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Abstract: Anthracycline chemotherapy has a prominent role in treating many forms of cancer. 

Unfortunately, cardiotoxic side effects represent a serious limitation to their use, with 

doxorubicin being the leading drug of the group. Indeed, anthracyclines-induced 

cardiomyopathy is an important public health concern because it may not be detected for many 

years and remains in a life-long treat. Even after decades of investigation, neither the exact 

mode of action of anthracyclines nor the pathways leading to their side effect are fully 

understood. It is increasingly important to establish collaboration between oncologists and 

cardiologists to improve the management of cancer patient receiving anthracyclines. This article 

reviews the clinical course, pathogenesis, cardiac monitoring and new concepts in diagnosing 

and preventing anthracyclines-induced cardiotoxicity. 
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1. Introduction  

Cancer is the second leading cause of death after cardiovascular diseases in the USA. An 

estimated 14.5 million people are currently living with a history of cancer and this number is 

anticipated to rise to 19 million over the next 10 years.(1) Recently, cancer outcomes 

significantly improved due to earlier detection and novel targeted therapies, with anthracycline 

chemotherapy playing a key role in the modern era of cancer therapy.(2) Unfortunately, 

anthracycline treatment is compromised by an insidious cardiomyopathy and heart failure (HF). 

The anthracycline anti-tumour and cardiotoxic mechanisms have not been fully elucidated and 

continue to evoke extensive interest in basic science and clinical research.(3-6) This review 

summarizes the potential cardiovascular toxicities of anthracyclines and their mechanistic 

pathways. We also review the clinical course, cardiac monitoring and new concepts in 

diagnosing and preventing anthracyclines cardiotoxicity. 

2. Anthracyclines 

Anthracyclines, discovered a half century ago, are listed among the World Health Organization 

(WHO) model list of essential medicines.(7) Daunorubicin (DAU) and doxorubicin (DOX) 

(Figure 1) were the first to be used in clinical practice, although other drugs have been 

developed within this family, like epirubicin (EPI), and idarubicin.(3) The structure is formed of 

an anthraquinone chromophore bound to an aminoglycoside.(8, 9) In the early 1960s their 

chemical characterization experienced a substantial increase after anticancer therapeutic 

activity was described. They rank among the most effective and frequently used antineoplastic 

agents and remain indispensable components of modern chemotherapy protocols effective 

against a broad spectrum of solid tumours and leukaemia.(10-12) 
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3. Anticancer mechanism of anthracyclines  

Fifty years on from its discovery, anthracycline anti-tumour and cardiotoxic mechanisms alike 

remain to evoke considerable interest in basic science research.(11) The exact mechanism of 

anthracycline-induced cardiotoxicity remains unclear; however, several pathways have been 

proposed (Figure 2).(12-14) 

 

3.1. Topoisomerase II poisoning  

The principal molecular target for anthracyclines antitumour action is topoisomerase 2 (TOP2) 

in the proliferative cancer cells. TOP2 is an adenosine triphosphate (ATP)-dependent enzyme, 

which is expressed as isoenzymes TOP2α and TOP2β in humans. TOP2α is the most prevalent 

and is highly expressed in proliferating cells. Anthracyclines inhibit TOP2 upon formation of a 

ternary complex, consisting of double-stranded DNA, TOP2 and the anthracycline (DNA-TOP2-

DOX). The stabilization of the cleavage complex impedes DNA resealing, resulting in double-

stranded DNA breaks. When bound to TOP2α, the complex inhibits DNA replication and induces 

apoptosis as intended in proliferating malignant cells.(5, 7, 10, 11, 13, 15-18) Damage to non-

proliferating, quiescent cells, like the heart muscle, where TOP2β is the major form, results in 

heart muscle failure as a side effect.(18) 

 

3.2. Intercalation  

After cellular uptake, DOX localizes primarily in the nucleus and binds to DNA by intercalation, 

inhibiting both ribonucleic acid (RNA) transcription and DNA replication. DOX prefers to insert 

it planar chromophore into intercalation site containing adjacent guanine-cytosine (GC) base 

pairs, probably due to specific hydrogen-bond formation between DOX and guanine.(12, 13, 19) 

