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Abstract

Due to incomplete previous approaches it is largely unclear which are the best 24-run and 28-run two-
level designs in terms of any of the criteria currently in use to evaluate designs. In the present paper,
we address this issue. First, we study the complete catalog of non-isomorphic orthogonal two-level 24-
run designs involving 3-23 factors and we identify the best few designs in terms of aliasing between
main effects and two-factor interaction effects and, subject to this, in terms of aliasing among two-
factor interaction effects. Next, by modifying an existing enumeration algorithm, we identify the best
few 28-run designs involving 3-14 factors. Based on a complete catalog of 7570 designs with 28 runs
and 27 factors, we also seek good designs with more than 14 factors. To demonstrate the added value
of our work, we provide a detailed comparison of our designs to the alternatives available in the literature.

KEY WORDS: G-Aberration; Ga-Aberration; Hadamard Matrix; Orthogonal Array; Plackett-Burman
Design.

1 Introduction

In the early stages of process optimization, experimenters seek controllable factors that really affect the
process. A usual approach to this end is to create a list of candidate factors, vary their settings according to
a well-chosen experimental plan, and relate the changes observed in the process to the changes in the factor
settings. This procedure is called factor screening. Orthogonal experimental designs in which all factors
have two levels are commonly used plans for screening experiments. This is due to the fact that each of the
four level combinations of any pair of factors is then tested equally often. Therefore, in a statistical model
that includes only main effects, each of these effects is estimated with maximum precision and independently
from other main effects. Two-level orthogonal experimental designs are therefore ideal when it comes to
detecting main effects of factors, especially when these are the only active effects.

Some two-level orthogonal designs are regular, while others are nonregular. Regular two-level designs
(see, e.g., Mee, 2009; Montgomery, 2009; Wu and Hamada, 2009) exist for run sizes that are powers of 2.
The smallest regular designs have 4, 8, 16 or 32 runs and can accommodate up to 3, 7, 15 and 31 factors,
respectively. One of the weaknesses of these designs is that main effects can be completely aliased with two-
factor interactions and two-factor interactions can be completely aliased with other two-factor interactions.
Completely aliased effects cannot be included in a model simultaneously. Therefore, the number of models
that can be fitted to data from regular experimental designs is limited and there exists ambiguity when
interpreting the experimental results.



Many nonregular designs do not involve completely aliased effects. For this reason, they permit more
statistical models to be fitted to the data so that they offer more information on the factorial effects. In
addition, in case certain interactions are active and a main-effects model is estimated, the estimates of the
main effects usually have a smaller bias. The smallest nonregular designs have 12, 16 or 20 runs and involve
up to 11, 15 and 19 factors, respectively. These designs have been studied extensively by Lin and Draper
(1993), Deng and Tang (2002), and Sun et al. (2008).

In this paper, we study designs with 24 or 28 runs. Compared to designs with 12, 16 or 20 runs, these
designs allow more factors to be included in the experiment and offer more precise estimates of the factor
effects. Also, for any given number of factors, the aliasing between main effects and two-factor interactions
and the aliasing among two-factor interactions are less severe for designs in 24 or 28 runs than for designs
in 12, 16 or 20 runs. For example, for the best 13-factor 20-run designs listed in Deng and Tang (2002),
the generalized word count of length 3, which measures the correlation between main effect contrast vectors
and two-factor interaction contrast vectors, equals 15.92. For the best 24-run designs, this generalized word
count is only 6, indicating a substantially smaller amount of aliasing.

Most of the applications of 24-run and 28-run orthogonal designs we have been able to trace in the
applied literature are based on projections of the 23-factor 24-run design or the 27-factor 28-run design
proposed by Plackett and Burman (1946). For example, Diirig and Fassihi (1993) obtained a 13-factor
design in 24 runs by taking the first 13 columns of the Plackett-Burman design, while E1 Ati-Hellal et al.
(2007) use the first 25 columns of the 27-factor Plackett-Burman design. Without performing a complete
search for the best possible 13-factor 24-run design, Mee (2009, p.224) points out that the 13-factor design
derived from the Plackett-Burman design can definitely be improved upon, and makes clear that starting
from Plackett-Burman designs will generally not lead to an optimal design.

The main purpose of the present paper is to identify 24-run and 28-run designs with a minimum or a
near-minimum degree of aliasing between main effects and two-factor interactions and, subject to this, a
minimum or near-minimum degree of aliasing among two-factor interactions. The paper therefore reports
designs that perform well in terms of various statistically meaningful criteria. In Section 2, we discuss the
criteria used to quantify the degrees of aliasing as well as some other criteria that are relevant for comparing
the performance of designs in terms of model fitting. In Section 3, we review the literature on 24-run and
28-run designs and identify several shortcomings. In Section 4, we discuss the results of a complete search
over all non-isomorphic 24-run designs listed by Schoen et al. (2010), identify designs with top-3 values of
the design evaluation criteria for each number of factors, compare the designs to those in the literature and
provide recommendations on what designs to use. In Section 5, we modify the enumeration procedure of
Schoen et al. (2010) to identify 28-run designs with top-3 values of the design evaluation criteria and up to
14 factors. We also obtain a complete list of all 7570 non-isomorphic designs with 28 runs and 27 factors.
In order to find good designs involving 20-26 factors, we studied all possible projections of the best twelve
27-factor designs. Finally, in order to find good designs involving 15-19 factors, we studied all projections of
the best six 20-factor designs obtained from the best twelve 27-factor designs. For each number of factors,
we compare the 28-run designs we found with those in the literature and provide recommendations on which
ones to use. Finally, in Section 6, we discuss the strengths and weaknesses of our approach and we summarize
our findings.

2 Evaluation criteria

In this paper, we identify designs in 24 or 28 runs with a limited amount of aliasing between main effects
and two-factor interactions and, subject to this, a limited amount of aliasing among two-factor interactions.
To evaluate designs, we consider their strength (Hedayat et al., 1999), their confounding frequency vector
(CFV; Deng and Tang, 1999, 2002) and their generalized word-length pattern (GWLP; Tang and Deng,
1999). We also evaluate the designs in terms of their ability to estimate models involving interactions. To
this end, we calculate the rank of the model matrix corresponding to a model with an intercept, all main
effects and all two-factor interactions. We call such a model an interaction model. Finally, we calculate the
fraction of 5-factor subsets with an estimable interaction model, and we compute the average D-efficiency
over all these models.



2.1 Strength

All designs considered here are two-symbol orthogonal arrays. These arrays are rectangular arrangements
of the symbols, where the rows correspond to the experimental runs, the columns correspond to the factors,
and the symbols correspond to the factor levels. An orthogonal array with two symbols and a strength of ¢ is
such that, in every set of ¢ columns, each of the 2¢ combinations of symbols occurs equally often (Rao, 1947).
A strength of 3 implies that main effects can be estimated independently from two-factor interaction effects,
while a strength of 2 implies that main effects can be estimated independently from other main effects, but
not independently from two-factor interaction effects. The 24-run designs discussed in this paper are either
of strength 3 or of strength 2. The 28-run designs are all of strength 2. They cannot have strength 3, because
the run size of 28 is not divisible by 23 = 8. Therefore, it is impossible for the eight level combinations of
any three factors to occur equally often.

2.2 Confounding frequency vector

The CFV is based on so-called Js-characteristics of s-factor interaction contrast vectors. For a two-level
design, any contrast vector has elements —1 or +1. The Js-characteristic of an s-factor interaction contrast
vector is the absolute value of the sum of the vector’s elements. Deng and Tang (1999) showed that the
Js-characteristics in two-level strength-2 designs are of the form IV — 8k, where k is a nonnegative integer, N
is the run size, and k < N/8. So, the only possible Js-characteristics for 24-run designs are 24, 16, 8 and 0,
while 28-run designs have Js-characteristics of 28, 20, 12 or 4. A Js-characteristic of N in an N-run design
means that the main effect contrast vector of each factor involved and the two-factor interaction contrast
vector of the remaining two factors are perfectly positively or negatively correlated. A Jz-characteristic of 16
or 8 in a 24-run design implies a correlation of £2/3 or +1/3 between any of the three main-effect contrast
vectors, on the one hand, and the two-factor interaction contrast vector of the remaining factors, on the
other hand. A Js-characteristic of 20, 12 or 4 in a 28-run design implies correlations of +5/7, +3/7 or +1/7.
Ideally, a Js-characteristic is as close to zero as possible. A zero Js-characteristic means that the main effect
contrast vectors of the factors involved are orthogonal to the two-factor interaction contrast vectors. For
28-run designs, a zero Js-characteristic for a three-factor interaction contrast vector is not possible, as a
result of which at least some aliasing between main effects and two-factor interaction effects is unavoidable.
This is not the case for 24-run designs.

