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Simple Summary: Esophageal adenocarcinoma (EAC) is one of the two main subtypes of esophageal
cancer. EAC is a highly lethal disease with rising incidence in Western countries. EAC is associated
with chronic gastroesophageal reflux disease and Barrett’s esophagus and mostly occurs in the distal
esophagus. In the past decades, much effort has been made to improve treatment strategies, includ-
ing regimens with chemoradiotherapy, targeted and immune therapies. Despite the multi-modal
therapies, the survival of EAC patients has improved only marginally, and major breakthroughs in
EAC treatment have not been achieved. We aim to summarize the literature on the comprehensive
molecular landscape of EAC to elucidate factors underlying the EAC malignant behavior and poor
outcomes. We discuss in detail the etiology, genetics, epigenetics and histology of EAC, as well as the
currently employed therapies. Better knowledge about the molecular biology of EAC learned from
this review may provide leads for developing novel therapies in the future.

Abstract: Esophageal adenocarcinoma (EAC) is a highly lethal malignancy. Due to its rising incidence,
EAC has become a severe health challenge in Western countries. Current treatment strategies are
mainly chosen based on disease stage and clinical features, whereas the biological background is
hardly considered. In this study, we performed a comprehensive review of existing studies and
discussed how etiology, genetics and epigenetic characteristics, together with the tumor microenviron-
ment, contribute to the malignant behavior and dismal prognosis of EAC. During the development
of EAC, several intestinal-type proteins and signaling cascades are induced. The anti-inflammatory
and immunosuppressive microenvironment is associated with poor survival. The accumulation
of somatic mutations at the early phase and chromosomal structural rearrangements at relatively
later time points contribute to the dynamic and heterogeneous genetic landscape of EAC. EAC is
also characterized by frequent DNA methylation and dysregulation of microRNAs. We summarize
the findings of dysregulations of specific cytokines, chemokines and immune cells in the tumor
microenvironment and conclude that DNA methylation and microRNAs vary with each different
phase of BE, LGD, HGD, early EAC and invasive EAC. Furthermore, we discuss the suitability of the
currently employed therapies in the clinic and possible new therapies in the future. The development
of targeted and immune therapies has been hampered by the heterogeneous genetic characteristics of
EAC. In view of this, the up-to-date knowledge revealed by this work is absolutely important for
future EAC studies and the discovery of new therapeutics.

Keywords: esophageal adenocarcinoma; Barrett’s esophagus; gastroesophageal reflux disease;
etiology; genetics; epigenetics; treatment
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1. Introduction

Esophageal cancer (EC) is predominantly divided into histological subtypes:
esophageal adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC).
Different from ESCC, which mostly occurs in the upper and middle esophagus, EAC is
mainly (>90%) located in the lower esophagus in the proximity of the gastro-esophageal
junction [1–3]. This review focuses on EAC. The incidence rate of EAC has been increasing
in Western countries [4]. EAC is a highly aggressive cancer and known for rapid tumor
dissemination leading to distant metastases, which is associated with poor survival [5].
Barrett’s esophagus (BE) induced by gastroesophageal reflux disease (GERD) is the only
known precursor of EAC. EAC develops via a stepwise process, commonly in compliance
with the well-known sequence of GERD/BE/BE with dysplasia/adenocarcinoma. Obesity
and GERD are two main risk factors associated with BE and EAC [6–9]. Other risk factors
include male sex, smoking and Caucasian ethnicity [10]. In the past decades, much effort
has been made in identifying and monitoring BE patients via endoscopic surveillance in
order to detect early progression to dysplasia and prevent the occurrence of EAC in a timely
manner. Although the majority of individuals with BE (90–95%) under surveillance do not
progress to EAC or are treated successfully in the case of dysplasia or mucosal cancers,
a small portion of BE patients (5–10%) even in careful surveillance can rapidly develop
EAC [11]. The lesions may be missed potentially because of a lack of visible endoscopic
abnormalities and sampling errors when randomly taking endoscopic biopsies [12]. More-
over, genetic hits in tumor driver genes may lead to accelerated malignant degeneration.
The majority of EAC patients are incurable because of late-stage disease at the time of
diagnosis, because of a relatively late onset of symptoms. The proportion of patients with
late-stage disease at the time of diagnosis has been increasing over time [2,13].

For patients with EAC undergoing treatment with curative intent, neoadjuvant
chemoradiotherapy (CROSS) or perioperative chemotherapy (FLOT) regimens are the
main strategies employed in the clinic. However, the majority of EAC patients poorly
respond to the currently employed therapies, with a ten-year survival of 36% in the West-
ern population according to the CROSS regimen [14]. Notably, 82% of deceased patients
following the CROSS regimen are attributed to disease relapse after treatment [14]. There
is an urgent clinical need to better understand specific biological mechanisms that underlie
dismal outcomes and acquired resistance following treatment of EAC patients.

Targeted and immune therapies based on the unique molecular features and genomic
profiles of EAC may be beneficial to EAC patients. The only targeted therapy currently
applied for both locally advanced and metastatic EAC is the HER2 antibody Trastuzumab.
Around 30% of EAC patients are HER2 positive and may potentially respond to this
therapy [15,16]. Pembrolizumab, which blocks the interaction between PD-1 and PD-
L1 is an FDA-approved immune checkpoint inhibitor for metastatic EAC. This agent is
potentially beneficial to 18% of EAC patients who express PD-L1 [17]. Identifying potential
molecular targets could be beneficial to the future development of personalized therapies.

This is a comprehensive and up-to-date review, aiming to provide the latest knowledge
about EAC for both researchers and clinicians. This review discusses multiple aspects of
EAC, including etiology, biology, genetics and epigenetics, and clinical measures to reduce
the burden of BE and EAC. Regarding the etiology, we discuss the three predominant
contributors of EAC occurrence: obesity, GERD and BE. In the aspect of the biology and
tumor microenvironment of EAC, we discuss driver molecules and signaling pathways
associated with GERD leading to the premalignant condition BE and malignant EAC. We
discuss changes in the tumor microenvironment and the consequences during the develop-
ment and progression of EAC. For the review on genetics and epigenetics, we discuss the
literature on distinct genetic characteristics associated with EAC among various studies.
Especially for epigenetics, important findings appear in each phase of BE, LGD, HGD, early
EAC and invasive EAC. Importantly, we discuss the latest measures for reducing GERD
and BE, including surveillance of BE, treatment of BE, treatment of EAC and new therapies
to be expected in the future.
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2. Epidemiological and Biological Characteristics

Summary: In this part, besides the epidemiological characteristics of EAC, we predom-
inantly discuss the origin of EAC and BE, as well as the association between EAC with
obesity, GERD and BE. We also discuss main driver molecules, signaling pathways and the
changes in the tumor microenvironment for the development and progression of EAC. Fur-
thermore, we discuss genetic and epigenetic characteristics by reviewing existing studies
and explore possible molecular targets for personalized therapy. Why is the incidence of
EAC rising despite surveillance and treatment of GERD and BE? Which driver molecules
or pathways could have potential as therapeutic targets?