Activation of DNA damage responses induces cell death independent of TOP2.(12, 13) 
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3.3. Oxidative stress 

DOX-induced release of free radicals, due to its metabolism, may cause oxidative stress, 

resulting in DNA damage and cell death (Figure 3).(3, 13, 14) The quinone structure permits 

DOX to act as electron acceptors in reactions mediated by oxoreductive enzymes. Via one-

electron reduction, most notably, cytochrome P450 reductase, the anthraquinone structure 

forms a semiquinone radical.(12, 14) Other enzymatic systems are also known to activate DOX 

as well, including xanthine oxidase and nitric oxide synthase. Semiquinone radicals may induce 

free-radical injury to DNA of themselves, as well after interaction with molecular oxygen to 

generate superoxides, hydroxyl radicals and peroxides, causing DNA damage. The transfer of its 

unpaired electron will lead to the original quinone form.(3, 9, 12-14) 

 

4. Antineoplastic agents and cardiomyopathy  

Success in treating cancer might be followed by defeat from life-threatening conditions caused 

by cytotoxicity.(20) The most frequent type of cardiotoxicity in cancer treatment is 

anthracycline-related cardiomyopathy.(21) According to Lefrak et al., repeated administration 

of anthracyclines can result in permanent cellular and interstitial damage,(22) but new 

therapeutic agents such as trastuzumab, while they can also cause cardiomyopathy, induce 

transient and reversible myocyte dysfunction, resulting in better prognosis.(23, 24) 

Antineoplastic drugs are classified into type 1 and 2, depending on the chemotherapy-induced 

toxicity. Anthracyclines belong to Type I agents and cause irreversible and dose-dependent 

damage, which consist of cellular death, either via necrosis or apoptosis. Type II is caused by 

cellular dysfunction and is usually described as reversible, since no structural changes have 

been detected by myocardial biopsies of patients, and generally is not dose-related.(3, 20, 25, 

26) Additional cardiovascular toxicity of several antineoplastic agents includes myocardial 

ischemia, arrhythmias, systemic hypertension and thromboembolic events.(20, 25) 
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5. Doxorubicin-induced cardiotoxicity  

Although anthracyclines have been proven as useful antineoplastics, life-threatening 

cardiotoxicity as a side effect has been a limiting factor to their use.(10) It has long been 

considered that DOX exerts its anticancer and cardiotoxic action by distinct mechanisms: while 

the anticancer response was associated with DNA intercalation, TOP2 inhibition and apoptosis, 

the cardiotoxicity was mainly ascribed to oxidative stress. At present, it appears that such 

separation is not fully justified. It seems that beneficial (anticancer) and detrimental 

(cardiotoxic) responses to DOX are to some extent overlapping(27, 28). Despite over many 

years of research, the mechanisms have not been fully clarified.(4, 5) 

 

5.1. Definition Cardiotoxicity  

Cardiotoxicity is described by the National Cancer Institute in general terms as the ‘toxicity that 

affects the heart’ (www.cancer.gov/dictionary/).(29) However, historically, cardiotoxicity has 

been defined as a decrease in left ventricular ejection fraction (LVEF).(30) Unfortunately, there 

is not yet a consensus definition for cardiotoxicity that can be applied to all cancer types.(31)  

 

5.2. Incidence and Risk factors 

Anthracycline-related cardiotoxicity is broadly defined as acute onset (within the first week of 

therapy), early onset, and late onset (>1 year after therapy). Acute-onset toxicity, which occurs 

in less than 1 % of patients, is dose-independent. More common is late-onset toxicity, which 

manifests in a dose-dependent fashion, causing dilated cardiomyopathy that can occur decades 

from first exposure (25). A high cumulative anthracycline dose is a well-recognized risk factor 

for cardiac damage. The incidence of DOX cardiomyopathy is about 4% when the cumulative 

dose of DOX delivered is 500-550 mg/m2, 18% when the dose is 551-600mg/m2 and 36% when 
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the dose exceeds 600mg/m2 albeit with substantial individual variation.(25, 26, 32) However, 

there is no completely safe dose and the cardiotoxic effects of any given dosage must be 

balanced with oncologic efficacy (33). Other risk factors include extremes of age (>65 or 

