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Abstract 

Damage to the primary visual cortex (V1) leads to a visual field loss (scotoma) in the retinotopically 
corresponding part of the visual field. Nonetheless, a small amount of residual visual sensitivity persists 
within the blind field. This residual capacity has been linked to activity observed in the middle temporal 
area complex (V5/MT+). However, it remains unknown whether the organization of hV5/MT+ changes 
following early visual cortical lesions. We studied the organization of area hV5/MT+ of five patients 
with dense homonymous defects in a quadrant of the visual field as a result of partial V1+ or optic 
radiation lesions. To do so, we developed a new method, which models the boundaries of population 
receptive fields directly from the BOLD signal of each voxel in the visual cortex. We found responses 
in hV5/MT+ arising inside the scotoma for all patients and identified two possible sources of activation: 
1) responses might originate from partially lesioned parts of area V1 corresponding to the scotoma, and 
2) responses can also originate independent of area V1 input suggesting the existence of functional V1-
bypassing pathways. Apparently, visually driven activity observed in hV5/MT+ is not sufficient to 
mediate conscious vision. More surprisingly, visually driven activity in corresponding regions of V1 
and early extrastriate areas including hV5/MT+ did not guarantee visual perception in the group of 
patients with post-geniculate lesions that we examined. This suggests that the fine coordination of visual 
activity patterns across visual areas may be an important determinant of whether visual perception 
persists following visual cortical lesions.  

 

Keywords 

fMRI, visual cortex, cortical lesion, reorganization, blindsight 

 

Abbreviations 

MT = middle temporal; V1 = primary visual cortex; pRF = population receptive field; AS = artificial 
scotoma; BOLD = blood oxygen level-dependent; CF = connective field  
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1 Introduction 
 

The primary visual cortex (area V1) is considered to be the chief relayer of visual information to higher 
(extrastriate) visual areas. Lesions of V1 or its inputs lead to loss of conscious vision in specific parts of 
the contralateral visual hemifield (scotoma). The extent of the visual field defect corresponds 
retinotopically to the cortical region affected. Several studies have examined whether the adult V1 is 
able to reorganize following injury of the visual pathways (Wandell & Smirnakis, 2009). Less is known 
about the organization of extrastriate visual areas following chronic deprivation of V1 input (Goebel et 
al., 2001; Schmid et al., 2009). 

Area V5/MT+ is of particular interest as it receives direct V1 input, it is retinotopically organized and it 
has been associated with the phenomenon of subconscious visual perception, called “blindsight” (Poppel 
et al., 1973; Weiskrantz et al., 1974). Experiments in macaque and New World marmoset monkeys 
showed that a significant proportion of V5/MT cells remain visually responsive in the absence of area 
V1 input (Bruce et al., 1986; Rodman et al., 1989; Maunsell et al., 1990; Rodman et al., 1990; Girard 
et al., 1992; Rosa et al., 2000; Schmid et al., 2010). In addition, Rosa et al. (Rosa et al., 2000) showed 
that MT neurons in New World marmoset monkeys have ectopic receptive fields responding to the visual 
field surrounding the scotoma, suggesting reorganization. In contrast, experiments on New World owl 
monkeys showed that V5/MT depends entirely on V1 for visual activation (Kaas & Krubitzer, 1992; 
Collins et al., 2003; Collins et al., 2005). The basis of this discrepancy is not yet understood, and may 
be due to a species related difference.  

In humans, the middle temporal complex (hV5/MT+) has been shown to be modulated by motion stimuli 
presented inside the scotoma following V1 lesions. Visual-motion related activity was observed in 
hV5/MT+ when moving stimuli were presented inside the blind visual field of a well-studied patient 
(G.Y.) with extensive area V1 injury (Barbur et al., 1993; ffytche et al., 1996; Zeki & Ffytche, 1998; 
Morland et al., 2004), a patient with homonymous hemianopia and Riddoch syndrome (Schoenfeld et 
al., 2002), a patient with bilateral damage to the gray matter of V1 (Bridge et al., 2010) and seven 
patients with chronic unilateral damage to V1 (Ajina et al., 2015). However, it is not known how the 
organization of area hV5/MT+ changes following V1 injury. Studying the patterns of activation in 
extrastriate visual areas following V1 lesions is important to understand the pathways that mediate 
residual visual behavior (“blindsight”) and to in the effort to guide future visual rehabilitation. 

Here we studied the organization of hV5/MT+ area in five patients with homonymous visual field 
defects due to partial V1+ or the optic radiation lesions. To do so, we developed a new method, which 
models the boundaries of population receptive fields (pRF) directly from the BOLD signal of each voxel 
in the visual cortex (Methods). The development of a new methodology was necessary here in order to 
minimize inaccuracies of pRF estimation in hV5/MT+ that are observed in healthy subjects with 
simulated visual field scotomas (Papanikolaou et al., 2015) when using existing pRF mapping methods 
(Dumoulin & Wandell, 2008; Lee et al., 2013; Lee et al., 2015).  

Using this approach, we found that hV5/MT+ of the ipsilesional hemisphere does respond to visual 
stimuli presented within the scotoma. In 4/5 patients, it is possible that these responses originate from a 
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partially damaged part of area V1 that gets activated by stimulus presented within the visual field 
scotoma. Nevertheless, this activity is apparently not sufficient to mediate conscious vision. In 2/5 
patients (one patient showed both patterns), hV5/MT+ responses arise despite lack of significant 
corresponding V1 activation suggesting that it depends on the existence of functional V1-bypassing 
pathways. Cortico-cortical connective field modeling between areas V1 and hV5/MT+ supports these 
findings. Moreover, we found increased pRF sizes in hV5/MT+ of both hemispheres in three out of five 
patients suggesting the in some cases hV5/MT+ may undergo significant reorganization. 

2 Materials and Methods 

2.1 Subjects 

Patients. Five subjects (27-64 years old, 3 females) with visual cortical lesions participated in our study. 
Four patients were recruited at the Center for Ophthalmology of the University Clinic in Tuebingen and 
one at the Core for Advanced MR Imaging of the Baylor College of Medicine (BCM). Four of the 
participants suffered from homonymous visual field deficits as a result of ischemic or hemorrhagic 
stroke 7-10 years before they enrolled in our study. One patient sustained an ischemic stroke 0.5 years 
prior to study recruitment (Table 1). The extent and location of the injury was confirmed by MRI 
anatomical acquisition (see below).  

Controls. Five healthy subjects (22-65 years old, 4 females) were recruited as controls. All subjects, 
patients and controls, had normal or corrected-to-normal visual acuity. The experiments were approved 
by the Ethical Committee of the Medical Faculty of the University of Tuebingen, and the IRB committee 
of BCM. 

2.2 Perimetric visual field tests 

 All patients underwent a Humphrey type (10-2) visual field test (Beck et al., 1985; Trope & Britton, 
1987), with a (low photopic) background luminance level of 10 cd/m². We present the Humphrey pattern 
deviation plots for all patients in Figure 2B. Patients P1, P2, P4 and P5 underwent additionally a 
binocular semi-automated 90° kinetic perimetry obtained with the OCTOPUS 101-perimeter (HAAG-
STREIT, Koeniz, Switzerland) (Hardiess et al., 2010) which verified the visual field defects (Figure 
2C). 

2.2.1 Data acquisition and preprocessing 

Functional and structural MRI experiments were performed at the Max Planck Institute for Biological 
Cybernetics, Tuebingen, Germany and at the Core for Advanced MR Imaging of BCM, using a 3.0 Tesla 
high-speed echo-planar imaging device (Trio, Siemens Ltd., Erlangen, Germany) with a quadrature head 
coil. At least two T1-weighted anatomical volumes were acquired for each subject with a three-
dimensional magnetization prepared rapid acquisition gradient echo (T1 MPRAGE scan) and averaged 
following alignment to increase signal to noise ratio (matrix size=256×256, voxel size=1×1×1 mm3, 176 
partitions, flip angle=9°, TR=1900 ms, TE=2.26 ms, TI=900 ms). At Tuebingen, blood oxygen level 
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dependent (BOLD) image volumes were acquired using gradient echo sequences of 28 contiguous 3 
mm-thick slices covering the entire brain (repetition time TR=2,000 ms, echo time TE=40 ms, matrix 
size=64×64, voxel size=3×3×3 mm3, flip angle=90°). Functional image (echo planar) acquisition at 
BCM consisted of 29, 3.6mm-thick slices covering the entire brain (TR=2,000 ms, TE=30 ms, matrix 
size=64×64, voxel size=3.46×3.46×3.6 mm3, flip angle=90).  