2.1. Epidemiology and Etiology

Although EAC cases only account for 14% of EC cases worldwide, it is the predom-
inant subtype in Western countries including Western and Northern Europe, Australia,
Canada and the USA [18]. In contrast to ESCC, the annual incidence of EAC has dras-
tically increased by 767% with an average rate of 5.11% per year, from 1973 to 2017 in
the USA [19]. In 2012, there were approximately 52,000 EAC cases (41,000 male and
11,000 female) worldwide [4]. In 2020, this increased to approximately 85,700, among
which males are four times more often affected compared to females. Moreover, young
EAC patients (< 50 years) are increasingly frequent, while there is no correlation be-
tween the age of diagnosis and survival [20]. The distribution of EAC is also affected
by geographic and racial factors, suggesting a genetic predisposition. For instance, in
the USA, the incidence rate of EAC from high to low displayed the following sequence:
non-Hispanic whites/Hispanic whites/(American Indian/Alaska Native)/blacks/(Asian/
Pacific islanders) [21]. Approximately 7% of BE and EAC cases are associated within
families and presumably attributed to inherited factors [22,23]. A germline variant S631G
encoded by the gene VSIG10L has been identified as a susceptible source of familial EAC
or BE [24], which provides a lead for the detection of BE and EAC via screening in families
carrying inherited factors. In addition, germline alteration in MGST1 or FOXP1 may be
predisposing factors for BE and EAC [25,26].

Common symptoms of EAC patients are dysphagia and weight loss. A total of
79% of EAC patients present with dysphagia and 53% with weight loss, whereas 47%
of patients present with a combination of both [3]. The onset of these symptoms is as-
sociated with worse prognosis of EAC [3]. GERD, obesity and smoking are risk factors
for EAC [6–8,27,28]. The increasing incidence of EAC is likely attributed to the increasing
prevalence of GERD and obesity. Studies found that abdominal obesity rather than the body
mass index (BMI) predisposes to the increased risk for BE and presumably EAC [29–31].
GERD is most prominent in the distal esophagus [32]. Abdominal obesity can increase
symptoms of GERD through increased intra-abdominal pressure [33]. Moreover, a high-fat
diet underlying obesity promotes esophageal carcinogenesis in BE by inducing dyspla-
sia due to alterations in the esophageal microenvironment and the gut microbiome [34].
Other risk factors include cigarette smoking, which approximately doubles the risk of
EAC, and a low intake of vegetables and fruit [35]. Epidemiological studies showed that
Helicobacter pylori infection rates are negatively associated with the incidence of EAC [36].

There is an ongoing debate regarding the cell of origin in BE even if many original
studies have been performed in the past decades (Table 1). Nevertheless, it is affirmative
that BE is a metaplastic condition in which the normal esophageal squamous mucosa is
replaced by metaplastic columnar types of epithelia [37]. BE occurs in approximately 10% of
individuals with GERD [38], whereas 40% of BE patients have no symptoms of GERD [39].
GERD not only accelerates the development of Barrett’s-like metaplasia and dysplasia [40]
but also strongly contributes to the progression of BE to EAC [6]. Although 50% of EAC
patients present without BE [41,42], and 40–48% of EAC patients have no or infrequent
GERD symptoms [35], EAC may originate from BE even if BE is absent or unapparent at
the diagnosis of EAC [43]. Studies found that EAC patients without a history of intestinal
metaplasia/BE have more aggressive behavior and poorer prognosis [41,42].



Cancers 2023, 15, 5410 4 of 25

Table 1. The existent theories about the origin of Barrett’s esophagus as suggested by original research.

Reference Authors Year Origin Drivers

[43] K. Nowicki-osuch et al. 2021 Gastric cardia c-MYC- and HNF4A-driven
transcriptional programs

[44] D. Straub et al. 2019 Non-squamous cells residing in
submucosal gland ducts Glycine-conjugated bile acids

[45] C. Minacapelli et al. 2018 Normal esophageal squamous epithelial
cells Acid and bile

[46] M. Jiang 2017 p63+KRT5+KRT7+ basal cells in the
upper gastrointestinal tract Ectopic expression of CDX2

[40] M. Quante 2012 Gastric cardia stem cells Bile acids and/or nitrosamines

[47] X. Wang et al. 2011 Embryonic cells at the squamocolumnar
junction

Competitive interactions between
cell lineages

[48] S. Leedham 2008 Squamous gland ducts situated
throughout the esophagus Gene mutations

Dysplasia is a key feature of BE, which is associated with an increased risk of pro-
gression to EAC. Progression to EAC is via cellular changes of low-grade dysplasia (LGD)
and high-grade dysplasia (HGD). The presence of epithelial dysplasia remarkably affects
the risk of the cancerous transformation in BE patients. The incidence rate of EAC in
BE patients with no dysplasia, low-grade dysplasia and high-grade dysplasia are around
0.6%, 13.4% and 25%, respectively [10]. Other studies support that the risk rate of BE
with no dysplasia on progression to EAC lies between 0.2 and 0.7% per patient per
year [49,50]. The diagnosis of LGD, HGD and adenocarcinoma based on histopatho-
logical features is contentious due to low inter-observer agreement, especially for LGD [51].
Therefore, reported rates of malignant progression in patients with LGD are highly vari-
able. One study reports a progression rate of LGD to HGD or EAC of 13.4% per patient
per year [52], whereas another study reports an incidence rate of 0.84% [53]. To mini-
mize low inter-observer agreement, AGA guidelines recommend that Barrett’s dysplasia
should be confirmed by a second expert gastrointestinal pathologist [54]. Definitive and
simplified histopathological criteria and larger biopsy specimens to avoid sampling bias
are needed to improve inter-observer agreement. Barrett’s segment length is another
risk factor for neoplastic progression in BE. Barrett’s segment length is significantly as-
sociated with the risk of malignant progression of non-dysplastic Barrett’s esophagus
(NDBE) [55]. One study found that the risk of malignant progression increases by 19%
per centimeter of Barrett’s segment length [56]. One study found that the incidence rates
of EAC progressed from NDBE with short-segment BE (< 3 cm) and long-segment BE
(≥ 3 cm) are 0.24% and 0.76%, respectively [57].

2.2. Histology

According to WHO classification, EAC is classified into three subgroups based on the
percentage of gland formation: poorly differentiated (<50%), moderately differentiated
(50–95%) and well differentiated (≥95%) [58]. This classification shows no correlation with
survival [59]. Moreover, EAC can be classified according to Lauren’s classification which
distinguishes the intestinal type, diffuse type and mixed type of EAC. One study showed
that Lauren’s classification subtypes can successfully predict response to chemotherapy and
survival [60]. EAC classified as diffuse and mixed types are associated with less pathological
response to chemoradiotherapy and poor prognosis [61]. A more analytical approach to
identifying histological subtypes that provide useful prognostic information is an ongoing
topic of research. One study classified EAC cases into histological subtypes including
mucinous muconodular carcinomas, invasive mucinous carcinomas, diffuse desmoplastic
carcinomas, diffuse anaplastic carcinomas and mixed carcinomas, which showed prognostic
significance [59]. Also, another histologic classification of EAC into papillary, tubular,
mucinous and signet ring subtypes has been proposed, but this classification lacks evidence
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of clinical impact [62]. Subgrouping based on other features than histology is discussed
later on in “Genetics” and “Epigenetics”.