<4years), female gender, diabetes, prior mediastinal radiation therapy, hypertension, 

concomitant treatments and the presence of cardiac disease.(25, 27, 34) However, these factors 

represent continuous rather than dichotomous variables, which makes quantification of risk for 

any given patient challenging. One approach could be to stratify patients, allowing identification 

of patients at high risk who could receive more intensive clinical monitoring.(21) It is also 

important to know that some patient show a predisposition to develop HF, because of the many 

genetic modifiers that can accelerate the course of development of anthracycline 

cardiotoxicity.(35)   

 

5.3. Cardiotoxic mechanisms  

Many pathways, as shown in Figure 4 and explained below, are involved in the anthracycline-

induced cardiotoxicity. Each of them may play a role in causing cardiotoxicity via different 

mechanism, by themselves or in cooperation with other pathways.(3) 

 

5.3.1. Molecular mechanisms: 

The molecular mechanisms of DOX induced cardiotoxicity include oxidative stress, 

accumulation of toxic metabolites, alterations in iron (Fe2+) and calcium (Ca2+) homeostasis, 

mitochondriopathy and interactions with TOP2ß.  

 

Oxidative stress: DOX-induced release of reactive oxygen species (ROS)causes oxidative stress, 

resulting in DNA damage and cell death.  
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Toxic metabolites: A two-electron reduction, of the side chain carbonyl moiety converts 

anthracyclines to secondary alcohol, toxic metabolites at the myocardium level. The production 

of doxorubicinol in the case of DOX is up to 50 times more potent than the original compound at 

dysregulating Ca2+and iron homeostasis.(3, 36)  

Fe2+ and Ca2+ homeostasis: As shown earlier, formation of DOX-Fe2+ complexes may catalyse a 

Fenton reaction, Fe2+-catalysed formation of hydrogen peroxide (H2O2) to hydroxyl radical 

(OH), resulting in the generation of ROS. This proves that anthracyclines are capable of altering 

iron homeostasis and studies have indicated that iron loading aggravates the toxic effects of 

DOX.(3, 10, 34, 37) The major metabolic effects of anthracycline-induced mitochondrial toxicity 

are an increase in Ca2+ content and inhibition of ATP synthesis. The loss of mitochondrial Ca2+ 

loading capacity is due to the drug-induced malfunction of transporters involved in ion 

homeostasis.(37, 38) 

Mitochondriopathy: Mitochondria is the most extensively injured subcellular organelle. DOX is 

retained in the mitochondrial inner membrane by forming a nearly irreversible complex with 

the mitochondrial phospholipid cardiolipin. Cardiolipin contains a high percentage of 

polyunsaturated fatty acids, making it particularly susceptible to peroxidative injury. Disrupting 

the association of inner mitochondrial membrane proteins with cardiolipin could enhance 

cytochrome C release into the cytosol in response to oxidant stress, activating caspase cascade 

and resulting in apoptosis.(34, 37) 

Topoisomerase 2β: As said before TOP2ß is responsible for the damage to non-proliferating 

cells, like the heart muscle cells, as an adverse effect. Without TOP2ß, DOX cannot bind directly 

to DNA, protecting the cardiomyocytes against DNA double-strand breaks and transcriptome 

changes that are responsible for defective mitochondrial biogenesis and increased ROS 

accumulation. When bound to TOP2ß, mitochondrial dysfunction is triggered by the 

suppression of peroxisome proliferator-activated receptor (PPAR), which regulates oxidative 

metabolism, in adult mammalian cardiomyocytes.(7, 16, 18) 
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5.3.2. Histological pathophysiology  

Repetitive induction of cardiomyocyte cell death without sufficient regenerative capacity is a 

plausible mechanism for DOX-induced cardiotoxicity. Indeed, when cumulative toxicity 

surpasses a threshold of reparable damage, a generic process of ventricular remodelling is 

triggered.(31) This remodelling includes alterations in cardiac gene expression leading to 

structural changes in the myocardial wall.(39) The main histological changes are shown in 

Table 1.   