When Js-characteristics are calculated for all possible three-factor interaction contrast vectors, the fre-
quencies of the different outcomes can be collected in a vector F3. For example, there is a 14-factor 24-run
design with an F3 vector equal to F3(24,16,8,0) = (0,4,92,268). So, among all 14!/(3!11!) = 364 three-
factor interaction contrast vectors, none have a .J3-characteristic of 24, four have a Js3-characteristic of 16, 92
have a Js-characteristic of 8 and 268 have a Js-characteristic of 0. It is customary to drop the last element of
the F3 vector in case it is zero, and to use F3(24,16,8) = (0,4, 92) instead of F5(24,16,8,0) = (0,4, 92, 268).

In a similar fashion, frequency vectors of J-characteristics for higher-order interactions can be calculated.
The concatenation of all these vectors, (F3, Fy, Fs, ..., F,) (where n is the total number of factors), is the
CFV. A minimum G-aberration design sequentially minimizes the entries of the CFV from left to right. In
this paper, to limit the computational burden, we restrict ourselves to the sub-vectors (F3, Fy), (F3, Fy, F5)
and (F3, Fy, F5, Fg). We refer to the corresponding design evaluation criteria as the GA4, GA5 and GAG6
classifiers. Note that, if there is a unique best design according to any of these criteria, then that design has
minimum G-aberration.

2.3 Generalized word-length pattern

The GWLP contains the sums of the squared correlations of the third-order and the higher-order interaction
contrast vectors with the intercept. These sums are called the generalized word counts of length 3,4, ... n,
depending on the order of the interaction contrast vectors considered. The generalized word counts are
denoted by As, A4, ..., A,. For example, the 14-factor 24-run design with F3(24,16,8,0) = (0,4, 92, 268)
has a generalized word count of length 3 equal to 0 x 12 + 4 x (£2/3)% + 92 x (41/3)% 4+ 268 x 02 = 12. The
GWLP is the vector of all generalized word counts: (As, A4, ..., A4,). A design that sequentially minimizes
the elements of this vector, from left to right, is a minimum Gy-aberration design.



There may be many designs with the same generalized word counts. To distinguish between designs with
the same As value, we use the F3 vector, and to distinguish between designs with the same A, value, we
utilize the Fy vector. This leads us to seek designs that sequentially minimize the vector (As, F3, A4, Fy),
which we refer to as the mixed A4 classifier. The second half of this vector, quantifying length-4 word counts
and counting Jy characteristics, was used by Schoen and Mee (2012) to classify strength-3 designs.

Using the mixed A4 classifier instead of the pure GWLP has two advantages. First, it emphasizes the
desire to avoid strong correlations between main-effect contrast vectors and two-factor interaction contrast
vectors more strongly. This is because sequentially minimizing the A3 value and the elements of the F3 vector
results in the smallest frequencies possible for large Js-characteristics among all designs that minimize the
Az value. A second advantage of using the mixed A4 classifier is that it reduces the number of designs to
consider substantially. As a matter of fact, there may be large numbers of designs which minimize the As
value, but, generally, only a few of them possess the most attractive F3 vectors.

To illustrate the usefulness of the mixed A4 classifier, consider two 16-factor 24-run designs. The best
design in terms of the mixed A4 classifier has an Ag value of 24.44 and F3(24,16,8) = (0,4, 204). Another
design, ranked second in terms of the mixed A4 classifier, has the same Aj value, but F3(24,16,8) =
(0,6,196). Therefore, it involves two more correlations of £2/3 than the first design. This feature makes
the second design less suitable when the intention is to fit a main-effects model.

2.4 Rank of interaction model matrix

For a design with n factors, the interaction model matrix is an N X ¢ matrix with a column for the intercept,
n main-effect contrast vector columns and n(n —1)/2 two-factor interaction contrast vector columns. Hence,
q¢ = 14+n(n+1)/2. The difference between the rank r of the interaction model matrix and 1+ n (the number
of main effects plus one for the intercept) indicates the number of estimable two-factor interaction effects.
Therefore, designs with a large rank r of the interaction model matrix are attractive.

As an illustration of the usefulness of the rank criterion, the three best 7-factor 24-run designs in terms
of the GA4 classifier have ranks of 19, 24 and 22, respectively, for the interaction model matrix. Therefore,
the design ranked second in terms of the GA4 classifier might be preferred if the detection of two-factor
interaction effects is deemed very important.

2.5 Estimability and efficiency in subsets of five factors

The designs we consider are intended for use in screening experiments. Oftentimes, only a limited number
of factors turn out to have significant effects. Therefore, it makes sense to study the projections of these
designs obtained by dropping columns. This result in designs with fewer factors. Ideally, these designs allow
estimation of an interaction model in the remaining factors.

To quantify the potential of a design in this context, Loeppky et al. (2007) defined the projection estima-
tion capacity (PEC) vector (PECy, PEC,,...,PEC,), where PEC, is the fraction of a-factor subsets (out
of a total of (Z) subsets) for which the interaction model can be estimated. For 24-run and 28-run designs,
interaction models with any seven or more factors are not estimable, so that PEC, = 0 for x > 7. In this
paper, we use the PEC5 value along with the average D-efficiency with which all five-factor interaction
models can be estimated. We label the average D-efficiency with which all five-factor interaction models
can be estimated PIC5, where PIC is an abbreviation of projection information capacity. We work with
the PEC5 and PIC5 values rather than the complete PEC and PIC vectors for three reasons. First, scalar
criteria are simpler to handle. Second, PEC5 > PECy > PEC5 (Loeppky et al., 2007). As a result, designs
with a large PFEC5 value also have large PEC, and PECj3 values. Similarly, designs with large PIC5 values
also possess large PICy and PICj5 values. Finally, the results of Loeppky et al. (2007) suggest that the
PECg values for 24-run designs are generally rather poor, while both the PEC5 and PECg values are quite
high for the best 28-run designs. So, considering the entire PEC or PIC vector rather than just the PECj
and PIC5 values would not help much to discriminate among designs.



3 Literature review

The 24-run and 28-run designs in the literature have been constructed by means of two different techniques.
They are either based on projections from Hadamard designs with 23 or 27 factors, or on a bottom-up design
enumeration.

3.1 Projection-based approach

The papers that discuss projections from Hadamard designs start from a complete collection of non-
isomorphic Hadamard matrices such as the one given by Sloane (2015a). A Hadamard matrix of order
N, denoted by Hy, is an N x N matrix satisfying the equality Hy Hy = NIy. As a result, the columns
of a Hadamard matrix are orthogonal to each other. This explains why Hadamard matrices can be used as
orthogonal designs. Note that the rows of a Hadamard matrix are also orthogonal to each other.

The Hadamard matrices relevant for this article have dimensions N = 24 and N = 28, respectively. The
dimension N of a Hadamard matrix is often called its order. There are 60 non-isomorphic Hadamard matrices
of order 24 and 487 non-isomorphic Hadamard matrices of order 28. In normalized form, the elements of
the first column and the first row of a Hadamard matrix are all +1. A Hadamard design is obtained from
a normalized Hadamard matrix by dropping the first column. In this way, Evangelaras et al. (2004), Deng
and Tang (2002), Ingram and Tang (2005), Belcher-Novosad and Ingram (2003) and Loeppky et al. (2007)
obtain 60 Hadamard designs involving 24 runs and 23 factors and 487 Hadamard designs involving 28 runs
and 27 factors. The designs recommended by these authors are all based on selections of columns of these
starting designs.

One major problem with this approach is that it overlooks many alternative 24-run designs involving
23 factors and 28-run designs with 27 factors, and therefore also many potentially interesting projections of
these designs obtained by dropping columns. This is because any given Hadamard matrix may give rise to
several non-isomorphic designs, possibly with different statistical properties. This is explained in detail in
the appendix. It is known that there are 130 non-isomorphic 23-factor designs with 24 runs (Hedayat et al.,
1999) and 7570 non-isomorphic 27-factor designs in 28 runs (Sloane, 2015b, A048885). Any search involving
only the 60 23-factor Hadamard matrices and the 487 27-factor Hadamard matrices is therefore incomplete
and may lead to suboptimal designs.