2.3. Biology and Immunology

EAC initiation is driven by GERD through reprogramming of cell proliferation and
differentiation in the esophageal mucosa [63]. Long-standing GERD causes metaplasia
of the esophageal squamous epithelium in a subset of patients through dysregulation of
multiple driver molecules and pathways (Figure 1). GERD activates the NF-κB signaling in
esophageal squamous cells [64–66], a pathway that is associated with abnormal cell prolif-
eration and differentiation, treatment resistance and metastasis in multiple cancers [67]. In
EAC patients, the expression of NF-κB is negatively correlated with complete pathologic
response to neoadjuvant chemoradiotherapy [68]. GERD also increases the expression of
CDX2 [69], which drives the development of an intestinal-type metaplasia [70–72]. One
study identified activation of CDX2 in the development of BE [43]. GERD activates the
CDX2 promotor through the activation of NF-κB and upregulates the expression of the
CDX2 protein, leading to the production of the intestinal-type protein MUC2 [73]. GERD
induces the expression of Notch ligand Delta-like1 (Dll1) via a CDX2-dependent pathway
in the development of BE, and Dll1 expression is significantly higher in BE than in normal
human esophageal squamous epithelium [74]. Dll1 expression facilitates intestinal-type
metaplasia in esophageal squamous cells in combination with CDX2 expression. BMPs,
especially BMP4, are highly expressed in BE and EAC, and BMP4 alone or in combination
with CDX2 drives the differentiation of columnar epithelia [75,76]. BMP2 and BMP4 are
both highly expressed in EAC, which may enhance the aggressiveness of EAC through
triggering of non-canonical BMP signaling [77]. Moreover, COX-2 regulated by NF-κB
exerts an important role in carcinogenesis in multiple cancers [78]. The expression of the
COX-2 protein is significantly higher in patients with BE and EAC compared to normal
squamous esophageal epithelia in healthy patients [79,80]. Genetic variants of the COX-2
gene are significantly associated with an increased risk of EAC [81,82]. Targeting COX-2
has been suggested as a potential therapy in EAC. Inhibition of COX-2 with the inhibitor
MF-Tricyclic reduces the incidence of EAC in a mice model of BE [83]. Interestingly, one
study reported that epithelial-to-mesenchymal transition (EMT) is associated with the
progression from early EAC to invasive EAC. The measurement of EMT markers prior
to intervention may help to make the clinical decision between endoscopic submucosal
dissection or esophagectomy as the preferred treatment [84].
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Figure 1. Schematic overview of important molecular pathways driving metaplasia in esophageal
squamous epithelium as a result of GERD.

Cytokines and chemokines are important components of the tumor microenvironment.
Cytokines mediate the inflammatory context in the tumor microenvironment, whereas
chemokines are directly associated with the malignant behavior of tumor cells, for in-
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stance, cell migration. The change in cytokines and chemokines caused by GERD in the
esophageal epithelium contributes to the development and progression of BE and EAC.
GERD causes overexpression of the pro-inflammatory cytokines IL-1β, IL-8 and IL-6 in
esophageal epithelium cells [85]. IL-1β is overexpressed in both BE and EAC compared
to normal squamous esophagus [32,86]. IL-1β overexpression in the mouse esophagus
induces overexpression of BMP4, SHH and CDX2, and the gene expression profile of the
IL-1β-overexpressed mouse esophagus closely resembles that of human BE and EAC [40].
This suggests that IL-1β induces the development and progression of BE and EAC. In addi-
tion, IL-8 expression is significantly higher in patients with BE or EAC than in those who
have only GERD symptoms [87]. The maximal degree of inflammation with a significant in-
crease in pro-inflammatory IL-1β and IL-8 expression is located at the new squamo-columnar
junction, whereas the minimal degree of inflammation with a significant increase in the
anti-inflammatory IL-10 expression is located at the distal portion of the BE segment where
most EAC occur [32]. IL-10 expression in EAC is associated with worse overall survival [88].
One study reports that IL-6 produced by cancer-associated fibroblasts is significantly higher
in EAC than in normal tissue, which leads to resistance of EAC cells to chemoradiotherapy
(CROSS regimen) [89]. The anti-inflammatory microenvironment existing in EAC and its peri-
tumoral tissue is negatively associated with the survival of patients [88]. Moreover, one study
found that the expression of CXCR4, a chemokine receptor, increases with the progression
from BE to LGD and HGD and EAC in a mouse model [85]. CXCR4 and its chemokine ligand
CXCL12 are highly expressed in EAC, and the expression is associated with poor prognosis
and lymph node metastases [85,90]. High expression of the chemokine receptor CXCR7 and
its chemokine ligand CXCL12 in EAC is also associated with poor prognosis [91]. In addition,
the chemokines, chemokine receptors, cytokines and interleukins CXCR1, CXCR2, CXCL1,
CXCL2, CXCL3, CXCL6, CXCL8, CCL15, CCR4, IL-2, IL-6, IL-7, IL-8, IL-15 and IL-18 are
significantly higher expressed in HGD/EAC compared to LGD/BE [92].

The immune microenvironment plays a key role in the development and progression
of BE and EAC. The immunosuppressive Foxp3 FOXP3 is significantly higher expressed at
the mRNA level in BE than in normal squamous epithelium [93]. The number of FOXP3+

lymphocytes is significantly higher in BE and EAC than in non-metaplastic esophagitis [94]
and is associated with high Ki-67 expression [95]. Ki-67 is higher expressed in EAC than in
BE and higher in BE than in healthy person [96]. In addition, the number of FOXP3+ lym-
phocytes is significantly higher in HGD than in LGD and higher in LGD than in NDBE [95].
The number of CD3+ lymphocytes is also higher in BE tissues adjacent to EAC than in BE
tissues without EAC and is associated with the absence of Barrett’s metaplasia [95]. Another
study also found that the number of CD3+ FOXP3+ regulatory T cells significantly increases
from BE to LGD and to EAC [92]. A high CD8+ lymphocyte number in BE adjacent to EAC
is associated with worse overall survival and lymph node metastasis [95]. CD8+ cytotoxic
T cells and CD163+ macrophages are both decreased in EAC compared to HGD [92]. BE
is associated with a transition from a pro-inflammatory Th1-type immune response to
an anti-inflammatory Th2-type immune response [97]. The number of Th2 effector cells
(plasma cells and mast cells) is higher in BE than in reflux esophagitis, whereas the number
of Th1 effector cells (macrophages and CD8+ T cells) is significantly lower in BE than in
reflux esophagitis [98]. Another study also confirmed that BE harbors a Th2-predominant
cytokine profile compared to the pro-inflammatory nature of esophagitis [99]. In addi-
tion, CTLA4 expressing in regulatory T cells with an anti-inflammatory role in EAC is
upregulated, which is associated with poorer overall survival [88]. M1 macrophages are
associated with tumor inhibition through intrinsic phagocytosis and increased anti-tumor
inflammatory responses, whereas M2 macrophages are assumed to be tumor-promoting
by involvement in stromal activation and remodeling, angiogenesis, neovascularization
and immuno-suppression [100]. The infiltration of CD8+ T cells and M1 macrophages is
significantly lower in EAC compared to the adjacent normal esophageal tissue [101]. M2
macrophages are significantly increased in EAC compared to HGD [92]. Eosinophils are
significantly decreased in EAC compared to BE, LGD or HGD [92]. Eosinophilic infiltration
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in cancer has been associated with better prognosis [102]. Compared to the adjacent nor-
mal esophageal tissue, the microenvironment of EAC is characterized by infiltration with
T regulatory cells and effector T cells, expansion of plasmacytoid dendritic cells, increased
expression of cancer-associated fibroblasts and reduction in endothelial cells. Interestingly,
a reversal of these characteristics happens following treatment with the FLOT regimen [103].
Another study shows that poor infiltration of cytotoxic effector cells and increased immune
inhibitory signaling are the main characteristics of the EAC microenvironment [92].

2.4. Genetics

The esophageal mucosa is recurrently exposed to gastric and bile acid refluxates
caused by GERD. This may cause DNA damage and the formation of mutational patterns,
such as an A > C transversion [104,105]. A common mutational pattern T: A > G : C also
exists in EAC [105,106]. This mutational signature is similarly enriched in SNVs of both BE
and EAC, suggesting a common pathogenic etiology [107], which might be the result of
long-standing gastroesophageal reflux [105,106,108].