 

5.3.3. ErbB2/ERbB4 and NRG-1 signalling: cardiotoxicity of concomitant Trastuzumab and 

anthracyclines  

Anthracycline therapy renders cardiomyocytes more susceptible to alterations in Neuregulin-1 

(NRG-1), a member of the epidermal growth factor (EGF) family, and protein-tyrosine kinase 

(ErbB) pro-survival pathway.(7, 40) Trastuzumab (TRZ), a monoclonal antibody against the 

ErbB2 that is found to be overexpressed in 25% to 30% of breast cancer patients, is often used 

as adjuvant therapy in combination with DOX treatment.(41, 42) Zeglinski et al. proposed that 

the adjuvant use of TRZ could potentiate cardiomyocyte damage through a ‘dual-hit’ 

mechanism, which includes inhibition of NRG-1 survival signalling pathway and Angiotensin II 

(ANGII)-induced activation of NADPH oxidase, increasing the ability to further ROS production 

as shown in Figure 5.(20, 41) The potentiation of cardiac dysfunction of TRZ in conjunction with 

DOX could be due to the inherent ability of DOX to increase oxidative stress.(41) DOX 

administration produces a pool of vulnerable cardiomyocytes that are dependent on intact 

ErbB2-signalling for recovery, while TRZ blocks key receptors in the pathways that regulate cell 

survival.(20, 41)  
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6. Strategies for prevention 

In Cardio-Oncology, the best treatment for chemotherapy-induced cardiotoxicity is prevention. 

A detailed history focusing on cardiovascular risk factors, pre-existing cardiovascular disorders 

and previous exposure to chemotherapy agents is mandatory. A comprehensive assessment of 

the benefits from treatment versus potential risks of cardiotoxicity should be performed.(43) 

 

6.1. Primary prevention of cardiotoxicity from anthracyclines  

Pharmacodynamic approaches can be applied for primary prevention of anthracycline-induced 

cardiotoxicity. Subsequently, the use of a cardioprotective agents in conjunction with the 

treatment is a possibility.(17) Besides that, it is also important to know that some patients show 

higher predisposition to develop HF and individual genotyping should be considered as a 

strategy for primary prevention in the future.(35) 

 

6.1.1. Continuous infusion 

Early in the 1980s, administering DOX by continuous infusion over forty-eight to ninety-six 

hours evidenced to be an effective mean to reduce the development of clinically evident chronic 

heart failure (CHF), while not diminishing tumour objective action.(44) Recently, Van Dalen et 

al. showed that an anthracycline infusion duration of six hours or longer diminish the 

occurrence of clinical HF and subclinical cardiac damage, while there was no significant 

difference in HF development using a peak dose of less than 60 mg/m² or 60mg/m² or more. 

(45) The advantage of replacing bolus administration with slow infusion is nonetheless 

counterbalanced by the patient’s discomfort due to prolonged hospitalization and the 

exacerbation of exposure effects such as myelotoxicity, mucositis, and alopecia.(26, 35, 46) This 

strategy benefit is controversial in pediatric settings.(47)  
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6.1.2. Liposomal doxorubicin  

Replacing conventional anthracyclines with liposomal formulations, which alters 

pharmacokinetics and tissue distribution without affecting antitumour efficacy, can reduce 

cardiotoxicity.(48) Due to their size, liposomes are too big to cross the gap junctions of normal 

endothelium in the heart and many other healthy tissues, but diffuse more readily through the 

leaky vasculature of tumours. Two liposomal formulations have been approved for use with 

certain defined clinical indications. One liposomal DOX (Caelyx® in Europe and Doxil® in the 

USA) has polyethylene glycol (PEG) embedded in the lipid layer; other formulations of DOX 

(Myocet®) adopt uncoated liposomes.(35, 49)  

 

