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Abstract

The first part of the paper reviews some procedures to distribute an annual time series across
a quarterly one, either by using information from the annual totals only, or by using
information from both the annual totals and one or more related quarterly series. In the
second part of the paper the various procedures are applied to compute both real and nominal
quarterly GDP series for a number of (larger) countries. The estimates are then compared
with the actual quarterly real and nominal GDP data of these countries. Although the results
are far more clear for real GDP than they are for nominal GDP, we recommeﬁd to use one of

the procedures proposed by Denton to distribute both real and nominal annual GDP data.

Keywords: data disaggregation, data distribution
quatterly real GDP, quarterly nominal GDP



1 Introduction

There are two reasons why we would like to disaggregate a time series. The first one relates
to the inconsistency in the observation frequencies of macroeconomic variables. When we
consider the European countries we see that for most (smaller) countries GDP is only
reported on an annual basis, while many other variables are reported every quarter or even
every month'. Instead of aggregating these quarterly variables to annual totals (and thus losing
a lot of information), it is more reasonable to disaggregate the GDP time series into quarterly
~ observations. The need for time series disaggregation also arises from a possible change in the
observation frequency of a given variable as is e.g. the case for the GNP series of the United
States. Since 1957 US GNP is reported on a quarterly basis, but annual observations of this
series are available from 1900 onwards. Instead of omitting the annual observations prior to
1957 from the analysis, we should try to disaggregate them into quarterly figures and then use

the entire sample period. In this paper we are mainly concerned with the first reason.

A preliminary exploration of the empirical literature - primarily on money demand - leads us
to conclude that many authors are very vague as to the method they use to disaggregate their
annual data. Kremers and Lane (1990, p.784) e.g. state that "annual datzi. are interpolated
according to the quarterly pattern of industrial production” without further reference to the
exact procedure used. Similarly, Fase and Winder (1992, p.31) state that their "quarterly data
are constructed by means of data on industrial output”. This could lead to the false impression

that there exists only one method to obtain quarterly data from the annual totals.

Therefore a thorough investigation of possible disaggregation procedures seems worthwile to
try and answer the following question: should we compute quarterly GDP data by purely
mathematical smoothing procedures or should we rely on economic theory and use

information from related series that are observed on a quarterly basis ?

! Recently, most European countries have started to develop quarterly GDP series. These data are collected in
the databank of the Bank for International Settlements, but are not publicly available.



This paper extends a previous one® in three ways. Firstly, we no longer restrict ourselves to
real GDP, but now investigate the performance of the various disaggregation procedures both
for real and nominal GDP. Secondly, we include two more disaggregation methods, i.e. the
Kalman filter and the method proposed by Ginsburgh (1973). Finally, we extend the
observation period to include all availabie dafa from the first quarter of 1957 to the fourth
quarter of 1994. |

The paper is organised as follows. We start in section 2 by reviewing some of the propdsed
methods for the distribution of a time series®. In section 3 we construct the resulting quanerly
series for both real (1990 prices) and nominal GDP fo_r a set of thirteen countries. In order to
be able to select one (or more) procedure(s) we compare the estimated quarterly GDP growth
rates with the actual ones by means of the correlation coefficients on the one hand and the
mean absolute error, the root mean squared error, and Theil’s inequality coefficient on the

other. Finally, the results are summarized in section 4.
2 A review of some distribution procedures

To the purpose of the distribution of time series several procedures have been developed.
They can be divided into two broad categories: the data-based procedures and the modell-
based procedures. We define data-based procedures as those procedures whiéh only use
information from the annual totals'. The disaggregated values are then the result of some
smoothing algorithm. The model-based procedures rely on one or more equations linking at

least two variables and can themselves be subdivided into two subgroups. A first subgroup

2 Bruggeman, A. (1995), ‘Disaggregating annual real GDP data into quarterly figures’, SESO Report, 95/331,
46 p. ' :

* The distribution problem relates to the disaggregation of flow variables. Given the values of a flow variable
(e.g. GDP) during n years, the distribution problem is to estimate 4n quarterly values of GDP which satisfy the
condition that the four quarterly values relating to the same year add up to the annual total. The interpolation
problem relates to the disaggregation of stock variables. Given the values of a stock variable (e.g. the money
supply) at the end of n years, the interpolation problem is to estimate the remaining 3n quarterly values.

4 This definition of data-based procedures does include distribution procedures that use ARIMA-models, since
in these models no other information is used but information on the variable itself (and its lagged values).
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comprises. the procedures which not only use information from the annual totals, but also rely
~ on additional information from other related series. The 'model' is thus const%ructed bnly for
the purpose of estimating the disaggregated values of the dependent variable. The second
subgroup comprises the structural models in which the estimates of the disaggregated data are
obtained as a by-product of the parémeter estimates of the structural model. In this paper we
will not retain the procedures in this second subgroup. Table 1 summarizes the various

distribution procedures that will be discussed in this paper.

Table 1:

An outline of the various distribution methods described in the paper

Data-based procedures
i.e. procedures which only use information from

the annual totals

Lisman and Sandee (1964)
Boot, Feibes, and Lisman (1967)
Stram and Wei (1986)

Model-based procedures
i.e. procedures which use information from both

.. the annual totals and related quarterly series :

* Chow and Lin (1971)
Denton (1971)
Ginsburgh (1973)
Fernandez (1981)
Litterman (1983)




Every procedure will be described for a periodicity m=4 (i.e. to distribute an annual series
across a quarterly one). In this section the annual series will be denoted X; (for t=1, 2, ...,
n) while yg and 75 (for q=1, 2, ..., 4n) will denote the quarterly series to be estimated and

the quarterly related series, respectively.
2.1  Procedures which only use information from the annual totals

The performance of the procedures belonging to the first category has already been discussed
by Chan (1993). Relying on his conclusions we only select the procedures developed by
Lisman and Sandee (1964), Boot, Feibes, and Lisman (1967), and Stram and Wei (1986).
Finally, we cox_lsidér the ‘data-based’ Kalman filter procedure.