High inter- and intra-tumor heterogeneity is a significant feature of EAC. Extensive
genomic heterogeneity commonly presents in the advanced stage of cancer [109]. EAC is
characterized by a high mutational burden, chromosomal instability (CIN), copy number
variations (CNVs) and highly variable mutational signatures. The mutational rate in EAC
is more significant compared to other types of cancer including gastric cancer, pancre-
atic cancer, colorectal cancer and hepatocellular carcinoma [110]. EAC harbors a median
of 26,161 genome-wide mutations per tumor with a median mutational frequency of
9.9 mutations/Mb (range of 7.1–25.2/Mb) [105]. In comparison, 2.64 mutations/Mb
(range 0.65–28.2/Mb) are seen in pancreatic cancer and 5.801 mutations/Mb
(range 0.725–88.470/Mb) in gastric cancer [111,112]. One study showed a significant correla-
tion between mutation frequency and the pathological grade of dysplasia
(NDBE vs. DBEs) [113]. However, another study found that the mutation rate poorly corre-
lates with dysplasia grade [107].

Genetic clonal diversity is a significant feature of EAC [114]. The prevailing view in
EAC is that a gradual accumulation of mutations drives the transformation of precancerous
lesions to EAC. Inactivation of the tumor suppressor CDKN2A, and clonal or polyclonal
expansion in NDBE, followed by a dysplastic clone with TP53 inactivation and other so-
matic genetic variations, is one possible sequence of EAC development [11,115]. However,
another study demonstrated that EAC initiation is through a more direct way in which
TP53-mutant cells undergo genome doubling, followed by the acquisition of oncogenic
amplifications rather than through the gradual accumulation of tumor-suppressor alter-
ations [113]. It is known that carcinogenic factors drive abnormal clones that erode and
occupy most regions of esophageal mucosa through clonal expansion. Genomic analyses
of the normal esophageal epithelium (upper- and mid-esophagus) showed that strong
expansion of clones with cancer-associated mutations in Notch1 and TP53 occurs in up
to 80% and 37% of healthy middle-aged and elderly people, respectively [116]. Notably,
the mutational burden of Notch1 is several times higher in the normal esophagus than in
EC [116]. This indicates a complex somatic clonal evolution within normal esophageal
tissue. Measures of genetic clonal diversity have been identified as robust biomarkers to
stratify for cancer risk in endoscopically surveyed BE patients [117].

Notably, point mutations are reported to be dominant in EAC [105]. Some
susceptibility genetic loci involved in the embryonic development of the esophagus, for
instance, FOXF, BARX1 and ABCC5, were identified to be associated with BE and EAC
risk [118,119]. To date, many mutated genes of EAC have been identified from EAC
genome sequencing studies. We identified seven studies considering the analysis of mutated
genes in EAC. The most frequently reported significantly mutated genes in EAC by DNA
sequencing include TP53, SMAD4 and CDKN2A, which are reported in all seven EAC
studies [1,105,106,120–123]. The rest mutated genes are reported in one or few studies
(Table 2). The discrepancy in mutated genes identified from studies is likely due to different
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detecting methods, small study cohorts (between 112 and 551 patients) and distinct demo-
graphics. Targeted sequencing or exome sequencing as used in the three studies mentioned
above [1,105,122] is not able to detect large-scale structural rearrangements and heterogeneity
that exist in EAC [108]. In contrast, whole-genome sequencing (WGS) as applied in four
studies [106,120,121,123] is able to more comprehensively profile genomic alterations in EAC.

Table 2. Mutated genes in EAC as suggested by original research.

Reference Authors Year Mutated Genes Detecting Methods

[122] A. Orsini et al. 2023

TP53, ATM, MSH6, APC, PIK3CA, SMAD4, CDKN2A, SMARCA4,
ERBB2, HNF1A, CHEK2, FLT3, PTEN, IDH2, CTNNB1, MET,

STK11, ALK, KRAS, RET, EGFR, ARID2, CDK6, TSSC1,
MAP2K1, SRC

Targeted sequencing

[120] A. Frankell et al. 2019

TP53, CDKN2A, KRAS, MYC, ERBB2, GATA4, CCND1, GATA6,
SMAD4, CDK6, ARID1A, EGFR, CCNE1, CCND3, MUC6, MDM2,
KCNQ3, APC, SMARCA4, PIK3CA, ABCB1, PTEN, MET, RNF43,
DNAH7, TSHZ3, LRRK2, TRPA1, NAV3, ARID2, SLIT2, EPHA3,
SCN3A, CRISPLD1, AXIN1, FBXW7, PPM1D, ACVR2A, RASA1,

CD1A, CCDC102B, CHL1, LIN7A, COIL, MAP2K7, EPHA2, PBRM1,
POLQ, ARID1B, CTNNB1, SIN3A, RPL22, PIK3R1, MAP3K1,

NIPBL, B2M, FAM196B, HIST1H3B, TGFBR2, MBD6, BRAF, MSH3,
CHD4, CDH1, GATAD1, KDM6A, CDKN1B, ACVR1B, STK11,
NOTCH1, ZFHX3, JAK1, PCDH17, ELF3, GPATCH8, C3orf62

Whole-genome
sequencing

[121] D. Lin et al. 2018
PIK3CA, PBRM1, SMARCA4, CTNNB1, PCDH18, C6orf114,

CHRNB1, EPHA2, SEMA5A, PGCP, DOCK2, CDKN2A, ARID1A,
SMAD4, FBXW7, KRAS, TP53

Whole-genome
sequencing

[1] TCGA Research
Network 2017

TP53, CDKN2A, ARID1A, SMAD4, ERBB2, VEGFA, GATA6,
CCNE1, KRAS, EGFR, IGF1R, VEGFA, GATA4, ARID1A,

SMARCA4, PBRM1
Whole-exome sequencing

[123] M. Secrier et al. 2016

SMYD3, RUNX1, CTNNA3, RBFOX1, AGBL4, INK4/ARF, SAMD5,
CDK14, KIF26B, THADA, SASH1, MECOM, JUP, IKZF3, FHIT,
WWOX, MACROD2, IMMP2L, CCSER1, PDE4D, NAALADL2,
PARK2, PARD3B, PRKG1, TP53, SMAD4, ARID1A, CDKN2A,

KCNQ3, CCDC102B, CYP7B1

Whole-genome
sequencing

[106] J. Weaver et al. 2014

ABCB1, ARID1A, CCDC102B, CCDC153, CDKN2A, CNTNAP5,
FGF10, MMP16, MYD88, MYF6, MYO18B, PCDH9, PNLIPRP3,

SEMA5A, SMAD4, SMARCA4, SSTR4, TLR1, TLR4, TLR7, TLR9,
TP53, TRAF3, TRAF6, TRIM58, UNC13C

Whole-genome
sequencing

[105] A. Dulak et al. 2013

TP53, CDKN2A, EYS, ARID1A, SMAD4, PIK3CA, SLC39A12,
SPG20, DOCK2, AKAP6, TLL1, TLR4, ARID2, HECW1, ELMO1,

SYNE1, SMARCA4, AJAP1, C6orf118, ACTL7B, F5, KCNU1,
NUAK1, MYST3, SCN10A, CNTNAP5

Whole-exome sequencing

TP53 is a tumor suppressor gene and is widely mutated in a variety of human cancers
including EAC [124]. One study found that the majority of mutated genes in EAC are also
mutated at the NDBE stage, with the exception of TP53, which is only mutated in HGD
(72%) and EAC (69%), and SMAD4, which is only mutated in the EAC stage (13%) [106].
TP53 mutation cannot differentiate between high-grade dysplasia and EAC. However, in
EAC, TP53 mutations are significantly correlated with the grade of histologic differentiation
and worse survival [125]. SMAD4 is the only identified gene mutation that is able to
differentiate between EAC and precancerous stages. However, SMAD4 mutations are only
found in about 13% of EAC [106]. SMAD4 loss in EAC is also correlated with disease
recurrence and poor survival [77,126].