At least 5 functional scans were acquired for each subject, consisting of 195 image volumes, the first 3 
of which were discarded. The functional images were corrected for motion in between and within scans 
(Nestares & Heeger, 2000). Subsequently, fMRI data were averaged across scans. The functional images 
were aligned to the high-resolution anatomical volume using a mutual information method (Maes et al., 
1997) where the resampled time series values in the volume are spatially interpolated relative to the 
nearest functional voxels. Preprocessing steps were performed in MATLAB using the VISTASOFT 
toolbox (https://github.com/vistalab/vistasoft). 

2.3 Stimuli  

Subjects were presented with moving square-checkerboard bars (100% contrast) through MRI 
compatible digital goggles (VisuaStim, Resonance Technology Company, Inc, Northridge, CA, USA; 
30° horizontal and 22.5° vertical field of view, 800x600 resolution, min luminance=0.3cd/m2, max 
luminance=12.2cd/m2). The stimulus was presented within a circular aperture with a radius of 11.25° 
around the fixation point. The bar width was 1.875° and travelled sequentially in 8 different directions, 
moving by a step half of its size (0.9375°) every image volume acquisition (TR=2 seconds). Stimuli 
were generated using Psychtoolbox (http://psychtoolbox.org/) (Brainard, 1997) and an open toolbox 
(VISTADISP, https://github.com/vistalab/vistadisp) in MATLAB (The Mathworks, Inc.). The subjects’ 
task was to fixate on a small dot in the center of the screen (radius: 0.0375°; 2 pixels) and respond to the 
color change (red to green) by pressing a button. The color was changing randomly with a frequency of 
one every 6.25 seconds. An infrared eye tracker was used to record eye movements (iView XTM, 
SensoMotoric Instruments GmbH). The eye movement traces of patients P1, P2, P4 and P5 are shown 
in Figure S5. One patient (P3) was not eyetracked. However, his accuracy at the challenging fixation 
task was always more than 80% suggesting that the subject could maintain fixation. 

Control subjects were asked to participate for a second session during which an isoluminant mask was 
placed in the left superior quadrant of the visual field, simulating a left upper quadrantanopia (“artificial 
scotoma” or AS). All other stimulus' parameters stayed the same. 

2.4 Population receptive field mapping 

2.4.1 Direct-fit population receptive field (pRF) method  

To define the borders between visual areas we derived pRF estimates using a direct-fit pRF method. 
This method has been described in detail before in (Dumoulin & Wandell, 2008). In short, the 
implementation of the pRF model is a circularly symmetric Gaussian receptive field in visual space. The 
center and radius of the pRF are estimated by fitting the BOLD signal responses to estimated responses 
elicited by convolving the model with the moving bar stimuli. 
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2.4.2 Topography-based pRF method 

We also derived pRF estimates using a topography-based pRF method. We have described this method 
in detail in (Lee et al., 2013; Lee et al., 2015). In contrast to direct-fit methods (Dumoulin & Wandell, 
2008), the topography-based pRF method does not assume a priori the pRF shape (e.g. circular) and thus 
is useful for studies of reorganization where the actual pRF shape cannot be anticipated. We used this 
method to confirm the location of areas V1 and hV5/MT+. We retained only those voxels in these visual 
areas, for which the topography explained more than 12% of the variance. This threshold was set after 
measuring the mean explained variance (6% ± 2%) in a non-visually responsive area by selecting a 
region of interest (i.e. a sphere of 1cm diameter) from the lower medial prefrontal cortex and setting the 
value of the threshold at 3 standard deviations above the mean. Subsequently we used a new method to 
map the pRF boundaries for all voxels in the selected region of interest (ROI). 

2.4.3 pRF boundary mapping method 

We estimated the boundaries of the pRF directly from the BOLD time series of each voxel in the visual 
cortex. The pRF boundaries were identified by marking the location in the visual field where the BOLD 
activity starts to rise above a visual response threshold separately for each bar direction. The following 
steps were taken in order to estimate this: 1) A deconvolution method was applied to the BOLD time 
series of each voxel in order to estimate the underlying neural response of the voxel as the stimulus is 
presented at each visual field location. To do so, the BOLD time series of each voxel were averaged 
across scans (5-8 scans) to increase the signal to noise ratio. The averaged signal was further smoothed 
using locally weighted linear regression (lowess method in MATLAB) in order to avoid outliers that can 
be amplified after deconvolution. We then, applied Fourier deconvolution to remove the hemodynamic 
response function from the data. 2) A baseline was calculated from the deconvolved signal of each voxel: 
First, we calculated the troughs of the deconvolved BOLD time series using function findpeaks 
(MATLAB). A minimum trough distance was set according to the stimulus duration for each bar 
direction. This way, only the troughs that correspond to each bar direction are identified and averaged 
to estimate a general baseline. Then we estimated the noise level as the standard deviation of the signal 
when the bar stimulus is located in non-visually responsive locations of the visual field (e.g. >7° in the 
ipsilateral visual field). The visual response threshold is then estimated as the baseline plus 3 standard 
deviations of noise level. Using a lower threshold (baseline plus 1-2 standard deviations of noise level) 
does not significantly change our results. If the maximum response of a voxel was lower than the visual 
response threshold it was excluded from the analysis. 3) The deconvolved BOLD signal of each voxel 
was then considered separately for each bar direction and a Gaussian model was fit to the data. We chose 
the best model between a one-term and a two-term Gaussian mixture model using the Akaike’s 
information criterion (Burnham et al., 2002). The pRF boundaries were estimated by marking the 
location in the visual space at the time the fitted signal rises above threshold for each bar direction. This 
forms an octagon (since there are 8 different bar directions) in visual space, which represents the pRF. 
We only retained well-defined pRFs for which the Gaussian model explained more than 60% of the 
variance for each bar direction. This threshold was set after running the pRF boundary method in a non-
visually responsive area (i.e. a spherical region of interest of 1cm diameter from the lower medial 
prefrontal cortex). Voxels that survived the initial visual response threshold (i.e., baseline + 3 standard 
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deviations applied to the maximal visual response for that voxel) had a mean variance explained 
40%±20% for the Gaussian fit. Therefore, we chose a 60% threshold (mean+1 standard deviation) to 
discard any voxels whose responses might be possible to be explained by chance by a Gaussian model. 
We note that most noisy voxels are discarded using the initial visual response threshold. Of the surviving 
voxels, only about ~14% had an explained variance lower than 60% and could be therefore due to noise. 
As one might predict form this, our results were not sensitive to the specific choice of threshold. A 
schematic representation of the method is shown in Figure S1. By taking into account only the activity 
rise when the stimulus approaches the border of the voxel receptive field from the outside, this method 
avoids errors in the pRF estimation that result from persistent hemodynamic activity that occurs when 
the bar stimulus moves from seeing to non-seeing locations of the visual field (Papanikolaou et al., 
2015).  

The pRF center is estimated as the center of “mass” of the octagon and the pRF size as the area of the 
octagon. The pRF amplitude of each voxel is estimated as the mean peak amplitude of the fitted Gaussian 
for each bar direction. The average pRF amplitude of an area in the lesioned hemisphere is normalized 
by the average pRF amplitude from the same area on the contra-lesional hemisphere. 

2.5 Visual field coverage density maps  

The visual field coverage density maps define the locations within the visual field that are covered by 
the pRFs of voxels within a region of interest (ROI) in the cortex. To estimate this we plot at each visual 
field location the number of the pRFs that cover this location (color map). The pRF centers (estimated 
as described above) across all voxels within the ROI are overlaid as grey dots.  

2.6 Connective field (CF) modeling  

CF parameters are estimated from the BOLD time-series using the CF modeling method described by 
Haak et al. (2013). Specifically, the fMRI response of each voxel in hV5/MT+ is predicted using a 2-
dimensional circular Gaussian connective field model, folded to follow the cortical surface of V1. The 
CF of a voxel is defined by two parameters, the connective field position and the Gaussian spread across 
the V1 surface. A time-series prediction is then calculated by weighting the CF with the BOLD time-
series. The optimal CF parameters are found by minimizing the residual sum of squares between the 
model’s time-series prediction and the observed time-series. Best models were retained if the explained 
variance in the observed fMRI time-series exceeded 12.5%. This threshold was set after measuring the 
mean explained variance (3.2% ± 3.1%) in a non-visually responsive area (i.e. a sphere of 1cm diameter 
from the lower medial prefrontal cortex) and setting the value of the threshold at 3 standard deviations 
above the mean. Our results are not sensitive to the specific choice of threshold over a range of 8-15%. 

Because CF preferred locations in V1 cortical surface are associated with preferred visual field positions 
during the area V1 pRF mapping, coordinates in visual space can be inferred for each voxel in hV5/MT+ 
using the CF modeling method. Therefore, we can plot the visual field coverage maps that correspond 
to the CFs of area hV5/MT+ voxels and compare them with the visual field coverage maps obtained 
during hV5/MT+ pRF mapping (Figure 5D). 
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2.7 Statistical Analysis  

A two-sample Kolmogorov-Smirnov test was performed in order to compare the pRF size distributions 
between patients and the AS control subjects. The significance level selected to reject the NULL 
hypothesis (same distributions) was estimated by comparing the distribution of each AS control subject 
with the average distribution of all control subjects. The minimum p-value of these comparisons was 
then used to test for significance between the mean distribution of the AS controls and the patients. We 
note that this is a conservative choice, and may suppress the identification of small differences. 

