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by a bare Coulomb potential in the nonrelativistic limit of a large number of closed shells
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In earlier work, one of us displayed an exact Thomas-Fermi (TF) method for kinetic energy and other
averages of the Compton profile for atomic closed shells in a bare Coulomb field. Here, we are also interested
in the semiclassical TF-like method but now in relation to the momentum density itself in the limit of a large
number of closed shells. Exact off-diagonal density matrices are also given explicitly, for both configuration
and momentum spaces. Finally the x-ray scattering factor is discussed in relation to the Thomas-Fermi limit.
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I. INTRODUCTION

The so-called 1/Z expansion [1], a pillar of analytical
atomic theory, has as its leading term the hydrogenic limit of
the bare Coulomb potential —Ze?/r. Therefore it remains of
considerable interest to display compactly the properties of
large numbers of closed shells generated by this potential.
One such result is the spatial generalization [2] of Kato’s
theorem [3]. This generalization, which applies to an arbi-
trary number of closed shells reads [2]

an(r) 27 12

=——n|r), ag=—", 1
= ) 0= (M

where n(r) is the total electron density while n,(r) denotes
the s-wave only (£=0) component of n(r). This relation (1)
was briefly discussed in relation to the semiclassical limit in
[2].

Defining the x-ray scattering factor f(k) in the customary
way by

sin k
r47Tr2dr, (2)

f(k)=f0 n(r)=~

we see immediately that f(0)=[yn(r)4mr’dr, which is the
total number of electrons N under consideration. For N

closed shells in a bare Coulomb field we have, for singly
occupied levels,

PACS number(s): 31.15.xg, 05.30.Fk, 71.10.Ca, 31.15.bt

and for a small number of closed shells, fy{k) has been dis-
cussed by Yusaf, Lawes, and March [4]. Below, our main
concern will be with f,(k) in the limit of large A and its
relation to semiclassical Thomas-Fermi (TF) theory.

The third quantity, on which we shall focus particular at-
tention, is the momentum density pyAp), again for an arbi-
trary number of closed shells, but with some emphasis on the
large A limit. This momentum distribution was given by
Howard, March, and Van Doren [5] in terms of the poly-
gamma function [see Egs. (4) and (5) below]. Here, this ex-
act result form py{p) will first be examined numerically in
the large N limit, and then will be considered in relation to
the TF semiclassical method.

Finally, we shall return to configuration space to obtain
the off-diagonal density, or the Dirac density matrix y(r,r’),
in relation, as in Eq. (1), to the s-state only form y,(r,r’). A
general relation was given, for example, by Theophilou and
March [6]. This leads us naturally back to an equivalent p
space result for the off-diagonal momentum density ¥(p,p’).

II. MOMENTUM DENSITY paAp) IN THE LIMIT
OF A LARGE NUMBER OF CLOSED SHELLS:
EXACT RESULTS IN RELATION TO THE
SEMICLASSICAL THOMAS-FERMI RESULT

In Eq. (4.3) of [5], ppdp) is given for a general number of
closed shells in terms of the polygamma function M(z),
defined as the derivative of the gamma function [7] as

N
NN+ DN +1) A nT(z)
N=D m*= , 3 M(z) = —————. 4
2 . 3) WD) = “)
We shall quote here only the result as the number of closed
*luismi @metodos.fam.cie.uva.es shells tends to infinity given by Eq. (4.4) of [5]
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FIG. 1. (Color online) Plot of p..(p) versus p for p=0 when we
remove the singular behavior at small p shown in Eq. (6). All the
quantities are in atomic units.
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(5)

This exact quantal form will be used immediately below, for
Z=1, to make contact with semiclassical theory. However,
we note that an expansion of p.(p) to display the singular
behavior as p— 0 has the form

oSl A4, 40, 5
PP =32 6" 32 15720 332 T 819427
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+
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To emphasize the nature of Egs. (5) and (6), we show in Fig.
1 a plot of p..(p) versus p for p=0 when we remove the
singular behavior at small p shown in Eq. (6). Then, the
resulting form has the rather simple behavior shown in Fig.
1.