2.1.1 Lisman and Sandee

In Lisman and Sandee (1964) a very simple procedure is given to compute a quarterly time
series if no assumption about its pattern can be made. In their approach the quarterly values
for year ¢ (for t=2, 3, ..., n-1) are weighted averages of the annual totals of the years -1, ¢,

and 7+ 7 or in matrix notation;

_ a e i
vl 15 5 ][5 ~
=l Rl for t=2,3, ..., n-1 m
47-1
X
v | |d & 1|t

To determine the value of the coefficients a through /, Lisman and Sandee impose the
following conditions: (1) there should be a logical symmetry in time’, (2) during each year the
quarterly figures should add up to the annual total, (3) if the annual totals X remain constant,
the quarterly figures should necessarily be equal to X/4, (4) if the annual figures increase by a
constaﬁt amount p, the quarterly figures should increase by a constant amount p/I6, and (5) if

* If the annual totals in three successive years are X, X,, and X,, then the quarterly values for year 2 should be
the same but in reverse order from what they would have been had the annual totals been X, X,, and X.



the annual figures alternate, the trend should be a sinusoid.

Lisman and Sandee then show that these five requirements lead to the following quarterly

values:

Vs = 00728X,_; +01983X, - 00210,
Yara =—00103X,_; +03018X, - 0.0415X |

o fort=2, 3, ..., n-1 (2)
Yy = —0.0415X,_; +03018X,; — 0.0103X,

Yy =—00210X,_; +0.1983X, +0.0728X

This very simple procedure has however two important drawbacks. Firstly, no quarterly
values can be computed for the first and the last year of the time series. Secondly, it is a very

arbitrary procedure.
2.1.2 Boot, Feibes, and Lisman

Boot, Feibes, and Lisman (1967) introduce two smoothing criteria in order to correct for
these defects. The first criterion is to minimize the sum of squares of the first differences
between the successive quarterly values Yg- subject to the constraint that during each year the

sum of the quarterly figures equals the annual total.

4n

Min 3 (¥, =7,s)

g=2

fort=1,2,...,n | 3)
4y
s.1. Z v, =4,

g=4:-3

From the Lagrangean expression

L=3(5,-vp) +2i/1,{ >y, —X,J %)

t=1 g=41-3

the first order conditions with respect to each Y4 and the Lagrangean multipliers A; amount to:

Y| A C'n B L : . G
ﬂ - Cn Onxn . X



where®: y is a columnvector of 4n quarterly figures, A is a columnvector of n Lagrangean

multipliers, A is a matrix of order 4n x 4n containing the coefficients of the y,’s in the
partial derivatives of the Lagrangean expression with respect to these y,’s, C, is a convertor

matrix of order nx4n which converts the quarterly values into annual figures, 0 is a

nulimatrix, and X is a columnvector of n annual figures.

Although this is still a very simple method, it is less arbitrary than the one used by Lisman
and Sandee (1964). Furthermore with this procedure we can compute quarterly values for all
the years in the sample including the first and the last one. However, if the annual _
observations exhibit a linear trehd, the computed quarterly values will lie on a long-stretched
'S" instead of on a straight line. Therefore the authors themselves suggest to use another

criterion that remedies this defect.

The new criterion is to minimize the sum of squares of the second differences between the
successive quarterly values y, , subject to the same constraint that during each year the sum of

the quarterly figures equals the annual total.

4n-1

Min ‘Z(qu - qu_l)z
g=2

p _
' ar fort=1,2,...,n _ 6)
s.t. Z v, =4,

g=4t-3

where Ay isdefinedas y_,, - y,.

[0 210 0 . 6 0 0 o
-1 2 -1 0 . 0 0 0
e -1 2 -1 .0 0 0 o 1111 .0000
A=l . . . anan=I"®[1111]=...
0 0 0 0 . -1 2 -1 0] 000 ¢ . 1111
o 0 0 o1 o2 4
¢ o 0 0 0 -1 1]




The first order conditions with respect to each ¥4 and the Lagrangean multipliers 4, are now:

1 -1
Y| | B C, 0 4ux .
_ . 4nx1 . (7)
Al €, 0., X .
where” B is a matrix of order 4n x 4n containing the coefficients of the ¥, ’s in the partial

derivatives of the Lagrangean expression with respect to these ¥, s

Compared to the previous procedure of Boot, Feibes, and Lisman this procedure has the
- advantage that the quarterly values will lie on a straight line if the annual observations-exhibit

a linear trend.
2.1.3 Stram and Wei

Stram and Wei (1986) develop a procedure based on ARIMA modelling to transform an
aggregate time series into a disaggegrate time series of periodicity m. In the following
paragraph we will apply their general procedure to the case of distributing an annual time

series across a quarterly one (i.e. m=4).

Let yg be a quarterly series whose dri differences Wy = (I-B)4 yq follow a stationary
Gaussian process and Xy an aggregate annual series whose dth differences Uy = (I-B)4 X;

equally follow a stationary Gaussian process.

1t 221 06 00.00 0 0 0 0
-2 5 -4 1 0.00 0 0 0 ¢

-4 6 -4 1 0.00 0 0 0 0
¢ 1 -4 6 =41 .00 0 0 0 0

B = .

¢ 0 0 0 0 0 .1 ~4 6 -4 1 0
6 0 0 0 0 0 .0 1 -4 6 -4 1
¢ 0 0 0 00 .0 06 1 -4 5 -2
6 0 0 0 00.00 0 1 -2 1]



Their generalized least squares approach to the distribution problem can be stated as:

Min wV'w
Y

4
s.t. qu=X,

g=4t-3 -

fort=1,2,...,n (8)

where: w is a columnvector of 4n-d stationary quarterly figures after differencing d times and

V,, is the covariance matrix of the quarterly differenced series w, of order (4n-d) x (4n-d).

Wei and Stram (1990) propose to solve this problem in three steps.

Firstly, they fit an ARIMA model td the annual series X; such that the residuals from this
model are white noise. This model is then used to obtain an estimate of the covariance matrix
V, of the annual differenced series U, . |

The next step consists of distributing this model across an ARIMA model for the quarterly
series ¥, tobe estimated, the residuals of which are again white noise. That model is also
used to estimate the covariance matrix V,, of the quarterly differenced series Wy -

Finally, the quarterly values y, can then be estimated by the following formula:

d - .' —1d |
Y=|: A4n :I . VwF VU An:!_x (9)
ded—(n—d)| Cd 0dx(n—d)| Id

where’: A°, is a matrix of order (4n-d) x 4n, C, is a convertor matrix of order d x 4d, F is a
block matrix of order (n-d) x (4n-d), and Vy; is the covariance matrix of the annual differenced

series U, of order (n-d) x (n-d).