3 Results 

3.1 Mapping the pRF boundaries separately for each direction of motion of the visual 
stimulus 

Differences in the retinotopic maps of normal subjects have been observed when the visual stimulus is 
masked to simulate retinal or cortical scotomas compared to when the full visual field is stimulated 
(Haak et al., 2012; Binda et al., 2013; Papanikolaou et al., 2015). These biases are important to know in 
order to ensure that changes in retinotopic organization seen in patients are not simply an artifact of 
model estimation caused by incomplete stimulus presentation due to the presence of the visual field 
defect. In previous work we obtained responses in area hV5/MT+ after masking the upper left quadrant 
of the visual field in healthy subjects, thus simulating an upper left quadrantanopia (artificial scotoma 
or AS) (Papanikolaou et al., 2015). We found that when the full bar stimulus model is used to estimate 
the pRFs in these subjects, hV5/MT+ activity extends well within the region of the AS, even though de-
facto there was no stimulation there. These erroneous estimates occur for both direct-fit methods (Figure 
1A) (Dumoulin & Wandell, 2008) and topography based methods (Figure 1B) (Lee et al., 2013). These 
biases are not the result of a trivial methodological artifact or eye-movement deviations, but originate 
from asymmetric BOLD responses occurring when the bar stimulus moves from seeing to non-seeing 
locations of the visual field (Figure 7 in Papanikolaou et al., 2015) versus vice versa. In Papanikolaou 
et al. (2015) we argued that the origin of these effects is more likely due to hemodynamical reasons than 
due to neuropsychological anticipation, based on the fact that they do not occur across visual hemifields. 

In patients, retinotopic mapping is performed using a full bar stimulus (in this case a drifting flickering 
checkerboard bar), which overlaps the area of the scotoma, and may therefore be prone to similar 
artifacts. Thus a different approach is needed for comparing responses between patients and AS subjects 
when using the drifting bar stimulus. We developed a method, which calculates directly the boundaries 
of the pRF from the BOLD time series of each voxel separately for each direction of motion of the visual 
stimulus (Methods; Figure S1). In this way, hysteresis phenomena in the BOLD signal that are produced 
when the bar moves from seeing to non-seeing locations of the visual field can be eliminated. Using this 
method, pRF estimates in area hV5/MT+ of subjects with a simulated AS, are confined in visual field 
locations outside of the AS, as expected (Figure 1C). 

Subsequently, we used this method for estimating pRF responses in spared area hV5/MT+ of patients 
with V1+ or optic radiation lesions that resulted in dense contralateral scotomas.  
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Figure 1: hV5/MT+ visual field coverage maps in Artificial Scotoma subjects. Visual field coverage density maps of 
area hV5/MT+ of the right hemisphere in all control subjects with an AS at the upper left quadrant using a direct-fit pRF 
method (A), a topography-based method (B) and the proposed pRF boundary mapping method (C). The color map indicates 
the number of pRFs that cover each visual field location. The pRF centers from all voxels are plotted as grey dots. For both 
direct-fit and topography-based pRF methods, hV5/MT+ maps cover significantly the area of the AS at the upper left quadrant 
when the full bar stimulus is used for modeling the pRFs. In contrast, for the proposed method (C) in which we map the pRF 
boundaries directly from the BOLD signal, pRFs in hV5/MT+ are confined to the lower visual field quadrant outside of the 
AS in all subjects. Activity only modestly crosses the border of the AS (~2 deg) commensurate with the subject’s fixation 
eye movements. Note that the boundary mapping pRF method is more strict than the direct-fit and the topography-based 
methods as only well-defined pRFs are retained for analysis. Nevertheless, applying a more strict criterion (variance 
explained > 30%) for the direct-fit and topography-based method does not eliminate the pRF biases observed within the AS. 

3.2 Patients: Anatomical lesion and visual field defects 

We examined 5 patients, P1-5, with homonymous dense visual field defects within one quadrant of the 
visual field (visual sensitivity<-20dB). Each patient’s lesion and consequent visual field defect is 
presented in detail in Table 1. The anatomical location of the lesion and patients’ perimetry tests are 
presented in Figure 2. 

In brief, patients P1, P3 and P4 have lesions which extend from the part of V1 inferior to the calcarine 
sulcus to extrastriate ventral visual areas, resulting in contralateral superior quadrantanopic defects 
(Figure 2A-C). P2 has a superior quadrantanopia (Figure 2B) following a temporal optic radiation lesion. 
P5 has a comparatively smaller lesion, which involves part of the foveal ventral V1 and ventral 
extrastriate areas V2 and V3 resulting in a dense defect within the left upper visual field quadrant (Figure 
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S1 S2 S3 S4 S5

4
6
8

4
6
8

4
6
8

4
6
8

4
6
8

0

200

400

600

800

1000

2.7
5.3

8

2.7
5.3

8

2.7
5.3

8

2.7
5.3

8

2.7
5.3

8

4
6
8

0

20

40

60

80

100

4
6
8

4
6
8

4
6
8

4
6
8

0

200

400

600

800

1000



 10 

2B). Patient’s P1, P2, P3 and P4 V1 organization has been described in more detail before (Papanikolaou 
et al., 2014).  

 

Figure 2: Anatomical location of the lesion and visual field perimetry tests. A. Anatomical location of the lesion. A 
sagittal (top) and an axial (bottom) slice illustrates each patient's anatomical lesion (a red arrow points to the lesion). B. 
Pattern deviation probability plots of the 10-degree Humphrey type (10-2) visual field test for all patients. The small black 
dots show the locations in the visual field that are normal, while the black squares indicate a visual field defect on a p<0.5% 
level according to the pattern probability plot (this means that less than 0.5% of normal subjects would be expected to have 
such a low sensitivity at this visual field location). Pattern deviation numeric plots for all patients had visual sensitivity <-
20dB (absolute visual field scotoma) at all visual field locations within the affected quadrants. Black square locations outside 
the affected quadrants showed visual sensitivity <-10dB (mostly still <-20dB). C. Binocular semi-automated 90° kinetic 
perimetry (Octopus 101; methods) for patients P1, P2, P4 and P5. The area of absolute visual field loss is shaded in light 
grey. 

Table 1: Patient data. Patient identification (ID), side of brain lesion (Hemisphere), visual areas affected by the lesion 
(Areas), location of homonymous visual field defect (LUQ: Left Upper Quadrant, RUQ: Right Upper Quadrant) and time 
span between brain lesion and examination (∆t). P1 has a left superior quadrantanopic defect following a lesion of the right 
inferior calcarine cortex. The lesion extends from the part of V1 inferior to the calcarine sulcus to extrastriate cortex 
corresponding to the ventral visual areas V2 and V3. P2 has a circumscribed defect within the right upper visual field quadrant 
due to/as a consequence of a left-hemispheric infarction of the temporal optic radiation. This results in deafferentiation of a 
significant portion of V1 by cutting its input, while the gray matter of this area has remained intact. Patient P3 has a 
homonymous superior quadrantic defect of the right visual field following a lesion of the left V1 inferior to the calcarine 
sulcus including extrastriate ventral visual areas V2, V3 and V4. P4 has a lesion of the left inferior calcarine cortex, which 
involves ventral striate area V1, ventral extrastriate areas V2, V3 and V4, and extends to the dorsal area V1 where it spares 
a small part of the dorsal periphery. This has created a homonymous superior quadrantic defect of the right visual field. P5 
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has a lesion in the right hemisphere, which involves part of the foveal ventral V1 and ventral extrastriate areas V2 and V3, 
resulting in a dense defect within the left upper visual field quadrant. 