6.1.3. Less cardiotoxic analogues 

Several adjustments of the anthracycline basic structure have been achieved to improve the 

pharmacological properties of the natural compound, with reduced cardiotoxicity.(48) Only few 

analogues have reached the stage of clinical approval; among them, EPI and idarubicin (IDA) are 

viable alternatives to DOX or DNR, respectively.(48) EPI is a semi-synthetic epimer of DOX, with 

an analogous oncological spectrum. Although the mechanism of action is similar to DOX, some of 

its physical, chemical and pharmacokinetic properties are different.(50) IDA, compared with 

DNR, has increased lipophilicity and cellular uptake and improved stabilization of a ternary 

drug-TOP2-DNA complex.(51) This drug may be administered orally(52) and there is some 

controversy about whether IDA offers advantages over DOX or DNR regarding cardiac 

toxicity.(53)  Also, the analogues amrubicin and the novel anthracenedione (pixantrone) are 

prominently less cardiotoxic, but they are used in limited conditions.(54, 55)  
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6.1.4. Dexrazoxane  

Given to the importance of oxidative stress, research has focused on drugs with antioxidant 

properties.(25, 26, 35) Exploratory clinical trials that probed the protective efficacy of high-

dose vitamin E or N-acetylcysteine were uniformly disappointing. Dexrazoxane (DRZ), the only 

FDA-approved cardioprotective agent for anthracycline-induced cardiotoxicity, can chelate iron, 

before it converts O2
- and H2O2 into more potent OH.(56) It was previously thought to be the 

primary mechanism of cardioprotection however other antioxidants and iron-chelating agents, 

have been tested in animal models and in humans, but the protective effect of some is uncertain. 

Thus, iron chelation and mitigation of oxidative stress might not represent the only prevailing 

mechanism of cardioprotection. Indeed, DRZ precludes the formation of the ternary complex, 

DOX-DNA-TOP2ß, by forcing TOP2ß to assume a closed-clamp conformation (Figure 6). 

Therefore, cardiomyocyte damage or death will be prevented.(10, 18, 35) In clinical trials, DRZ 

has reduced the incidence of CHF and augmented LVEF.(34) Unfortunately, controversy 

surrounds its use due to possible compromise of antineoplastic efficacy and increase in 

secondary tumours, myelosuppression and infection.(17, 25) Due to the latter concerns its use 

in children was contraindicated by the European Medicines Agency (EMA) in 2011 and 

restricted to women with breast cancer who had received a prior cumulative dose of 300 

mg/m2 of DOX.(57) Later, several trials on the benefit-risk of DRZ have been published and 

indicate that DRZ is a well-tolerated and effective cardioprotectant.  In 2017, after reassessment 

of the data, the contraindication for children and adolescents at risk for cardiotoxicity was 

removed.(58) The field of oncology has accepted the potential benefits of DRZ.(59) Recently,  

Liesse et al. generated predictions for treatment protocols with and without affiliated DRZ 

therapy. Noticeably, DRZ delayed the exponential rise in cardiotoxicity to doses of more than 

400mg/m², while without DRZ, the exponential rise in cardiotoxicity was observed with doses 

of more than 200mg/m².(60)  
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6.1.5. Pharmacogenetics/pharmacogenomics 

The field of pharmacogenetics has been defined as the study of variability in drug response due 

to heredity.(61) More recently the term ‘pharmacogenomics’ has been introduced, which 

includes all genes in the genome that may determine drug response.(62) Different genetic 

factors are known to influence the balance between DOX efficacy and toxicity. Indeed, inherited 

differences in drug targets, metabolizing enzymes and transporters will influence 

pharmacokinetics and –dynamics of drugs and will determine the drug effects.(63)  

Pharmacogenomics has been widely recognized as fundamental steps towards personalized 

medicine, which is of utmost importance for patients with high risk of developing cardiotoxicity 

from anthracyclines.(64) Leong et al. indicated that several polymorphisms of 

pharmacogenetics candidates across the anthracyclines biochemistry and cardiomyopathy 

pathways are potentially a predictor for anthracycline-induced cardiotoxicity. However, the 

evidences are limited and further studies are needed to generate robust genetic 

predictor(s).(65)  

 