50 é'l P ’ o ¢ 0 0 . . . 0

d [} 50 51 . 8 2 o o o ., . 0
A 4n . s

o o0 o . ., 0 0 0 50 51 - é'd

where 8§, is the coefficient of B! in (B-1)*

£ 4o oo |o
o ! f |o]o .. |o
andF=|¢ | o] £ |o|] . |o

o ] o o « jo| 1
where 0 is a rowvector of 4 ones and f=(f,, fi, ..., fy4.,) with f the coefficient of B' in (1 +B+B2+B%¢*?,
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The major advantage of the Stram and Wei procedure is that it uses information on the data
generating process of both the aggregate and the disaggregated variable, whereas the previous
procedures do not use such information. However, there are two practical limitations
encountered in using this procedure. Firstly, the fitting of a well specified aggregate ARIMA
model to X; remains a difficult and fairly subjective task. Secondly, the procedure does not
work when m is even (as in our application) and some real roots of the autoregressive

polynomial of the estimated aggregate ARIMA model are negative.
2.1.4 The Kalman Filter

When we want to use the Kalman filter we first have to find a state space representation of the
underlying data generating process. A state space mode] always consists of two parts.
The first part is the measurement equation linking the unobservable state variables y, to one or
more directly observable variables X : |

X, =8y, +S,¢ £~ N(O,H,) : (10)
where X, is a vector of observable variables, {3, is a matrix of coefficients, y, is the vector of
state variables, and ¢, is a vector of disturbances.
The second part of the state space model is formed by the transition equation:

Yo =Ty . +R;7, 7~ N(0,Q,) - an

where T, and R, are matrices of coefficients and 1, is a vector of disturbances.

The Kalman filter technique is a recursive procedure for inference about the state variables o,
applying both the prediction and the updating equations. |

The prediction equations are used to predict at time ¢-7 the value of y, and P, (the covariance
- matrix of the prediction errors y, — ¥, ) using all available information at that time:

Jl),p_l =T, y.,
P,_,=T,P_ T +R, QR,

-1

(12)



The updating equations are vsed to update the predictions by using the information that

becomes available at time t:

j}z = J’};h:_] + Pr\:ul Zr Ft_l(xt - Zt j}t|r—l)
P=P,  -P,  ZF'ZP

5 -1

(13)

#|e=1 ti-1

where F, =Z,P,, \Z +S,H,S,
Applied to our problem of distributing annual data across quarterly figures and assuming that

the quarterly figures follow an AR(1) process the state space model to be estimated becomes:

Y,
' y
X, =1 11 1]

y3,t

ytl,[

| (14)

V.| [0 00 p][v, 71 0 0 0][n,
Yau | |0 0 0 071 |Y,, P 1 0 0 |mn,
¥Ya, 0 00 ,03 Yi. Pz p 1 0|7,
Yool 1000 o[y, | [P P p 1],

where X is a columnvector of n annual data, y; are columnvectors of n quarterly figures for the
ith quarter, p is a columnvector of the first order autocorrelation coefficient of the quarterly
figures (obtained via the second method of Boot, Feibes, and Lisman ), 0 i's a columnvector of n
zeros, 1 is a columnvector of n ones, and ; are columnvectors of n quarterly disturbances for

the 1tk quarter.

2.2 Procedures which use information from both the annual totals and related
quarterly time series '

A common feature of all but one of the procedures in this category is that they estimate the
quarterly series y using information on one or more related quarterly series, subject to the
constraint that during each year the sum of the quarterly figures equals the annual total. In

practice, the quarterly related series is converted into an annual series (by premultiplying the

10



matrix Z by the convertor matrix C), the annual series X is then regressed upon the computed
annual related series CZ, and the resulting annual residuals are distributed across the quarterly
series to be estimated y. We could make a distinction between the procedures that use the best
linear ‘unbiased estimator approach (Chow and Lin (1971), Fernandez (1981), and Litterman
(1983)) and those that rely on the quadratic loss function approach (Denton (1971) and
Fernandez (1981)). However, since Fernandez has demonstrated that the quadratic loss
function approach also provides best linear unbiased estimators if the classical assumptions of
the regression model are met by the quarterly residuals, we will present the various methods

in a chronological order.
2.2.1 Chow and Lin

Chow and Lin (1971) discuss the problem of distribution for a periodicity m=3, i.e.
estimating a monthly series given its quarterly data and monthly data on related series. The
same procedure - mutatis mutandis - applies to the problem of estimating a quarterly series

given its annual data and quarterly data on related series.

Following Chow and Lin (1971) w.e assume that the quarterly observations of the series to be
estimated y satisfy a regréssion relationship with a number p of related series z,, ..., z, which
can be written as:

y=Zf+¢ o (15)
where: Z is a matrix of order 4n x p with p columns of quarterly observations on related

series, P is a columnvector of p coefficients, and € is a columnvector of 4n error terms.

The first step consists of converting the quarterly observations of the related series into annual
observations by summing those quarterly observations that belong to the same year or in

matrix formulation by premultiplying Z and ¢ by the n x 4n convertor matrix’ C.

? Chow and Lin (1971) premultiply their convertor matrix C with 1/3, which leaves them with quarterly data

that are the average of the monthly data. In this paper we will not premultiply C with 1/4, since we imposed the
constraint that during each year the sum of the quarterly figures equals the annual total. This same procedure was
followed by Denton (1971) and Fernandez (1981).

11



We now have a new regression model with annual data:

X=Cy=CZB+Cs (16)

The best linear unbiased estimator y then becomes:

y=Zp+|ve(eve)'][x-czj]
- - : 17
B= [Z'C'(CVC')“CZ] zcr(cve) X

The intuition behind this solution is that the quarterly estimates are based on two components,
- the first of which is a linear function of the quarterly values of the related series, while the

second is a distribution of the annual residuals across the four quarters.

This estimator requires knowledge of the covariance matrix V. In practice however, this
mattix is unknown and has to be estimated by assuming some structuré_in the residuals e.
Chow and Lin discuss two pdssibilities, namely serially uncorrelated residuals and residuals
that follow an AR(1) process. In the next section we will refer to these procedures as CHO1

and CHO2, respectively.

If the quarterly residuals are serially uncorrelated, each with variance o*, the estimator in
-equation (17) reduces to':
| 3:= Z5+0.25C'¢ 18)

p=(Z'c'cz)y'z X
which means that the annual residuals will be equally distributed across the four quarters
within the year. The problem with this procedure is that it might introduce spurious

discontinuities between the last quarter of one year and the first quarter of the next year, since

the annual residuals are not necessarily uniformly distributed.

