

This item is the archived peer-reviewed author-version of:

What is the best method to determine excessive arm volume in patients with breast cancerrelated lymphoedema in clinical practice? Reliability, time efficiency and clinical feasibility of five different methods

Reference:

De Vrieze Tessa, Gebruers Nick, Tjalma Wiebren, Neverlsteen Ines, Thomis Sarah, De Groef An, Dams Lore, Van der Gucht Elien, Belgrado Jean-Paul, Vandermeeren Liesbeth,- What is the best method to determine excessive arm volume in patients with breast cancerrelated lymphoedema in clinical practice? Reliability, time efficiency and clinical feasibility of five different methods Clinical rehabilitation - ISSN 0269-2155 - 33:7(2019), p. 1221-1232 Full text (Publisher's DOI): https://doi.org/10.1177/0269215519835907 To cite this reference: https://hdl.handle.net/10067/1580660151162165141

uantwerpen.be

Institutional repository IRUA

What is the best method to determine excessive arm volume in patients with breast cancer-related lymphoedema in clinical practice? Reliability, time-efficiency and clinical feasibility of five different methods

Abstract

Purpose: The aim of present study was to investigate the reliability, time-efficiency and clinical feasibility of five commonly used methods for assessing excessive arm volume in patients with breast cancer-related lymphoedema (BCRL).

Methods: Excessive arm volume was determined in 30 participants with BCRL by five different methods: traditional volumetry with overflow, volumetry without overflow, inverse volumetry, optoelectronic volumetry and calculated volume based on circumference measurements. To investigate intra- and inter-rater reliability, measurements were performed twice by the same assessor and once by a different assessor. Intraclass correlation coefficients (ICCs), standard errors of the measurement (SEMs) and systematic changes between the means were calculated. To determine time-efficiency, the mean set-up time, execution time and total time were examined for each method. Furthermore, eleven limitations regarding clinical feasibility were listed and scored for each method. Finally, an overall ranking score was determined between the methods.

Results: Intra- and inter-rater reliability ranged between strong and very strong. Calculated arm volume based on circumferences showed the highest intra- and inter rater ICCs of .987 and .984, respectively. Opto-electonic volumetry was the fastest method, representing a mean total time of 1 minute and 43 seconds for performing a bilateral measurement. The least limitations were reported on the calculated volume based on circumferences method.

Conclusions: In view of its excellent reliability, low error rate, low cost, few limitations, and relative time-efficiency, we recommend the calculated volume based on arm circumferences method as preferred method to use in clinical practice, for evaluating excessive arm volume over time.

Key Words: Breast Neoplasms - Lymphoedema - Assessment - Reliability - Time-efficiency - Feasibility

to per peries

1	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	

- 56 57
- 58
- 59 60

What is the best method to determine excessive arm volume in patients with breast cancerrelated lymphoedema in clinical practice? Reliability, time-efficiency and clinical feasibility of five different methods

Running title:

Reliability, time-efficiency of five volume methods

Tessa De Vrieze^{1,2}, Nick Gebruers^{2,3}, Wiebren A.A. Tjalma^{3,4,5}, Ines Nevelsteen⁶, Sarah Thomis⁷, An De Groef¹, Lore Dams^{1,2}, Elien Van der Gucht^{1,2}, Jean-Paul Belgrado⁸, Liesbeth Vandermeeren⁸, Nele Devoogdt^{1,9}

- KU Leuven University of Leuven, Department of Rehabilitation Sciences, Leuven, Belgium
- University of Antwerp, Department of Rehabilitation Sciences and Physiotherapy, MOVANT, Antwerp, Belgium
- University of Antwerp & Antwerp University Hospital, Multidisciplinary Oedema Clinic, Antwerp, Belgium
- 4. University of Antwerp, Department of Medicine, MIPRO, Antwerp, Belgium
- 5. Antwerp University Hospital, Multidisciplinary Breast Clinic, Antwerp, Belgium
- UZ Leuven University Hospitals Leuven, Multidisciplinary Breast Centre, Leuven, Belgium
- UZ Leuven University Hospitals Leuven, Department of Vascular Surgery and Department of Physical Medicine and Rehabilitation, Centre for Lymphoedema, Leuven, Belgium

1	
2	
5 Д	8. Saint-Pierre University Hospital, Lymphology Clinic of Brussels & Université libre de
5	
6	Bruxelles, Lymphology Research Unit, Brussels, Belgium
7	
8	9. UZ Leuven - University Hospitals Leuven, Department of Vascular Surgery and
9	
10	Department of Physical Medicine and Rehabilitation. Center for Lymphoedema.
 10	
12	Leuven Belgium
14	
15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
2/	
20 29	
30	Corresponding author:
31	
32	Tessa De Vrieze, Physical Therapist, Manual Therapist (corresponding author)
33	ressu be vneze, r nyslear merupise, manual merupise (corresponding dathory
34	ORCID 0000-0002-5719-6169
35	
30	
38	1) Research Group for Rehabilitation in Internal Disorders
39	
40	Department of Rehabilitation Sciences, KU Leuven
41	
42	O&N IV Herestraat 49 3000 Leuven - box 1510
43 11	Tol: +22.16.245005 tossa dovrigzo@kulouvon bo
45	Tel.: +32 10 345005, <u>tessa.devrieze@kuledveli.be</u>
46	
47	
48	2) Research Group MOVANI
49	
50	Department of Rehabilitation Sciences and Physiotherapy, University of Antwerp
51 52	Universiteitsplein 1 2610 Wilriik
53	
54	Tel.: +32 472 74 16 77, <u>tessa.devrieze@uantwerpen.be</u>
55	
56	
57	
58 50	
59 60	
~ ~	

Abstract

Objective: To investigate the reliability, time-efficiency and clinical feasibility of five commonly used methods for assessing excessive arm volume in patients with breast cancer-related lymphoedema (BCRL)

Design: Cross-sectional study

Setting: University Hospitals Leuven, Belgium

Subjects: 30 participants with unilateral BCRL

Methods: Excessive arm volume was determined by five different methods: traditional volumetry with overflow, volumetry without overflow, inverse volumetry, opto-electronic volumetry and calculated volume based on circumference measurements. To investigate intra- and inter-rater reliability, measurements were performed twice by the same assessor and once by a different assessor. Intraclass correlation coefficients (ICCs), standard errors of the measurement (SEMs) and systematic changes between the means were calculated. To determine time-efficiency, the mean set-up time, execution time and total time were examined for each method. Furthermore, 12 limitations regarding clinical feasibility were listed and scored for each method. Finally, an overall ranking score was determined between the methods.

Results: Mean age was 65 (\pm 8) years, mean body mass index was 28 (\pm 4) kg/m². Intra- and inter-rater reliability ranged between strong and very strong. Calculated arm volume based on circumferences (mean excessive arm volume: assessor A: 477 (\pm 367) ml; assessor B: 470 (\pm 367) ml; assessor A (second time): 493 (\pm 362) ml) showed the highest intra- and inter-rater ICCs of .987 and .984, respectively. Opto-electonic volumetry was the fastest method, representing a mean total time of 1 minute and 43 (\pm 26) seconds for performing a bilateral

measurement. The least limitations were reported on the calculated volume based on circumferences method (3 out of 12 limitations).

Conclusions: Calculated volume based on arm circumferences is the best measurement method for evaluating excessive arm volume over time in terms of reliability, low error rate, low cost, few limitations, and time spent.