Patient ID Hemisphere Visual Areas Visual Field 
Defect 

∆t (years) 

P1 Right V1v, V2v, V3v LUQ 7 
P2 Left Temporal optic 

radiation 
RUQ 10 

P3 Left V1v, V2v, V3v, 
V4 

RUQ 0,5 

P4 Left V1d (partially), 
V1v, V2v, V3v, 

V4, 

RUQ 7 

P5 Right V1v (foveal), 
V2v, V3v 

LUQ 7 

 

3.3 hV5/MT+ responses following V1+ lesions 

We used a direct-fit pRF method (Dumoulin & Wandell, 2008) to identify area hV5/MT+ for all subjects 
(Figure S2). The identified region of interest was then used to obtain pRF estimates using the proposed 
mapping method. We compared hV5/MT+ coverage density maps for all patients with the visual 
perimetry maps defining the perceptual scotoma and with the hV5/MT+ coverage density maps of AS 
controls. As shown before, pRF estimates in area hV5/MT+ of healthy subjects with a simulated AS at 
the upper left quadrant, are confined in visual field locations outside of the AS (Figure 1C, Figure 3A.a). 
In contrast, all patients showed activity in hV5/MT+ that extended well beyond the border of the scotoma 
into the superior (anopic) visual field quadrant (Figure 3A, red arrows). Raw BOLD responses from 
voxels in hV5/MT+ confirm that activity arises from stimulus presented within the visual field scotoma 
(Figure 3B-C). Specifically, we compared the raw BOLD signal change between patients and the AS 
controls when the stimulus moves from non-seeing (scotoma) to seeing locations of the visual field. In 
AS controls, the average BOLD signal change drops to baseline values when a horizontal bar is in the 
superior quadrant (location of the AS; elevation>0, Figure 3B.a). Activity starts when the bar is near 2° 
from the horizontal meridian (AS border), commensurate with the subject’s fixation eye movements. In 
contrast, for all patients, activity starts when the stimulus is located well within the perceptual scotoma 
(elevation>3°, red arrows, Figure 3B.b-f). Moreover, when a vertical bar moves from the ipsilateral to 
the contralateral visual hemifield, activity starts when the stimulus is located about 2-3° within the 
ipsilateral visual hemifield, for both patients and AS control subjects. This suggests that, hV5/MT+ 
activity in the lesioned hemisphere originates from stimulus positions located within the scotoma, and 
less likely from the contralateral hemisphere. 
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Figure 3: Visual field coverage maps and average BOLD signal change in hV5/MT+ of the lesioned hemisphere. A. 
Left: Pattern deviation probability plots of the 10-degree Humphrey type visual field test for all patients as shown in Figure 
2B. Right: Visual field coverage density maps of area hV5/MT+ of the right hemisphere of an AS control subject (a) and of 
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the lesioned hemisphere for each patient obtained using the proposed pRF boundary mapping method (b-f). To allow 
comparison between subjects, the scale of the color map has been clipped to the average significantly activated number of 
voxels of hV5/MT+ of AS controls (97.8±89.15). The total number of significantly activated voxels in hV5/MT+ of each 
subject is indicated next to the graphs with a # symbol. The pRF centers from all voxels within each area are plotted as grey 
dots. The average coverage density map of all AS controls is overlaid on top of the maps of each patient with magenta color. 
In contrast to the AS controls, the visual field coverage maps of hV5/MT+ of all patients cover areas that overlap with the 
dense visual field scotoma (red arrows). B. The average BOLD signal change from all voxels in the right hV5/MT+ in 
controls and the hV5/MT+ of the lesioned hemisphere in patients as a horizontal bar is moving from the top (elevation>0; 
AS/scotoma) to the bottom of the visual field (elevation<0; seeing quadrant). Before averaging, the BOLD time series of 
each voxel is deconvolved to remove the hemodynamic response function (Methods) and the baseline is removed. The 
baseline here is defined as the signal value when the vertical bar is located in the far ipsilesional part of the visual field, which 
should produce little or no visual modulation in the region examined. This is calculated as the average BOLD signal change 
over 5 steps of the bar when the horizontal bar was located between 7-10° in the hemifield ipsilateral to our ROI. This 
procedure sets the baseline of each voxel to zero. (a) The average signal of the AS controls (white bars) is compared with the 
full field stimulus condition (blue bars). When the AS is applied, the average BOLD signal change when the bar is in the 
superior quadrant (location of the AS; elevation>0) drops to baseline values compared with the average signal under the full 
field stimulus condition. Activity starts when the bar is near 2° from the horizontal meridian (AS border), commensurate 
with the subject’s fixation eye movements. (b-f) The average signal of the patients (gray bars) compared with the AS controls 
(white bars). For all patients, activity starts when the stimulus is located well within the perceptual scotoma (elevation>3°, 
red arrows) in contrast to the AS controls. The error bars indicate the standard error of the mean across control subjects 
(N=5). The snapshot on top shows the orientation of the bar and direction of motion (white arrow). C. Same as in (B), the 
average BOLD signal change from all voxels in the right hV5/MT+ in controls and the hV5/MT+ of the lesioned hemisphere 
in patients as a vertical bar is moving from the contralateral (azimuth>0) to the ipsilateral visual hemifield (azimuth<0). For 
all patients, activity starts when the stimulus is located about 2-3° within the ipsilateral visual hemifield, similar to the AS 
control subjects. This suggests that, hV5/MT+ activity in the lesioned hemisphere originates from stimulus positions located 
within the scotoma, and less likely from the contralateral hemisphere. 

3.4 Pathways contributing to hV5/MT+ activity following V1+ lesions 

To understand the possible source mechanisms of the hV5/MT+ activity observed within the scotoma 
in patients, we compared hV5/MT+ responses with the responses obtained from area V1. In healthy 
subjects under full field stimulation, areas V1 and hV5/MT+ cover the contralateral hemifield (Figure 
4A-B, top). If the stimulus is masked at the upper left visual field quadrant (Artificial Scotoma or AS), 
simulating an upper left quadrantanopia, areas V1 and hV5/MT+ cover only the lower visual field 
quadrant (Figure 4A-B, bottom). Activity only modestly crosses the border of the AS (~2 deg) 
commensurate with the subject’s fixation eye movements.  

To further investigate the dependence of hV5/MT+ responses on V1 we used population connective 
field (CF) modeling. CF modeling is used to predict the activity of voxels in hV5/MT+ as a function of 
activity in spared V1 (Haak et al., 2013) (Methods). Using a combination of CF modeling and our 
method for estimating the pRFs, we derive visual field coverage maps for area hV5/MT+ based on the 
CF location on the cortical surface in V1 (Figure 4C). Specifically, for each voxel in hV5/MT+ we plot 
the pRF center locations in the visual field of the corresponding CF in V1. We compare the maps derived 
using the CF modeling with the visual field coverage maps derived using our pRF boundary mapping 
method. This way, we can estimate which parts in area V1 drive the responses in hV5/MT+.  

In AS controls, the coverage maps derived using the CF model cover only part of the lower visual field 
quadrant, outside of the AS and commensurate with the pRF coverage density maps (Figure 4B-C, 
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bottom). Essentially all functional voxels in hV5/MT+ were linked with a well-defined CF in area V1 
at the chosen threshold (explained variance>0.125). This suggests that hV5/MT+ activity in AS controls 
arises from the visually responsive part of area V1. No activity is observed within the area of the AS. 
Using this combination of the pRF boundary method and CF modelling, we identified two possible 
source mechanisms for the hV5/MT+ activity observed within the scotoma of the patients. 

 

Figure 4: Visual field coverage maps of V1 and hV5/MT+ in Control Subjects. Top: Visual field coverage density maps 
of area V1 (A) and the hV5/MT+ complex (B) of the right hemisphere of a control subject under Full Field (FF) stimulation. 
The pRF centers from all voxels within each area are plotted as grey dots. Both areas cover the entire left visual hemifield, 
as expected. Bottom: Visual field coverage density maps of V1 (A) and hV5/MT+ (B) of the right hemisphere of a control 
subject under the Artificial Scotoma (AS) condition. No activity is observed within the area of the AS in control subjects for 
both V1 and hV5/MT+. C. Visual field coverage maps of hV5/MT+ based on the connective field modeling method (CFM) 
for a control subject under FF stimulation (top) and under the AS condition (bottom). These maps plot, for each voxel in 
hV5/MT+, the pRFs of the voxels corresponding to the CF center and CF Gaussian spread in the cortical surface of V1. The 
color map indicates the CF weight so that 1 corresponds to the CF center. CFM coverage maps in control subjects are 
commensurate to the pRF coverage density maps suggesting that hV5/MT+ activity arises chiefly from area V1.  

3.4.1 Visual field regions overlapping with the patients’ scotoma covered by both hV5/MT+ 
and V1 

For patients P2, P3 and P5, most activated visual field locations in hV5/MT+ overlapping with the 
patients’ perceptual scotoma are also covered by V1 (Figure 5B-C.a,b,c; red arrows). The observed V1 
activity within the scotoma is not ectopic but reflects islands of V1 that are spared or only partially 
damaged (Papanikolaou et al., 2014). It is therefore possible that hV5/MT+ responses corresponding to 
the scotoma arise from the spared part of area V1. To confirm this, we plotted the hV5/MT+ coverage 
maps derived using the CF models (Figure 5D). CF coverage maps in these patients are commensurate 
with the pRF coverage density maps (Figure 5D.a,b,c). Specifically, the maps cover visual field locations 
overlapping with the scotoma suggesting that, most of hV5/MT+ activity arises from spared or partially 
injured V1 tissue. Surprisingly however, these patients still have a dense (<-20dB) visual field defect 
corresponding to these locations (Figure 2B-C).  
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In principle, the lack of a percept may happen because: i) retinotopically corresponding extrastriate areas 
are injured, or ii) the activity generated may be too weak, too asynchronous, or too disorganized to elicit 
a percept. For patients P3 and P5 the lesion includes extrastriate visual areas V2v and V3v. Therefore, 
the visual field deficit of these patients may be due to damage within these extrastriate areas. 
Nevertheless, visual information reaches area hV5/MT+ suggesting that the V1 to hV5/MT+ projection 
is partially spared.  