1% I that case V=l and CVC' =4c71.

12



If the quarterly residuals follow a first order autoregression (g,=0g,+¢) the covariance
matrix will depend on the value of the autoregressive parameter « and on the value of the
variance of the residuals e which is unknown. However the matrix VC'(CVC')’ only depends
on the value of the (quarterly) autoregressive parameter . To obtain a consistent estimate of
this parameter & Chow and Lin propose to use an iterative procedure based on the knowledge
that the first-order (annual) autocorrelation coefficient g is in fact the ratio of the off-diagonal

element to the diagonal element of the matrix o>CVC'.

‘Using this iterative procedure for the problem of distributing annual totals across quarterly

values, the relevant equation becomes:

a7 +2'(26 +3¢::5 +4a4 +3cx3 +20:2 +a

‘- (19)

20:3 +4ch2 +6a +4
Starting with an initial guess of ¢ the corresponding value of « can be calculated. We can then

compute the annual residuals X — CZﬁ , calculate their first-order autocorrelation coefficient

as the next guess of g and prdceed as before. Once convergence is reached, equation (17) can

be used to estimate the quarterly series y.
2.2.2 Denton

Denton (1971) considers the adjustment problem, i.e. the fact that the sum of the quarterly
vhlues y, for each year (obtained from another source or from a regression on related series)
does not necessarily equal the annual total X, . As the adjustment problem is narrowly related
to the distribution problem we will discuss Denton's method here as an alternative procedure

to distribute an annual series across a quarterly one,

To solve this adjustment problem Denton minimizes a quadratic loss function or penalty

function p(y, Zﬁ) in the differences between the quarterly values to be estimated ¥, and the

quarterly values of the regression (ZB) . » Subject to the constraint that during each year the

13



sum of the quarterly figures equals the annual total.

More formally, the problem can be stated as:

in oy.2) = (v~ 2) o[y )
at fort=1,2, ...,n o (20)
s.t. Z Y, =X,

g=41-13

This results in the following first order conditions with respect to each ¥, and the Lagrangean

multipliers A, :
¥ _ G Cln B G 04nxn ZﬂA ‘
LJ{C., Om} '[Cn I, HX—Czﬁ] o 21)

From (21) we can then calculate the vector of the quarterly figures y as:

y= z23+[G-lc'(CG-lc')“]-[x- czﬁ]
-1 (22)
ﬁ:[z'c'(cc-'c')"cz] z'c'(c_G-lc')“x

The specific solution will depend on the choice of the matrix G. The three possibilities
considered by Denton are: (1) G equal to the identity matrix I, , (2) G equal to D'D where D
is a matrix that transforms a series into first differences", and (3) G equal to D'D'DD where
DD transforms a series into second differences. In the next secﬁon we will re;fer to these

procedures as DEN1, DEN2, and DEN3, respectively.

"' The matrix D is a matrix of order 4n x 4n that transforms a series into its first differences, assuming that the
first quarterly value to be estimated y, is equal to the first quarterly value of the regression (Zf3), :
1 00 . 0 0

-1 1 0. 0 0
D=|0o -11 .. 0 o0
00 0 .. o-11
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If we simply want to minimize the sum of squares of the differences between the quarterly

values to be estimated y and the quarterly values of the regression ZﬁA , we choose G to be the

identity matrix I,. In that case GC'(CG'C")? simplifies to 0.25 C'. Since this solution is
identical to the one of Chow and Lin (1971) with homoscedastic and serially uncorrelated

residuals it suffers from the same defects.

If we want to minirnize the sum of squares of the differences between the first differences of
the series y and the first differences of the series Zﬁ, we choose G equal to D'D. This

‘procedure reduces to the first procedure of Boot, Feibes, and Lisman (1967) in cases where

there exist no refated quarterly series.

If we want to minimize the sum of squares of the differences between the second differences _

of the series y and the second differences of the series Zﬁ , we choose G equal to D'D'DD.

This procedure reduces to the second procedure of Boot, Feibes, and Lisman (1967) in cases

where there exist no related quarterly series.
2.2.3 Ginsburgh

Ginsburgh (1973) proposes to use a three step procedure that combines the second method of
Boot, Feibes, and Lisman (1967) with the estimation of an annual model relating the annual

totals to be distributed to the annualized totals of some related series.

The first step consists of using the second method of Boot, Feibes, and Lisman (1967) on
both the annual totals of the series to be distributed and the annualized totals of the related

series. This results in consistent quarterly estimates 3 and Z, in that the four quarters of the

same year add up to the annual total.

15
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According to Ginsburgh these quarterly estimates 7 should be ‘modulated’ to incorporate the

advantage of using additional information from a related quarterly series. Therefore, the second
step consists of estimating the annual model:

X=4+BCz+Ce | 23)

Finally, the estimated parameter ﬁ, is used to modulate the former estimates 7 in the

following way:

y=§+A-2) (4
In the next section we will refer to this series as GINS.
2.2.4 Fernandez

Fernandez (1981) in fact combines two of the procedures described above. He starts from the
regression model y = ZB + ¢ in which the error term follows a random walk'>. He then
transforms the whole model into first differences (to obtain stationary variables) and applies a
procedure similar to the one of Chow and Lin. Finally he shoWs that this leads to the same

result as using the Denton model with G equal to D'D.

In general he proposes the following i)rocedure for distributing annual totals across quarterly
values. As a first step, find a (simple) transformation that converts the residuals of the
quarterly regression model £ to a serially uncorrelated and stationary random variable. Then,
given the adequate transformation, £ may be estimated by generalized least squares and the

annual residuals distributed as indicated by equation (22).

"2 The error term can be modelled as; & =¢6;te.

16



2.2.5 Litterman

Litterman (1983) proposes a method to estimate monthly values of a variable such that their
average is equal to the quarterly value. We will discuss his prdcedure - mutatis mutandis - for
the problem of estimating quarterly values of a variable such that their sum equals the annual

value.