A. Comparison with the semiclassical Thomas-Fermi limit

As discussed, for example, by Coulson and March [8], the
TF semiclassical density nyp(r) is related to the maximum
momentum p(r) at position r by

3 r
() =20, ™)

The semiclassical nature of Eq. (7) is evident from the fact
that given an appropriate electron density n(r), one can ex-
tract a precise momentum p(r) at position r. Also, it follows
[8] that one can extract a momentum density from the elec-
tron density, as given in the following equation. This mo-
mentum density pyr(p) can be expressed via Eq. (7) as
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FIG. 2. (Color online) (a) Plot of semiclassical Thomas-Fermi
quantity r(p) in Eq. (8), but now with the left-hand side of this
equation replaced by p..(p) calculated from Eq. (5) with Z=1. Part
(b) uses part (a) for r(p) to extract p(r) to insert in the rhs of Eq.
(7). This “refined semiclassical r space density” (solid line) is then
compared here with the Heilmann-Lieb [9] form n..(r), again for
Z=1 (dashed line). All the quantities are in atomic units.

3
prr(p) = ”657]']2) . (8)

To test the utility of the semiclassical TF equations (7) and
(8) in the favorable limit as the number of closed shells tends
to infinity, we show r(p) obtained from the exact momentum
density (5) (see caption of Fig. 2) in Fig. 2(a) and in Fig. 2(b)
the related quantity p*(r)/(67°) entering Eq. (7). For com-
parison, the Heilmann-Lieb [9] density n.(r) is shown for
the case Z=1. The accord in Fig. 2(b) is satisfactory, except
near the origin where the semiclassical approximation breaks
down.
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B. Off-diagonal density in p space for the mth closed shell
May [10] generalized the momentum density of Fock [11]
for the mth closed shell away from the diagonal. May’s result
is essentially for the off-diagonal density matrix ¥,,(p,p’)
for the mth closed shell which he obtains as
2072m* T2 (cos @ cos 6 +sin @ sin ' cos ¢b)
N2m @+ 17 +1)° ’
)

where ¢ is the angle between p and p’, z=mp/\, 7’
=mp'/\, and A=Z"",

Vu(P.p') =

2 12
7-1 77-1
0= , o' = , 10
cos I cos R (10)
and consequently
2z 27
sin 0= ———, sin 0 = . 11
! 2+1 ' 22+ 1 (1
TY2(x) are Chebyshev polynomials and May gives
T2 (1) = \2/mn, (12)
leading to
287rm?
YuPP) = 00P) = 55 2> 13
Yn(P-P) = pulp) = 33 2+ 1) (13)

which recovers the result of Fock for the momentum density
of the mth closed shell. We shall return, albeit briefly, to the
off-diagonal form of Eq. (13) at the end of Sec. IIT below.

III. ELECTRON DENSITY AND ITS OFF-DIAGONAL
GENERALIZATION

The electron density n,,(r) of the mth closed shell satisfies
the third-order nonlinear differential equation [2]
r ( nl (r)

=2\ )

2 2
) n, (r)+2n(r) + (4Z— %)n;n(r) =0.
(14)

The order can be reduced as Cooper subsequently showed
using the methods of supersymmetric quantum mechanics
for the radial Coulomb problem [12]. The reduced order dif-
ferential equation reads

R r(n(r) 2 , 72r
1, (r) + Z(m) n,,(r) = (ﬁ -

=0. (15)

1 27
- = 22>n,;1(r) +—n,,(r)
r r

Eliminating the nonlinear term from Eq. (14) using Eq. (15)
yields then the third-order linear homogeneous differential
equation

2 m " 4er2 ’
rony, (r) +4rny (r) +\ 2+ 8Zr — ——— |n, (r) + 4Zn,,(r) = 0.
m

(16)
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FIG. 3. (Color online) Density n,,(r) given in Eq. (18) for m
=10 (dashed line) and m=15 (dotted line). The full curves are pre-
sented in (a) for r€[0,5] and in (b) detail is shown for r&[0,15].
All the quantities are in atomic units.