Key words: Breast Neoplasms - Lymphoedema - Assessment - Reliability - Time-efficiency -

for peer peries

Feasibility

Introduction

More than 16% of the women treated for breast cancer develops lymphoedema of the arm[1]. The evaluation of the treatment effect in both research and clinical practice is not possible without an accurate, valid and reliable method to determine arm size. Especially in clinical practice, it is crucial that this measurement tool is easy-to-use and rapid as well. [2, 3] To date, a plethora of different measurement methods capable of determining arm size is available, such as several methods for water displacement[4-6], opto-electronic volumetry[7] and circumference measurements.[8] The traditional way of performing the water displacement method is to measure the overflow of water.[6] An alternative method for determining arm volume is to measure the shortness of water, called inverse water volumetry.[4] Furthermore, recently a volumetry method that does not make use of an overflow, named ValGrado by the developers[10], has been introduced and will be further referred to as volumetry without overflow. Opto-electronic volumetry, or perometry, is another valid measurement tool that showed to be accurate and reproducible in homogeneous geometric shapes.[11] Additionally, based on circumference measurements of the arm, the total arm volume can be calculated by using geometric formulas, such as the truncated cone formula.[12] Table 1 provides an overview of evidence found in literature with regard to reliability, time-efficiency and reported limitations of five commonly used measurement methods. All methods show good to very good intra-rater and inter-rater reliability for measuring arm volume. However, almost none of the studies report on reliability of the assessment of excessive arm volume. Additionally, only a few studies also investigated the measurement error of each method. Regarding time-efficiency, standardized studies investigating the time needed to perform a certain measurement, are lacking. A recent systematic review providing best evidence regarding which measurement method is

Clinical Rehabilitation

most appropriate in measuring lymphoedema, concluded that information on feasibility is scarce.[9] A literature search regarding reported limitations of each of the methods, resulted in nine possible limitations (see Table 1).

In conclusion, although plenty of research is already published concerning reliability of different measurement methods separately, a clear overview and comparison of their utility (in terms of reliability, time-efficiency and clinical feasibility), between different variants of water displacement methods, opto-electronic volumetry and calculated volume by using a perimeter, is still missing.

Therefore, the aim of the present study was to investigate and compare the reliability, timeefficiency and clinical feasibility of five different and commonly used methods for determining excessive arm volume in patients with BCRL in clinical practice. or per

(Table 1)

Methods

This cross-sectional study is part of the EFforT-BCRL trial[30] for which approval was obtained by the Ethical Committee of the University Hospitals of Leuven (CME reference S58689, EudraCT 2015-004822-33, Clinicaltrials.gov NCT02609724). The study was conducted in accordance with the Declaration of Helsinki and is reported following the recommended STROBE guidelines for observational studies.

Participants

Between July and November 2017, participants of the EFforT-BCRL trial ware asked to contribute in this subtrial. Eligibility criteria were: 1) female/male patients with unilateral BCRL of the arm, 2) currently in the maintenance phase of the decongestive lymphatic therapy, 3) no known recurrence of cancer. Participants were excluded when they: 1) had solely hand oedema, and 2) had open skin lesions on one of their arms at the time of the testing. All participants received written and oral information by mail as well as by phone. All participants signed the informed consent document in the prior EFforT-BCRL trial.

Data collection and assessments

All assessments were performed at the department of Physical Medicine and Rehabilitation of the University Hospitals of Leuven. Excessive arm volume of all participants was determined by five different methods:

- traditional volumetry with overflow, in which the overflow of water is weighted[6];
- volumetry without overflow, in which the volume of the upward displaced water is weighted when submerging the limb in the recipient[10];
- inverse water volumetry, an alternative method for determining arm volume whereby the shortness of water is measured[4];
- opto-electronic volumetry (or perometry), a method that makes use of an opticalelectronic infrared device to detect volume differences (without considering hand volume)[11]; and
- calculated volume based on circumference measurements, whereby total arm volume (without considering hand volume) can be calculated by using geometric formulas, such as the truncated cone formula. [12] This formula postulates that every section of the limb represents a perfect circle, and that the walls of the cone are rectilinear.

Page 11 of 47

Clinical Rehabilitation

For each participant, the volume of both arms was measured. To determine the excessive arm volume, the volume of the non-oedematous arm was subtracted by the volume of the oedematous arm. Table 2 comprises a detailed overview of the five different measurement methods for assessing arm volume and excessive volume and their standardized procedures.

Descriptive data was collected by interviewing the participants and by consulting their medical record. For each participant, only one visit to the hospital was necessary to collect all data. Participants arrived 15 minutes prior to the start of the measurements at the hospital in order to stabilize skin temperature with room temperature.[30] In our study room, a constant temperature of 21°C was maintained. During this time, compression sleeves and jewelry on both arms were removed.

The estimated duration for a single execution of the five different measurements was 30 minutes (i.e. one assessment block). Since the execution of an assessment block was performed three times consecutively, the total duration of the investigation was approximately 1.5 hours per participant. The sequence of the five measurement methods in one assessment block varied between the different participants, however, within each participant the same sequence was maintained among the three executions. The order of measured sides during the measurements was chosen randomly. Prior to the assessments, three different 2-hour training moments were scheduled to guarantee standardization between assessors (TDV, LV), as well as three consecutive 1-hour training moments focused on time measurements between the persons registering the scores (SVDS, AVH, MB, TP).

To investigate intra-rater reliability, the first and the last assessment block were performed by the same assessor (TDV). To investigate inter-rater reliability, the second one was performed

by a different assessor (LV). In order to obtain blinding of the assessors for previous test results, a different person registered the score. To preserve blinding for the reference point(s), after completing each assessment block consisting of the five methods, reference points were removed using alcohol wipes.

To provide an overview concerning time-efficiency of the five methods, a subdivision was made between: 1) the time needed to prepare the measurement and is reported as setup time, 2) the time needed for a bilaterally execution of the measurement and is reported as execution time, and 3) the total time required for the setup and execution of the measurement.

The setup of the measurement equipment was consistently prepared according to a predetermined and standardized protocol. Volumeters were filled with tepid water since literature showed that water temperatures across this range do not affect the density of water (and consequently, the weight of water measured), and do not cause vasodilatation/ vasoconstriction of the blood capillary system.[6, 26, 32] Setup time was determined for traditional volumetry with overflow, volumetry without overflow and inverse volumetry. Other methods did not require any preparation in advance (Table 2). Subsequently, execution of the five different methods was timed in a consistent and standardized manner as well. In Table 2, the timing protocol for each method in particular is described in more detail.

(Table 2)

Limitations regarding clinical feasibility of the different methods reported in literature (Table 1) were discussed by a team of experts in the field. Additionally, limitations reported by the

experts retrieved from clinical experience were added to the list, after which all limitations were scored for each of the five measurement methods (yes/no). Two experts have many years of clinical and scientific experience in using the measurement methods (ND, NG), and the other expert has performed the assessments during the current study (TDV).

Finally, an overall comparison between the five methods regarding their reliability, timeefficiency and clinical feasibility is performed in order to provide an overview about the most appropriate method to use in clinical practice for measuring the excessive arm volume over time.

Data analysis

Statistical analyses were performed using IBM SPSS Statistics for Windows version 24.0. The 0.05 level of significance was applied. Descriptive statistics for continuous values are presented as mean ±SD for normal distributed data and median and interquartile range for not normal distributed data. Categorical variables are presented as number and proportion (%).

Reliability of the volume measurements of the oedematous limb, the non-oedematous limb and of the excessive arm volume were analyzed. Intraclass correlation coefficients (ICCs) were used to examine intra-rater and inter-rater reliability between the different measurement occasions.[33] ICC estimates and their 95% confident intervals (CIs) were calculated based on a single rating (k=1), absolute agreement, two-way random-effects model.[34, 35] The ICCs were interpreted as follows: <.40 weak, .40 to .74 moderate, .75 to .90 strong and >.90 very strong[36, 37]. To interpret the magnitude of the within-subjects variation of the two scores, the standard error of measurement (SEM) was calculated using following formula: SEM = $SD(difference)/(2)^{0.5}$, where SD was the standard deviation of the volume differences between the two assessments.

To calculate systematic changes in the mean between two measurement occasions, paired samples t-tests were applied since the Shapiro-Wilk test revealed a mainly normal distribution of data.

A one-way ANOVA analysis was executed to demonstrate statistical significant differences among group-means, assisted with post hoc analyses for further evaluation.

Descriptive statistics on the reported limitations were performed to describe the clinical feasibility of each method.