We now summarize the literature based on projections of 23-factor 24-run designs and 27-factor 28-run
designs. Yamamoto et al. (1995) and Yumiba et al. (1997) enumerate all non-isomorphic projections of all
130 non-isomorphic designs with 23 factors and 24 runs into five and six factors, respectively. The focus
of these authors was on enumeration rather than on recommending good experimental designs. A positive
aspect is that these authors start their search from the complete set of 130 non-isomorphic orthogonal
designs. Evangelaras et al. (2004) discuss non-isomorphic projections of the 60 Hadamard designs involving
24 runs in up to five factors, and report their projection properties, generalized resolution and GWLP. Deng
and Tang (2002) list top-3 designs involving 24 runs and up to eight factors according to the GA5 classifier,
obtained from projections of the 60 Hadamard designs for 23 factors. Ingram and Tang (2005) specify a
stepwise algorithm to search for minimum G-aberration designs and minimum Gs-aberration designs based on
projections from Hadamard designs. They provide a list of recommended designs with 3-23 factors obtained
from the 60 Hadamard designs for 23 factors. Belcher-Novosad and Ingram (2003) discuss a modification of
Ingram and Tang’s algorithm to overcome the computational difficulties when addressing 28-run designs and
report a near-minimum G-aberration design with 28 runs and 17 factors. Bulutoglu and Ryan (2015) used a
heuristic approach to find 28-run designs with 15-26 factors with near minimum Gs-aberration based on all
7570 27-factor designs. Finally, starting from the 60 Hadamard designs with 24 runs and the 487 Hadamard
designs with 28 factors, Loeppky et al. (2007) propose a systematic approach to search for designs with good
PEC values, and present extensive tables including 24-run designs with 6-23 factors and 28-run designs
with 6-27 factors.

3.2 Enumeration-based approach

Generally, any search based on projections from designs with many factors is incomplete, since it is possible
that orthogonal designs exist that cannot be obtained from projections. This is indeed the case for designs
with 24 and 28 runs. For example, Yumiba et al. (1997) report 1317 non-isomorphic six-factor projections



Table 1: Numbers of non-isomorphic 24-run two-level designs

Factors Designs Factors Designs Factors  Designs
3 4 10 38,592,861 17 4,385,567
4 10 11 52,912,678 18 1,502,242
5 63 12 51,154,497 19 409,478
6 1,350 13 43,092,737 20 86,725
7 57,389 14 31,833,387 21 13,833
8 1,470,157 15 19,960,039 22 1,604
9 12,952,435 16 10,351,396 23 130

from all 130 23-factor designs in 24 runs. Evangelaras et al. (2007) and Schoen et al. (2010), however, report
1350 non-isomorphic six-factor designs. As a result, there exist 33 six-factor designs that cannot be found
by projection from 23-run designs.

A bottom-up enumeration of all possible designs would include both the latter 33 designs as well as the
former 1317 designs. Various authors have used a bottom-up enumeration approach, in which all designs
involving small numbers of factors are extended factor by factor to obtain all possible designs with large
numbers of factors. Li et al. (2004) introduce a bottom-up enumeration method to generate designs for 3—6
factors in up to 28 runs. Starting from a complete set of three-factor designs, all possible extensions with
one additional factor were generated. Each newly obtained set with an additional factor was then sorted
according to the GA5 classifier, and up to ten of the designs in each class were extended further.

Evangelaras et al. (2007) express the design generation problem as a linear system of equations. For
24 runs, they generate all non-isomorphic designs with up to six factors, while, for 28 runs, they generate
all non-isomorphic designs with up to five factors. They classify the designs in terms of G-aberration
and D-efficiency for the interaction model involving all factors. Angelopoulos et al. (2007) generate all
non-isomorphic 7-factor designs with 24 runs and all non-isomorphic 6-factor designs with 28 runs. Their
primary classification criteria are the Ga-aberration criterion for the 24-run designs and the D-efficiency for
the interaction model involving all factors for the 28-run designs. Finally, Bulutoglu and Margot (2008)
generate all 7-factor 24-run designs and all strength-3 24-run designs with up to 11 factors.

As opposed to the authors previously named, Schoen et al. (2010) completely enumerate all non-
isomorphic 24-run designs, for any number of factors. For 28 runs, they generate all non-isomorphic designs
with up to seven factors. Bulutoglu and Ryan (2015) list the distance distributions of the minimum Go-
aberration 24-run designs. These distance distributions can be converted into GWLPs using Krawtchouk
polynomials. For 28-run designs, they enumerate subsets of 3-14 factor designs that are guaranteed to
include the minimum Gs-aberration designs, and they identify the GWLP of these minimum aberration
designs.

4 Designs with 24 runs

The numbers of non-isomorphic 24-run designs generated by Schoen et al. (2010) for 3-23 factors are given
in Table 1. The large numbers of designs necessitate the use of computationally cheap criteria to search for
good designs.

We identified the top-3 designs according to the GA4 and mixed A4 classifiers. For 4-12 factors and
17-23 factors, the top-3 designs according to the GA4 classifier match the top-3 designs according to the
mixed A4 classifier. For 13-16 factors, the classifiers give different top-3 designs. There can be multiple
designs with the same ranking in terms of the GA4 classifier or the mixed A4 classifier. To provide a more
detailed characterization of each individual design in that case, we also evaluated all top-3 designs using
the GAG classifier, the PICy value and the PEC5 value. The designs are available upon request. Detailed
tables describing the features of all top-3 designs are given in Appendix B. Here, we only present the most
important designs we identified and their key features. A top-3 design is presented in the tables in this
article if it is best according to (i) the GA4 classifier (which is a shortened version of the CFV on which the
G-aberration criterion is based), (ii) the mixed A4 classifier (which is related to the Ga-aberration criterion),



(iii) the rank of the full N x ¢ interaction model matrix, (iv) the PIC5 value, or (v) the PEC5 value. In
case there is a tie for one criterion, we use the other criteria as tie breakers. The selected designs with 4-12
factors and their main characteristics are given in Table 2, while the selected designs with 13-23 factors and
their main characteristics are shown in Table 3.

The first columns in the tables identify individual designs and contain labels of the form n.i, where n is
the number of factors and 4 is the ranking based on the GA6 classifier applied to the merged set of top-3
designs according to the GA4 and mixed A4 classifiers. For each number of factors n, the table entry with
the smallest value of ¢ corresponds to a design that is optimal in terms of this classifier. For cases with 15,
17, 18 and 19 factors, the smallest value of 7 is larger than one. This means that multiple designs exist which
are equivalent in terms of the GAG6 classifier, but not in terms of the PECs; and PIC5 values. Similarly,
there may be several designs with equal but suboptimal rank of the GAG6 classifier that differ in PECs and
PIC5 values.

The tables’ next few columns contain details about the generalized word counts A3 and A4 and the
frequency vectors F3 and Fy. Note that J-characteristics not referred to in the tables have zero frequencies.
The tables’ last column presents PIC5 values. Table 2 also shows the rank of the interaction model matrix.
This rank is not shown in Table 3 because it equals 24 for all selected designs with 12 or more factors.
Instead, Table 3 shows the PEC'5 values of the selected designs. We do not show the PEC5 value in Table 2,
because it equals one for all selected designs with up to 12 factors. Designs recommended by Deng and
Tang (2002), Ingram and Tang (2005), Loeppky et al. (2007), Bulutoglu and Ryan (2015), Evangelaras et al.
(2007), Angelopoulos et al. (2007) and Plackett and Burman (1946) are indicated in Tables 2 and 3 using
superscripts.

4.1 4-12 factors

Table 2: Selected 24-run designs with 6-12 factors. Designs identified previously are indicated by super-
scripts. For all designs in the table, F3(24,16) = (0,0) and F4(24,16) = (0,0).

1D A3 F3 (8) A4 F4(8) Rank PIC5
41531 0.00 0 0.11 1 11 -
51134 0.00 0 0.56 5 16 0.86812
5.4 0.22 2 0.11 1 16 0.93901
6.11:345  0.00 0 1.67 15 18 0.86812
6.3%5 0.22 2 1.00 9 22 0.90049
7.11:3:46 0.00 0 3.89 35 19 0.86812
7.24,6 0.44 4 2.33 21 24 0.89668
81534 0.00 0 7.78 70 20 0.86812
8.24 0.67 6 5.78 52 23 0.87690
8.3% 0.78 7 5.89 53 24 0.86945
9.1523 (.00 0 14.00 126 21 0.86812
9.2 1.11 10 10.89 98 24 0.86782
10.1%23  0.00 0 23.33 210 22 0.86812
10.2 1.56 14 18.67 168 24 0.86493
11.1%23  0.00 0 36.67 330 23 0.86812
11.2 2.00 18 30.00 270 24 0.86428
12.1%23  0.00 0 55.00 495 24 0.86812

Ingram and Tang (2005); 2Loeppky et al. (2007); 3Bulutoglu and Ryan (2015); *Deng and Tang (2002); ®Evangelaras et al.
(2007); 6 Angelopoulos et al. (2007).

The 24-run minimum G-aberration and Gs-aberration designs for 4-12 factors have a strength of 3.
Therefore, these designs have a zero entry in the column labeled F3(8) in Table 2, as a result of which
the entire F3(24,16,8) vector is zero. As a consequence, the main effects can be estimated independently
from the two-factor interactions when these designs are used. For four as well as six factors, two different
strength-3 designs exist. Table 2 only shows the better of the two designs in each case. For other numbers



of factors, there is only one strength-3 design.