One study reported that chromosomal structural rearrangements and copy number
variations drive the development of EAC [123]. The genes with CNVs in EAC are reported
in multiple studies (Table 3). The genomes of EAC are highly rearranged and complex
(median of 263 structural variants (SVs) per tumor, range 126–776) [108]. As a pattern of
chromosomal structural rearrangements, chromothripsis has been reported to present in
32.5% of EAC [108], whereas the prevalence of chromothripsis in other cancers is only
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5% [127]. One study reports that the number of chromosomal aberrations is significantly
correlated to patient survival in EAC [128].

Table 3. Genes with CNVs in EAC as suggested by original research.

Reference Authors Years Genes with CNVs Detected Method

[129] Sihag et al. 2021
ERBB2, KRAS, CCNE1, MYC, CCND1, MDM2, VEGFA, EGFR,
CDK6, CCND3, CDKN2A/B, SMAD4, ARID1A, PIK3CA, APC,
TP53 NGS

Next-generation sequencing

[120] Frankell et al. 2019 ERBB2, KRAS, SMAD4 Whole-genome sequencing

[1] TCGA Research
Network 2017 VEGFA, ERBB2, SMAD4, GATA6, CCNE1 Whole-genome sequencing

[123] Secrier et al. 2016 50 genes: CCND1, EGFR, ERBB2, VEGFA, KRAS etc. Whole-genome sequencing

[107] Ross-Innes et al. 2015 35 genes: GATA4, KLF5, MYB, PRKCI, CCND1, FGF3, FGF4,
FGF19, VEGFA, A2BP1, CDKN2A, PDE4D, PTPRD, PARK2 etc. Whole-genome sequencing

[108] Nones et al. 2014 210 genes: CCNE1, ERBB2, FRS2, GATA4, KRAS, MTMR9,
MDM2, CDKN2A, FHIT, RUNX1 etc. Whole-genome sequencing

[130] Paulson et al. 2009 47 genes: EGFR, MYC, EGFR, MTAP, CDKN2A, CDKN2B,
SMAD2, SMAD4, SMAD7 etc. BAC array CGH

[128] Pasello et al. 2009 97 genes: VEGF, PTK2, ING1, SCYA3, ABCG2, DCC etc. MLPA

CNVs: copy number variations; BAC: bacterial artificial chromosome; CGH: comparative genomic hybridization;
MLPA: multiplex ligation-dependent probe amplification.

In contrast to the gradual accumulation of somatic mutations (short deletions/
insertions or single-nucleotide substitutions), chromosomal structural rearrangements
occur relatively late in cancer progression and may occur within a short time [131,132].
Copy number variations are significantly increased in EAC compared to BE [107]. The
levels of genomic instability are positively correlated with advanced stages of EAC [129]. A
longitudinal study of BE to EAC progression found that progressors acquire significantly
more somatic chromosomal alterations and genomic diversity during a median period of
four years before EAC diagnosis, whereas the genomes of non-progressors remain stable
over prolonged periods of time [11]. The frequency of copy number variations has been
found to be low in the case of no dysplasia (1.3%) and increases along with the stages of
dysplasia (4.7%) and reach high levels in EAC (30%) [130]. In EAC, copy number gains
occur mostly for chromosomes 7, 8, 19 and 20, whereas chromosomes 5, 9, 18 and 21 are
more common for copy number losses [130]. Several structural genetic alterations in specific
genes, including copy number variation and loss of heterozygosity, are associated with
the progression of BE to EAC. The loss of heterozygosity of the TP53 gene at chromosome
17p (17p (p53) LOH) is a predictor of progression to EAC [133]. Moreover, analysis of
the abnormalities of the genes CDKN2A and MYC and aneusomy significantly improved
risk prediction for the progression of BE to EAC [134]. Furthermore, a combination of 9p
LOH, 17p LOH and DNA content tetraploidy and aneuploidy proved to be significant,
independent predictors for EAC risk [135]. Moreover, amplification of potential therapeutic
targeted genes, for instance, receptor tyrosine kinases (RTKs) HER2, EGFR, MET and FGFR,
widely exists in EAC [105,123,136]. For instance, high-level amplifications of HER2 and
EGFR are found in 17% and 11% of EAC, respectively [123]. HER2 amplification and
overexpression are associated with poor survival of EAC patients [137]. Co-amplification
of different RTKs, for instance, HER2 and EGFR, is frequent in EAC and may cause resis-
tance to anti-RTK therapies [123]. Therefore, a combination of RTK antibodies/inhibitors
to circumvent tumor resistance may be an effective therapeutic strategy. Interestingly,
several studies found that shorter telomere length in BE patients is associated with an
increased risk of progression to EAC [138–140]. Obesity and cigarette smoking can reduce
telomere length [141,142]. In addition, telomere integrity analysis based on whole-genome
sequencing found somatic telomere shortening in EAC, which is associated with complex
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chromosomal rearrangements [108]. This means that telomere length could be applicable
to the risk stratification of Barrett patients.

Subclassifications are of paramount importance for the development of new targeted
therapies and enable identification of new targets in a specific subset of patients. Nones
et al. categorize EAC into three subtypes using structural rearrangement patterns: unstable
genomes (tumors with ≥450 structural variants (SVs)), scattered (<450 SVs evenly dis-
tributed across the genome) and complex localized (with a concentration of SVs in a single
or few chromosomes) [108]. The association between these subtypes and prognosis or
therapy response needs to be investigated in the future. Based on mutational profiles, EAC
can be divided into three subtypes: (i) enriched for BRCA signature in the homologous
recombination pathway; (ii) a dominant T > G mutational pattern; and (iii) a C > A / T
mutational pattern. These groups provide a strategy for therapy selection [123].

Next to genomic abnormalities, transcriptomic profiling by microarray or RNA se-
quencing has been an important topic of research [143]. Based on RNA profiling, the TCGA
research group investigated gastric adenocarcinoma and proposed a new classification with
four subtypes: chromosomal instability (CIN), microsatellite instability (MSI), genomic
stability (GS) and Epstein–Barr-virus-positive cancers [144]. In an additional study, the
TCGA group showed that EAC has a high frequency of chromosomal instability (CIN) and
therefore resemble one of the four subtypes of gastric cancer. In this study, 71 out of 72 EAC
cases were identified to have CIN indicating similarities between EAC and gastric cancers
with CIN [1]. More recently, our research group was able to further differentiate EAC into
three molecular subgroups, characterized by (i) p38 MAPK/Toll-like receptor signaling,
(ii) an activated immune system and (iii) impaired cell adhesion, and this classification was
associated with response to neo-adjuvant treatment [143].

Although much effort has been made to understand the mechanism underlying ge-
netic differences, only few critical mutations and chromosomal structural rearrangements
have been identified from the comparison of pre-EAC lesions and EAC. It is challenging
to identify molecular biomarkers for predicting the progression of precursor lesions to
EAC. These biomarkers are critical, for instance, as tools for the identification of high-risk
populations for population screening programs. At present, next to RNA biomarkers, the
analysis of epigenetics may hold promise to identify EAC subtypes and provide therapeutic
targets for EAC.