6.1.6. Cardioprotective drugs for primary prevention–clinical update 

DRZ is the only pharmacologic agent that is approved by the FDA to prevent cardiotoxicity 

in patients receiving anthracyclines.(56) However, to date, beta-blockers, renin-

angiotensin inhibitors and statins have demonstrated promising results in studies 

evaluating their efficacy in primary prevention (Table 2).(35) Indeed, both randomized and 

observational data demonstrate a potential cardioprotective role in patients receiving 

chemotherapy.(66-72) Two randomized trials recently tested whether primary prevention 

using these drugs during chemotherapy can reduce cardiotoxicity and preserve LVEF.(73, 

74) Additionally, statins seem to have protective effects during chemotherapy based on a 

small randomized trial and observational studies.(75-77) However, there are significant 
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limitations, including small sample size, low event rate, and short follow-up period. The 

modest effect on LVEF in the treatment groups must be analysed in the context of the 

relative lack of data concerning the natural history of asymptomatic LV dysfunction in 

cancer patients receiving cardiotoxic drugs.(35) Large multicenter studies that include 

hard clinical endpoints such as symptomatic HF and cardiovascular death are needed.(35, 

78) 

 

6.2. Secondary prevention of cardiotoxicity from anthracyclines  

Secondary prevention requires that patients be monitored during and after treatments and be 

managed when cardiotoxicity signals appear.(79) Difficulties in defining cardiotoxicity at a 

molecular level translate into uncertainties in clinical settings. This prevention may be 

conducted by a combination of imaging studies and biomarkers, and may form the rationale for 

starting cardioprotective treatment as soon as early signs of “cardiotoxicity” are identified.(4, 

35) Cardiac dysfunction is detected as LVEF changes , which are measured by echocardiography 

(Tissue Doppler (80), longitudinal strain (81)) , multigated radionuclide angiography (82), or 

magnetic resonance imaging (83). Blood cardiac biomarkers are used to identify cardiotoxicity 

while receiving therapy. Increases in cardiac troponins reflect myocardial injury and chronic 

increases in natriuretic peptides indicate ventricular wall stress.(84-86) Both represent an 

effective method for monitoring cardiac status, and identifying patients who may benefit from 

early medical intervention. Unfortunately, clinically apparent signs of cardiac injury often arise 

years after initial therapy. Early rises in biomarker concentrations are difficult to link with 

clinical endpoints. Indeed, there is a need for long-term data to either confirm or refute any 

relationship between early biomarkers and long-term cardiac morbidity.(87)  Further, the 

European Society of Cardiology guidelines recommended an aggressive therapeutic approach of 

LV dysfunction even in asymptomatic patients after anthracycline therapy, consisting of 

angiotensin converting enzyme inhibitor (ACEI) or Angiotensin II receptor blockers (ARBs) and 
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beta-blockers. Depending upon the magnitude of the decrease and the LVEF value, initiating one 

or more guideline-based HF therapies should be considered.(78) Indeed, Yun et al. 

demonstrated that ACEI and beta-blocker treatment were associated with better LVEF 

preservation, and the benefit was prominent in patients treated with higher accumulative dose 

of anthracyclines.(88) Unfortunately, many patients with asymptomatic decreased LVEF are not 

receiving American College of Cardiology / American Heart Association Class I-indicated beta-

blocker or ACEI/ARB therapy.(89)  Symptomatic patients presenting with clinical HF during or 

following chemotherapy should be treated with standard regimens for CHF, such as ACEI, beta-

blockers, diuretics, digoxin and spironolactone.(78) However, it is not known yet if the same 

treatments are effective for childhood cancer patients and survivors with anthracycline-induced 

cardiotoxicity.(90) 

 