The recommended four-factor design, labeled 4.1, has a strength of 3 because it consists of a full 2%
design and a regular half fraction of it. Among the top-3 designs, design 4.1 has the best D-efficiency for
the interaction model: its D-efficiency value equals 0.9684.

For 5-12 factors, the strength of 3 for the minimum G-aberration and Gs-aberration designs comes at
a price. For example, the minimum G-aberration and Gs-aberration design for 5 factors has a D-efficiency
of 0.86812 for the full interaction model. The design ranked 4th in terms of the G-aberration criterion and
labeled 5.4, which is a strength-2 design, has a D-efficiency of 0.93901. Our results also show that strength-3
designs in 612 factors allow fewer two-factor interaction effects to be estimated than alternative strength-2
designs. For instance, design 6.3 has an interaction model matrix with a rank of 22, while design 6.1 has a
rank of 18 only for its interaction model matrix. As a result, with design 6.3, it is possible to estimate all 15
two-factor interaction effects. With design 6.1, only 11 two-factor interaction effects can be estimated. The
PIC5 value of design 6.3 is also better than that of design 6.1. For other numbers of factors, we observe
similar patterns in the results. So, if the interest is in estimating many interaction effects, maximizing the
strength of the orthogonal design is not a good idea.

4.2 13-23 factors

Table 3: Selected 24-run designs with 13-23 factors. Designs identified previously are indicated by super-
scripts. For design 23.3, F5(24) = 1. All other designs have F3(24) = 0.
1D As  F5(16) F3(8) Ay Fy(24) Fy(16)  F4(8) PEC5 PICs

13.1 10.00 0 90  41.67 1 0 366 0.96503 0.82092
13.7 8.00 2 64  48.33 0 0 435 0.99456 0.84857
13.812 6.00 6 30 55.00 0 0 495 0.98834 0.84833
14.1 15.11 0 136 53.22 1 4 454  0.96054 0.80565
14.4 12.00 4 92  61.00 1 0 540 0.98701 0.83853
15.2 20.00 0 180  67.67 2 21 507 0.95738 0.80178
15.51 18.11 3 151 73.00 3 0 630 0.97269 0.81988
15.10 18.11 8 131 73.00 1 4 632 0.97303 0.81937
16.1! 24.89 0 224 90.22 4 32 648 0.94872  0.79405
16.5 24.44 4 204  91.11 6 0 766  0.96062 0.80489
16.10 24.44 6 196  91.11 3 3 781 0.96268 0.80614
17.2 31.11 0 280 115.11 2 83 686 0.95669 0.79808
18.2¢ 37.33 0 336 148.00 9 81 927 0.94993 0.79346
19.31 45.33 0 408 185.33 4 38 1480 0.93455 0.77885
19.5 45.33 0 408 185.33 4 40 1472 0.93627 0.78006
20.11 53.33 0 480 231.67 5 48 1848 0.93421 0.77857
20.3 53.33 0 480 231.67 ) 160 1400 0.95227 0.79290
21.11 63.33 0 970  285.00 0 0 2565 0.90226 0.75259
21.3 63.33 0 570  285.00 5 160 1880 0.44346 0.77852
22.11:2 73.33 0 660 348.33 0 0 3135 0.90226 0.75259
22.3 73.33 0 660 348.33 10 99 2649 0.94087 0.78134
23.112F  84.33 0 759  421.67 0 0 3795 0.90226 0.75259
23.3 83.33 12 702 421.67 ) 60 3510 0.92781 0.77243

'Ingram and Tang (2005); 2Loeppky et al. (2007); ' Plackett and Burman (1946).

For each number of factors from 13 to 23, the first design listed in Table 3 is a minimum G-aberration
design, even if the i value in the design’s label is larger than 1. For example, we selected design 15.2 rather
than design 15.1 because it has a better PEC5 value (0.95738 versus 0.95538) and a better PIC5 value
(0.80178 versus 0.80025). For similar reasons, designs 17.2, 18.2 and 19.3 were selected instead of designs
17.1, 18.1, 19.1 and 19.2.

None of the designs with 13 or more factors has a strength of 3. As a result, when 13 or more factors



are studied, the main effects are aliased to some extent with the two-factor interactions. The maximum
correlation between a main effect and any two-factor interaction is £1/3 for most of the selected designs, as
the designs have a zero entry in the column labeled F5(16). For the designs 13.7, 13.8, 14.4, 15.5, 15.10, 16.5,
and 16.10, the maximum correlation between a main effect and any two-factor interaction is +2/3, due to
their nonzero entry in the column labeled F5(16). Nevertheless, these designs have better PEC5 and PIC5
values than the corresponding minimum G-aberration designs. Similarly, design 23.3 has F5(24) = 1, but its
PECs and PIC5 values are better than those of the minimum G-aberration design.

4.3 Comparison with designs from the literature
4.3.1 Comparison in terms of CFV and GWLP

Evangelaras et al. (2007) focus on six-factor designs. They list the seven best designs in terms of the G-
aberration criterion and the eight best designs in terms of D-efficiency for the interaction model. Their first
list includes all six-factor 24-run designs discussed in this paper. None of the designs in their second list is
included here, because we focus on aberration criteria, which assess the suitability of designs in case not all
of the main effects or interactions are active.

Angelopoulos et al. (2007) list the ten best seven-factor designs in terms of the Ga-aberration criterion.
They additionally report the generalized resolution of these ten designs. Our seven-factor designs are included
in their list.

Our 4-factor, 7-factor and 8-factor designs are also reported by Deng and Tang (2002). For five factors,
we report one design in Table 2 that is not listed by Deng and Tang (2002), namely design 5.4. This design
can be constructed by concatenating a regular 2°~! design and a regular 2°~2 design. It performs equally
well as design 5.3, which was reported by Deng and Tang (2002) in terms of the GA4 classifier. However, we
prefer design 5.4 over design 5.3 because it has a better D-efficiency for the full interaction model (0.93901
versus 0.92601).

For six factors, Deng and Tang (2002) list three designs. The stated value of the GA5 classifier of their
design 6.2 appears to be incorrect. It turns out that this design corresponds to our design 6.1. It permits the
estimation of one more two-factor interaction effect than our design 6.2, which corresponds to design 6.1 of
Deng and Tang (2002). Additionally, our design 6.1 has a better Fg vector. However, for practical purposes,
we recommend design 6.3, because it permits estimation of the interaction model in all six factors. This is
why the design has a rank of 22 for the interaction model matrix. This design is also reported by Deng and
Tang (2002).

Bulutoglu and Ryan (2015) identify the GWLP of the minimum Gs-aberration designs. Additional
material provided by these authors via personal communication also shows the numbers of minimum Ga-
aberration designs. For up to 12 factors, the minimum Gs-aberration designs are unique. For 13-20 factors,
several non-isomorphic minimum Gs-aberration designs exist, and, for 21-23 factors, all orthogonal designs
are equivalent in terms of Gy-aberration, as a result of which they are all minimum Gs-aberration designs.
The sets of tied designs with 14 or more factors include at least one instance with either F3(24) > 0 or
F4(24) > 0, implying completely aliased effects. Within the sets of tied designs, there are also alternative
minimum Gs-aberration designs that do not have completely aliased effects. Therefore, it remains worthwhile
to rank the entire catalog with the mixed A4 classifier, as done in the present paper. Our list of selected
designs includes minimum Gs-aberration designs for each number of factors, but we report the best of the
minimum Gy-aberration designs in terms of the mixed A4 classifier. Our minimum G-aberration designs
with 13, 14, 15 and 16 factors in Table 3 differ from the minimum Gs-aberration designs in Bulutoglu and
Ryan (2015).

For numbers of factors ranging from 4 to 23, Ingram and Tang (2005) present a single good design
according to the G-aberration criterion and a single good design according to the Gs-aberration criterion for
each number of factors. In the cases listed below, we obtained designs that outperform Ingram and Tang’s
designs in terms of G-aberration or in terms of the mixed A4 classifier. The preferred designs also have
better PECs5 or PICy values than those of the earlier authors.

1. Our minimum G-aberration design involving 13 factors (labeled 13.1) has Fs(16,8) = (12,456). The
near-minimum G-aberration design reported by Ingram and Tang is second best, with F5(16,8) =
(48, 312).



2. Our minimum G-aberration design involving 14 factors, labeled 14.1, has F4(24, 16,8) = (1,4,454). The
near-minimum G-aberration design reported by Ingram and Tang is second best, with Fy(24,16,8) =
(1,7,438).

3. Our best 14-factor design according to the mixed A4 classifier, labeled 14.4, has F3(24,16,8) =
(0,4,92). Ingram and Tang’s best design in terms of the Ga-aberration criterion is second best, with
F3(24,16,8) = (0,12,60), although it has the same A3 and A4 values as design 14.4.