 

Figure 5: Visual field coverage maps of patients P2, P3 and P5. A. Pattern deviation probability plots of the 10-degree 
Humphrey type visual field test for patients P2, P3 and P5 as shown in Figure 2B. B. Visual field coverage density maps of 
the spared part of area V1 and C. the hV5/MT+ complex of the lesioned hemisphere for patients P2, P3 and P5. The scale of 
the color map has been clipped to the average significantly activated number of voxels plus one standard deviation for V1 
(182.4±182.3) and the average significantly activated number of voxels for hV5/MT+ (97.8±89.15) of AS controls. The total 
number of significantly activated voxels for each subject is indicated next to the graphs with a # symbol. The pRF centers 
from all voxels within each area are plotted as grey dots. The average coverage density map of all AS controls is overlaid on 
top of the maps of each patient with magenta color. For these patients activity extending beyond the border of the scotoma 
in hV5/MT+ is also present in V1 (red arrows). Apparently, this activity is not sufficient to mediate conscious vision 
suggesting it is either too disorganized to elicit a percept or that damage to other areas is responsible for the visual deficit. D. 
Visual field coverage maps of hV5/MT+ based on the connective field modeling method (CFM). CF coverage maps in 
patients P2, P3 and P5 cover visual field locations overlapping with the scotoma confirming that responses in hV5/MT+ 
within the scotoma arise from the spared part of area V1. 

Patient P2, however, has an isolated/exclusive lesion of the optic radiation and thus the pathways from 
V1 to higher visual areas have survived the lesion. One possibility is that the lesion has affected the 
projections from V1 to extrastriate visual areas. However, this is unlikely as ventral areas V2 and V3 
also showed functional imaging responses that overlap with this patient’s scotoma (Figure S3), 
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supporting the viewpoint that the extrastriate cortex remains functional in this subject. Therefore, the 
visual field deficit of this patient cannot be related to damage within these extrastriate areas. In this case, 
option (ii) may dominate. We previously found (Papanikolaou et al., 2014), that the mean amplitude of 
area V1 pRF centers that fall inside the scotoma is significantly lower (0.77±0.09; mean±standard 
deviation) than the mean amplitude of pRF centers that fall in the inferior (seeing) quadrant for this 
patient (1.06±0.05). The same holds in hV5/MT+ (mean pRF amplitude within the scotoma is 0.83±0.02 
compared with 0.92±0.05 in the inferior/seeing quadrant). Note however, that the observed decrease is 
modest in both areas V1 and hV5/MT+. This suggests that although it is possible that the decrease in 
the level of visually driven activity may contribute to the loss of visual perception, it is unlikely by itself 
to be the sole explanation (see below). 

3.4.2 Visual field areas overlapping with the patients’ scotoma covered by hV5/MT+ but not 
V1 

The visual field coverage density maps of hV5/MT+ in patients P1 and P4, overlap with parts of the 
visual field scotoma that are not covered by area V1 (Figure 6B-C.a,b; green arrows). In fact, the 
retinotopically corresponding part of area V1 is anatomically lesioned. This suggests that hV5/MT+ 
activity within the scotoma in these patients arises via pathways that bypass area V1, i.e. through the SC 
and pulvinar (Rodman et al., 1990; Weiskrantz, 2004; Barleben et al., 2015) and/or through the LGN 
(Maunsell et al., 1990; Sincich et al., 2004; Schmid et al., 2009; Schmid et al., 2010). Although these 
patients have a relatively lower number of pRFs activated in hV5/MT+ than AS controls, activity extends 
well beyond the border of the scotoma and beyond the activity observed in AS controls. Note that our 
pRF mapping method is quite conservative and only well-defined pRFs that are above the noise level 
are mapped. An example of the BOLD activity of a pRF that lies well within the scotoma of these 
patients is presented in Figure S4.  

To confirm that hV5/MT+ activity in these patients does not depend on V1 input, we applied the CF 
modeling (Figure 6D). A large fraction of visually responsive voxels (13 out of 27 voxels) in hV5/MT+ 
of patient P4 were not linked with any voxel in V1 using the CF modeling method (variance 
explained<0.125). These voxels have well-defined pRFs using our pRF mapping method but no 
connective field in V1, confirming that they receive their inputs from V1 by-passing pathways. 
However, input from these pathways is apparently not sufficient to mediate conscious vision. Indeed, 
the mean amplitude of hV5/MT+ pRFs with center within the scotoma of patient P4 is smaller than the 
mean hV5/MT+ pRF amplitude in the healthy hemisphere (ratio: 0.67±0.10). However, weak 
modulation may contribute to the loss of vision, but cannot explain it: the inferior (seeing) quadrant 
outside the visual field scotoma has pRFs with a similar mean amplitude (ratio: 0.68±0.10), without an 
obvious visual field deficit. It is also evident that in normal subjects a modest decrease in the contrast of 
the stimulus may induce a similar drop in the level of activity in area hV5/MT+ or other extrastriate 
areas without compromising visual perception. A reasonable hypothesis is then that either i) activity in 
area V1 is itself important for visual perception, or ii) in the absence of V1 activation the activity elicited 
in the extrastriate cortex (here hV5/MT+) is not appropriately organized/synchronized to support visual 
perception.  
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Figure 6: Visual field coverage maps of patients P1 and P4. A. Pattern deviation probability plots of the 10-degree 
Humphrey type visual field test for patients P1 and P4. B. Visual field coverage density maps of the spared part of area V1 
and C. the hV5/MT+ complex of the lesioned hemisphere for patients P1 and P4. The pRF centers from all voxels within 
each area are plotted as grey dots. The average coverage density map of all AS controls is overlaid on top of the maps of 
each patient with magenta color. The total number of significantly activated voxels for each subject is indicated next to the 
graphs with a # symbol. Patients P1 and P4 have visual field areas overlapping with the patients’ scotoma that are covered 
by V5/MT+ but not V1 (green arrows) suggesting the existence of functional V1-bypassing pathways. Activity in hV5/MT+ 
alone is not sufficient to elicit a percept. Patient P1 also has a part of the visual field overlapping with the patient’s scotoma 
that is covered by both areas V1 and hV5/MT+ similar to patients P2, P3 and P5. D. Visual field coverage maps of hV5/MT+ 
based on the connective field modeling method (CFM). For patients P1 and P4, the CF modeling links the voxels in hV5/MT+ 
to voxels in V1 with pRF centers in the inferior (seeing) quadrant only suggesting that responses observed within the scotoma 
in hV5/MT+ using the pRF mapping method are independent of V1 input. 

It is worth mentioning here that patient P4 appears to have a small amount of spared vision across the 
vertical meridian, as shown in the Octopus perimetry map (Figure 2C). The part of area V1 that 
corresponds to the vertical meridian in this patient is anatomically lesioned. It is therefore possible that 
activity observed in area hV5/MT+ at the vertical meridian may contribute to some degree to visual 
awareness, though other mechanisms are also likely to be involved (e.g. through the contralesional 
hemisphere).  

Similar to patient P4, the hV5/MT+ coverage map of patient P1 covers visual field locations overlapping 
with the patient’s scotoma that are not covered in V1 (Figure 6B-C.a, green arrows). However, this 
patient also shows locations of the visual field that are covered by both areas V1 and hV5/MT+, similar 
to patients P2, P3 and P5 (Figure 6B-C.a, red arrows). CF modeling in this patient suggests that 
hV5/MT+ activity may arise from a mixture of input mechanisms (Figure 6D.a). This is described in 
detail in the next section. 

It is important to note that the overlap between visual field coverage maps and the scotoma seen on 
perimetry cannot be explained by eye movements. Subjects were able to maintain fixation within 1.5° 
radius from the center of fixation except for very occasional excursions beyond this range (Figure S5). 
The results remain unchanged after removing from the analysis these epochs, where the subjects had 
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eye deviations (>1.5°) from the fixation point. Patient’s P3 eye movements were not recorded, and 
therefore we cannot completely exclude the possibility that activity observed within the scotoma of this 
patient is the result of eye movements. However, several facts oppose this hypothesis. First, results 
observed in this subject were in line with the observations made in patients P1, P2 and P5 that have 
undergone rigorous eye movement tracking. Second, the subject performed a challenging detection task 
at fixation and his performance was maintained >80% correct. Finally, the retinotopic maps of his 
healthy hemisphere were well-organized suggesting that he did not make frequent large, confounding, 
eye movements that could explain the large (>1.5°) hV5/MT+ pRF coverage within the scotoma. 