7. Preclinical models of chemotherapy-induced cardiotoxicity 

Small and large animal models, as well as in vitro models, have been used to study the 

pathophysiology of cancer therapy-induced cardiomyopathy and new cardioprotective 

therapies.(91) However, the pharmacodynamics actions of antineoplastic drugs in different 

animal species are variable.(38, 91, 92)  DOX has been characterized in several animal species 

as a total dose-depend multifocal myocardial degeneration that occurs following either acute or 

chronic administration.(93) To simulate clinical scenarios and the actions of potential 

cardioprotectants, an experimental model of long-term administration with low anthracycline 

doses is required. Long-term studies of anthracycline cardiotoxicity should take precedence 

over short-term in vitro treatments of isolated cells, where the potential impact of factors such 

as plasma protein binding and tissue distribution cannot be assessed.(4, 94) Repeated 

administration of DOX causes cardiomyopathic changes in patient as well as in animal 

species.(94) Although small animals are readily available and easy to handle, results of studies 

evaluating cancer therapy-induced cardiomyopathy and its treatments in these models have 
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presented only limited predictive clinical value.(95, 96) However, despite species-related or 

model-dependent variances, valuable insights into the molecular mechanisms of antineoplastic 

drug-induced cardiomyopathy can be inferred.(38) 

 

8. Conclusion 

Anthracycline-induced cardiomyopathy is an important public health concern. To reduce the 

incidence, a deep understanding of its toxicity and mechanisms of action are crucial. There are 

some strategies to prevent the cardiac side effects, however, the only compound consistently 

found to be cardioprotective in experimental and clinical studies is the FDA-approved 

DRZ.  Larger randomized controlled trails in examining functional imaging techniques, 

biological parameters, and genetic alterations, will be needed to ameliorate prediction, 

prevention and treatment of anthracycline-induced cardiotoxicity. In the emerging era of 

personalized cancer medicine, pharmacogenomics has been recognized as fundamental steps 

and may be effective to consign the cardiac effects of anthracycline to history. Anticancer drug-

induced cardiotoxicity should be viewed as a multidisciplinary approach including basic 

science, oncological and cardiological expertise, since advances in cancer treatment have greatly 

improved survival rates of children and adults with cancer. As this issue is still under large 

debate and no clear and defined guidelines are yet available, oncologists and cardiologists must 

cooperate in the interest of best practice and the urgent need to prevent today’s cancer patients 

from becoming tomorrow’s cardiac patients.  
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Tables 

Mechanism Main histological changes 
Profibrotic effects of ROS 
 

Fibroblast proliferation 
Transformation into myofibroblasts 
Expression of profibrotic genes 
Balance alterations between extracellular matrix destruction 
(by matrix metalloproteinases) and formation (collagen 
synthesis) 
LV fibrosis  

Ultrastructural features Loss of myofibrils 
Dilatation of the sarcoplasmic reticulum 
Cytoplasmic vacuolization 
Mitochondria swelling 
Number of lysosomes 

Proteolysis Loss of integrity or function of titin 
Apoptosis DNA degradation 

Nuclear fragmentation 
Chromatin condensation 
Mediated part by p38 MAPK activation 

Autophagy Formation of polyubiquitin-positive inclusions 
Downregulation of proteasome activity 
Accumulation of oxidatively damaged macromolecules and 
organelles 

Table 1: Anthracyclines histological pathophysiology. 
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Year/Referenc
e 

Chemotherapy/Cance
r type 

Primary 
prevention 

Patients/Duration Results 

Beta-blockers (BB) and angiotensin-receptor inhibitors (ACEI)/ angiotensin-receptor 
blocker (ARB) 

2018 
Ref:(97) 

Anthracycline in 
HER2-negative breast 
cancer  

Carvedilol 
(BB) vs. 
Placebo 

200; 6 months  Treatment: 
LVEF – 0.9% 
Placebo: 
LVEF – 1.3% 
(p=0.84) 

2013 
Ref:(73) 

Anthracycline therapy 
against malignant 
hemopathies 

Enalapril 
(ACEI) + 
carvedilol 
(BB) vs. 
Placebo 

90 (45treatment; 
45placebo); 6 
months 

Treatment: 
LVEF –
0.17% 
Placebo: 
LVEF –
3.28% 
(p = 0.04) 

2015 
Ref:(74) 

Anthracycline +/- 
trastuzumab in early 
breast cancer  

2x2 factorial: 
candesartan 
(ARB), 
metoprolol 
(BB) vs. 
Placebo 

120; 10-61 weeks Candesartan
: LVEF –
0.8% 
Placebo: 
LVEF –2.6% 
(p = 0.026) 