4. Ingram and Tang’s best 15-factor design in terms of the G-aberration criterion does not belong to the
set of top-3 designs according to the GA4 classifier. Our design 15.4, with F4(24,16,8) = (3,13, 530),
is third best, while their design has Fy(24, 16,8) = (4, 8, 541).

5. The best 16-factor design according to the mixed A4 classifier, labeled 16.5, has F3(24,16,8) =
(0,4,204). Ingram and Tang’s best design in terms of Ge-aberration is second best, with F3(24, 16,8) =
(0,6,196), although it has the same A3 and A, values as design 16.5.

Finally, one of the most frequently adopted approaches to construct a 24-run design in n factors involves
taking the first n columns of the 23-factor Plackett-Burman (PB) design (Plackett and Burman, 1946). The
full 23-factor PB design corresponds to design 23.1 in Table 3. We compared the F5(8) frequencies of the
minimum G-aberration designs in 4-23 factors with the F3(8) frequencies of designs involving the first 4-23
columns of the PB design. For 4-12 factors, the F3(8) frequencies of the PB-derived designs increase from
1 to 94, while, for the minimum G-aberration designs, F3(8) = 0. Indeed, the PB-derived designs have a
strength of 2 only, while the minimum G-aberration designs for 4-12 factors have a strength of 3.

For 13-23 factors, the PB-derived designs and the minimum G-aberration designs all have a strength of
2. For 13-20 factors, the F3(8) frequencies of the PB-derived designs are 9 to 33 units larger than those
of the minimum G-aberration designs. As a result, the PB-derived designs are inferior to the minimum
G-aberration designs reported here, for 4-20 factors. For 21-23 factors, however, taking the first 21-23
columns of the PB design does result in the minimum G-aberration design.

4.3.2 Comparison in terms of PIC value

In this section, we compare the PIC5 values of the designs from our search with those of the designs reported
by Loeppky et al. (2007) as well as with those of the designs in Deng and Tang (2002), Ingram and Tang
(2005), Evangelaras et al. (2007) and Angelopoulos et al. (2007). Loeppky et al. (2007) focused on finding
designs that perform well in terms of PEC. Although we also computed the PEC, we prefer the PIC criterion
because this criterion does not only record whether interaction models are estimable, but also how precisely
they can be estimated.

Figure 1 compares the best PIC5 values for the designs in Tables 2 and 3 with the best ones of the
designs obtained by Loeppky et al. (2007), Deng and Tang (2002), Ingram and Tang (2005), Evangelaras
et al. (2007) and Angelopoulos et al. (2007). For six factors, the best design found by Loeppky et al. (2007)
matches the best design of Evangelaras et al. (2007) in terms of PIC5 value, and outperforms ours. The best
T-factor design in terms of PICs value is given by Angelopoulos et al. (2007, design 24.7.107). For 8-12
factors, our designs match the best designs of Loeppky et al. (2007), Deng and Tang (2002) and Ingram and
Tang (2005). For 13, 14, 16, 17, 20 and 22 factors, our best designs in terms of PICjy value outperform those
in the literature, although the differences are very small in a few of these cases. For 15 and 18 factors, the
best designs of Ingram and Tang (2005) coincide with our best designs. Finally, for 19, 21 and 23 factors,
the designs of Loeppky et al. (2007) have the best PIC5 value. For 19 or more factors, these designs as well
as our best ones outperform those proposed by Ingram and Tang (2005).

The PICs values of the 23-factor PB design and the designs obtained by taking the first 6-22 columns
of this designs are shown in Figure 1 by means of asterisks. The figure shows that PB-derived designs have
substantially lower PIC5 values than the best designs considered here.

Finally, Bulutoglu and Ryan (2015) do not list individual designs. For 4-12 factors, the minimum Go-
aberration designs whose GWLP they list are unique, and included in our own list. Regarding PIC5, their
designs in 5-9 factors are not the best of the competing designs, but for 10-12 factors, their designs have an
optimal PIC5. For 13-23 factors, the minimum Gs-aberration designs are not unique. For this reason, we
do not consider their 13-23 factor designs in our comparison of PIC5 values.
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Figure 1: PIC5 values of our 24-run designs with 6-23 factors (crosses), those obtained by Loeppky et al.
(2007) (boxes), Deng and Tang (2002) or Ingram and Tang (2005) (circles), Evangelaras et al. (2007) or
Angelopoulos et al. (2007) (triangles), and the first 6-23 columns of the Plackett-Burman design (asterisks).

4.4 Recommendations

It should be clear that all 24-run designs listed in Tables 2 and 3 perform well in terms of various design
selection criteria. The same goes for the designs displayed in Figure 1. In this section, we attempt to provide
practical guidelines regarding which design to use for each number of factors. We distinguish between the
cases of 4 or 5 factors, 6 factors and 7-23 factors.

For 4 or 5 factors, the number of parameters in the full interaction model is substantially smaller than
the number of runs, 24. Therefore, for 4 and 5 factors, we recommend the most D-efficient designs, which
are listed in Table 2 as designs 4.1 and 5.4, respectively.

For 7-23 factors, the number of parameters in the full interaction model exceeds the run size. In these
cases, a 24-run design is intended as a screening design and the primary interest is in detecting the active
factors. One possible approach to factor screening, in line with the effect hierarchy principle, focuses on
main effects and involves fitting a main-effects model first to identify active main effects. Minimum G-
aberration designs facilitate the detection of main effects in that case because they minimize the aliasing
of the main effects and the two-factor interactions. Therefore, we recommend the minimum G-aberration
designs involving 7-23 factors if the factor screening starts with a main-effects model.

An alternative approach pays immediate attention to interaction effects as well and involves fitting
interaction models in small numbers of factors. If that approach is utilized, it makes sense to pick designs
that have a large PIC5 value. Such designs also guarantee a precise estimation of models with fewer than five
factors. Therefore, if only a few factors are expected to be active and an interaction model in these factors is
of interest, we recommend the designs with the largest PIC5 values shown in Figure 1. Most of these designs
were identified by means of our evaluation of the top-3 designs we obtained, namely the designs 8.2, 9.1,
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10.1, 11.1, 12.1, 13.9, 14.4, 15.10, 16.10, 17.2, 18.2, 20.3, and 22.3. Four of the designs with maximum PICj
value were identified by other authors, namely the 7-factor design labeled 24.7.107 by Angelopoulos et al.
(2007) and the 19-, 21- and 23-factor designs found by Loeppky et al. (2007) by means of their top-down
search and labeled 19.1, 21.3 and 23.2 in their paper. Note that, in some cases, the minimum G-aberration
designs have the best PIC5 values. Note also that we recommend the minimum G-aberration designs with
7-23 factors in case more than five factors are expected to be active.

For 6 factors, the number of parameters in the full interaction model equals 22. That model is estimable
with an appropriate 24-run design. In case there is an immediate interest in quantifying all two-factor
interaction effects, we recommend design 24.6.232 given by Evangelaras et al. (2007), which is one of the
eight 6-factor designs with a D-efficiency of 0.784 for the full interaction model. When estimating the full
interaction model, only two degrees of freedom remain for estimating the error variance. In case this is a
concern and the intention is to start with a main-effects model, we recommend the minimum G-aberration
design 6.1.

5 Designs with 28 runs

In this section, we discuss 28-run designs involving 3-27 factors. For 3-7 factors, catalogs with all non-
isomorphic designs are available. The numbers of non-isomorphic designs for these numbers of factors are
shown in the right column of Table 4; see Evangelaras et al. (2007) for the number of five-factor designs,
Angelopoulos et al. (2007) for the number of six-factor designs and Schoen et al. (2010) for the number of
designs with 3-7 factors. At present, there is no complete catalog containing all non-isomorphic 28-runs
designs for numbers of factors ranging from 8 to 26. For 27 factors, there are 7570 non-isomorphic designs;
see (Sloane, 2015b, sequence A048885 ).

In Section 5.1, we outline a step-by-step enumeration procedure to identify top-3 designs with 3—14 factors
according to the GA4 and mixed A4 classifiers, and we characterize the resulting designs. In Section 5.2,
we adopt a projection approach to find good designs involving 15-26 factors, starting from the 7570 non-
isomorphic 27-factor designs.

5.1 3-14 factors
5.1.1 Enumeration approach

We obtained the designs for 3—14 factors using a procedure similar to the one adopted by Bulutoglu and
Ryan (2015). There are four non-isomorphic designs involving 28 runs and three factors. These four designs
have F3(28,20,12,4) vectors equal to (1,0,0,0), (0,1,0,0), (0,0,1,0) and (0,0,0,1). The best of the four
three-factor designs has (0,0,0,1) as F3 vector. That design involves three copies of the 23 factorial design
plus a regular half fraction. We extended this design by adding one extra factor column at a time, using the
enumeration procedure of Schoen et al. (2010). Each time a factor column has been added, we discard the
designs with Js-characteristic values greater than 4 and designs that are not in lexicographically minimal
form. In other words, we construct sets of non-isomorphic designs with an F3(28,20,12,4) vector of the form
(0,0,0,a), where a = (g) The resulting sets of designs only involve the smallest possible J3-characteristic.
Therefore, these sets contain the designs that are optimal in terms of the GA4 classifier.