In fact, Litterman proposes a special case of the general procedure of Fernandez in that he
assumes that the quarterly residuals follow an ARIMA(1,1,0) model:
E,=¢€,,te, |

e, =ae,, +v, for =2, 3, ..., 4n (25)

In that case the best linear unbiased estimator y becomes:

y=Zj+(D'H'HD) ' C'[c(p A HD)‘ic']”[x ~czp]
AB = {Z'C'[C(D' H' I-ID)IC‘]_1 CZ}_I A C'[C(D' H'HD)_I C']_IX (26)

where" H is a 4n X 4n matrix.

We now need an estimate of the parameter « in order to be able to calculate the estimator y.
Litterman proposes to use a three step procedure: (1) use the DEN2 procedure to generate
annual residuals, (2) calculate the first-order autocorrelation coefficient of the first differences
of the annual residuals, and (3) calculate the parameter ¢ knowing that the first-order (annual)
autocorrelation coefficient ¢ is in fact the ratio of the off-diagonal element to the diagonal

element of the covariance matrix ¢°D'H'HD.

1 0 0 . 0O ¢

- 1 0 . 0 0
H=|0 -a1.. 0 o
0 0 0 .. -al
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For the problem of distributing annual totals across quarterly values, the relevant equation

then becomes:

2 +4a” +100% + 2027 43125 + 4005 + 440* + 200> + 3242 + 240+ 10

q= @7

2% +8a° +200* + 400> + 6202 + 80a + 44

Equation (26) can then be used to estimate the quarterly series y. In the next section we will

refer to this series as LIT.

3 An empirical comparison of the various procedures considered above

In this section we use the various distribution methods described above to construct
disaggregated quarterly series for real (1990 prices) and nominal GDP for thirteen countries™.
For most countries the data cover the period 1957.1-1994.4. For some éountries, however,
one or more data series are only available for a shoﬁer observation period. As a consequence

the samples vary across countries.

Ail data are taken from the International Financial Statistics of the IMF. For the estimation of
quarterly real GDP data we use seasonally adjusted industrial production as the related series,
whereas both seasonally adjusted industrial production and a price index (respectively
producer prices (PPI) and consumer prices (CPI)) are used for the estimation of quarterly

nominal GDP data®.

For each of the countries considered and for the longest possible sample we calculate 11

quarterly series of real GDP and 18 quarterly series of nominal GDP following the

' These countries are selected by means of two criteria. First, the country should be a member of either the

European Union (EU) since January 1 1995 or the G-7. Second, there should exist national quarterly data on
GDP for a sufficiently long observation period (at least 60 observations, i.e. 15 years). This resulted in the
following group of countries: Austria, Canada, Finland, France, Germany, Italy, Japan, the Netherlands,
Portugal, Spain, Sweden, the United Kingdom, and the United States.

¥ For Portugal only CPI data are available.
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procedures outlined above', Table 2 summarizes the abbreviations used for the various

distribution procedures.

Table 2:

The distribution procedures used in the empiribal part of the paper

"LIS Lisman and Sandee (1964)
BFL1 Boot, Feibes, and Lisman (1967) with first differences
BFL2 Boot, Feibes, and Lisman (1967) with second differences

KAL Kalman filter
GINS | Ginsburgh (1973)
CHO1 Chow and Lin (1971) with serially uncorrelated residuals
CHO2 Chow and Lin (1971) with AR(1) residuals |
DEN2 | Denton (1971) with G=D’D
DEN3 | Denton (1971) with G=D’D’DD
DEN4 Denton (1971) with G=D’D’D’DDD
LIT Litterman (1983)

For nominal GDP we calculate two quarterly series using the procedures GINS, CHO1,
CHO2, DEN2, DEN3, DEN4, and LIT, one with the PPI (GINS1, CHO11, CHO21, ...) and
one with the CPI (GINS2, CHO12, CHO22, ...) as the price index. '

1S We did not apply the method proposed by Stram and Wei (1986, 1990) because of the practical limitations
discussed above. When the periodicity is even the disaggregation of the aggregate ARIMA model into an ARIMA
model for the guarterly series is either impossible (if some real roots of the AR polynomial of the aggregate
mode] are negative) or not unique. Neither did we use the Fernandez-procedure in the empirical part of this paper
since the 'simple' transformations proposed by Fernandez never led to stationary serially uncorrelated quarterly
residuals,
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3.1 Testing for nonstationarity'’

We first test for the nonstationarity of the quarterly GDP series'®. To test the null hypothesis
of a unit root we use the (adjusted) Dickey-Fuller test statistic'*. The number of lags (k) is
selected in the following way: we start from a regression with 8 lags and each time eliminate
the last insignificant lag. We both test for nonstationarity of the levels and of the growth rates.
For real GDP both a constant and a trend are included in the ADF-regression of the levels,
whereas in the ADF-tegression of the growth rates we only include a constant. For nominal
GDP we start by including both a constant and a trend in the ADF-regression of the levels.
However, we eliminate the trend when some of the obtained test statistics are positive™. In the

ADF-regression of the growth rates again only a constant is included.

Based on the ADF-test statistics for real GDP we can conclude that all actual quarterly real
GDP series can be assumed to have one unit root. For the calculated series 96 out of 143 also
have one unit root, whereas 45 .series have two unit roots. Only CHO1 for the United
Kingdom and GINS for Portugal are stationary series. Thus, the majority of the calculated
quarterly growth rates of real GDP are stationary, although about one third still has a unit
root. Since the majority of the computed series are therefore I(1), we concentrate on

comparing the evolution of the quarterly growth rates of real GDP instead of the levels.

' The results of the nonstationarity tests are not included to save space, but can be obtained from the author
on request.

** To this end we use the unit root tests of Hendry's software package PcGive Professional 8.00.

** We start from the most general ADF-regression:
k
qu=a+ﬁ1:renar+(y—1) Vgt +E15!-Ay g—i

The null hypothesis of a unit root is y=1 (an insignificant test statistic t,;) and the alternative hypothesis is y<1
(or a negative test statistic t.;). The critical values of these test statistics are taken from McKinnon (1991).