We have verified using MATHEMATICA that the physical solu-
tion of Eq. (16), which is therefore finite at »=0 and tends to
zero at infinity, is given explicitly, for Z=1 and in atomic
units by

1 2r\ |2 2r\ |2
() = 46—2r/m{m[Lg,:zl(—rﬂ +m[Lg;zz(—r)}
am m m
2 2 2
+(—’_2m)L,<,:zl(—’)Lg,:zz(—r)}, a7
m m m

where L;(1M )(x) are generalized Laguerre polynomials. The s
component of the total density n,,(r) in Eq. (17) is easily
obtained as

-5 2
=" 0 ()

ko

and then it is readily shown that the first term on the right-
hand side (rhs) of Eq. (17) is simply m?n,,(r), which con-
tains the entire normalization condition

f n,,(ramr’dr = mzf n,,(r)4mridr. (19)
0 0

The s-state density n,,(r) given in Eq. (18), which is indeed
the square of the s-component radial wave function of prin-
cipal quantum number m, is plotted in Fig. 3 for two values
of m greater than or equal to 10.
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A. r space off-diagonal density

The r space density matrix 7,,,(r,r’) was used by Theo-
philou and March [6] to construct the complete r space den-
sity matrix 7,,(r,r’):

YT = = (x—y)-‘<a—'i - %){xyvm@%)] (20)

where (see, e.g., [13])

x=r+r’+fe-r'|, y=r+r'—|r-r'. (21)

Whereas Eq. (1) allows n,(r) to be obtained directly from the
total density n(r) [see, e.g., Egs. (17) and (18)] the result (20)
yields the total density matrix v, by differentiation of 7,,.
From Eq. (18) for n,,(r), it follows that the off-diagonal
generalization to v,,(r,r’) is readily verified to be

- 2 , 2r
Yus(r7) = ’"—e-ﬂmL;;zl(—r M (2] (22)
T m m
Using Eq. (21), one immediately has v,,,(x/2,y/2) appear-
ing on the rhs of Eq. (20). Taking the derivatives shown, one
finds

—(x+y)/2m
e y X
’Ym(r’r,): 6 {_xyLifEZ(;)Ll(’tBl(_)

Thus it is clear from Egs. (20) and (21) that the s-state den-
sity matrix for the mth closed shell determines the total den-
sity matrix 7,,(r,r’) for that shell. Of course, it will be a
considerable simplification if an analogous momentum space
treatment could construct the total density matrix ¥,,(p,p’)
from the explicit s-wave form in Eq. (31) below. A step
toward this objective is to note that, apart from a normaliza-
tion constant, the s-wave density matrices are related by

5}ms(p’p,) = J yms(rvr,)exp(i[p ‘r— p, : r'])drdr' .
(24)
Then, for the limited off-diagonal case of ¥,,(p,p’) corre-

sponding to p’'=0 we find

’7ms(p>p, = 0) = J ’)/mx(r’r,)exp(ip : I')dl'dl" s (25)

and making use of the explicit form (22) we find (see also
Appendix A)

Fms(p' =0) =8(- l)mHJ dreip're_’/mLEV:ll(Zr/m),
(26)

which prompts us therefore to return briefly to the complete
momentum density matrix %,,(p,p’) for the mth closed shell.
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B. %,,(p,p’) revisited

The work of Holstein [ 14] appears to simplify the expres-
sion of May [10] discussed above. In particular, for the nth
closed shell Holstein’s Eq. (29) gives, with ¢ denoting the
momentum eigenfunction,

1 mpa* 1

) 1
2 llln(fm(p) ¢Z€m(p,) = k2
€,m n

+pzki+p’2 n’ (n—1)!
X 16mm,a’*k,(2m,)?
1

— 27
dx" ' L(p,p’.x) | 1o 27
where
2 2
m,
K=—. 28
mon? (28)

Then Holstein’s Eq. (33) relates the derivative in Eq. (27) to
a Gegenbauer polynomial C,(:_)l(t) by
a! 1 B (n=1)
A" L(p.p" ) | o (ks +p7)(hy+p'?)