Using our step-by-step procedure, we were able to obtain the complete set of 28-run designs with
F5(28,20,12,4) = (0,0,0,a), involving 4-14 factors. No such designs exist with 15 or more factors. As
a result, for 15 or more factors, we need to use a different procedure to find designs that perform well in
terms of the GA4 classifier. In Table 4, we show the numbers of non-isomorphic designs we found with
F5(28,20,12,4) = (0,0,0,a), which match the results of Bulutoglu and Ryan (2015). These numbers are
very small compared to the total number of non-isomorphic designs for 3-7 factors. The new enumeration
approach thus saves substantial computing time, as fewer designs need to be extended and evaluated.

For any given number of factors, the 28-run designs with F3(28,20,12,4) = (0,0, 0,a) have the smallest
possible A3 values. This claim can be proven as follows. As shown by Deng and Tang (1999), any 28-run
design has Js-characteristics of 28, 20, 12 and 4, which correspond to correlations of +1, +5/7, +£3/7 and
+1/7, respectively, and an F3 vector of the form F5(28,20,12,4) = (d, ¢, b,a), where a = (") —(b+c+4d).

3
As a result, the Az value of a 28-run design equals d + ¢(£5/7)? + b(£3/7)* + [(3) — (b+ ¢+ d)](£1/7)?, or
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Table 4: Numbers of non-isomorphic 28-run designs
F5(28,20,12,4)

n (0,0,0,a) General
3 1 4
4 3 7
5 15 127
6 320 17,826
7 12,194 53882,186
8 63,606
9 20,552
10 841
11 45
12 10
13 2
14 1

[48d + 24c+ 8b+ (%)]/49. For a design with b =c=d =0, A3 = (})/49. Now, suppose that a design would
exist for which Az < (g) /49. For such a design, it would be required that 48d 4 24¢ + 8b < 0. As b, ¢ and
d are nonnegative integers, this is, however, impossible. As a result, no better designs exist in terms of Ag
value than those with F5(28,20,12,4) = (0,0,0,a). To find 4-14 factor designs that are optimal according
to the mixed A4 classifier, we therefore only have to rank the designs with F5(28,20,12,4) = (0,0,0,a)
according to their A4 values, followed by the F; vector.

5.1.2 Results

Table 5: Selected 28-run designs with 4-14 factors. For all designs in the table, F3(28,20,12) = (0,0,0) and
Fy(28) = 0.

ID  A; F5(4) Ay F4(20,12,4) PICs
41 008 4 0.02 0 o0 1 -
53 0.20 10 0.1 0 0 5 0.94091
6.3 0.41 20  0.31 0 0 15 0.93726
71 0.71 35 0.88 0 1 34 0.93102
8.1 1.14 56 2.9 0 9 61 0.91075
9.1 171 84 551 0 18 108 0.90738
10.1 245 120 11.47 0 44 166 0.89314
10.8 245 120 10.82 2 34 174 0.89629
10.10 245 120 10.49 6 20 184 0.89621
11.1 337 165 21.43 0 90 240 0.87942
114 337 165 18.82 3 65 262 0.88890
12.1 449 220 32.14 0 135 360 0.87934
12.3 449 220 28.22 6 93 396 0.88859
13.1 584 286 46.43 0 195 520 0.87933
14.1 743 364 65 0 273 728 0.87931

For 4-14 factors, our complete listing includes 77 groups of designs that are best, second best or third
best according to the GA4 classifier or the mixed A4 classifier. All these designs permit estimation of the
interaction models involving any subset of five factors. Hence, PEC5 = 1 for each of the designs. The 77
groups differ according to the GAG6 classifier, which was used for further differentiation. Each group can
have multiple designs. In Appendix C, we show the values of the designs’ GAG classifier along with the word
counts of lengths 3 up to 6 and their PIC5 values. The generalized word counts of lengths 3 and 4, the F3
and Fy vectors and the PIC5 values for a selection of the designs are shown in Table 5. For each number of
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Figure 2: Best PICs values of our 28-run designs with 6-14 factors (crosses), those obtained by Loeppky
et al. (2007) (white boxes), and those derived from the first 6-14 columns of the Plackett-Burman design
(asterisks).

factors, the table includes the designs with the best PIC5 values we found in all of the 77 groups, the designs
with the best PIC5 values among those that are optimal in terms of the GA4 classifier and those with the
best PIC5 values among those that are optimal in terms of the mixed A4 classifier. All listed designs have
the maximum possible rank of the interaction model matrix.

Because all designs in Table 5 have F3(28,20,12,4) = (0,0, 0, a), we only show the value of a in the table.
That value always equals (g) This result implies that the correlation between any main-effect contrast
vector and any two-factor interaction contrast vector involving two other factors equals £1/7. As a result,
when estimating a main-effects model based on any of the designs in the table, the main effects estimates
are biased only to a small extent by active two-factor interactions.

The table shows that the minimum G-aberration designs for 28 runs and 5-14 factors all have an F}
vector of the form Fy(28,20,12,4) = (0,0,b,a), with a4+ b = (}) and b > 0. This implies that the designs
generally perform well when a few two-factor interactions need to be estimated. This is confirmed by the
high PIC5 values: the smallest values in the table are all close to 0.88. Table 5 shows four designs that are
not optimal in terms of the GA4 classifier, namely designs 10.8, 10.10, 11.4 and 12.3. The latter three designs
are included because they are optimal in terms of the mixed A4 classifier. Their A4 values are smaller than
those of the designs which are optimal in terms of the GA4 classifier. Design 10.8 is second best according
to the mixed A4 classifier. It is included in Table 5 because it has the best PIC5 value among the top-3
10-factor designs.

In terms of the GA4 classifier, our 28-run designs with 7-14 factors are all better than those in Loeppky
et al. (2007). For six factors, our best design and the best one of Loeppky et al. (2007) are equivalent in
terms of the GA4 classifier. However, our design performs better in terms of the GA5 classifier. The PIC}5
values of our best six-factor designs and those in Loeppky et al. (2007), Angelopoulos et al. (2007), and
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Li et al. (2004) coincide, while taking the first six columns from the Plackett-Burman design in 27 factors
leads to inferior PICy values. Figure 2 compares the PIC5 values of the designs with 6-14 factors found
by Loeppky et al. (2007) with those of our designs and the PB-derived designs. The latter group of designs
is clearly inferior in terms of PIC5. For 7—14 factors, our best designs outperform those of Loeppky et al.
(2007).

Finally, Bulutoglu and Ryan (2015) present the GWLP of minimum Gs-aberration designs. Our list
of selected designs in 4-14 factors includes minimum (Gs-aberration designs, but we report the best of the
minimum Gay-aberration designs in terms of the mixed A4 classifier.

5.2 15-27 factors
5.2.1 Approach

For 15 or more factors, no 28-run designs exist with an F3 vector of the form F3(28,20,12,4) = (0,0,0,a).
The next best form of F3 vector is F3(28,20,12,4) = (0,0,b,a) with b > 0. By exploring the complete set
of non-isomorphic seven-factor designs, we identified 5,434,439 designs with such an F3 vector. Extending
these designs by adding one factor at a time would allow us to obtain a complete catalog of designs with the
same kind of F3 vector. If this factor-by-factor extension would reach designs with 15 factors or more, we
would be able to identify the minimum G-aberration designs for these numbers of factors. Unfortunately,
this approach is computationally infeasible due to the extremely high numbers of non-isomorphic designs
involving eight or more factors. For example, extending the first 7,000 non-isomorphic seven-factor designs
resulted in 1,792,801 non-isomorphic eight-factor designs. So, a rough estimate of the number of eight-factor
designs of the type we are interested in is 1,792,801 x 5,434, 439/7,000 = 1,391, 838, 239. Therefore, except
in the special case of 27 factors, identifying the globally best 28-run designs for 15 or more factors according
to the GA4 classifier is not feasible.

The infeasibility of the enumeration approach prompted us to adopt a projection approach for finding
good designs involving 15-26 factors, starting from the complete catalog of non-isomorphic 27-factor designs.
Before doing so, however, we first identify top-3 designs with 27 factors in terms of the GA4 classifier. To
this end, we construct all 7570 non-isomorphic 27-factor designs starting from the complete catalog of all
487 non-isomorphic Hadamard matrices of order 28 listed by Sloane (2015a) and constructed by Kimura
and Ohmori (1986), Kimura (1994a), and Kimura (1994b). All orthogonal 27-factor designs in 28 runs
have the same GWLP, but may differ in CFV. Therefore, the top-3 designs in terms of the GA4 classifier
match the top-3 designs in terms of the mixed A4 classifier. There were twelve 27-factor designs with
F5(28,20,12,4) = (0,0,351,2574). These twelve designs are best in terms of the GA4 classifier and in terms
of the mixed A4 classifier.