A positive test statistic is excluded, because this would mean that the series is exploding.
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Table 3: The order of integration of quarterly series of real GDP

Furthermore, table 3 shows that especially the procedures which only use the information
from the annual totals lead to I(2) series for real GDP and thus a poorer approximation of the
actual quarterly real GDP data. Based on this criterion CHO1 is the best performing
procedure (12 out of 13), followed by DEN3 (11 o{1t of 13) and the group consisting of
CHO2, DEN2, DEN4, LIT, and KAL (10 out of 13). |

Based on the ADF-test statistics for nominal GDP we conclude that most actual quarterly
nominal GDP series can be assumed to have two unit roots. Only Italian, Dutch, and
Portugese nominal GDP only have one unit root. For the calculated series only 100 out of 228
are of the same order of integration as the actual quarterly nominal GDP series. Although the
evidence is not as clear as for real GDP, we will also concentrate on comparing the evolution
of the guarterly growth rates of nominal GDP instead of the levels: more than 90% of the

computed series are not I(0) and about 30% is indeed I(1).

Table 4: The order of integration of quarterly series of nominal GDP

Furthermore, table 4 shows that especially the procedures which only use the information
from the annual totals lead to I(2) series for nominal GDP and thus a better approximation of
the actual quarterly nominal GDP data. Based on this criterion LIS, BFL2, and KAL are the
best performing procedures (9 out of 13), followed by BFL1 (8 out of 13).
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3.2 Correlation coefficients vis-a-vis the actual growth rates

Table 5 summarizes the correlation coefficients (p) of the growth rates computed using the
various procedures vis-a-vis the actual quartely real GDP growth rates. From this table three

conclusions can be drawn,

Table 5: The correlation coefﬁcients (p) of the computed growth raf;es

vis-a-vis the actual quarterly real GDP growth rates

Firstly, these correlation coefficients enable us to distinguish three groups of distribution
procedures. The first group consists of LIS, BFL1, BFL2, and GINS. The procedures CHO2,
'DEN2,. DEN3, DEN4, and LIT comprise the second group. Within this second group we can
further distinguish two subgroups: (1) CHO2 and DEN2 and (2) DEN3, DEN4, and LIT.
Finally, the third group consists of the three methods that do not show a close correlation with
any of the other procedures (i.e. CHO1 and KAL).

Secdndly, we see that for some countries all distribution procedures perfbrm poorly.
Therefore, we distinguish three groups of countries: (1) countries where the three best
performing procedures a.fe highly correlated (p > 0.74) with the actual .real GDP series, (2)
countries where the three best performing procedures are moderately correlated (0.49 < p <
0.74) with the actual real GDP series, and (3) countries where the three best performing
procedures are badly correlated (p < 0.45) with the actual rc:cﬂ GDP series. The first group
(G1R) consists bf Canada, Francé, Germany, the United Kingdom, and the United States.
The second group (G2R) includes Austria, Italy, and Japan. Finally, Finland, the
Netherlands, Portugal, Spain, and Sweden comprise the third group (G3R).

Thirdly, it becomes clear that based on this criterion the procedures of the second subgroup of

the second group (i.e. DEN3, DEN4, and LIT) outperform the others.
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Table 6 summarizes the correlation coefficients (p) of the growth rates computed using the

various procedures vis-a-vis the actual quartely nominal GDP growth rates. From this table

three similar conclusions can be drawn as for real GDP.

Table 6: The correlation coefficients (p) of the computed growth rates

vis-a-vis the actual quarterly nominal GDP growth rates

Firstly, these correlation coefficients enable us to distinguish four groups of distribution
procedures. The first group consists of BFL1, BFL2, and to a lesser extent LIS. The
procedures CHO2 and DEN2 comprise the second group. The third group consists of DEN3,
DEN4, and to a lesser extent LIT. Finally, the fourth group consists of the three methods that
do not show a systematic correlation with any of the other procedures (i.e. CHO1, KAL, and
GINS).

Secondly, we see that for some countries all distribution procedures perform poorly.
Therefore, we again distinguish three groups of countries: (1) countries where the three best
performing procedures are highly correlated (p > 0.75) with the actual nominal GDP series,
(2) countries where the three best performing procedures are moderately correlated (0.45 < p
< 0.75) with the actual nominal GDP series, and (3) countries where the three best
performing procedures are badly correlated (p < 0.44) with the actual nominal GDP series.
The first group (GIN) consists of Canada, France, Germany, Japan, Spain, the United
Kingdom, and the United States. The second group (G2N) includes Austria, Italy, and the
Netherlands. Finally, Finland, Portugal, and Sweden comprise the third group (G3N).
Compared to the results for real GDP the results for nominal GDP are thus considerably
better for Spain, the Netherlands, and to a lesser extent Japan. ‘

Thirdly., it becomes clear that based on this criterion the procedures DEN3 and DEN4

outperfofm the others.
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3.3 A further comparison with the actual quarterly GDP growth rates

As a final test, we compare our computed quarterly growth rates of both real and nominal
GDP with the actual ones by calculating the Mean Absolute Error (MAE), the Root Mean
Squared Error (RMSE), and Theil’s Inequality Coeffcient (U)>'.

We first calculate the sum of both the MAEs, the RMSEs, and the Us for the growth rates of
real GDP across the countries of the first two groups (GIR and G2R). From the results in
table 7 we conclude that the procedure DEN3 seems to outperform the other distribution
procgdures, both in terms of the MAE and the RMSE, whereas the procedure LIT
outpe:rforms the others in terms of the U. Furthermore, the table shows that the differences

between the procedures DEN3, DEN4, and LIT are relatively small.

Table 7: The summed Mean Absolute Error, Root Mean Squared Error, and
Theil’s Inequality Coefficient for real GDP growth rates

2! We are well aware that this is a 'second best’ solution, since the 'actual' quarterly GDP data are derived from

some quarterly model and are no real observations. In spite of this we calculate the following three test statistics
where y, is the computed series and z, the actual one.

Map=1"1 7 e
B N
N 2
qzl(yq'zq)
RMSE=

£ (0s)’
y, -z IN
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1
/ 2 2
qu."N+ qufN
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Secondly, in table 8 we report the three best performing procedures for each test statistic for
real GDP growth rates. Then we rank the three best procedures from 3 to 1 and add these
ranks across the countries considered. This leads to a score of 50 for the best performing
procedure DEN3 (19, 17, and 14 for MAE, RMSE, and U respectively), whereas the second
best performing procedure DEN4 only scores 39 (15, 13, and 11 for MAE, RMSE, and U
respectively) and the third best pérforming LIT only 37 (12, 14 and 11 for MAE, RMSE, and
U respectively). Now, the method DEN3 seems to outperform the others, based on all three
criteria. We therefore recommend to use the DEN3 procedure for distributing annual real

GDP data across quarterly figures.