Finally, data was used to compile a ranking table. Therefore, reliability of each method was based on the intra- and inter-rater ICC values of the excessive volume and was ranked between 1 (most reliable method) and 5 (least reliable method). The rating of time-efficiency was based on the total time, and consequently resulted in a ranking between 1 (most time-efficient method) and 5 (least time-efficient method). The rating of clinical feasibility was determined as the sum of scores on the reported limitations for each method. Based on this score, all methods were ranked between 1 (most feasible method) and 5 (least feasible method). Finally, based on the sum of the different scores on each item, the methods were ranked between 1 (most appropriate method) and 5 (least appropriate method).

Results

Thirty women were enrolled in this study. All measurements were completed in all 30 participants. Mean age was 65 (\pm 8) years and mean body mass index (BMI) was 28 (\pm 4) kg/m². An overview of the characteristics of the included subjects is provided in Table 3.

(Table 3)

Tables 4 and 5 list the intra-rater and inter-rater ICC values (with 95% CI), the SEMs (with 95% CI), and the mean volumes on each test occasion, supported with the outcomes of the paired samples t-tests.

• Intra-rater reliability:

Taken into account the results considering the excessive arm volume, all methods showed satisfying ICCs, ranging from .777 to .987. Calculated arm volume based on circumferences showed the highest ICC of .987. Similar to the ICC results, calculated arm volume based on circumferences showed the lowest SEM, resulting in a variation of one test occasion to the other of 41.58ml.

• Inter-rater reliability:

Likewise, considering the results regarding the excessive volume between the two arms, ICCs ranged between .791 and .984. Calculated arm volume based on circumferences showed the highest ICC of .984. Additionally, this method presented the lowest SEM, resulting in a test variation between two test occasions by different assessors, of 45.3ml. (Tables 4 and 5)

An overview of the results regarding mean setup time, mean execution time and mean total time (±SDs) of the different measurement methods is given in Table 6. Additionally, a visual comparison of the results, assisted with the ANOVA post hoc outcomes, is illustrated in Figure 1. Regarding the ANOVA post hoc analyses, Games-Howell post hoc analyses were performed since equal variances were not assumed.

• Setup time:

Volumetry without overflow showed to require the least time, with a mean setup duration of 4 minutes and 40 (\pm 12) seconds. Mean setup time differed statistically significant between traditional volumetry with overflow and volumetry without overflow (p<0.01).

• Execution time:

Mean bilateral execution time was lowest for volumetry without overflow (56 (±12) seconds). Mean execution time was highest for inverse volumetry (5 minutes and 34 (±210) seconds) (p<0.01).

• Total time:

With regard to the time needed for both setup (if required) as well as a bilaterally execution of the measurement, opto-electonic volumetry turned out to be the fastest method, representing a mean time of 1 minute and 43 (±26) seconds. Every pairwise comparison of methods showed statistical significant differences between their means (p<0.05).

(Table 6)

(Figure 1)

Nine limitations regarding clinical feasibility that were listed in Table 1 were supplemented with following three limitations, retrieved from clinical experience: 1) the device is difficult to apply in patients with limited postural balance, 2) segmental measurements for evaluation of local changes are not provided, and 3) indirect measurement of volume (calculations need to be performed after the measurement). Finally, these 12 limitations were scored in Table 7. Least limitations were seen in the calculated volume based on circumferences method.

(Table 7)

A summarizing ranking table is presented in Table 8. Results revealed that calculated volume based on circumference measurements received the highest overall rank. Therefore, this method is considered as the most appropriate method to use in clinical practice based on our scored items (see Table 8).

(Table 8)

Discussion

In terms of reliability, low error rate, low cost, few limitations and time-efficiency, calculated volume based on arm circumferences is the best measurement method for evaluating excessive arm volume in patients with BCRL over time in clinical practice.

All five investigated methods showed good to very good **reliability**, which are comparable to previous results.[12, 14-17, 25] Nevertheless, it should be noted that previous results are mainly based on measurements executed on the oedematous limb or on a healthy limb. However, we preferred to perform measurements on both arms in order to determine and analyze the excessive arm volume, since it has the advantage to be able to correct for changes in muscle size and subcutaneous fat when monitoring long-term treatment effects. Limited reliability studies did also investigate the measurement error, and of those who did, only a few have reported the formula that was used.[12, 13]

Since the volumetry without overflow method has only recently been introduced[10], no previous publications regarding the clinimetric parameters of this method are available yet. When observing the results of this method in current study, one can notice a slight distinction with the other four methods due to a relatively lower intra- (.777) and inter-rater (.791) ICC of the excessive arm volumes, corresponding with a SEM of 146.36ml and 138.25ml, respectively. Nevertheless, these values still represent strong intra- and inter-rater reliability. A potential pitfall that can be causal for this variability, might be found in the accuracy of repeatedly indicating the same reference points before the measurement starts. The most important reference point is located in the elbow fold and is defined as the skin fold which is most centrally located in the elbow fold. Starting from this line, a proximal distance of 10 cm is measured to indicate the reference point required for measuring total arm volume. In our opinion, a difference in interpretation and perception between different assessors (and even within the same assessor) to define this most centrally located elbow fold, can contribute to this variability. As it was shown that volumes calculated from circumferences relative to anatomic (bony) landmarks are more accurate than those from segments using defined

Clinical Rehabilitation

distances[12], an alternative approach in indicating reference points might be helpful to decrease this within-subjects as well as between-subjects variability.

This is the first study investigating **time-efficiency** of the different measurement procedures using a standardized protocol. Consequently, there is little information in literature available that allows us to compare our findings (Table 1). In the current study, opto-electronic volumetry showed the least total time required to complete a bilateral measurement (1min 42sec on average). Previous studies also mentioned opto-electronic volumetry being a quick device, taking only a few seconds[11, 14] to two minutes per measurement[24]. One study mentioned that the time required to complete volume measurements using a traditional volumetry device with overflow was 20 minutes[15], in contrast to the mean total time of 10 minutes 40 seconds in the current study. Furthermore, studies reported an average duration of 10 minutes for performing separate girth measurements after which the arm volume was calculated using the formula for a truncated cone.[15, 24] In the current study, the measurement lasted about 4 minutes and 24 seconds on average by using a perimeter. In the study of Damstra et al, volume measurements of both arms by making use of inverse volumetry required 5 minutes[4], which is remarkably lower than the time required in the current study (12min 55sec on average). However, information whether this time also included calibration time, was not provided. In the current study, the execution time of the inverse volumetry without the calibration time was 5 minutes 33 seconds on average, which would be comparable with the results of Damstra et al.[4] Another study reported a mean total time of 15 minutes, with most time spent on the preparation. [21]

Concerning **clinical feasibility**, there is no consistency found in literature. Moreover, a recent systematic review providing best evidence regarding which measurement method is most appropriate in measuring lymphoedema, concluded that information on feasibility is

scarce.[9] Results of our ranking revealed that water displacement methods yield more practical limitations than calculated volume based on circumference measurements and optoelectronic volumetry.

Some study limitations should be mentioned. Although good to very good reliability was demonstrated in all five methods, the relatively small number of participants might have lowered the variability between participants. However, as stated by Shrout and Fleiss, researchers should try to obtain at least 30 heterogeneous subjects for reliability studies which was established in this study.[35]

Next, an opto-electronic volumetry device primary designed for lower limbs was used. However, to encounter this hindrance, a strict and standardized protocol regarding sitting posture and measurement procedure was carried out in order to provide unambiguous measurements of the upper limb.

Besides the mentioned limitations, this investigation contains several strengths. First, since we analyzed the reliability of the different methods by measuring both the oedematous and the non-oedematous arm, our results can be extrapolated to a patient population as well as to a healthy population or to a patient population without clinical representation of lymphoedema. Second, in order to investigate reliability and time-efficiency as accurate as possible, several training moments between assessors were organized ensuring standardization of the measurement procedure.

Third, to eliminate any risk for recall bias between the measurements, the assessor was supported by an independent assistant writing down the values and consequently, ensuring blinding of the data.