3.5 Cortico-cortical interactions between hV5/MT+ and spared V1  

To better understand the source of activation within the scotoma in hV5/MT+ of patients, we plot the 
visual field elevation (y coordinate) of the hV5/MT+ pRF centers against the pRF elevation of the V1 
voxels corresponding to the hV5/MT+ voxels' CF centers (Figure 7). A testament that the CF modeling 
is an appropriate method for measuring the dependence between hV5/MT+ and V1 responses, is that the 
visual field location estimates in hV5/MT+ of AS controls as measured by the CF method are highly 
correlated to the location estimates derived using the pRF method (Figure S6, correlation coefficient 
r=0.59±0.07, p=10-4). This result is expected if hV5/MT+ voxels receive their dominant input from V1. 

As described before, CF coverage maps for patients P2, P3 and P5, cover visual field locations 
overlapping with the scotoma suggesting that, most of hV5/MT+ activity arises from spared or partially 
injured V1 tissue (Figure 5D). A significant correlation between the location estimates derived by the 
pRF and the CF method is observed for hV5/MT+ pRFs that fall within the scotoma for patients P2 and 
P3 (P2, r=0.64 and P3, r=0.52, p=10-2; Figure 7, bottom row) confirming that hV5/MT+ responses in 
these patients arise, at least in part, from the spared V1. Note that essentially all functional voxels in 
hV5/MT+ were linked with a well-defined CF in area V1 at the chosen threshold (explained 
variance>0.125).  However, there were also some hV5/MT+ voxels with pRF centers inside the scotoma 
that were linked to V1 voxels with pRFs in the inferior (seeing) quadrant (Figure 7, bottom row). The 
disparity between visual field location as predicted by the CF modeling and pRF mapping suggests that 
there are additional pathways contributing to hV5/MT+ activity. It is therefore possible that a small 
fraction of hV5/MT+ voxels in these patients receive their input from V1-bypassing pathways, but this 
hypothesis cannot be fully confirmed here. Patient P5 has only a few voxels (7) with pRF centers falling 
within the scotoma area near the horizontal meridian, which is not enough to assess whether there is a 
significant correlation in the location estimates between the two methods (Figure 7, bottom row). 
However, all voxels in area hV5/MT+ of this patient had a well-defined CF suggesting that, hV5/MT+ 
activity in this patient arises from the spared V1.  

On the other hand, for patients P1 and P4, CF modeling yields a more complex picture. A large fraction 
of visually responsive voxels (13 out of 27 voxels) in hV5/MT+ of patient P4 were not linked with any 
voxel in V1 using the CF modeling method (variance explained<0.125). These voxels have well-defined 
pRFs using our pRF mapping method but no connective field in V1, suggesting that they receive their 
inputs from V1 by-passing pathways. Interestingly, the remaining hV5/MT+ voxels that have a well-
defined CF are linked to voxels in V1 with pRF centers that lie exclusively in the inferior (seeing) 
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quadrant (Figure 6D.b). This holds true even for hV5/MT+ voxels with pRF centers that lie well within 
the superior quadrant (i.e. >2° inside the scotoma, Figure 7, bottom row). Since the pRF size of V1 
voxels is relatively small (1-2°), pRFs that lie in the inferior quadrant do not extend more than 1-2° 
within the superior quadrant. This suggests that responses observed within the scotoma (>2° from the 
horizontal meridian) in hV5/MT+ of this patient using the pRF mapping method cannot be explained by 
surviving V1 input. 

 

Figure 7: Cortico-cortical connectivity between hV5/MT+ and V1 in patients. Top row, red: The location of voxels in 
hV5/MT+ with pRF center elevation in the inferior (seeing) quadrant (y<0) is plotted as a function of the pRF center elevation 
of the corresponding CF center in V1 (as found using the CF modeling method, see methods). The grey shaded area represents 
the mean±standard deviation of the AS controls (N = 5). Bottom row, blue: The location of voxels in hV5/MT+ with pRF 
center elevation in the superior quadrant (scotoma, y>0) is plotted in blue as a function of the pRF center elevation of the 
corresponding CF center in V1. The error bars indicate the standard deviation across voxels within an elevation bin (bin size 
= 0.5°) for each patient. For patients P1 and P4, voxels in hV5/MT+ that have pRF centers within the scotoma (y>0; superior 
quadrant) are linked (in the connective field sense) only with voxels in V1 that have pRF centers in the inferior (seeing) 
quadrant. This correspondence is retinotopically ectopic confirming that the retinotopically corresponding V1 voxels have 
been lesioned. This ectopic association suggests that visually driven hV5/MT+ responses within the scotoma do not have 
their source in visual responses of surviving V1 voxels, but instead arise through V1-bypassing pathways. Note that in the 
control subjects with the artificial scotoma this situation does not arise. For patients P2 and P3, voxels in hV5/MT+ that have 
pRF centers within the scotoma (y>0) are linked with voxels in V1 whose pRF centers belong to either the superior (scotoma) 
quadrant or the inferior (seeing) quadrant, suggesting that hV5/MT+ responses within the scotoma may arise within the 
spared V1 cortex, through V1-bypassing pathways, or via a combination of both. 

For patient P1, most visually responsive voxels in hV5/MT+ have a well-defined CF. The CF method 
links the voxels in hV5/MT+ that have pRFs inside the scotoma to voxels in V1 that have pRFs in the 
inferior (seeing) quadrant (Figure 7, bottom row). This suggests that hV5/MT+ voxels do receive part 
of their input ectopically from spared V1 voxels. However, hV5/MT+ voxels with pRFs centers inside 
the scotoma also show responses when the visual stimulus is well inside the blind quadrant (see Figure 
3B), which cannot arise from the ectopic V1 locations, which respond to stimuli in the inferior (seeing) 
quadrant. In fact, the strongest responses (the pRF peak) of hV5/MT+ voxels arise within the scotoma, 
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whereas from their connective fields we would conclude it should lie in the inferior (seeing) quadrant. 
This argues that responses within the scotoma in these hV5/MT+ voxels arise chiefly from V1-bypassing 
pathways.  

For the inferior (seeing) quadrant, the CF method yields similar hV5/MT+ location estimates to the pRF 
mapping method. In particular, the location estimates derived by both methods were found to be within 
the range of the AS controls for all patients (Figure 7, top row). Moreover, a significant correlation is 
observed for hV5/MT+ pRF centers in the inferior (seeing) quadrant of patients P1, P2 and P4 (r=0.52, 
r=0.23 and r=0.67 respectively, p<10-2, Figure 7, top row), but not for patients P3 and P5 (P3: r=-0.01, 
p=0.87, P5: r =-0.03, p=0.6). The weak correlation between the CF and pRF estimates in patients P3 and 
P5 may be because some voxels in hV5/MT+ of the inferior quadrant are linked with V1 voxels that fall 
within the scotoma, close to the horizontal meridian (Figure 7, top row). These are not necessarily 
ectopic connections but may emerge from the fact that hV5/MT+ pRFs are large and cover both 
quadrants near the horizontal meridian. Thus for some voxels, hV5/MT+ activity may partly arise from 
visually-responsive, spared, V1 regions in the superior quadrant (scotoma) of these patients, an effect 
that is not feasible in AS-controls, for whom there is no visually driven activity (i.e. no stimulus 
presented) in the superior quadrant. 

In summary, we have identified responses in hV5/MT+ that cover the patients’ scotoma. For some 
patients such hV5/MT+ responses appear to be mediated by spared V1 to hV5/MT+ projections while, 
for others, by V1-bypassing pathways or both. Unfortunately, the presence of visually driven BOLD 
activity in hV5/MT+ is not sufficient to conclude that there is conscious vision. Perhaps more 
surprisingly, even the presence of visually driven BOLD activity in a (partially lesioned) area V1 region 
and its retinotopically corresponding early extrastriate areas, including area hV5/MT+, does not 
guarantee visual perception in some subjects. This suggests that BOLD response activity across the early 
visual cortex is not a sufficient criterion for deciding whether the capacity for visual perception is spared 
in subjects with post-geniculate lesions.  The fine coordination of activity patterns across visual areas at 
higher temporal resolution may be an important determinant of whether visual perception persists 
following lesions of the visual system.  