Table 8: The three best performing distribution procedures in terms of
Mean Absolute Error, Root Mean Squared Error, and Theil’s Inequality Coefficient
for real GDP growth rates

For the growth rates of nominal GDP we proceed in the same way.

We first calculate the sum of both the MAEs, the RMSEs, and the Us for the growth rates of
nominal GDP across the countries of the first two groups (GIN and G2N). From the results
in table 9 we see that the conclusions for nominal GDP are not as evident as for real GDP.
| Although the procedure DEN42 seems to outperform the other distribution procedures both in
terms of the RMSE and the U, it scores rather badly in terms of the MAE. Therefore, we
base our choice on the total rank of each procedure across the three criteria. This leads us to
the conclusion that the procedure DEN42 does indeed outperform the other distfibutioh
procedures (total rank of 8, whereas the second best procedures BFL1 and DEN31 have a
total rank of 10).
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Table 9: The summed Mean Absolute Error, Root Mean Squared Error, and

Theil’s Inequality Coefficient for nominal GDP growth rates

Secondly, in table 10 we report the three best performing procedures for each test statistic for
the nominal GDP growth rates. Then we rank the three best procedures from 3 to 1 and add
these ranks across the countries considered. This leads to a score of 30 for the best
performing procedure DEN31 (11, 9, and 10 for MAE, RMSE, and U respectively), whereas
the second best performing procedure DEN42 only scores 24 (7, 10, and 7 for MAE, RMSE,
and U respectively) and the third best performing DEN41 only 23 (8, 8 and 7 for MAE,
RMSE, and U respectively). Again we see that the conclusions for nominal GDP are not as
evident as for real GDP since the scores are much lower and no procedure outperforms the
others on all three criteria. Still, based on this evidence we conclude that the best method to

use is the DEN31 procedure.

Table 10: The three best performing distribution procedures in terms of
Mean Absolute Error, Root Mean Squared Error, and Theil’s Inequality Coefficient
for nominal GDP growth rates

Taking all evidence on nominal GDP growth rates together, we recommend to use the
DEN31 procedure for three reasons. The first reason is that this method yields the highest
score when we look at the individual countries. Secondly, we learned from the correlation
coefficients that the procedures DEN3 and DEN4 are highly correlated with one another.
Using DEN31 instead of DEN42 which came out best from the results in table 9 is therefore
Justified. Finally, when we use the same distribution method for both nominal and real GDP,

we can easily derive the implicit GDP deflator at a quarterly frequency.
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4 Conclusions

Unfortunately we do not dispose of a theoretical basis to discriminate between the various
disaggregation procedures outlined above, since many of them rest on assumptions concerning
the underlying data. As a consequence we cannot formulate a conclusion to cover all countries

or all observation periods.

A preliminary exploration of the empirical literature - primarily on money demand - leads us
to conclude that many authors are very vague as to the method they use to disaggregate their
annual data. Kremers and Lane (1990, p.784) e.g. state that "annual data are interpolated
according to the quarterly pattern of industrial production" without further reference to the
exact procedure u.sed. Similarly, Fase and Winder (1992, p.31) state “quartérly data are
‘constructed by means of data on industrial output”. If we restrict ourselves to those authors
that do mention (but not motivate the choice of) the procedure used, the method of Chow and
Lin® (1971) clearly is the most popular one (Campbell (1991), Hoffmaister (1992),
Butkiewicz and Yohe (1993), Artis, Bladen-Hovell, and Zhang (1994), ...). Hoffmaister
(1992) also uses the method of Litterman (1983) to distribute nontraditional exports,
Fernandez's (1981) method is used by Chowdhury (1993) to obtain quarterly estimates of
government spending, and Duffy (1991) uses the second method of Boot, Feibes, and Lisman

(1967) to distribute his annual population data across quafterly figures.

Since neither theory nor the empirical literature can provide a definite answer as to which
disaggregation method is the 'best’ one, we apply 11 of them to calculate quarterly real and
nominal GDP data for 13 different countries. We test for nonstationarity of the levels and the
growth rates and then calculate the correlation coefficients between the growth rates of the -
estimated quarterly GDP data and the actual ones. Based on these results, we can divide the
11 distribution procedures used into four groups: (1) the first three methods that only use
information from the annual totals of GDP (i.e. LIS, BFLI1, and BFL2), (2) the method of

Chow and Lin with serially correlated residuals and the method of Denton with first

2 However, they do not specify whether they use CHO1 or CHOZ.
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differences (i.e. CHO2 and DEN2), (3) the methods of Denton with second differences and
with third differences and the method proposed by Litte_rman (i.e. DEN3, DEN4, and LIT),
and (4) the other procedures (i.e. KAL, GINS, and CHO1). Finally, we compare the
computed quarteriy growth rates with the actual growth rates for a number of countries by
means of the Mean Absolute Error, the Root Mean Squafed Error, and Theil’s inequality

coefficient.

Although we are well aware that our results might be influenced by the choice of the periods
- and countries in our sample, we do recommend to compute both real and nominal quarterly
GDP data by the method DEN3. For real GDP this means regressing annual real GDP data
on annual industrial production data and minimizing the second differences between the
quarterly real GDP data to be estimated and the quarterly regression outcomes. For nominal -
GDP we suggest regressing annual nominal GDP data on annual industrial production and
annual producer prices and again minimizing the second differcnces_béfween the quarterly

nominal GDP data to be estimated and the quarterly regression outcomes.
The answer to the question raised in the title is therefore affirmative. It is indeed better to use

the additional information from related quarterly series suggested by economic theory, than to
simply apply a smoothing algorithm to the annual data.
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Table 3: The order of integration of quarterly series of real GDP
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* number of countries for which that distribution procedure generates a quarterly series of real GDP which is of
the same order of integration as the actual one
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Table 7. The summed Mean Absolute Error, Root Mean Squared Error, and Theil's Inequality
Coefficient for real GDP growth rates

MAE RMSE U
DEN3  0.1036 DEN3  0.1289 . LIT 2.4591 |
DEN4 | 0.1038 LIT 0.1295 DEN3  2.4896
LIT 0.1060 DEN4  0.1302 DEN4  2.5376
DEN2  0.1118 DEN2  0.1364 DEN2. 2.5758
CHO2 0.1121 CHO2  0.1369 CHO2  2.5906
BFL1 0.1191 | BFL1 0.1497 BFL1 3.3932
BFL2 0.1193 BFL2 0.1500 BFL2 3.3964
LIS 0.1217 LIS 0.1526 LIS 3.4741
KAL 0.1424 | KAL 0.1796 . GINS 3.6455
GINS  0.1564 GINS 0.2115 KAL 4.0361
CHO1 0.1750 CHO1  0.2230 CHO1  4.0735
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Table 8: The three best performing distribution procedures in terms of Mean Absolute Error,