Page 21 of 47

Clinical Rehabilitation

Calculated arm volume based on circumference measurements showed to be the most reliable and most feasible method to apply in clinical practice, in order to measure the excessive arm volume over time. Hereby, when measurements are performed by the same assessor, a test variation of more than 42ml should be considered as a change in excessive arm volume, exceeding the (potential) measurement error. In case the measurements are performed by different assessors, a test variation of more than 42ml should be considered as a change in excessive arm volume, exceeding the (potential) measurement error. In case the measurements are performed by different assessors, a test variation of more than 45ml exceeds the area of potential measurement errors. The device consists of materials with low costs, therefore it is easy to self-design a perimeter. Alternatively, it can be purchased as it is commercially available as well. For clinical centers having sufficient financial capacity, an opto-electronic volumeter can also be considered. However, a disadvantage of both methods is the fact that hand volume is not taken into account. Therefore, hand volume should be measured separately, for example by making use of a hand volumeter[38] or figure-of-eight method.[39, 40] In order to improve the hygienic conditions of the water volumetry method, an antiseptic (e.g. Chlorhexidine) or stabilized chlorine can be added to the water to disinfect the skin.

Since evidence is scarce regarding the recently introduced volumetry without overflow method, future research should focus on this technique. Results revealed that this is a very time-efficient water displacement method showing very strong intra- and inter-rater reliability for measuring the volume of an oedematous and non-oedematous limb, and strong intra- and inter-rater reliability for measuring the excessive arm volume. We believe that, with adjustment of the reference point's location, this method can be optimized which will result in smaller SEMs. Next, in current study we chose for a calculated volume based on circumference measurements method that made use of a perimeter instead of separate girth measurements (using a tapeline), since it comprises several advantages compared to separate

girth measurements: 1) the device measures 11 circumferences at once by using only one reference point, resulting in quick measurements, 2) only one reference point needs to be marked and measured over time, which might result in smaller measurement errors, 3) since the tapelines are provided with weights (20g) at their end, the tension of the tapeline on the skin is standardized.[25] However, future studies should compare reliability and correlate these two measures, to investigate whether they could be used interchangeably. Furthermore, analysis of the data revealed that there is a remarkable difference in arm volume measured by the different methods at the oedematous limb, with opto-electronic volumetry representing the largest deviation. Consequently, further research regarding the criterion validity of these methods is warranted to ascertain whether the measured arm volume fully corresponds the actual arm volume.

Clinical messages

- Calculated arm volume based on circumference measurements showed to be the most reliable, the most feasible and a very time-efficient method to apply in clinical practice in patients with breast cancer-related lymphoedema, in order to measure the excessive arm volume over time.
- Since the calculated arm volume based on circumferences method does not include an evaluation of hand volume, therapists should measure this separately, for instance by making use of a hand volumeter[38] or figure-of-eight method[39, 40].

Acknowledgements

The authors are very grateful to the hospitals collaborating in this study. The authors also extend very grateful thanks to the study participants. All authors critically revised the manuscript for important intellectual content and approved the final manuscript.

Funding

This study is financed by the Agency for Innovation by Science and Technology, applied Biomedical Research (IWT 150178). In order to arrange such financing a separate collaboration agreement has been signed by the University Hospitals of Leuven and the beneficiaries.

Conflicts of interest

The authors declare that they have no conflict of interest.

References

1. DiSipio T, Rye S, Newman B, et al. Incidence of unilateral arm lymphoedema after breast cancer: A systematic review and meta-analysis. *Lancet Oncol.* 2013;14(6):500-15.

2. Megens AM, Harris SR, Kim-Sing C, et al. Measurement of upper extremity volume in women after axillary dissection for breast cancer. *Arch Phys Med Rehabil*. 2001;82(12):1639-44.

3. Gerber LH. A review of measures of lymphedema. *Cancer*. 1998;83(12 Suppl American):2803-4.

4. Damstra RJ, Glazenburg EJ, Hop WC. Validation of the inverse water volumetry method: A new gold standard for arm volume measurements. *Breast Cancer Res Treat*. 2006;99(3):267-73.

5. Sagen A, Karesen R, Skaane P, et al. Validity for the simplified water displacement instrument to measure arm lymphedema as a result of breast cancer surgery. *Arch Phys Med Rehabil*. 2009;90(5):803-9.

6. Gebruers N, Truijen S, Engelborghs S, et al. Volumetric evaluation of upper extremities in 250 healthy persons. *Clin Physiol Funct Imaging*. 2007;27(1):17-22.

7. Tierney S, Aslam M, Rennie K, et al. Infrared optoelectronic volumetry, the ideal way to measure limb volume. *Eur J Vasc Endovasc Surg*. 1996;12(4):412-7.

8. Pani SP, Vanamail P, Yuvaraj J. Limb circumference measurement for recording edema volume in patients with filarial lymphedema. *Lymphology*. 1995;28(2):57-63.

9. Hidding JT, Viehoff PB, Beurskens CH, et al. Measurement properties of instruments for measuring of lymphedema: Systematic review. *Phys Ther*. 2016;96(12):1965-81.

10. Martignon M VS, Fung LH, Vandermeeren L, Belgrado JP, editor Evaluation of the reliability of four measuring methods of hand's perimeter and volume: Buoyancy forces valgrado system, circumference measurement, figure-of-eight method and manu3metrix scanner. 8th International Lymphoedema Framework Conference; 2018; Rotterdam, The Netherlands.

11. Stanton AW, Northfield JW, Holroyd B, et al. Validation of an optoelectronic limb volumeter (perometer). *Lymphology*. 1997;30(2):77-97.

12. Taylor R, Jayasinghe UW, Koelmeyer L, et al. Reliability and validity of arm volume measurements for assessment of lymphedema. *Phys Ther*. 2006;86(2):205-14.

13. Chen YW, Tsai HJ, Hung HC, et al. Reliability study of measurements for lymphedema in breast cancer patients. *Am J Phys Med Rehabil.* 2008;87(1):33-8.

14. Deltombe T, Jamart J, Recloux S, et al. Reliability and limits of agreement of circumferential, water displacement, and optoelectronic volumetry in the measurement of upper limb lymphedema. *Lymphology*. 2007;40(1):26-34.

15. Galland C, Auvert JF, Flahault A, et al. Why and how post-mastectomy edema should be quantified in patients with breast cancer. *Breast Cancer Res Treat.* 2002;75(1):87-9.

16. Gjorup C, Zerahn B, Hendel HW. Assessment of volume measurement of breast cancer-related lymphedema by three methods: Circumference measurement, water displacement, and dual energy x-ray absorptiometry. *Lymphat Res Biol*. 2010;8(2):111-9.

17. Karges JR, Mark BE, Stikeleather SJ, et al. Concurrent validity of upper-extremity volume estimates: Comparison of calculated volume derived from girth measurements and water displacement volume. *Phys Ther*. 2003;83(2):134-45.

Meijer RS, Rietman JS, Geertzen JH, et al. Validity and intra- and interobserver reliability of an indirect volume measurements in patients with upper extremity lymphedema. *Lymphology*. 2004;37(3):127-33.
 Mori T, Lustman A, Katz-Leurer M. Self-measurement of upper extremity volume in

women post-breast cancer: Reliability and validity study. *Physiother Theory Pract.* 2015;31(4):283-7.

20. Sander AP, Hajer NM, Hemenway K, et al. Upper-extremity volume measurements in women with lymphedema: A comparison of measurements obtained via water displacement with geometrically determined volume. *Phys Ther*. 2002;82(12):1201-12.

21. Beek MA, te Slaa A, van der Laan L, et al. Reliability of the inverse water volumetry method to measure the volume of the upper limb. *Lymphat Res Biol*. 2015;13(2):126-30.
22. Erends M, van der Aa T, de Grzymala AP, et al. Validity and reliability of three-dimensional imaging for measuring the volume of the arm. *Lymphat Res Biol*. 2014;12(4):275-81.