2014 
Ref:(66) 

Anthracycline in 
breast cancer  

Carvedilol 
(BB) vs. 
Placebo 

80 (40BB; 
40placebo); 6 
months 

LVEF no Δ  
Tissue 
Doppler 
peak systolic 
strain and 
strain rate ↓ 
in control vs. 
carvedilol (p 
< 0.005) 

2013 
Ref:(67) 

Anthracycline + 
trastuzumab in breast 
cancer  

1:2 
propensity 
matched 

318 (n=106BB; 
n=212control); 
3.2±2.0 years 

Treatment: 
HF 5% (n = 
5) 
Control: HF 
13% (n = 
27) 
(p = 0.008) 

2013 
Ref:(68) 

Anthracycline in 
breast cancer  

Nebivolol 
(BB) vs. 
Placebo 

45 (n=27BB; 
n=18placebo); 6 
months 

Treatment: 
LVEF 65.6 → 
63.8 
Placebo: 
LVEF 66.6 → 
57.5% 
(p = 0.01) 

2010 
Ref:(69) 

Doxorubicin-treated 
lymphoma  

1:1:1 
Metoprolol 
(BB), 
enalapril 
(ACEI), 
control (no 

125 (n=42BB; 
n=43ACEI; 
n=40control); 31 
months 

Metoprolol: 
HF 2% (n = 
1) 
Enalapril: 
HF 5% (n = 
2) 
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treatment) Control: HF 
8% (n = 3) 
(p = 0.55) 

2010 
Ref:(70) 

Epirubicin against 
multiple cancers 

Telmisartan 
(ARB) vs. 
placebo 

49 (n=25ARBs; 
n=24placebo); 3 
months 

Strain rate 
normalized 
with 
Telmisartan  

2006 
Ref:(71) 

Anthracycline in 
lymphoma and breast 
cancer  

Carvedilol 
(BB) vs. 
control 
(placebo) 

50 (n=25BB; 
n=25control); 6 
months 

Treatment: 
LVEF 70.5 → 
69.7% 
Control: 
LVEF 68.9 → 
52.3% 
(p < 0.001) 

2005 
Ref:(72) 

Anthracycline in 
untreated non-
Hodgkin lymphoma  

Valsartan 
(ARB) vs. 
control 
(placebo) 

40 (n=20ARB; 
n=20control); 
Analysis after 0-3-5-
7 days of chemo 
initiation 

Valsartan 
prevented ↑ 
in LV end-
diastolic 
dimension  

Statins 
2015 
Ref:(75) 

Anthracyclines in 
breast cancer, 
leukemia or 
lymphoma 

Statin vs. 
Placebo 

51 (n=14statin; 
n=37placebo); 6 
months 

Treatment: 
LVEF -1.1%; 
Placebo: 
LVEF -6,5% 
(p=0.03)  

2012 
Ref:(76) 

Anthracycline +/_ 
trastuzumab in breast 
cancer  

1:2 
propensity 
matched  

201 (n=67statin; 
n=134control); 
2.6±1.7 years 

Treatment: 
HF 6% 
(n=4); 
Control: HF 
17% (n=24) 
(p=0.04) 

2011 
Ref:(77) 

Anthracycline therapy 
against malignant 
hemopathies 

Atorvastatin 
vs. Placebo 

40 (n=20statin; 
n=20placebo); 6 
months 

Treatment: 
LVEF +1.3% 
Placebo: 
LVEF -7.9% 
(p<0.001) 

Aldosterone inhibitors 
2015 
Ref:(98) 

Anthracycline therapy 
in breast cancer  

Spirinolacton
e vs. Placebo 

83 
(n=43spirinolactone
; n=40placebo); 25 
weeks 

Treatment: 
LVEF 67.0 → 
65.7% 
(p=0.094) 
Placebo: 
LVEF 67.9 → 
53.6% 
(p<0.001) 

Table 2. Selected Publications: Primary Prevention in Patients without cardiac dysfunction 
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