Root Mean Squared Error, and Theil’s Inequality Coefficient for real GDP growth rates

MAE 1 RMSE . U

Austria DEN4  0.0679 LIT  0.079 CHO1 0.5057
DEN3 0.0683 CHO2  0.0800 CHO2 0.5481

LIT  0.0697 DEN2  0.0800 DEN2 0.5481

Canada DEN3  0.0052 DEN3 0.0068 LIT  0.2601
LIT  0.0052 ~LIT  0.0068 DEN3  0.2605

DEN4  0.0053 DEN4  0.0069 DEN2 0.2635

France DEN3 0.0031 DEN3  0.0043 DEN3 0.2338
DEN4  0.0033 DEN4  0.0044 DEN4  0.2385

LIT  0.0033 LIT  0.0047 LIT  0.2469

Germany DEN3  0.0049 DEN3  0.0062 CHO2 02715
‘ LIT  0.0049 LIT  0.0062 DEN2 0.2716
CHO2 0.0052 CHO2 0.0065 LIT 02717

Ttaly DEN4  0.0058 DEN4  0.0096 DEN4  0.3155
DEN3  0.0059 DEN3  0.0097 DEN3 03177

LIT  0.0060 LIT  0.009 LIT 03211

Japan LIT  0.0066 LIT  0.0092 LIT 02474
DEN3  0.0066 DEN3  0:0092 DEN3  0.2485

BFL1  0.0067 DEN4 0.0094 DEN4  0.2528

United Kingdom DEN4 0.0054 DEN4 0.0072 DEN3  0.3042
DEN3  0.0055 DEN3 0.0072 DEN4 0.3098

LIT  0.0059 LIT  0.0078 LIT  0.3100

United States DEN4  0.0041 DEN4  0.0051 DEN4 0.2233
DEN3  0.0041 DEN3  0.0052 DEN3 0.2240

LIT  0.0042 . LT 0.0053 LIT  0.2268
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Table 9: The summed Mean Absolute Error, Root Mean Squared Error, and Theil’s
Inequality Coefficient for nominal GDP growth rates

MAE RMSE U
BFL2 0.1307 ' DEN42 0.1779 DEN42 2.5870
BFL1 0.1309 BFL1 0.1832 ' DEN32 2.6495
DEN31 0.1343 BFL2 0.1834 DEN31 2.6510
LIT1 0.1348 DEN31 0.1850 LIT1 2.6686
LIS 0.1353 DEN32 (.1860 DEN41 2.6756
DEN42 0.1358 LIT1 0.1873 BFL1  2.9375
DEN32 0.1373 DEN41 0.1883 BFL2  2.5392
DEN41 0.1388 LIS 0.1887 LIS 2.9913
LIT2 0.1545 LIT2 (.2189 7 LIT2 3.0472
CHO22 0.1661 | - CHO22 0.23%4 ) CHO22 3.2737
DEN22 0.1661 -DEN22 - 0.2397 DEN22 3.2765
GINS2  0.1753 GINS2  0.2540 DEN21 3.4429
DEN21 (.1873 DEN21 0.2831 CHO21 3.4869
CHO21 0.1898 CHO21 0.2900 GINS2 3.7675
KAL 0.2127 KAL 0.2933 KAL 4.3147
CHO12 0.2362 CHO12 0.3316 GINS1  4.4387
GINS1  0.2438 : GINS1  0.3689 CHO12 4.6607
CHOLll 0.4470 CHOI11 0.6221 CHO11 | 5.5259
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Table 10: The three best performing distribution procedures in terms of Mean Absolute Error,

Root Mean Squared Error, and Theil’s Inequality Coefficient for nominal GDP growth rates

MAE RMSE U
Austria DEN42 0.0582 DEN42  0.0702 CHO21 0.5148
DEN32 0.0585 DEN41  0.0703 DEN21 0.5148
LIT2  0.0585 DEN32 0.0704 LIT1  0.5186
Canada BFL2  0.0052 BFL2  0.0073 BFL2  0.1536
BFL1  0.0053 BFL1  0.0073 BFL1  0.1542
DEN32  0.0055 DEN42  0.0076 DEN32 0.1558
France LIS 0.0075 DEN42  0.0111 'DEN42  0.1770
- BFL1 0.0075 DEN41 0.0133 DEN41 0.2035
BFL2  0.0076 LIS 0.0161  DEN32 0.2715
Germany LITI  0.0053 LITL  0.0069 LTI 0.2135
DEN31 0.0054 DEN31  0.0070 DEN41 0.2144
DEN41  0.0055 DEN4L  0.0070 DEN31 0.2160
Ttaly BFL2  0.0097 LIT1 00173 DEN31 0.2206
BFL1  0.0100 DEN31 0.0177 LITI  0.2221
LIT1  0.0107 BFL1  0.0189 DEN42 0.2520
Japan DEN42  0.0079 DEN42 0.0111 DEN42  0.1797
DEN32 00082 |  DEN32 00116 DEN32 0.1861
DEN41  0.0082 DEN41  0.0120 DEN4t  0.1971
Netherlands DEN31 0.0104 DEN22 0.0148 CHO22 0.4207
. DEN4L  0.0104 CHO22 0.0148 DEN22 0.4209
BFLL  0.0104 LIT2  0.0149 LIT2  0.4300
Spain BFL2  0.0024 BFL2  0.0037 BFL2  0.0524
| BFL1  0.0025 BFL1  0.0039 BFLI  0.0550
LIS 0.0036 LIS 0.0051 LIS 0.0706
United Kingdom DEN31 0.0074 DEN31  0.0094 DEN31 0.1710
DEN41  0.0076 DEN41  0.0095 DEN41 0.1744
DEN32  0.0076 DEN32 0.0098 DEN32 0.1798
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United States

DEN31 0.0053
DEN41 0.0054
DEN42 0.0054

GINS2 0.0073
DEN31 0.0076
BFL1  0.0078

DEN31 0.1765
GINS2 0.1773
DEN32 0.1805
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