C£,I_)1 (t) >

(29)

where finally, 7 is given by his Eq. (34) which has misprints
in the first term on the rhs. However, his second term on the
rhs of Eq. (34) is correct and involves importantly cos ¢,
where ¢ is the angle between p and p’.

To conclude this section, let us return briefly to the r
space result in Eq. (1). This relates the total density n(r) to
its s-wave (£=0) component; but for a particular closed shell
with principal quantum number n and €=m=0, one has for
the (singly occupied) s-state the result

7n.s(p’p,) = 'r//nOO(p) 1//,10()(17/) . (30)

It then follows from Eq. (36) of Holstein (after misprints are
corrected) that

1 2 1 2
7m(p,p'>=3zwzmea2ki<zme)2mea( )( )

n’ k,21+p2 ki+p’2
1 [ka-p kn=p"
X—Cf,i)l(—z e i (31)
n k,+p k,+p

which is an off-diagonal generalization of the result (26) for
p' =0 (see also Appendix A).

IV. X-RAY SCATTERING FACTOR f(k)
FOR AN ARBITRARY NUMBER OF CLOSED
SHELLS COMPARED WITH THE THOMAS-

FERMI SEMICLASSICAL LIMIT

As mentioned above, in [4] the x-ray scattering factor f(k)
defined in Eq. (2) was calculated for small numbers of closed
shells. Here, because of our interest in the range of validity
of the semiclassical TF result, we have taken the density
n.,(r) calculated by Heilmann and Lieb [9] for Z=1 and have
obtained the x-ray scattering factor f,.(k). This is displayed in
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FIG. 4. (Color online) Plot of the x-ray scattering factor f..(k)
(dotted lines) and of its asymptotic results for small k given in Eq.
(33) (dashed lines) and large k given in Eq. (34) (dot-dashed lines);
k is given in atomic units. In (a) we can appreciate the good agree-
ment between f,.(k) and Eq. (34) for large values of k; in (b) we can
see the good agreement between f..(k) and Eq. (33) for small values
of k [the two curves are almost indistinguishable, and very different
from the dot-dashed line Eq. (34)]. All the quantities are in atomic
units.

Fig. 4 for comparison with the TF limiting result. Analytic
limits for small and large k of f..(k) are recorded in Appendix
B and are also displayed in Fig. 4.

We turn next to utilize again the linear differential equa-
tion (16) for the mth closed shell density n,,(r). From Eq. (2),
the corresponding scattering factor f,,(k) is readily obtained
from Eq. (16) by multiplying throughout by
47r*(sin kr)/(kr), and then integrating, to obtain

£ ZZJOC (Zr2 ) 1 ) ( )sin kr4 2
== T, —alr—_— r redr
" 0 m? 2Z ms kr m

sin kr

+ ZJ rn,;”(r)477r2 dr

0 kr

1(” sin k
+ —f r*n (r)dmr? Lar. (32)
2 0 k}’

Equation (32) therefore expresses the quantity f,,(k) = f,s(k),
the total scattering factor for the mth closed shell minus its
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s-state component, solely in terms of (derivatives of) the
s-state mth shell density n,,(r), and can be legitimately
viewed therefore, even though less simple, as the analog of
Eq. (1) for the x-ray scattering factor. Though f,,(k) has not,
so far, been achieved in terms of known functions, we have
used Egs. (2) and (18) to show that it has the form
Poms((km/2)?) /[ 1+ (km/2)*]*™, where p,,,_»(x) is a polyno-
mial of order 2m—2. Further detail is given in Appendix B.