As the best F3 vector for 27 factors is of the form F3(28,20,12,4) = (0,0, b, a), any minimum G-aberration
design with fewer than 27 factors must also have an Fj vector of the form F3(28,20,12,4) = (0,0,b,a).
The smaller the number of factors, the smaller the anticipated b value of the corresponding minimum G-
aberration design. For 2026 factors, we therefore identified the top-3 designs in terms of the GA4 classifier
among all possible projections from these twelve designs. In doing so, we considered more than 10,000,000
projections into 20-factor designs. As a consequence of this large number of relevant 20-factor designs, it
was computationally infeasible to study all 15-19-factor projections of the best 12 designs with 27 factors.
For this reason, for the cases of 15-19 factors, we studied all projections from the six best 20-factor designs
we obtained in terms of the GA4 classifier. Using the projection approach to identify the best designs in
terms of the mixed A4 classifier was computationally infeasible, because this would involve all 7570 27-factor
design to start with.

Every time we encountered large numbers of designs with the same performance in terms of the GA4
classifier in the course of our projection approach, we restricted attention to the top-3 designs in terms
of the GA5 classifier within the class of designs with a given performance in terms of the GA4 classifier.
For example, the set of 16-factor designs that perform second best according to the GA4 classifier all have
F5(12,4) = (47,513) and F4(20,12,4) = (21,199,1600). The three best Fj5 vectors for these designs are
F5(16,8) = (54,1686), (56,1678), and (60, 1662).
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Table 6: Selected designs with 28 runs and 20-27 factors. For all designs in the table, F3(28,20) = (0,0)
and Fy(28) = 0.

D Ay F5(12) F3(4) A, F,(20) F,(12) Fy(4) PEC; PICs

201 44.00 127 1013 196.84 30 510 4305 0.99542 0.85923
203 44.16 128 1012 196.02 12 559 4274 0.99845 0.86129
20x  44.82 132 1008 195.04 0 589 4256 1 0.86037
211 5212 153 1177  240.67 34 624 5327 0.99568 0.85815
214 5229 154 1176 240.67 8 702 5275 0.99833  0.86000
21.x 5261 156 1174 240.18 0 723 5262 1 0.85980
221 60.98 181 1359 293.12 10 851 6454 0.99848 0.85949
224 60.98 181 1359 293.12 11 848 6456 0.99859  0.85957
22x 6131 183 1357 292.80 0 879 6436 1 0.85919
231 70.59 211 1560 354.43 0 1064 7791 1 0.85904
236 70.59 211 1560 354.43 8 1040 7807 0.99878 0.85916
241  80.82 242 1782 425.18 0 1276 9350 1 0.85885
243  80.82 242 1782 425.18 11 1243 9372 0.99885 0.85899
251 92.00 276 2024  506.00 0 1518 11132 1 0.85866
255  92.00 276 2024 506.00 15 1473 11162 0.99881 0.85872
26.1  104.00 312 2288  598.00 0 1794 13156 1 0.85866
27.17 117.00 351 2574 702.00 0 2106 15444 1 0.85866

PPlackett and Burman (1946).

5.2.2 Results for 2027 factors

Our list of top-3 designs according to the GA4 classifier for 20-27 factors includes 42 groups of designs in
total. The groups differ according to the GA6 classifier. In Appendix C, we show the GAG6 classifier of a
representative of each of the groups, along with the PEC5 and PICy values. The generalized word counts
of length 3 and 4, the F3 and Fj vectors and the PEC5 and PIC5 values for a selection of the designs are
shown in Table 6. Designs were initially included in Table 6 only if they have the best PIC5 value, or if they
have the best PIC5 value among the designs that perform best in terms of the GA4 classifier. Remarkably,
this procedure did not result in designs involving 20-22 factors with a PEC5 value of 1, even though design
23.1 involves a larger number of factors and yet has a PEC5 value equal to 1. For this reason, we added the
designs 20.x, 21.x and 22.x, which are projections from design 23.1, to the table. While these designs are
neither optimal in terms of the GA4 classifier nor in terms of the PIC5 value, they are good design options
for 20-22 factors with PECs = 1.

Each of the designs in the table has a PIC5 value greater than 85% and a PECs5 value greater than
99.5%. Designs with a given number of factors only show very small differences in PECs and PICj5 values.
Therefore, whenever a practitioner anticipates that at most five factors will be active, we recommend a
design with PEC5 = 1 over designs with a slightly higher PIC5 value and PECs < 1. If more than five
factors are expected to be active, we recommend the best tabulated designs in terms of the GA4 classifier.

Design 27.1 in our list corresponds to the 28-run PB design. In other words, in case 27 factors are studied,
we do recommend the PB design. Note that this design permits estimation of interaction models involving
any subset of five factors, so that PEC5 = 1. The average D-efficiency with which all these models can be
estimated is 0.85866.

A simple way of constructing 28-run designs with 20-26 factors is to take the first 20-26 columns of the
28-run PB design. For 25 and 26 factors, the designs obtained in this fashion correspond to design 25.1 and
26.1 in Table 6. However, our best 20-24 factor designs have F3(12) frequencies that are 11, 9, 5, 2 and 1
units smaller than those obtained by taking the first 20-24 columns of the PB design. As a result, the PB
design is generally not a good starting point for finding the best 28-run design.

We compare our best designs to those of Loeppky et al. (2007) and those by taking the first 20-26 columns
of the Plackett-Burman design for 27 factors in Figure 3. The figure’s left panel shows the PIC5 values.
Our best designs involving 20-22 runs outperform those of Loeppky et al. (2007) in terms of PIC5 value,
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Figure 3: PICj values and differences in F5(12) frequencies for the best 28-run designs 20-26 factors obtained
by Loeppky et al. (2007) (white boxes), the designs derived from the first 20-26 columns of the Plackett-
Burman design (asterisks) and the best designs we obtained from the 12 best 27-factor designs (crosses).
Frequency differences are with respect to our designs.

while the best designs with 23-26 factors in Loeppky et al. (2007) are better than ours. The PB-derived
designs all have lower PIC5 values than the best of the other designs. However, the differences are minor.
The right panel of Figure 3 shows the difference in the frequency of the Js-characteristic of 12 between the
best designs of Loeppky et al. (2007) and the PB-derived designs, on the one hand, and our best designs,
on the other hand. If this difference is positive for a certain design, our design outperforms the alternative
design. If the difference is negative, our design is inferior. The figure shows that our designs are better than
those of Loeppky et al. (2007) for 20-22 factors, worse for 23 and 24 factors, and equally good for 25 and 26
factors. The PB-derived designs in 20-26 factors are worse for 20-24 factors and equally good for 25 and 26
factors.

Neither in terms of the F3 vectors nor in terms of the PIC5 values, our designs are consistently better
or worse than those of Loeppky et al. (2007). For the performance in terms of the Fs vectors, this is due
to the fact that there exists no complete catalog of non-isomorphic designs with 20-26 factors which we can
explore. For the performance in terms of the PICy values, it is due to the fact that, for computational
reasons, neither our approach nor that of Loeppky et al. (2007) evaluates all available designs in terms of
their PIC5 value. Our incomplete search for designs with 20-26 factors that perform well in terms of the
GAA4 classifier and the mixed A4 classifier sometimes results in a design with a better PIC5 value. In other
cases, it is the incomplete search of Loeppky et al. (2007) for designs with a large PEC5 value that results
in a design with a better PIC5 value. In any case, Figure 3 shows that both approaches yield very similar
results.

Bulutoglu and Ryan (2015) conducted a heuristic search for good 28-run designs in terms of Ga-
aberration. Our designs in 20-24 factors turn out to have slightly higher A3 values (difference at most
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0.49) and slightly lower A4 values (difference at most 1.15) than theirs. For 25-27 factors, our best designs
have the same Az and A4 values as those of Bulutoglu and Ryan (2015). Generally, our best designs should
be more desirable in terms of the GA4 classifier, because this was the primary criterion in our heuristic
search.

5.2.3 Results for 1519 factors

Table 7: Selected 28-run designs with 15-19 factors. For all designs in the table, F5(28,20) = (0,0) and
Fy(28) = 0.