2.5. Epigenetics

The role of DNA methylation has been studied in BE and the development of EAC
(Table 4). The levels of DNA methylation in BE and EAC are similar and significantly higher
than in normal esophageal tissue [145]. Genes that are frequently methylated in many
cancers including APC, ID4, MGMT, SFRP1, TIMP3 and TMEFF2 have similar methylation
frequencies in EAC and BE, whereas CDKN2A and RUNX3 are significantly more frequently
methylated in EAC than in BE [146]. The hypermethylation of the CDKN2A promoter
is associated with the progression of BE to EAC [147,148]. Moreover, in many EAC, the
MT3 gene is hypermethylated, which is associated with advanced tumor stages [149]. One
study reported that BE progressing to EAC harbors widespread DNA methylation that
particularly occurs in 70% of known imprinted genes, compared to BE cases that do not
progress to EAC [150]. Based on the number of methylations of four genes, respectively,
SLC22A18, RIN2, PIGR and GJA12, stratification of BE patients into three risk groups (low,
intermediate and high) with prognostic significance could be performed [150].

MicroRNAs (miRNAs) have been identified as oncogenes or tumor suppressors
through their roles in regulating the expression of target genes in EAC. Altered expres-
sion of microRNAs can affect the development and progression of EAC (Table 5). One
study identified 13 differentially expressed miRNAs during the development of BE (when
comparing BE with normal squamous esophageal epithelium). These genes include up-
regulated miR-215, miR-560, miR-615, miR-192, miR-326 and miR-147 and downregulated
miR-100, miR-23, miR-605, miR-99, miR-205, let-7c and miR-203 [151]. MiR-101, miR-125,
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miR-197, miR-200 and miR-513 are upregulated, and miR-20, miR-23, miR-181, miR-193,
miR-203 and miR-636 are downregulated in the progression from BE with LGD to BE with
HGD [152]. MiR-28, miR-30 miR-126, miR-143, miR-145, miR-181 and miR-199 are upregu-
lated, and Let-7, miR-193, miR-345 and miR-494 are downregulated in the progression from
HGD to EAC [152]. MiR-25, miR-93 and miR-106b are overexpressed in EAC compared
to BE [153]. MiR-200a is overexpressed in EAC compared to the normal esophagus. Its
expression decreases with advanced stages of EAC, which suggests that miR-200a may be
involved in the early phase of the development of EAC [154]. MiR-133b is downregulated
in EAC compared to the normal esophagus [155]. Besides differential expression, targeted
genes and pathways of a subset of miRNAs were investigated. MiR-133b may regulate
the proliferation and apoptosis of EAC cells by targeting the pro-survival gene MCL-1
and the receptor tyrosine kinase MET signaling pathway [156,157]. Moreover, miR-21 is
overexpressed in EAC and is thought to play a role in the initiation and development of
EAC by disrupting apoptosis due to activation of Ras/MEK/ERK signaling and NF-κB
signaling [155,158–160]. Our group studied several miRNAs in EAC and demonstrated
that miR-125a reduced MHC-I expression, which is required for antigen presentation and
T-cell response. Reduced MHC-1 expression and adaptive immune system markers were
associated with improved patient outcomes in EAC [161].

Table 4. Genes with DNA methylation in BE and EAC as suggested by original research.

Reference Authors Year Genes Status Type of Lesion

[145] Xu et al. 2013
20 genes: SH3GL3, GBX2, SLC18A3, SLC6A2 etc. hypermethylated BE (vs. NE)

20 genes: ZNF625, PTPRT, ST6GAL2, SLC18A3 etc. hypermethylated EAC (vs. NE)

[150] Alvi et al. 2012 SLC22A18, PIGR, GJA12, RIN2, RGN, TCEAL7 hypermethylated EAC (vs. BE)

[149] Peng et al. 2011 MT3 hypermethylated EAC (vs. NE)

[146] Smith et al. 2008

APC, CDKN2A, ID4, MGMT, RBP1, RUNX3, SFRP1,
TIMP3, TMEFF2 hypermethylated EAC (vs. NE)

APC, ID4, MGMT, RUNX3, SFRP1, TIMP3, TMEFF2 hypermethylated BE (vs. NE)

[147] Klump et al. 1998 p16 hypermethylated BE (vs. NE)

[148] Wong et al. 1997 p16 hypermethylated EAC/BE (vs. NE)

BE: Barrett’s esophagus; EAC: esophageal adenocarcinoma; NE: normal esophagus.

Table 5. Altered microRNA expression during the development and progression of EAC.

Reference Authors Year MicroRNA Status Type of Lesion

[84] Neureiter et al. 2020 miR-205 upregulated LE-EAC (vs. RI-EAC)

[161] Mari et al. 2018 miR125a-5p downregulated EAC (vs. NE)

[153] Kailasam et al. 2015

miR-28, miR-30a-5p, miR-126, miR-143, miR-145,
miR-181a/b, miR-199a upregulated EAC (vs. NE)

miR-27b, miR-99a, miR-149, miR-193a/b,
miR-210, miR-345, miR-494, miR-513, miR-617,
let-7a/b/c

downregulated EAC (vs. NE)

[152] Huang et al. 2014

miR-126, miR-143, miR-145, miR-181a, miR-181b,
miR-199a, miR-28, miR-30a-5p upregulated EAC (vs. HGD)

miR-149, miR-203, miR-210, miR-27b, miR-513,
miR-617, miR-99a let-7a/b/c, miR-193a,
miR-345, miR-494

downregulated EAC (vs. HGD)

miR-25, miR-93, miR-106b, miR-192 upregulated EAC (vs. BE)

miR-203, let-7 downregulated EAC (vs. BE)

miR-200a, miR-513, miR-125b, miR-101, miR-197 upregulated HGD (vs. LGD)

miR-23b, miR-20b, miR-181b, miR-203,
miR-193b, miR-636 downregulated HGD (vs. LGD)
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Table 5. Cont.

Reference Authors Year MicroRNA Status Type of Lesion

[154] Saad et al. 2013

miR-194, miR-31, miR-192, miR-200a upregulated EAC (vs. BE)

miR-203, miR-205 downregulated EAC (vs. BE)

miR-194, miR-192, miR-21, miR-31 upregulated HGD (vs. BE)

[155] Chen et al. 2013 miRNA-21, miRNA-133b, miR-200a upregulated EAC (vs. NE)

[151] Fassan et al. 2011

miR-215, miR-560, miR-615-3p, miR-192,
miR-326, miR-147 upregulated BE (vs. NE)

miR-100, miR-23a, miR-605, miR-99a, miR-205,
let-7c, miR-203 downregulated BE (vs. NE)

BE: Barrett’s esophagus; EAC: esophageal adenocarcinoma; NE: normal esophagus; LGD: low-grade dysplasia;
HGD: high-grade dysplasia; LE-EAC: localized and early esophageal adenocarcinoma; RI-EAC: regional and
invasive esophageal adenocarcinoma.

3. Management of EAC

Summary: Effective clinical management of BE and EAC is essential to reduce EAC
incidence and improve the quality of life and prognosis of EAC patients. In this part, we
discuss the latest clinical advancements for the prevention and treatment of EAC. The
implementation of CROSS and FLOT chemo(radio)therapy regimens brought benefits to
the potentially resectable EAC patients, whereas almost no progress in the treatment for
patients with distant metastatic EAC has been made. What studies should be performed to
improve the treatment of EAC patients with distant metastasis?

