, and relies on the
In this paper we have shown that the density and the p"’“[5robability assignment for quantum systems in equilibrium

correlation function of the spin-polarized fermion oscillator 5\ o5 required by the statistics on the projection on the
model can be calculated taking exactly the statistics of th‘%ymmetric (bosong or antisymmetric representation of the
particles into account. We studied explicitly the ground Statepermutation group. Of course the generating function tech-
correlations of this confined fermion system for a set of parnique borrowed from the mathematics of stochastic pro-
ticle numbers that correspond with fully occupied Fermi lev-cesses together with path integral methods are essential in
els. One of the reasons for this limitation is that there is althe formulation as well as in the evaluation of the thermody-
additional simplification in the algebra, which is already te-namical quantities and the static response functions.

dious. Another reason is that this choice allows one to com-

pare results calculated by inverting generating functions with

results based on the iteration of the partition function. For a ACKNOWLEDGMENTS

limited number of Fermi levelsl(=2,3,4) both methods

The wiggles of the density as a function of the distanceWork of the IIZWO Project Nos. 1.5.729.94, 1.5.545.98
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variational calculation for a confined system of fermions
with a realistic interparticle potential and/or a more complex

confining potential. The model has also some importance in \ppENDIX: MATHEMATICAL DETAILS OF THE PAIR

itself, because it can be used to test new approaches to Monte CORRELATION FUNCTION
Carlo simulations of interacting fermions such as many-body
diffusion [24,26,21. In this appendix, a possible way to derive the low-

In summary we have been able to calculate the thermodytemperature limit4.2) from Eq. (4.1) is given. We first ex-
namics and the static response functions of the harmonipand the exponentials in Eq&l.1) in a power series, fol-
model for a finite number of fermions without any recourselowed by filling outQ,; ;. This leads to
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oo o

12?4 1 o | | |
%’2— Ny nu(zp ) 2, 2 (-ub*H[b!(1=bl)+bl(1-b))"
2mh

1 (—1)"
><((:L_bj)3/2(l_bl)?:/Z(l_ijrI)nJrSIZ_ (1_bl)n+3/2(1_bj)n+3/2(1_bj+|)3/2 :

Using the binomial seriefb'(1—b')+b!(1—b")"=3p_,(R)b'*b/ ("~ (1—bl)k(1—b')""k and the Taylor series expan-
sion

3
"3

.3
)

for b—0, one obtains the following quite involved series expansion

o0 F
bi!
(1 bj)n+3/2 ; r

2 © n © © 0 © © ; | (J+|)q
ge(r)er” 1.2 1 n i o bimb'Ph
_ _ j+1Rlkpi(n—k)
(mw)“ NE n' 2P Z k ;1 121( ub ) b™b mE:o pZquo m!p!q!
27h
r 3 kT 3 k|l 3 1T\ 5 k r 3 k r 3
§+m §+p n+ E+q+n (—-1) +n +m §+ +p §+q
r 3 k|IT 2 k|IT 3 ) r 3 k|IT 3 k|IT 3
E_ E—n+ §+I’] §+I’]— §+ E

The summations ovdrandj can readily be performed, and using®?=b - the result can be written as

oo ©

g (r)e(llz)p2 (p2/2)k+n p-Ltatk+ptq p-L+atntmtqg

?TW{22§§2

mw k=0 n=0 M=0 p=0 4=0 k!n]m!p!q! 1+b—|_+a+k+p+q 1+b—|_+a+n+m+q
27k
3 3 k+n 3
F(E—ker F(E—ner r §+k+n+q (—1)T| 5 +n+m §+k+p r §+q
x 3 3 3 - 3 3 3
F(E—k)l“ E—I’I)F E'H(‘H’]) r §+n)l“ §+k r E)

The analysis of the zero-temperature linbit—0 then proceeds similarly to that for the density. The fraction
p-Ltatktpra)(q+p-Ltetktpray tends to unity ifk+p+g=<L—1, and to zero otherwise. This means that the summations

can be restricted toksL—1-qg,p<L—1-q—k, and g<L-1. A similar analysis applies td~""**"m*9/(1
+b-Lratntmta) leaving a polynomial ip?/2 for T—0:

2 — —1- —1- —1-g-— —1—g-—
gF(r)e(l/z)p 1L 1L-1-gL-1-qL-1-g-nL-1-g-k (p2/2)k+n

mw | 32 :quo I(ZO nZO mE:O pZo K!n!m!plq!
27h
r 3 k r 3 r 3 k r 3 r 3 k r 3
E +m E n+p §+ +n+q e —+n+m E+ +p §+q
1“3k1“3 F3k - r FSkF3
E_ E—n §+ +n §+n §+ E
Also, the summations ovgr andm can be done analytically. These are of the form
I'l k 2 I''k+M >
% T2TP] okisztom 2t M rokiamt2) TV
=0 p! - 2k+3 M!(k+M)! B ’

k+3 M
2
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and hence, after some manipulations with the summation indices,

e—(l/Z)p2 mw 3k-1 j (p2/2)k+l
9r(N="7 27771) & go.=o Tkt DT+ DT(L—)T(1+]—DT(1+]—K)
2 E+j—k—| r }+L—j+k+| (—1)k*'r2 E+j r l+L—j
y 2 2 2 2
(2 k(21| 2 ke 2|02 k(2
2 2 2 2 2 2
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