D A; F3(12) F3(4) A, F4(20) Fy(12) Fy(4) PECs PICs
15.1 14.02 29 426 6557 21 168 1176 0.99767 0.87134
15x  15.98 41 414 5741 0 181 1184 1 0.87081
16.1 17.31 36 524 87.43 28 224 1568 0.99725 0.87075
16.x 20.73 57 503 74.69 0 230 1590 1 0.86631
17.1  23.18 57 623 105.06 28 262 2090 0.99628 0.86704
175 23.67 60 620 104.73 28 260 2092 0.99644 0.86503
17x  25.96 74 606  96.57 0 294 2086 1 0.86342
18.3  29.71 80 736 128.73 28 322 2710 0.99568 0.86324
18.x 31.67 92 724 123.35 0 373 2687 1 0.86184
19.2  36.59 103 866 159.10 28 406 3442 0.99579 0.86107
19.7  36.76 104 865 158.78 28 404 3444 0.99596 0.86078
19.x  37.90 111 858 156.00 0 471 3405 1 0.86102

Our top list for 15-19 factors includes 32 designs. In Appendix C, we show the GAG6 classifier of the
designs along with their PEC5 and PIC5 values. The word counts of length 3 and 4, the F3 and Fj vectors
as well as the PECs and PIC5 values of a selection of the designs are shown in Table 7. Initially, designs
were included in Table 7 only if they have the best PIC5 value, or if they have the best PICy value among
the designs that perform best in terms of the GA4 classifier. This procedure did not result in designs with
a PECs value of one. For this reason, we included the additional designs 15.x, 16.x, 17.x, 18.x and 19.x,
which are projections from design 20.x, shown in Table 6. While these designs are neither optimal according
to the GA4 classifier nor according to the PIC5 value, they are good designs with 15-19 factor and with
PECs; =1.

Each of the designs in the table has a PIC5 value greater than 86% and a PECs5 value greater than
99.5%. Designs with a given number of factors only show very small differences in PECs and PIC5 values.
Therefore, whenever a practitioner anticipates that at most five factors will be active, we recommend the
designs with PEC5 = 1 over designs with a slightly higher PIC5 value and PEC5 < 1. If more than five
factors are expected to be active, we recommend designs that are best in terms of the GA4 classifier.

The best GWLPs identified by Bulutoglu and Ryan (2015) for 15- and 18-factor designs differ slightly
from ours. The Aj values for our best 15- and 18-factor designs are 1.31 and 0.32 units larger than those of
Bulutoglu and Ryan (2015), while our A4 values are 6.86 and 0.33 units smaller. For 16, 17, and 19 factors,
our designs and the designs provided by Bulutoglu and Ryan (2015) have equal A3z and A4 values.

We compare our best designs to those of Loeppky et al. (2007), to the single 17-factor design from
Belcher-Novosad and Ingram (2003) and to designs consisting of the first 15-19 columns of the 27-factor
Plackett-Burman design in Figure 4. The figure’s left panel shows PICy values, while its right panel shows
frequencies of Js-characteristics of 12. Clearly, our best designs in terms of the GA4 classifier are better
than the competing designs in terms of the F3(12) frequencies. We therefore recommend these designs when
more than five factors are expected to be active and a main-effects model is used to identify active factors.
Note that the design of Belcher-Novosad and Ingram (2003) is a near-minimum G-aberration 28-run design
with 17 factors and F3(28,20,12,4) = (0,0,59,621). Our design 17.1 has a slightly better F3 vector of
(0,0,57,623).

The best PIC5 values of our designs are up to 0.44% better than those of the best competing designs.
For the case of 19 factors, our best design is slightly worse than the best design in Loeppky et al. (2007).
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Figure 4: PIC5 values and differences in F3(12) frequencies of the best 28-run designs 15-19 factors obtained
by Loeppky et al. (2007) (white boxes), the designs derived from the first 15-19 columns of the Plackett-
Burman design (asterisks), the 17-factor design from Belcher-Novosad and Ingram (2003) (circles) and the
best designs we obtained from the six best 20-factor designs (crosses). Frequency differences are with respect
to our designs.

Therefore, the best designs in terms of the PIC5 value, both in Loeppky et al. (2007) and in our paper, are
all good design choices in case at most five factors are expected to be active.

As before, the PB-derived designs are neither optimal in terms of G-aberration nor in terms of PICS
value.

6 Discussion

This paper describes the results of a complete search of the best 24-run designs involving up to 23 factors
and of the best 28-run designs in terms of the GA4 and mixed A4 classifiers with up to 14 factors. For 28-run
designs involving 15-26 factors, we searched for the best projections from 12 attractive 27-factor designs. All
designs we obtained were compared to those from the literature. Our work, which supersedes all published
work on designs with 24 and 28 runs in terms of thoroughness, resulted in a substantial number of designs
that outperform those from the literature.

The paper features a partial enumeration procedure for orthogonal designs with run sizes that are not
a multiple of eight, like the 28-run designs we studied. We extended the three-factor design whose only
Js-characteristic equals 4 by adding one extra factor column at a time. FEach time a factor column had been
added, we discarded the designs with Js-characteristic values greater than 4 and designs that are not in
lexicographically minimal form. We showed that this procedure allows us to find top 3 designs according to
the GA4 and mixed A4 classifiers with up to a certain maximum number of factors. That maximum number
is not known a priori. For the 28-run case, the partial enumeration procedure enabled us to find optimal
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designs with up to 14 factors.

Much has been said in this paper about incomplete searches for best designs. We showed that a substantial
portion of the literature on designs based on Hadamard matrices ignores the fact that several non-isomorphic
orthogonal designs can be constructed from a given Hadamard matrix. At the same time, there exist N-run
designs with fewer than N — 1 factors than cannot be obtained by projections from (N — 1)-factor designs.
However, our own search among all possible 24-run designs was also incomplete because, for computational
reasons, we only evaluated all 24-run designs in terms of the GA4 and mixed A4 classifiers, and not in
terms of the PECy and PIC5 values, for instance. Also, our search for good 28-run designs in 15-26 factors
involved a projection approach starting with 12 good 27-factor designs. The only published other study
of the complete catalog of 24-run designs, Bulutoglu and Ryan (2015), only considers the Ga-aberration
criterion, and, unlike us, does not evaluate the designs in terms of model-based criteria that might be more
appealing to statisticians. For 28-run designs in 15-26 factors, their approach, like ours, was heuristic.

While we think that the criteria we used are sensible, other criteria may lead to different designs being
best. We encourage future research concerning designs’ capacity to fit models with all main effects and
subsets of g two-factor interactions. For g = 1,2,...,0.5n(n — 1), an information capacity (IC) vector
can be constructed with average D-efficiencies, and designs can be compared based on this vector (Li and
Nachtsheim, 2000). However, this will certainly be computationally very demanding.

Finally, it would be of practical interest to be able to group the runs of the designs studied here in small
blocks such that the main effects are not confounded with the blocks and the two-factor interactions are
confounded with the blocks as little as possible.
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A Non-isomorphic designs from a given Hadamard matrix

We illustrate the fact that one Hadamard matrix can give rise to multiple non-isomorphic designs using the
55th Hadamard matrix of order 24 from Sloane’s website. The normalized Hadamard matrix is shown in
Table 8.

Dropping the first column of the Hadamard matrix results in a 23-factor design with F3(24,16,8) =
(1,22,662). We now transform the original Hadamard matrix into an isomorphic one which yields a non-
isomorphic orthogonal design. To this end, we denote the columns of the original Hadamard matrix by
€o,C1,---,Co3. First, we swap columns ¢y and cg. Next, we switch all the levels in the rows of the resulting
matrix that start with a —1. In other words, we normalize the resulting matrix. The normalization is
achieved by multiplying all columns with column cg in an element-wise fashion. This results in the matrix
[C6-C6,C1-Chy - - - C5.C6,C0-CEyC6-CT - - -, C6.Ca3], OT [Co,yC1.Coy - -, C5.C6,Ca, C6.CTy - - -, Cg-Ca3], SINCE C5.C5 = ¢o and
co-cg = cg. Dropping the first column of the newly obtained matrix results in a new 23-factor orthogonal
design with F5(24,16,8) = (1,18,678). This is a better F5 vector than the original. Swapping the columns ¢
and co in the original matrix and normalizing the result yields another orthogonal design with F3(24,16,8) =
(1,24,654). This is a worse F3 vector than the original.

At first sight, it seems contradictory that we can obtain several non-isomorphic orthogonal designs from
one Hadamard matrix. The reason for this apparent contradiction is a difference between the definitions of
isomorphism for Hadamard matrices and for orthogonal designs. Two Hadamard matrices are considered
isomorphic when they can be obtained from each other using column permutations, row permutations, level
switches in entire columns and level switches in entire rows. Therefore, the above operations using column
cg or column ¢y result in isomorphic Hadamard matrices. Two orthogonal designs are isomorphic when they
can be obtained from each other using column permutations, row permutations and level switches in entire
columns, but not level switches in entire rows. Hence, as soon as the levels in certain rows of a Hadamard
matrix are switched, it is possible that a new, non-isomorphic orthogonal design is obtained. This is because
levels switches in rows affect the interrelation among the factors in an experimental design.
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Table 8: Normalized Hadamard matrix 55
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