3.1. Prevention of EAC in Patients with BE

Decreasing risk factors by maintaining an appropriate BMI, frequent intake of veg-
etables and fruit and prohibition of cigarette smoking are general lifestyle measures for
the prevention of EAC. Endoscopy as a population screening method to detect patients
with BE has not been recommended yet considering the relatively high costs and risks
of complications [162]. This means that many cases of BE are not diagnosed, especially
because a large part of the BE population never have GERD symptoms or have only mild
symptoms until the advent of EAC. There is an unmet clinical need for screening tools in the
general population to detect BE. Low-cost and low-risk methods such as non-endoscopic
screening by sponge capsules and breath tests are under investigation [163,164].

Early diagnosis and successive monitoring of BE through endoscopic surveillance
do play an effective role in the prevention of EAC. Surveillance programs are effective,
and the incidence of invasive EAC is lower, while outcomes of EAC patients detected in
BE surveillance cohorts are better [165]. Patients with BE undergoing endoscopic surveil-
lance can be treated in the early curative stages of EAC and have significant survival
benefits compared to EAC patients who have not been detected in endoscopic surveillance
programs [166–168]. Besides endoscopic surveillance, chemo-preventive medicines can
effectively reduce progression to EAC in BE patients. The use of proton pump inhibitors
(PPIs) effectively reduced the risk of EAC progression in patients with BE [169–171]. As-
pirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) have been demonstrated
to reduce the risk of EAC compared to controls [135,172–175]. Aspirin and NSAIDs both
inhibit the generation of cyclooxygenase (COX) [176], and aspirin also inhibits the activity
of NF-κB signaling [177].

3.2. Treatment of EAC

Patients with BE without dysplasia are included in long-term endoscopic surveillance
programs and are treated with PPIs. BE patients with dysplasia may undergo endoscopic
therapies, including photodynamic therapy, cryotherapy, radiofrequency ablation (RFA)
and endoscopic mucosal resection (EMR). EMR combined with RFA is the main therapeu-
tic strategy currently applied. One study showed that photodynamic therapy is highly
effective for eradicating dysplastic BE, but it is associated with a relatively high rate of
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complications [178]. Cryotherapy displayed effective results as a treatment for BE [179]
and enables eradication of intestinal metaplasia in 55% of patients, dysplasia in 85–90%
and HGD in 95–100% [180]. RFA achieves complete eradication of dysplasia in 81–91% of
patients and is characterized by low recurrence rates [181]. BE patients with early-stage
cancers (tumor in situ, staged as T1a) either undergo endoscopic treatment or surgery [182].

Patients with EAC undergo tumor staging to select the most appropriate treatment
regimen. Endoscopy with endoscopic ultrasound and computed tomography (CT) or
positron emission tomography (PET) with [18F]2-fluoro-2-deoxy-d-glucose (FDG) are fre-
quently used in the clinic [183]. Early, locally advanced EAC without distant lymph node
involvement and distant metastasis can be amenable to treatment with curative intent.
Neoadjuvant chemoradiotherapy followed by surgery (CROSS regimen) is applied in the
clinic. Neoadjuvant chemoradiotherapy (nCRT) with the administration of carboplatin and
paclitaxel for 5 weeks and concurrent radiotherapy (41.4 Gy in 23 fractions, 5 days per week)
lead to a significant survival benefit compared to surgery alone [184]. Another successful
and clinically applied perioperative chemoregimen is FLOT (fluorouracil plus leucovorin,
oxaliplatin and docetaxel), which improves overall survival compared to perioperative
ECF/ECX (epirubicin and cisplatin plus either fluorouracil or capecitabine) [185,186]. A
comparison of CROSS and FLOT has also been investigated in clinical trials, with one study
showing comparable survival benefits [187], while other studies are ongoing [188].

Regarding the surgical approach for EAC, radical transthoracic esophagectomy in com-
bination with lymphadenectomy is the first choice of treatment [183]. In addition, minimally
invasive esophagectomy (MIO), which is characterized by a lower post-operative morbidity,
better quality of life and quicker functional recovery compared to open esophagectomy,
has been introduced to clinical practice recently [189,190].

Definitive CRT is an option for those EAC patients who are not operable due to age
or co-morbidities or are unwilling to undergo surgery [191]. For these therapies, adjusted
CROSS and FOLFOX regimens or a regimen of fluorouracil plus cisplatin are frequently
used [192].

For EAC patients with stage IV disease due to distant metastasis, palliative treatment
with systemic therapy is currently the treatment of choice. This treatment includes fluo-
ropyrimidine (fluorouracil or capecitabine) combined with either oxaliplatin or cisplatin
and is a regimen according to the NCCN guidelines [193,194]. The FDA also approved
Lonsurf (trifluridine/tipiracil) for the treatment of metastatic EAC. This is based on a phase
III trial that showed that trifluridine/tipiracil significantly improves overall survival in
metastatic EAC compared to a placebo group [195]. Platinum-fluoropyrimidine doublet
(oxaliplatin and cisplatin plus fluoropyrimidines) can also be considered as a treatment for
advanced and metastatic EAC [196].

As for now, only few targeted and immune therapies have been approved for the treatment
of EAC (Table 6). HER2, VEGFR2 and PD-1 are the only three molecular targets. Given that
currently employed targeted and immune therapies marginally improved the outcomes of
patients, exploring more available molecular targets is still an imperative clinical need.

Table 6. Currently employed targeted therapies and immunotherapies for EAC.

Therapy Target Patients Treatment Approval Clinical Trials Current Status

Targeted therapy HER2 HER2 positive
metastatic EAC

Trastuzumab plus
chemotherapy FDA Phase III

(NCT01041404) [15] In clinic

Targeted therapy HER2 HER2 positive
metastatic EAC

Fam-Trastuzumab
Deruxtecan-nxki FDA

Phase II
(NCT03329690)

[197]
In clinic

Monotherapy/
Combination

therapy
VEGFR2 advanced or

metastatic EAC
Ramucirumab (plus

paclitaxel) FDA

Phase III
(NCT00917384;
NCT01170663)

[198,199]

In clinic

Immunotherapy PD-1 resectable EAC

Nivolumab
following nCRT

plus radical
resection

FDA; EMA
Phase III

(NCT02743494)
[200]

In clinic
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Table 6. Cont.

Therapy Target Patients Treatment Approval Clinical Trials Current Status

Immunotherapy PD-1
unresectable HER2
negative metastatic

EAC

Nivolumab plus
chemotherapy FDA; EMA

Phase III
(NCT02872116)

[201]
In clinic

Immunotherapy PD-1
unresectable HER2
positive metastatic

EAC

Pembrolizumab
plus Trastuzumab

plus chemotherapy
FDA

Phase III
(NCT03615326)

[202]
In clinic

Immunotherapy PD-1 locally advanced or
metastatic EAC

Pembrolizumab
plus chemotherapy FDA

Phase III
(NCT03189719)

[194]
In clinic

HER2: human epidermal growth factor receptor 2; VEGFR2: vascular endothelial growth factor receptor 2; PD-1:
programmed cell death protein 1; nCRT: neoadjuvant chemoradiotherapy; FDA: Food and Drug Administration;
EMA: European Medicines Agency.