Turning to the Fourier transform of n.(r), namely f..(k)
via Eq. (2), one can use the approach set out in Appendix B
to obtain asymptotic results for small and large k as follows:

4 Z3/2
fm(k)=37W, k—0 (33)
N
and
167 Z
fo) =5 Znar=0), k=, (34)
0

which, according to Heilmann and Lieb [9], can be expressed
in terms of the Riemann zeta function because for Z=1 we
have n.(r=0)={(3)/7=0.383 a.u. For the full treatment of
fw(k) for arbitrary k, one can proceed numerically via Egs.
(B11)—~(B14), but we shall not pursue further details.

V. SUMMARY AND PROPOSED FUTURE DIRECTIONS

The exact relation (5) has first been utilized to extract r(p)
from Eq. (8) as in Fig. 2(a) for Z=1. The result for p(r) thus
obtained has been inserted in Eq. (7) to obtain a “modified
semiclassical density” for comparison with the exact
Heilmann-Lieb form [9]. Except near the nucleus, the agree-
ment is good in this admittedly favorable case for semiclas-
sical theory. Turning to the electron density n,,(r) for the mth
closed shell, the known nonlinear differential equations (14)
and (15) have been shown to lead to the third-order linear
homogeneous differential equation (16). The physical solu-
tion of this equation has been obtained and is given explicitly
in terms of generalized Laguerre polynomials in Eq. (17).
Importantly, we have also obtained the exact off-diagonal
Dirac density matrix v,,(r,r’), for the mth closed shell, in
Eq. (23), and have verified that this correctly reduces to
n,,(r) in Eq. (17) in the limit r’ —r. The r space analog for
the s-component of the momentum density matrix ¥,,(p,p’)
in Eq. (31) for the special case p’=0 is given in Eq. (26).

Finally, analytic progress has proved possible on the x-ray
scattering factor, both in its exact quantal form and in the
semiclassical limit. The former is typified by Egs. (32) and
(B11), while the latter is given in closed form in Eq. (B6).

As to future directions, one can expect simplifications to
subsequently emerge by relating the off-diagonal momentum
density (p,p’) to its s-wave contribution ¥ (p,p’). This
would then complement the r space relationship considered
by Theophilou and March [6], quoted in Egs. (20) and (21)
above. These concern the role of the Runge-Lenz vector as
an additional constant of motion in the hydrogenic limit con-
sidered throughout the present paper.
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APPENDIX A: LIMITED OFF-DIAGONAL INFORMATION
IN MOMENTUM SPACE FOR s-STATE MATRIX

?ms(p’p,=0)

We show below that ¥,,,(p,p’=0) introduced in Egs. (24)
and (25) of the main text can be written in fact analytically as
a quotient of two polynomials. Indeed, it is possible to
readily accomplish the integration of the angular part in Eq.
(25) to get

©

sin pr
Vms(pop' =0) =327 (~ l)m”J exp(— r/m) P
0 pr
XL, 2rim)rdr. (A1)
Then, taking into account that
"+ a)(=x)*
LY =2 ( )( ) (A2)
k=0 n-— k k'

with a=1, n=m-1, and x=(2r/m)=2y, we get

pm-1 k

m -2

Tus(pop’ =0) = 327(= 1)1 S ( >( )
P o \m—k=1

XJ ey sin zydy, z=mp.

0

The last integral can be done explicitly and we get

2m-1 L

-2
s (pop’ =0) = 32(= 1)1 7= S ( . )u
P o \m—k—=1/ k!

(k+1)! |
X Wsm[(k + 2)arctan z].

Let us call f=arctanz, then cos O=1/y1+z%> and sin 6
=z/\1+z% If we now take into account the trigonometric
definition of the Chebyshev polynomials of the second kind
U,(z) [which are a special case of the ultraspherical or Ge-
genbauer polynomials C,(f)(z)] as

sin[(n+1)6]

Uy(cos ) =——— = Cil)(cos 0),
sin 6

(A4)

(A5)

we finally obtain
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m—1

(-2
7 (p.p' =0) =27 )™ m 3> —————
Vus(pop' = 0) = 327(= 1)"'m mgg)(m_k_l)!k!