23. Adriaenssens N, Buyl R, Lievens P, et al. Comparative study between mobile infrared optoelectronic volumetry with a perometer and two commonly used methods for the evaluation of arm volume in patients with breast cancer related lymphedema of the arm. *Lymphology*. 2013;46(3):132-43.

24. Sharkey AR, King SW, Kuo RY, et al. Measuring limb volume: Accuracy and reliability of tape measurement versus perometer measurement. *Lymphat Res Biol*. 2018;16(2):182-6.

25. Devoogdt N, Lemkens H, Geraerts I, et al. A new device to measure upper limb circumferences: Validity and reliability. *Int Angiol*. 2010;29(5):401-7.

26. Boland R, Adams R. Development and evaluation of a precision forearm and hand volumeter and measuring cylinder. *J Hand Ther*. 1996;9(4):349-58.

27. Levenhagen K, Davies C, Perdomo M, et al. Diagnosis of upper quadrant lymphedema secondary to cancer: Clinical practice guideline from the oncology section of the american physical therapy association. *Phys Ther*. 2017;97(7):729-45.

28. Veraart JCJM MI, Asselman AH, Neumann HAM. The volometer and the perometer; a clinical comparison. *Scripta Phlebologica*. 1995;5:9-11.

29. De Vrieze T, Vos L, Gebruers N, et al. Protocol of a randomised controlled trial regarding the effectiveness of fluoroscopy-guided manual lymph drainage for the treatment of breast cancer-related lymphoedema (EFForT-BCRL trial). *Eur J Obstet Gynecol Reprod Biol.* 2017.

30. Rajapakse C, Grennan DM, Jones C, et al. Thermography in the assessment of peripheral joint inflammation--a re-evaluation. *Rheumatol Rehabil*. 1981;20(2):81-7.

31. King TI, 2nd. The effect of water temperature on hand volume during volumetric measurement using the water displacement method. *J Hand Ther*. 1993;6(3):202-4.40.

32. Casley-Smith JR, Casley-Smith JR. Modern treatment of lymphoedema. I. Complex physical therapy: The first 200 australian limbs. *Australas J Dermatol*. 1992;33(2):61-8.
33. Lexell JE, Downham DY. How to assess the reliability of measurements in

rehabilitation. Am J Phys Med Rehabil. 2005;84(9):719-23.

34. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. *J Chiropr Med.* 2016;15(2):155-63.

35. Shrout PE, Fleiss JL. Intraclass correlations: Uses in assessing rater reliability. *Psychol Bull*. 1979;86(2):420-8.

36. Fleiss JL. Design and analysis of clinical experiments. New York, NY: John Wiley & Sons Inc; 1986.

37. Fleiss JL. Design and analysis of clinical experiments: John Wiley & Sons; 2011.

38. Farrell K, Johnson A, Duncan H, et al. The intertester and intratester reliability of hand volumetrics. *J Hand Ther*. 2003;16(4):292-9.

39. Maihafer GC, Llewellyn MA, Pillar WJ, Jr., et al. A comparison of the figure-of-eight method and water volumetry in measurement of hand and wrist size. *J Hand Ther*. 2003;16(4):305-10.

40. Borthwick Y, Paul L, Sneddon M, et al. Reliability and validity of the figure-of-eight method of measuring hand size in patients with breast cancer-related lymphoedema. *Eur J Cancer Care (Engl)*. 2013;22(2):196-201.

for per period

Tables

Table 1: Overview of studies investigating reliability and measurement variability (when indicated) of measurement methods quantifying arm volume of the

oedematous limb

	Traditional volumetry with overflow												
Reliability	First author	Chen et al 2008[13]	Deltombe et al 2007[14]	Galland et al 2002[1 5]	Gebruers et al 2007 (no lymphoe dema)[6]	Gjorup et al 2010[1 6]	Karges et al 2003[1 7]	Megens et al 2001[2]	Meijer et al 2004[1 8]	Mori et al 2015[19]	Sander et al 2002[20]	Taylor et al 2006[1 2]	RANGE
	ICC intra	0.999	0.991	0.996	0.999	0.984	0.990	0.990	0.970- 0.980	0.950	0.990	≥0.950	0.950-0.999
	ICC inter	0.990	0.987		0.999			0.990	0.910		0.990		0.910-0.999
	SEM (ml)	Intra 27.20 ml Inter 27.30 ml					11.46 ml (TEM*)				117.00 ml	66.50- 81.70 ml	27.20 ml – 117.00 ml
Time- efficiency	First author	Galland et al 2002[15]											

http://mc.manuscriptcentral.com/clinrehab

	1	-								1			
	Time	20 min											
	(min)												
Limitations	1) N	o visual infor	mation regard	ling the shap	e of the lin	nb[20]	1	1	I	1	1	1	<u> </u>
	2) 0	nce filled wit	th water, mate	rial is not po	rtable[2, 17	7, 26]							
	3) P	roblems with	hygiene[26]		• •								
	4) N	lot appropria	te in subjects	with wounds	[16, 17, 22]								
	5) N	lo evaluation	of the proxim	al part of the	upper arm	n[7]							
			·										
Volumetry without overflow													
	1	1											
Reliability	First	irst No publications yet											
	author	thor											
Time-	First	irst No publications yet											
efficiency	author	author											
Limitations	1) No visual information regarding the shape of the limb[20]												
	2) O	nce filled wit	th water, mate	rial is not po	rtable[2, 17	7, 26]							
	3) P	roblems with	hygiene[26]										
	4) N	lot appropria	te in subjects v	with wounds	[16, 17, 22]								
	5) N	lo evaluation	of the proxim	al part of upp	per arm[7]								
						Inverse	volumetry						
Reliability	First	Beek et	Damstra	Erends									RANGE
	author	al 2015	et al	et al									
		(no	2006[4]	2014									
		Ivmphoe		(no									
		dema)[2		Ivmnho									
		11		edema)									
		1		[22]									
				[22]									

Clinical Rehabilitation

	ICC	0.990	0.997	0.990							0.990-0.99
	IIItia										
	ICC inter		0.995								0.995
	SEM (ml)			F	6						
	()				P	0					
Time- efficiency	First author	Beek et al 2015[21]	Damstra et al 2006[4]			64	R				
	Time (min)	15 min	5 min				.6	V:			
Limitations	1) N 2) N 3) P 4) N 5) N	lo visual info Material is no Problems with lot appropria lo evaluation	rmation regard t portable[2, 1 n hygiene[26] te in subjects of the proxim	ding the sha 17, 26] with wounc nal part of up	ipe of the lim ls[16, 17, 22] pper arm[7]	b[20]	<u>.</u>	16	r		
	I					Opto-elec	tronic volu	umetry			
						26					
					http://mc.m	anuscriptce	entral.com/	clinrehab			

		1	1	1	1	1	1			1	 1	
Reliability	First	Adriaens	Deltombe									
	author	sens et al	et al									
		2013[23]	2007[14]									
		0.999	0.997									
	intra											
	ICC		0.997									
	inter											
	SEM											
	(ml)											
Time-	First	Deltomb	Sharkey et	Stanton								
efficiency	author	e et al	al	et al								
		2007[14]	2018[24]	1997[1								
				1]								
	Time	Few	2 min	Few		NO.						
	(min)	seconds		second								
				S								
Limitations	1) D	evice takes a	lot of space[2	7]								
	2) E	xpensive equ	ipment[27]				1:11 [20]					
	3) I	he formula u	sed to calculat	e the volum	ne is unknow	n and can	differ[28]					
	4) N	o evaluation	of nand volun	ie[4]								
				Calculate	d volume b	ased on c	ircumfere	nce measu	rements			
Reliability	First	Deltomb	Devoogdt	Galland	Gjorup	Karges	Taylor					RANGE
	author	e et al	et al	et al	et al	et al	et al					
		2007[14]	2010[25]	2002[1	2010[16]	2003[1	2006[1					
				5]		7]	2]					
	ICC	0.958	0.997	0.995	0.998	0.990						0.958-0.998
	intra											

http://mc.manuscriptcentral.com/clinrehab

Clinical Rehabilitation

	ICC	0.937	0.994		0.997		0.970-				0.937	-0.99
	SEM		Intra			Intra	Inter				Intra 9	9.35-
	(ml)		22.30 ml			9.35	64.5-				22.30	ml
			Inter			ml	71 ml				Inter 2	22.5-
			25.50 ml			IEMI*)					/1.00	mi
ime-	First	Devoogd	Galland et	Sharkey								
efficiency	author	t et al	al 2002	et al								
		2010[25]	(girth	2018[2								
			measurem	4]								
			ents with									
			tapeline)[1 5]			0.						
	Time	5 min	10 min	10 min								
	(min)			[4]								
Limitations	1) ۲	No evaluation	of hand volum	ne[4]								
Note:	* outcome	is mentione	ed as TEM (ab	solute tecl	nnical erroi	of measu	irement); no	formula wa	as presen	ted		
						28						
					http://mc.m	anuscriptce	entral.com/clin	nrehab				