4. Discussion

The majority of treatments for EAC currently employed in the clinic are not specifically
designed for EAC based on its biological features. Although the CROSS and FLOT regimens
displayed better outcomes than other regimens, their establishment is derived from clinical
trials and is less related to the unique molecular features of EAC. Chemoradiotherapy is
a common approach for the treatment of most cancer types. The inherent non-specificity
of chemoradiotherapy can cause severe side effects and discontinuation of the treatment.
Also, it is thought that chemoresistance induced by chemoradiotherapy may accelerate
the metastatic behavior of residual cancer cells. Nevertheless, the currently employed
targeted and immune therapies play only an auxiliary role in the treatment of EAC. The
therapeutics Trastuzumab (anti-HER2), Ramucirumab (anti-VEGFR2), Nivolumab (anti-
PD1) and Pembrolizumab (anti-PD1), which are used in the clinic for EAC, are monoclonal
antibodies, whose frequent side effects have been increasingly drawing the attention of
researchers and clinicians and whose optimal alternatives are under investigation [203].
The potential therapeutic targets, for instance, the receptor tyrosine kinases EGFR, MET and
FGFR in EAC, still hold a challenge due to their failed clinical trials [33]. For the prevention
and treatment of EAC, there are certainly other methods. At present, endoscopy is the only
surveillance method for BE in the clinic. Unfortunately, it has not been recommended for
screening people with GERD or at risk for EAC as it is costly and invasive. Therefore, a
subset of BE patients who develop EAC are missed during the optional phase of progression
for effective endoscopic treatment. There is still a big gap between fundamental research
and the ideal therapy for EAC. Therefore, the development of more effective therapies is an
unmet medical need.

This work systematically summarized and extracted valuable findings from a large
number of existing studies. As such, we hope to provide a framework for future research.
This work might accelerate key research and the design of novel translational studies. On
the molecular level, we discussed the most important factor associated with BE and EAC,
which is GERD. GERD is known to erode and damage esophageal mucosa and induce BE. It
also acts on the tumor microenvironment in EAC. However, the underlying comprehensive
biological mechanisms of GERD on BE and EAC are less reported. Previous studies vaguely
describe premalignant promotion as the main biological mechanism of GERD driving EAC
without mentioning specific molecules and pathways [204]. We summarized that GERD acts
by impacting both esophageal squamous epithelial cells and the tumor microenvironment,
which includes important molecular and signaling pathways, such as CDX2, COX2, BMP4,
MUC2, Dll1 and the NFkB pathway. In current clinical practice, chemopreventive medicines
(Aspirin and NSAIDs) against COX2 and NFkB have been used for the preventive treatment
of GERD and BE [176,177]. This review provides the rationale for future translational
studies to focus on targeting CDX2, BMP4, MUC2 and Dll1; especially CDX2 and BMP4 are
targets of interest, considering that MUC2 and Dll1 are inhibited in the case of inhibition
of CDX2. Moreover, many studies have focused on the change and role of cytokines
and chemokines in the tumor microenvironment of EAC. We found that the biological
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interaction between these factors in the tumor microenvironment is a complex network.
For instance, IL-1β mainly secreted by M2 macrophages might upregulate BMP4 and
CDX2 expression in esophageal epithelial cells and SHH expression in cancer-associated
fibroblasts. BMP4, CDX2 and SHH are both involved in the pathogenesis of BE and
EAC [77,205,206]. Therefore, targeting IL-1β or IL-1β-secreting cells is an interesting
potential treatment strategy. Previous studies showed that EAC is characterized by an
anti-inflammatory and immunosuppressive microenvironment with potential therapeutic
targets within this microenvironment. FOXP3, as an immunosuppressive protein expressed
in BE cells, promotes dysplasia and cell proliferation. FOXP3 is expressed in lymphocytes,
especially in regulatory T cells, and its expression inhibits the immune system and reduces
the destruction of cancer cells. Fortunately, an anti-FOXP3 inhibitor has been tested in a
Phase I clinical trial, which showed promising anti-tumor effects [207]. Therefore, inhibition
of FOXP3 could be an attractive approach to prevent and treat EAC. Tumor-associated
macrophages are an essential determinant of the development and progression of tumors
and display anti-tumor potential in other types of cancer [208]. In this review, we found
that M1 macrophages act as Th1 effector cells and have tumor-inhibiting effects in the
tumor microenvironment in EAC. Macrophage-centered therapy has been investigated
in several types of cancer but not in EAC [209]. In the future, studies should focus on
M1-promoting and M2-inhibiting polarization in the tumor microenvironment of EAC.
Specifically, it should be determined which cytokines and chemokines are involved in
the polarization of M1 or M2 macrophages to enable the development of corresponding
inhibitors or activators.

There is a controversy about whether the cell of origin of BE originates from gland
ducts or from the gastric cardia. The resolution of this controversy will be a milestone in
better understanding the pathogenesis of BE and EAC in the future. The difficulty in the
confirmation of the origin of BE is mainly attributed to the inability to observe metaplastic
transformations in vivo due to a lack of reliable animal models [210]. Our group developed
a mouse model resembling BE that regenerates the neo-columnar epithelium [211], which
may accelerate the progression of this kind of study.

By summarizing alterations on the genetic and epigenetic level in EAC, we reviewed
the potential clinically applicable biomarkers to complement the insufficiency of histopatho-
logical grading of EAC. However, this is a difficulty for EAC considering that the genetics
of EAC is characterized by a high mutational burden and a variety of mutational signa-
tures, complemented by a high level of chromosomal instability. Also, the epigenetics of
EAC is featured by massive microRNA variations and various DNA hypermethylations.
In light of this, the purpose of precision treatment through carrying out more accurate
gene stratification might be beneficial for the treatment of EAC. In different studies, it
has been demonstrated that EAC can be divided into various molecular subgroups. One
subclassification of EAC can be used to predict response to neoadjuvant treatment for
EAC patients [143]. However, the subclassifications in several studies seem to have less
clinical significance [108,123]. The definition of the molecular subtypes of EAC will be a
milestone in the future. By reviewing the genetic and epigenetic studies, TP53, SMAD4
and CDKN2A are concluded to be biomarkers with more potential for the prediction of
prognosis and treatment of EAC than other mutated genes as they are the most reported
mutated genes. Studies reported that TP53 and SMAD4 are both prognostic factors, which
can predict survival time or response to neoadjuvant therapy in EAC [126,212], whereas
no study has reported CDKN2A as a prognostic factor in EAC. Other mutated genes dis-
covered by one or few studies need to be further investigated. Besides detection methods
and cohort size, mixtures with non-tumor cells (for instance, stromal cells and immune
cells) in biopsies or resected specimens is an important factor that causes inconsistent find-
ings between sequencing or gene expression data. Inconsistent gene profiling data could
impact the identification of subgroups and the assignment of more suitable tailor-made
therapies. This should be handled, for instance, by cell sorting or deconvolution methods
including the implementation of single-cell sequencing. Epigenetic changes vary with each
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distinct phase of BE, LGD, HGD, early EAC and late EAC. New biomarkers that can be
developed based on specific epigenetic changes will be suitable for patients in the specific
phase of the disease. We found that some studies reported on genomic abnormalities as
observed in single samples taken at one location and at one time point and neglected the
temporal and spatial differences that are present in BE and EAC. Cancer studies of slow
progressive precancerous lesions require longitudinal studies considering sufficient sample
size, reasonable negative control populations and tissue sampling with follow-up that is
synchronized with disease progression. Such studies may be more effective in revealing
potential druggable targets compared to cross-sectional studies which are prone to bias due
to patient heterogeneity.

5. Conclusions

In this work, we revealed up-to-date knowledge of biological characteristics and
treatment strategies of esophageal adenocarcinoma, including molecular pathogenesis,
tumor microenvironment, genetics, epigenetics and therapy advancement. Importantly,
we discussed the questions that arose from these studies and the clinical practice and the
scientific milestones, which may be useful to improve EAC prevention and treatment in
the future.
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