3.6 Population receptive field size in hV5/MT+ 

We found that the organization of hV5/MT+ in our patients differs from that of AS controls. This does 
not necessarily reflect reorganization but may be the result of different input sources that are uncovered 
following V1+ lesions. Additionally, we examined whether the pRF size of hV5/MT+ changes in 
patients with post-geniculate lesions. We found a larger mean pRF size in three out of five patients (P1, 
P3 and P5; Figure 8A) compared with the AS controls. The effect was significant for patients P3 (p=10-

13 < p=10-11, Kolmogorov-Smirnov test, significance is reported as p = a < b, where b is the value selected 
to reject the NULL hypothesis; Methods) and P5 (p=10-12 < p=10-11), but not for patient P1 (p=10-4 > 
p=10-11). No significant difference was observed for the remaining patients (P2: p=10-2 > p=10-11, P4: 
p=0.11 > p=10-11). Significantly larger pRF sizes were observed before near the scotoma border in area 
V1 of patients P1, P2, P3 and P4 (Papanikolaou et al., 2014). However, in hV5/MT+ the effect is not 
restricted to pRFs near or inside the scotoma but occurs for pRFs in the inferior (seeing) quadrant as 
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well (Figure 8B), suggesting that area hV5/MT+ might be able to undergo a larger extend of 
reorganization compared to V1, at least for some patients. 

 

Figure 8: Population receptive field size in hV5/MT+ of the lesioned hemisphere. A. Histograms of the distribution of 
pRF size from hV5/MT+ of all patients (gray bars) compared with the mean distribution of AS controls (step histogram). 
The shaded area indicates the SEM across the AS controls. The pRF size distribution of patients P1, P3 and P5 is shifted 
toward larger pRF sizes compared with the AS controls. The mean and standard deviation of each distribution for each patient 
is indicated on top of the graphs. The mean and standard deviation of the average distribution of AS controls is indicated in 
blue colour. B. Same as in (A) but for pRF centers that are located in the inferior (seeing) quadrant only (pRF elevation < 0). 

3.7 hV5/MT+ responses of the contra-lesional hemisphere 

Reorganization might occur as well in the contra-lesional, healthy hemisphere, following V1 injury. 
Previous studies in patients with visual cortical lesions have suggested that residual vision in the blind 
hemifield might be mediated by visual areas in the intact hemisphere (Ptito et al., 1999; Henriksson et 
al., 2007; Raninen et al., 2007; Reitsma et al., 2013). Enhanced ipsilateral activation of hV5/MT+ has 
been observed before in a blindsight patient with extensive V1 injury (Goebel et al., 2001; Morland et 
al., 2004), and strengthening of callosal connections between the two hV5/MT+ complexes has also 
been reported (Silvanto et al., 2007; Bridge et al., 2008). We compared the hV5/MT+ pRF coverage 
density maps of the contra-lesional (healthy) hemisphere for all patients with that of AS controls. In AS 
controls, the hV5/MT+ complex of the hemisphere ipsilateral to the AS covers one hemifield of the 
visual field, as expected. Patients P2, P3, and P4 have a significantly smaller hV5/MT+ representation 
compared with AS controls (AS: # of voxels = 218±104, P2: # of voxels = 67, p = 0.0316, P3: # of 
voxels = 41, p = 0.0192, P4: # of voxels = 26, p = 0.0147, t-test), suggesting that the pathways to 
hV5/MT+ of the healthy hemisphere are also influenced by the lesion. Moreover, the pRF coverage 
density maps of patients P2 and P4 fail to cover the entire visual field hemifield (Figure 9A). Patient P5 
on the other hand, shows a significantly enhanced hV5/MT+ representation compared with AS controls 
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(# of voxels = 449, p = 0.008, t-test). The pRF coverage density map of this patient also extended 
bilaterally, showing increased ipsilateral coverage compared to AS controls (Figure 9A). As each patient 
has a unique lesion, it is not surprising that different patients show different patterns of activation. The 
factors that contribute to those differences however, are not entirely clear and more studies with a larger 
number of patients will be needed in the future to improve understanding of visual processing in the 
context of injury. 

 

Figure 9: Visual field coverage maps and population receptive field size in hV5/MT+ of the contra-lesional 
hemisphere. A. Visual field coverage density maps of hV5/MT+ of the contra-lesional hemisphere for all patients. The scale 
of the color map has been clipped to the average significantly activated number of voxels for hV5/MT+ (218±104) of AS 
controls. The total number of significantly activated voxels for each subject is indicated on top of the graphs with a # symbol. 
The pRF centers from all voxels within each area are plotted as grey dots. B. Histograms of the distribution of pRF size from 
hV5/MT+ of the contra-lesional hemisphere of all patients (gray bars) compared with the mean distribution of the hemisphere 
ipsilateral to the AS (left) of AS controls (step histogram). The shaded area indicates the SEM across the AS controls. The 
mean and standard deviation of each distribution for each patient is indicated on top of the graphs. The mean and standard 
deviation of the average distribution of AS controls is indicated in blue colour. 
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Interestingly, the distribution of contra-lesional pRF sizes were different between patients and AS 
controls (Figure 9B). Specifically, patients P1, P3 and P5 had significantly larger mean pRF size 
compared with AS controls (Figure 9B, P1: p=10-16 < p=10-06, P3: p=10-08 < p=10-06, P5: p=10-42 < p=10-

06, Kolmogorov-Smirnov test). On the other hand, patient P2 had significantly smaller mean pRF size 
(Figure 9B, P1: p=10-11 < p=10-06). No significant difference was observed for patient P4 (p = 0.0927 > 
p=10-06). These results suggest that hV5/MT+ of the healthy hemisphere may also undergo significant 
reorganization following V1 injury, with potential implications in visual rehabilitation.  

4 Discussion 

We measured area hV5/MT+ responses in five patients (P1-5) with chronic post-geniculate lesions 
resulting in dense homonymous visual field defects.  

One important question is whether there are responses in hV5/MT+ to stimuli presented within the 
scotoma and what pathways these responses arise from. For all patients, visual field coverage density 
maps of hV5/MT+ overlap with areas of the perimetric scotoma (Figure 3). V5/MT activity after V1 
lesions has been observed before in monkeys (Bruce et al., 1986; Rodman et al., 1989; Girard et al., 
1992; Rosa et al., 2000; Schmid et al., 2010) and humans (Barbur et al., 1993; ffytche et al., 1996; 
Schoenfeld et al., 2002; Morland et al., 2004; Bridge et al., 2010; Whitwell et al., 2011). We identified 
two mechanisms that can account for this activity. 

Responses arising from the spared part of area V1. For 4/5 patients (P1-3, P5) there were visual field 
regions overlapping with the patients’ perceptual scotoma that were covered by both area hV5/MT+ and 
area V1. The elicited hV5/MT+ activity, corresponding to these visual field scotoma regions likely arises 
from the spared part of area V1 (Figure 5). In 3/5 patients (P2, P3, P5), cortico-cortical connective field 
modeling confirms that voxels in hV5/MT+ that correspond to the visual field scotoma receive inputs 
from voxels in the spared part of area V1 that also correspond to the visual field scotoma. For the 
remaining patient (P1), the visual field coverage map of area hV5/MT+ splits into two sections: i) a part 
that has a corresponding region in the visual field coverage map of area V1 (Figure 5b, red arrows), and 
ii) a part that does not (Figure 5b, green arrows). For part i) although both V1 and hV5/MT+ areas cover 
visual field regions overlapping with the patient’s perceptual scotoma, cortico-cortical connective field 
modeling suggests that hV5/MT+ activity in this region arises, at least in part, by V1-bypassing 
pathways. For part ii) activity in hV5/MT+ is not associated with activity observed in V1 suggesting 
that V1-bypassing pathways are dominant in this region. 

We showed previously that pRF maps in spared V1 may overlap significantly with dense regions of the 
perimetric scotoma without contributing to visual awareness (Papanikolaou et al., 2014), and postulated 
that lesions downstream of V1 input may be responsible. Here we show that even though pRF maps of 
both area V1 and hV5/MT+ cover the same region of the scotoma, this does not guarantee that visual 
awareness will be present there (Figure 5). Patients P3 and P5 have a cortical lesion that involves ventral 
areas V2 and V3 suggesting that the visual field deficit in the superior quadrant of these patients may be 
due to loss of activity in these areas. This however cannot explain the visual field deficit of patient P2, 
who has an optic radiation lesion that spares projection pathways of area V1 as well as extrastriate areas. 
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The coverage maps of P2’s extrastriate areas are also largely intact (Figure S3). Nevertheless, this 
subject has a dense quadrantanopia (Figure 2). One possible explanation may be that the level of activity 
elicited by visual stimulation in this patient is not sufficient to support useful vision. However, the mean 
amplitude of pRFs covering the scotoma in subject P2 is decreased by only ~27% compared to “seeing” 
locations, both in area V1 and hV5/MT+. It is unlikely that this could be the sole cause for the perceptual 
defect, since: 1) such decreases are routine when presenting stimuli of low contrast without affecting 
visual perception, 2) similarly low pRF amplitudes sometimes occur in seeing locations (area hV5/MT+ 
of patient P4). These observations suggest that the BOLD signal amplitude of the pRF maps, a surrogate 
measure of visual modulation strength, is not necessarily a good indicator of residual visual perceptual 
capacity in subjects with cortical lesions. Instead, disrupted or poorly synchronized organization of 
visual processing, which is not directly measured by the BOLD signal, is likely to play a significant role 
in the loss of visual perception.  