1 1
X —U /= .
[1+ (mp)?]*+72 “‘( Vi+ (mp)z)
(A6)

In spite of the presence of the square roots, this expression is
nothing but a quotient of polynomials in the variable p?.

APPENDIX B: THOMAS-FERMI RESULT FOR X-RAY
SCATTERING FACTOR

As discussed earlier by one of us [15]

&[ z&r”

”TF(”)=§ p+ == (B1)

where w is the chemical potential. For N electrons singly

occupying A closed shells, with Eq. (3) relating them, one
readily finds from [np(r)dr=N that
2 2

e

The x-ray scattering factor corresponding to Eq. (B1) is
given from Eq. (2) by

\E Re { 262]3/24 sin kr
— T

(B2)

fre(k) = 32 pt+— rdr, (B3)

0 r

where R, is the classical radius defined from Eq. (B1) by

7 2
R=-2%. (B4)
M

Putting t=r/R,, Eq. (B3) then yields

42 iy e
frr(0)=N= L(Zezzrec)y2 f {— - 1} ~dt
377 0 t

\2
=——(ze°R.)".

127 (B3)

Indeed, the exact result can be obtained for any value of k in
terms of a generalized hypergeometric function as

-
\2 353 5 (kR)?
k :_ZzR‘3/2 F<_7_;_72’_;_ - >
fre(k) 1271_(6 ¢)234422 4
(B6)
which is valid provided R.>0. For small values of k, we
have the approximate expression

_(kR)® (kR ]

V2
k)=——(Ze’R.)?| 1 -

frell) =1 (ZeR) 32 5120
(B7)

We plot frr(k) in Eq. (B6) as a function of k and also R, in
Fig. 5.
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FIG. 5. (Color online) Plot of Thomas-Fermi approximation
frr(k) to x-ray scattering factor in Eq. (B6) as a function of k and
R.. All the quantities are in atomic units.

For comparison with the exact quantal result

N
) =2 flk), (B8)
m=1

the small k expansion of f,{k) follows as

Fadk) = frd0) + fol® + -+ (B9)

Turning to the (singular) case when N tends to infinity, and
taking into account the integral

PHYSICAL REVIEW A 77, 032504 (2008)

“ 1 sin kr
f ﬁJgs(a\rG) o 47rdr

0
8| 16k  ,(o?\ (o
=—| —sin°| — | =sin{ — | |, (B10)
ka| «a 8k 4k
we can utilize the Heilmann-Lieb density n.,(r) in their Eq.
(2.4) to arrive at the result, using Eq. (2) once more:
[N o

Sfoolk) = 22 dx xe'xcﬁ(x)fﬁdﬁ wix, 9)l
wk Jg 0 a

X[1—62ksin2<£2> —sin(12>], (B11)
o 8k 4k
where

a=2¢(x)\2w(x,0). (B12)
Here ¢(x) and w(x, 6) are given in [9] as

B0 = /(1 - ™) (B13)
and

w(x,0) =1+ e*=2e? cos 6. (B14)

To conclude this appendix, we add some explicit results for
small m for the x-ray scattering factor f,,,(k) introduced be-
low Eq. (32) of the main text. If we call the relevant integral
* sin gt
aio= [ erpore™ e, mis)
0 q

we have the following results for the first five values of m:

2
SR
8(1-34¢>+2¢%

AZ(Q) = (1 + 612)4

6(3 - 284+ 72¢* — 484° + 9¢®)

As(fl) = (1 +q2)6

32(1 = 19¢% + 109¢* — 215¢° + 1664® — 464'° + 4¢'?)

A4(‘Z) = (1 + qz)g

10(5 — 160g% + 16264* — 63804° + 11 1904% — 90404'° + 33304'> — 500¢'* + 25¢'°)
(1 +q2)10 ’

thereby confirming for small m the form p,,,_,(k?)/(1+k?)*" stated in the main text following Eq. (32). The x-ray scattering
factor f,, (k) is then

AS(Q) =

1
Fms(k) = ﬁAm(kmﬂ)- (B16)
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