Table 2. Protocol: overview of the five measurement methods and procedures

2 3 4	Tal	ble 2. Protocol: overview	of the five measureme	ent methods and pro	ocedures		
5 6	Assessment	Picture	Material	Reference points	Method		Outcome
7					Setup	Procedure	
 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 	Traditional volumetry with overflow[6]	(with permission illustration from Gebruers et al 2007[6])	Cubically shaped tank with overflow (18x18x76 cm) filled with tepid tap water of 20-30°C, chair, recipient placed on electronic weighing balance with 0.1g accuracy (KERN 572) on top of a platform of 25 cm height, skin pencil, chair or stool.	Half the distance between acromion and proximal edge of epicondylus lateralis (elbow flexed in 90° whilst marking reference point).	Place a recipient on a scale underneath the overflow. Fill the tank with water until the level of the overflow has reached and flows out. When the water stops dripping (frequency ≤ 1 drop per second), calibrate the scale (= 0g). Subject is sitting down next to the tank.	Extra water is added to the tank until the water level enters the overflow. During the time water is dripping, reference points are marked. Once the water stops to drip, the scale is tared. Subject lowers the arm into the tank until the water level reaches the marked reference point. The limb needs to be kept straight and perpendicular to the surface, with the palm of the hand placed against the edge of the volumeter. When the limb reaches the reference point, the position has to be maintained until the water stops dripping with frequency \leq 1 drop per second.	Weight of the displaced water (g). Comparison left/right. Measurement of excessive volume of the whole arm = (volume oedematous limb – non-oedematous limb).
27 28 29 30 31 32 33 34 35 36 37 38					Setup time= from setup till the water level in the tank reached the overflow.	Read the weight of the water in the recipient. Execution time= started with adding some extra water to the tank before finally taring the scale and ended when water of the overflow dripped with frequency \leq 1 drop per second, after lowering the limb.	Setup time, execution time and total time (= setup time + execution time) (seconds).

http://mc.manuscriptcentral.com/clinrehab

1 2							
3	Volumetry		Cylinder filled with	10 cm proximal to	Place the cylinder on a scale.	Perpendicular to the water surface,	Weight of the upward
4	, without		tepid tap water of 20-	the middle	, Tare the scale. Subject is	subject lowers the arm into the cylinder	displaced water (g).
5	without		30°C, placed on	skinfold of the	positioned in standing	until the water level reaches the marked	Comparison left/right.
0 7	overflow[10]		weighing balance with	elbow crease.	beside the cylinder.	reference point. Subject is given	Measurement of excessive
8			0.1g accuracy (KERN			attention not to touch the border of the	lymphoedema volume whole
9			572); both are placed			cylinder. Once the water level equals the	arm = cfr. Supra.
10			on top of a platform of			level of the reference point on the upper	
11			25 cm height. Weighing			arm, the assessor clicks on the	
12		ET 681.65	balance is connected			assessment button; software	
14			with 'Matlab' software			programme performs 10 volume	
15			programme on laptop,			measurements and calculates mean	
16			skin pencil.			volume (Volume of upward displaced	
17						water = Mass of water/ density of water,	
18 10						density of water with T° between 20-30°C	
20						is 1); a signal is given if mean volume or	
21						its standard deviation is outside of preset	
22						range.	
23							
24 25					Setup time= from setup till	Execution time= timed in two phases:	Setup time, execution time
25					the water level in the tank	1) application of reference points 2)	and total time (= setup time +
27					reached a level of 15cm	started from lowering the arm in the tank	execution time) (seconds).
28					below the upper edge (=	until predefined reference point was	
29					arbitrary chosen to preserve	reached and the weight was shown on	
30 21			-		standardization).	the computer screen.	
32	Inverse		Tank filled with tap	No reference	Calibration procedure:	Subject places the olecranon in the	Weight of the added water (g).
33	volumetry[4]	T	water of 28°C standing	point.	Fill the tank with water until	corner at the opposite side of the tank,	Comparison left/right.
34			on a weighting device,		the water reaches the	elbow flexed in 90°, pronation of the	Measurement of excessive
35			based on the metal		overflow. When the water	torearm, extension of the fingers.	Iymphoedema volume whole
36 27			bending principal.		stops dripping at a frequency	Assessor fills the tank until the water	arm = ctr. Supra.
57 38					\leq 1 drop per second,	reaches the overflow. When the water	
39					calibrate to zero and drain	stops dripping -at a frequency ≤ 1 drop	
40					20		
11					50		

1 2							
3					the water. This procedure	per second, the arm is removed from the	
4					needs to be performed only	tank.	
5					once daily.	The display of the weighting device	
0 7						shows the shortness of water compared	
8					Measurement procedure:	with the initial situation.	
9					Subject is positioned in		
10					standing beside the tank.		
11					Adjust the height of the tank		
12					until subject is standing	Execution time= started with placing the	
14					comfortable.	arm in the tank and ended when water of	Setup time, execution time
15						the overflow dripped with frequency \leq	and total time (= setup time +
16					Setup time= from filling the	1 drop per second.	execution time) (seconds).
17					water tank till end of		
18					calibration.		
20	Calculated	-	Perimeter; which is a	Proximal border	Subject is in sitting position	Arm circumferences measured at	Volume of an arm segment of
21	volume		flexible stainless steel	of the olecranon.	with 90° anteflexion of the	olecranon and at 4, 8, 12, 16 and 20 cm	4cm =
22	based on		bar with a tapeline		arm, straight elbow and	proximal and distal of olecranon.	$4 \times (C_1^2 + C_1 C_2 + C_2^2)/12\pi$, where
23	Daseu on	Le l	fixed every 4cm and a		hand supported on table.	First, the reference point at the upper	C_1 is the upper circumference
24	circumferen		weight of 20g at the			border of the olecranon. The bar was	and C_2 is the lower
25	ces[25]		end, skin pencil, chair,			placed on the dorsal side of the arm: the	circumference of each
27		(with permission	table with adjustable			middle tapeline was placed distal of the	segment[32]
28		illustration from	height.			reference point perpendicular to the axis	Calculated volume of whole
29		Davagadt at al				of the arm. The other tapelines were	arm = sum of the volume of all
30		Devooyal et al				placed around the lower arm, also	segments of the arm
31 32		2010[25])				perpendicular to the axis of the arm.	
33						Then the circumference at each point	Comparison left/right.
34						was recorded. Afterwards, all tapes	Measurement of excessive
35						except the middle one were removed,	lymphoedema volume whole
36						and this procedure was repeated for the	arm = cfr. Supra.
ว/ วุณ						upper arm[25]	
39							
40					21		