Responses arising from V1-bypassing pathways. For 2/5 patients (P1, P4) there are visual field 
regions covered by area hV5/MT+ that are not covered by V1. In fact, the part of V1 corresponding to 
these areas of the visual field is anatomically lesioned. Since activity in these locations arises from 
stimuli presented well within the scotoma (Figure 3), this strongly suggests that there are V1-bypassing 
pathways capable of activating area hV5/MT+ in these patients. Approximately 50% (13/27) of visually 
responsive voxels in hV5/MT+ of patient P4 could not be explained by activity in area V1 during cortico-
cortical receptive field mapping, suggesting the existence of V1-bypassing pathways. By contrast in AS 
controls, essentially all hV5/MT+ voxels had associated well-defined, retinotopically corresponding, 
CFs. All hV5/MT+ voxels with pRFs inside the scotoma for patient P1 and a few (~5) hV5/MT+ voxels 
with pRFs inside the scotoma for patient P4, were linked by CF modeling to V1 voxels with pRFs lying 
in the inferior (seeing) quadrant. This suggests that these hV5/MT+ voxels do receive part of their input 
ectopically from spared V1 voxels. However, hV5/MT+ voxels with pRFs inside the scotoma also show 
responses when the visual stimulus is well inside the blind quadrant (Figure 3), which are unlikely to 
arise from these ectopic V1 locations with pRFs inside the seeing quadrant, since V1 pRFs are small 
and do not extend to the required visual field locations. This again argues that responses in these 
hV5/MT+ voxels within the scotoma arise at least in part from V1-bypassing pathways. Activity in these 
pathways however is not sufficient to reduce the size of the scotoma measured in visual field perimetry. 

Visual awareness associated with activity in hV5/MT+. In contrast to prior reports (Barbur et al., 
1993; Zeki & Bartels, 1999) our results suggest that activation of hV5/MT+ alone is not sufficient for 
visual awareness (Goebel et al., 2001; Barleben et al., 2015). Other studies have pointed out the 
importance of feedback projections from V5/MT to V1 (Cowey & Walsh, 2000; Pascual-Leone & 
Walsh, 2001; Silvanto et al., 2005) supporting the idea that V1 is critical for conscious perception. Here 
we showed that V1 and hV5/MT+ can both show visually driven BOLD activity, but this is not 
necessarily a sufficient condition for conscious perception. It is unlikely that the lesion has selectively 
damaged the feedback connections from hV5/MT+ to V1 while sparing feedforward connections, and 
in particular for subject P2 that had an optic radiation lesion, early visual areas remain intact. Our results 
suggest two possibilities that can contribute to the loss of visual perception in the presence of residual 
area V1 BOLD activity: 1) Activity across visual areas becomes too asynchronous or disorganized for 
visual stimulus awareness to arise (Pollen, 1999; Silvanto, 2015), but this is not directly reflected in the 
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BOLD signal. 2) In some cases, extrastriate visual areas V2/V3 play an important role in visual 
awareness (Horton & Hoyt, 1991; Merigan et al., 1993; Slotnick & Moo, 2003; Salminen-Vaparanta et 
al., 2012) and their injury contributes significantly to the loss of visual perception. However, (2) is not 
the case for patient P2 whose early visual areas are intact and show activity corresponding to the visual 
field scotoma.  

An important point to reinforce here, in agreement to Papanikolaou et al. (2015), is that fMRI pRF 
measurements provide information about the underlying pathophysiology of the visual field scotoma 
not necessarily revealed by standard methods of visual field perimetry. The potential caveat should be 
mentioned here, that the stimuli used to assess the perceptual visual field scotoma (static and kinetic 
perimetry tests) differ from the visual stimulus that was used to map pRF boundaries. However, i) 
patients did not report seeing the visual stimulus we used to map their areas by fMRI in their scotomatous 
field, and ii) the depth (<-20dB) of the visual field scotoma measured in Humphrey’s perimetry is too 
large to readily explain the extent and strength of visual modulation seen within the scotoma by fMRI. 
It remains an open question, well worth pursuing, whether the development of new perimetry methods 
may better reflect the different underlying visual area activation pathophysiology phenotypes revealed 
by fMRI.  

Visual-motion related activity in area hV5/MT+ has been associated with subconscious visual 
perception in patients with V1 lesions, a phenomenon called “blindsight”. The neural pathways that 
mediate this residual performance have been the topic of much debate. Studies in humans and animal 
models suggest that blindsight is mediated by subcortical pathways, which effectively bypass area V1 
and transmit information from the retina to extrastriate visual cortex (Weiskrantz et al., 1977; 
Weiskrantz, 1996; Stoerig & Cowey, 1997). Another possible explanation, for some cases, is that there 
are spared functional V1 “islands” that may mediate residual vision (Gazzaniga et al., 1994; Morland et 
al., 2004; Radoeva et al., 2008). Our analysis methods have helped to identify two different patterns of 
activation observed in hV5/MT+ in patients with V1+ lesions. Although this activation does not 
contribute to conscious perception on routine visual field perimetry, it might offer a possible explanation 
for the phenomenon of blindsight, which we did not test here. It is also likely that the different patterns 
of activation observed might contribute differently to blindsight performance. Further research 
investigating the relationship between the different patterns of activation observed in hV5/MT+ and 
behavioral performance is required to shed light into the neurophysiological phenomena that underlie 
blindsight. 

Recent studies suggest higher visual areas and particularly hV5/MT+ may encode information about the 
perceived position of an object rather than its retinal coordinates (d'Avossa et al., 2007; Fischer et al., 
2011; Maus et al., 2013a; Maus et al., 2013b; Bonkhoff et al., 2017). It is unlikely that the stimulus we 
used produces perceptual displacements in general that can account for the visual activation within the 
scotoma of the patients, as one would expect the same pattern of activity to arise in the artificial scotoma 
controls. It is however possible that perceptual experience in patients differs from that of healthy 
subjects. Visual space distortions near the blind field have been observed in a patient with V1 lesion 
(Dilks et al., 2007) and patients with macular degeneration (Gerrits & Timmerman, 1969; Zur & Ullman, 
2003). Further behavioral tests are required to understand whether there are differences in the perceived 
stimulus position between patients with cortical lesions and healthy subjects and if so, whether these 
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perceptual asymmetries can account for the different patterns of activity observed within the scotoma in 
V1 and hV5/MT+. 

Reorganization of hV5/MT+ following V1 injury. We found increased pRF sizes in hV5/MT+ of the 
lesioned hemisphere for three out of five patients (P1, P3, P5) compared with AS controls, suggesting 
reorganization. The increase in pRF size may occur because subcortical inputs from LGN or the pulvinar 
reorganize via sprouting of cortical axons and contribute to hV5/MT+ activation. Interestingly, the same 
patients had increased pRF size in hV5/MT+ of the contra-lesional (healthy) hemisphere. It is therefore 
possible that the pRF size increase occurs as a result of reorganization of callosal connections between 
the two hV5/MT+ complexes (Silvanto et al., 2007; Bridge et al., 2008). Patients P2 and P4 had a similar 
pRF size in hV5/MT+ of the lesioned hemisphere as the AS controls. These patients had decreased 
representation in hV5/MT+ of the contra-lesional hemisphere and particularly patient P2 had 
significantly smaller pRF sizes, suggesting that the pathways to hV5/MT+ of the healthy hemisphere in 
these patients are affected by the lesion. The differences between patients may arise by the fact that each 
patient has a unique lesion. Patient P2 for example has an optic radiation lesion and patient P4 has a 
larger V1 lesion compared to the other patients that may have affected the capacity for reorganization 
in hV5/MT+ of these patients. More studies with a larger number of patients will be needed in the future 
to improve our understanding of visual processing in the context of injury. 

4.1 Conclusions 

We found that pRF maps of ipsi-lesional area hV5/MT+ overlap significantly with regions of the dense 
perimetric scotoma. In some subjects, hV5/MT+ responses appear to be mediated by spared V1 to 
hV5/MT+ projections while, in others, by V1-bypassing pathways or a combination of both. Apparently, 
hV5/MT+ activation, even if it is accompanied by activity in corresponding parts of V1 cannot guarantee 
visual perception. Interestingly, fMRI measurements provide information about the underlying 
pathophysiology of the visual field loss not necessarily revealed by standard methods of visual field 
perimetry. A timely question to ask is whether regions of the scotoma have different capacity for 
recovery based on their profile of coverage by spared visual areas. If this turns out to be the case, a better 
characterization of visual field coverage maps in spared visual areas following visual cortex lesions 
could help us develop better strategies for visual rehabilitation (Papageorgiou et al., 2014; Smirnakis, 
2016).  
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