2						
3				No setup time.	Execution time= started with application	Execution time (= total time)
4					of the reference point and ended after	(seconds).
5					recording all circumferences of both	
7					arms.	
8	Opto-	Opto-electronic	No reference	Subject is in sitting position	Subject keeps a fixed position with the	Volume of the limb in ml.
9	electronic	volumetry device	point.	next to the device. Hand of	arm straight. Assessor moves the handle	Comparison left/right.
10		(Perometer [®]) with a		the subject is placed on a	of the Perometer slowly up until the	Measurement of excessive
11	volumetry[1	vertical arm, a portable		handle block which position	frame reaches the armpit, then moves	lymphoedema volume whole
12	1]	block with handle on		remained unchanged during	slowly back down; a signal is given when	arm = cfr. Supra.
14		top of it, computer		the entire measurement.	the axilla (moving up) and the floor	
15		provided with		The wrist stays in neutral	(moving down), are reached.	Measurement starts for every
16		'PeroPlus' software		position with closed and		subject at a height of 58 cm
17		(Pero-System		connected fingers and the		(level of the wrist) end is
18		Messgeräte GmbH,		thumb facing forward. The		ended at the corresponding
20		Wuppertal, Germany),		elbow is straight and the		height when the frame
21		chair or stool		armpit is located just above		reaches the armpit.
22				and perpendicular to the		Subsequently, arm volume is
23		The Perometer consists		ipsilateral border of the		calculated for these measures.
24		of a vertically movable		frame.		
25		frame equipped with				Execution time (= total time)
20		infrared light emitters		No setup time.	Execution time= started with providing	(seconds).
28		and receptors. The			the instructions how to sit down in a	
29		infrared light beams			correct and predefined starting position,	
30		are interrupted by the			and ended when the software program	
31		introduction of the arm			finished processing the data. Time to	
32 33		into the frame[23]. By			open the program (PeroPlus) is included	
34		moving the frame along			in the execution time.	
35		the long axis of the				
36		arm, a measure is				
37		automatically				
38		performed every 4.7				
40						

1				
2				
3	mm[24] for a distance			
4	which is varying per			
5	subject according to			
6	the individual arm			
/				
8 <u> </u>	iengui.			
10				
11				
12				
13				
14				
15				
16				
1/				
10				
20				
21				
22				
23				
24				
25				
26				
27				
20				
30				
31				
32				
33				
34				
35				
30 27				
38				
39				
40		22		
41		33		
42				
43		http://mc.manuscriptcentral.com/clinrel	nab	
44				
45				
46				

2
2
3
л
-
5
6
7
/
8
9
10
IU
11
12
12
13
14
15
14
10
17
18
10
19
20
21
27
22
23
24
27
25
26
27
<u> </u>
28
29
20
20
31
32
22
55
34
35
22
36
37
38
20
39
40
⊿1
42
42
43
ΔΔ
45
45
46
<u>4</u> 7
ч/ 40
48
49
50
50
51
52
52
22
54
55
55
20
57
58
50
59

Table 3. Characteristics of the included subjects	s (n=30)
Descriptives	
Variable	Outcome
	Mean (SD)
Age (y)	65 (8)
Body Mass Index (kg/m ²)	28 (4)
Duration lymphoedema (mo)	74 (44)
Frequencies	
Variable	Outcome
	N (%)
Lymphoedema stages	
stage I	3 (10%)
stage IIa	18 (60%)
stage IIb	9 (30%)
Location of lymphedema	2
Lower arm	14 (53%)
Upper arm	0 (0%)
Total arm (lower arm + upper arm)	16 (47%)
Breast surgery	4
Mastectomy	21 (70%)
Breast-conserving surgery	9 (30%)
Axillary lymph node clearance	
SLNB	1 (3%)
ALND	29 (97%)
Surgery on the dominant side	17 (57%)
Radiotherapy	30 (100%)
Chemotherapy	24 (80%)
Antihormonal therapy	27 (90%)
Target therapy (Herceptin)	6 (20%)

Abbreviations: y= years, kg= kilogram, m²= square meters, mL= milliliter, mo= months, lymphoedema stages as described by the International Society of Lymphology (i.e. Stage I = Accumulation of interstitial fluid, with reduction by elevation. At this stage the oedema can be pitting. / Stage IIa = Swelling disappears barely by elevation, the oedema is clearly pitting. / Stage IIb = Pitting is clearly present by fibrotic formations in the oedema), SLNB = sentinel lymph node biopsy, ALND = axillary lymph node dissection

to per per per en

2	
3	
4	
5	
6	
7	
, 8	
q	
10	
10	
11	
12	
13	
14	
15	
10	
1/ 10	
10	
19 20	
∠∪ ว1	
∠ I วว	
22	
23	
24	
25	
26	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

Table 4	Intra-rater reliability	(n= 30)

	Method	First assessment	Second assessment	ICC (95% CI)	SEM (95% CI)	Paired
		(assessor A)	(assessor A)			samples T-
						Test
		Mean volume	Mean volume			
		(SD; Min-Max)	(SD; Min-Max)			P-value
Oedematous	Traditional volumetry	2662.64	2681.16	.950	87.80	0.643
limb	with overflow	(384.63; 1692.4-4401.3)	(400.72; 1646.5-4389.8)	(.899976)	(-153.58 – 190.62)	
	Volumetry without	2253.21	2246.16	.950	113.72	0.827
	overflow	(515.69; 1463.1-4401.3)	(501.41; 1401.5-3287.7)	(.898976)	(-216.3 – 229.46)	
	Inversed volumetry	3160.4	3166.23	.979	98.5	0.823
		(653.85; 2033-4760)	(705.58; 1945-4672)	(.957990)	(-187.23 – 198.89)	
	Opto-electronic	5245.47	5197.37	.972	123.52	0.137
	volumetry	(747.32; 4140-7048)	(729.05; 4084-6921)	(0.941986)	(-194 – 290.2)	
	Calculated arm	3000.88	3016.16	.999	24.26	0.309
	volume based on	(764.12; 1911.9-4727.6)	(769.97; 1895.9-4776.2)	(.997999)	(-40.26 - 54.82)	
	circumferences			1,		
Non-	Traditional volumetry	2180.99	2139.78	.983	69.90	0.019*
oedematous	with overflow	(534.31; 1337.5-3720.6)	(537.86; 1359.9-3689.8)	(.960992)	(-95.79 – 178.21)	
limb	Volumetry without	1816.66	1817.93	.985	41.86	0.910
	overflow	(332.32; 1193.0-2623.0)	(351.28; 1173.5-2654.2)	(.968993)	(-80.78 – 83.32)	
	Inversed volumetry	2635.97	2614.07	.991	54.10	0.128
		(552.95; 1655-4150)	(587.52; 1624-4231)	(.980996)	(-84.13 – 127.93)	
	Opto-electronic	4694.6	4658.9	.961	111.27	0.219
	volumetry	(551.47; 3832-6128)	(575.43; 3685-6333)	(.921981)	(-182.39 – 253.79)	

	Calculated arm	2531.95	2523.11	.995	40.63	0.404
	volume based on	(564.85; 1547.3-4069.8)	(584.37; 8.8)	(.990998)	(-70.80 – 88.48)	
	circumferences					
Excessive	Traditional volumetry	481.65	541.38	.813	169.81	0.179
volume	with overflow	(384.63; -56.9-1498.2)	(400.72; -307.5-1195.3)	(.646906)	(-273.09 – 392.55)	
	Volumetry without	419.07	428.7	.777	146.36	0.803
	overflow	(330.83; -128.6-1285.7)	(289.04; -33.8-1227.0)	(.582888)	(-277.24 – 296.5)	
	Inversed volumetry	524.43	552.17	.922	102.52	0.315
		(355.2; -140-1159)	(378.95; -195-1593)	(.843962)	(-173.2 – 228.68)	
	Opto-electronic	550.87	538.47	.921	109.90	0.670
	volumetry	(415.75; -201-1420)	(366.25; -207-1308)	(.842962)	(-203.00 – 227.80)	
	Calculated arm	476.93	493.05	.987	41.58	0.130
	volume based on	(367.31; -126.8-1345.3)	(361.99; -28.1-1454.7)	(.973994)	(-65.37 – 97.61)	
	circumferences					

Abbreviations: SD= standard deviation, ICC= intraclass correlation coefficient, CI= confidence interval, SEM= standard error of measurement, * corresponds with p-value <.05, ** corresponds with p-value <.01

Table 5. Inter-rater reliability (n= 30)

	Method	First assessment (assessor A)	Second assessment (assessor B)	ICC (95% CI)	SEM (95% CI)	Paired samples T- Test
		Mean volume	Mean volume			
		(SD; Min-Max)	(SD; Min-Max)			P-value
Oedematous	Traditional volumetry	2662.64	2647.33	.954	117.25	0.694
limb	with overflow	(384.63; 1692.4-4401.3)	(708.74; 1596.4-4436.1)	(.907978)	(-245.50 – 214.12)	
	Volumetry without	2253.21	2228.16	.980	71.02	0.452
	overflow	(515.69; 1463.1-4401.3)	(488.66; 1149.6-2901.4)	(.957990)	(-114.15 – 164.25)	
	Inversed volumetry	3160.4	3195.97	.974	108.53	0.206
		(653.85; 2033-4760)	(692.24; 1934-4632)	(.947988)	(-177.14 – 248.28)	
	Opto-electronic	5245.47	5062.07	.949	165.70	<0.001**
	volumetry	(747.32; 4140-7048)	(720.13; 4081-6676)	(.504986)	(-141.37 – 508.17)	
	Calculated arm	3000.88	2942.47	.993	62.61	<0.001**
	volume based on	(764.12; 1911.9-4727.6)	(732.58; 1861.4-4608.4)	(.921998)	(-56.31 – 189.13)	
	circumferences			· // ,		
Non-	Traditional volumetry	2180.99	2148.99	.984	67.05	0.068
oedematous	with overflow	(534.31; 1337.5-3720.6)	(525.8; 1370.7-3686.9)	(.964992)	(-99.41 – 163.41)	
limb	Volumetry without	1816.66	1852.64	.930	96.12	0.354
	overflow	(332.32; 1193.0-2623.0)	(394.29; 1149.6-2901.4)	(.859966)	(-152.42 – 224.38)	
	Inversed volumetry	2635.97	2614.8	.994	43.32	0.054
		(552.95; 1655-4150)	(565.49; 1521-4161)	(.987997)	(-6373 – 106.07)	
	Opto-electronic	4694.6	4537.03	.934	139.44	<0.001**
	volumetry	(551.47; 3832-6128)	(534.1; 3743-6151)	(.377982)	(-115.74 – 430.88)	

	Calculated arm	2531.95	2473.23	.986	65.71	<0.001**
	volume based on	(564.85; 1547.3-4069.8)	(545.88; 1516.7-3910.9)	(.931995)	(-70.07 – 187.51)	
	circumferences					
Excessive	Traditional volumetry	481.65	498.34	.861	137.72	0.646
volume	with overflow	(384.63; -56.9-1498.2)	(354.15; -77.9-1293.3)	(.729931)	(-253.24 – 286.62)	
	Volumetry without	419.07	375.53	.791	138.25	0.520
	overflow	(330.83; -128.6-1285.7)	(274; 1149.6-2901.4)	(.606 – .895)	(-227.44 – 314.52)	
	Inversed volumetry	524.43	581.17	.909	110.73	0.046*
		(355.2; -140-1159)	(378.95; -20-1494)	(.810957)	(-160.30 – 273.78)	
	Opto-electronic	550.87	525.03	.949	92.01	0.285
	volumetry	(415.75; -201-1420)	(399.14; -229-1358)	(.897975)	(-151.51 – 206.19)	
	Calculated arm	476.93	469.24	.984	45.3	0.523
	volume based on	(367.31; -126.8-1345.3)	(367.31; -88.7-1373.2)	(.967992)	(-81.11 – 96.49)	
	circumferences					

SD= standard deviation, ICC= intraclass correlation coefficient, CI= confidence interval, SEM= standard error of measurement, * corresponds with p-value <.05, ** corresponds with p-value < 0.01

 Table 6. Setup time, mean execution time and mean total time of five different measurement methods (n= 30)

Measurement method	Mean setup time (SD)	ANOVA	Mean execution time	ANOVA	Mean total time (SD) in	ANOVA		
	in seconds	p-value	(SD) in seconds	p-value	seconds	p-value		
Traditional volumetry with	444.00 (11.51) ^a	P<.01	275.80 (89.56) ^c	P<.01	640.53 (89.11) ^f	P<.01		
overflow								
Volumetry without	280.00 (16.80) ^b		55.67 (11.57) ^d		335.67 (11.57) ^f			
overflow	C							
Inverse volumetry	362.00 (69.35)		333.70 (209.56) ^c		775.00 (212.57) ^f			
Opto-electronic volumetry*			102.67 (26.02) ^e		102.67 (26.02) ^f			
Calculated arm volume			264.13 (26.53) ^c		264.13 (26.53) ^f			
based on circumferences								
* Time to open the program (PeroPlus) is included in the execution time								
^a statistical significant difference with volumetry without overflow (p <.01)								
^b statistical significant difference with traditional volumetry with overflow (p <.01)								

^c statistical significant differences with opto-electronic volumetry and volumetry without overflow (p <.01)

^d statistical significant differences with inverse volumetry, opto-electronic volumetry and calculated arm volume based on circumferences (p

<.01)

^e statistical significant differences with traditional volumetry with overflow, volumetry without overflow, inverse volumetry and calculated arm

volume based on circumferences (p <.01)

^f every pairwise comparison of methods showed statistical significant differences between their means (p <.05)

Table 7.	Details	regarding	the scoring	procedure or	clinical feasibility
Tuble 7.	Detuns	regurumg	the scoring	procedure or	i chineur reusionity

		Traditional volumetry with overflow	Volumetry without overflow	Inverse volumetry	Opto-electronic volumetry	Calculated volume based on circumferences
Clinical feasibility	Limitations Outcome (0= no limitation, 1= limitation)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	No visual info shape limb	1		1	0	1
	Not portable	1	22	1	1	0
-	Problems with hygiene	1	1	1	0	0
	Not appropriate when having wounds	1	1 (0	0
	No evaluation of proximal part upper arm	1	1	0	0	0
	Difficult to apply with limited postural balance	0	1	0	0	0
	Extensive device	0	0	1	1	0
	Expensive device/procedure (>3000 euros)	0	0	1	1	0

 Clinical Rehabilitation

No segmental	1	1	1	0	0
Formula for calculating volume is unknown	0	0	0	1	0
No evaluation of hand volume	0	0	0	1	1
Indirect volume measurement	0	0	0	0	1
Total score	6	7	7	5	3
Banking clinical	3	4	4	2	1
 feasibility	-		•	-	
 feasibility		667 R			
 feasibility		eer Re	24:04		

Table 8. Summary table with ranking of the five measurement methods regarding reliability (ICC), time-efficiency and clinical feasibility

		Traditional volumetry with overflow	Volumetry without overflow	Inverse volumetry	Opto-electronic volumetry	Calculated volume based on circumferences
Reliability	ICCª Outcome (intra/inter)	Intra: .813 Inter: .861	Intra: .777 Inter: .791	Intra: .922 Inter: .909	Intra: .921 Inter: .949	Intra: .987 Inter: .984
	Ranking	4	5	3	2	1
Time- efficiency	Outcome (total time)	640.53 seconds	335.67 seconds	775 seconds	102.67 seconds	264.13 seconds
	Ranking	4	3	5	1	2
Clinical feasibility	Limitations Outcome (total score)	6	7	7	5	3
	Ranking clinical feasibility	3	4	4	2	1
Total score		11	12	12	5	4
TOTAL RANKING		3	4	4	2	1

^aNote: presented inter- and intra- rater ICC values are based on excessive volume results

Clinical Rehabilitation

Figures

Figure 1. Comparison of setup time, mean execution time and mean total time of five different measurement methods assisted with ANOVA post hoc

inguie 1. comparison of setup time, mean execution time and mean total time of twe different measurement methods assisted with two v

http://mc.manuscriptcentral.com/clinrehab

* statistical significant difference between the mean times of both methods (p<.05)
** statistical significant difference between the mean times of both methods (p<.01)
Note: Games-Howell post hoc analysis was applied

For peer Review