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Abstract

As high-resolution mass spectrometry (HRMS)
becomes increasingly available, the need of soft-
ware tools capable of handling more complex
data is surging. The complexity of the HRMS
data stems partly from the presence of isotopes
that give rise to more peaks to interpret com-
pared to lower resolution instruments.

However, a new generation of fine isotope cal-
culators is on the rise. They calculate the small-
est possible sets of isotopologues. However,
none of these calculators lets the user specify
the joint probability of the revealed envelope in
advance. Instead, the user must provide a lower
limit on the probability of isotopologues of in-
terest, i.e. provide minimal peak height. The
choice of such threshold is far from obvious.
In particular, it is impossible to a prior: bal-
ance the tradeoff between the algorithm speed
and the portion of the revealed theoretical spec-
trum. We show that this leads to considerable
inefficiencies.

Here, we present ISOSPEC: an algorithm for
fast computation of isotopologues of chemical
substances that can alternate between joint
probability and peak height threshold. We
prove that ISOSPEC is optimal in terms of time
complexity. Its implementation is freely avail-
able under a 2-clause BSD license, with bind-
ings for C++, C, R, and PYTHON.

Introduction

Until fairly recently, detection of the fine struc-
ture isotopic distribution was generally beyond
the capability of any mass spectrometer. How-
ever, as both FT-ICR MS and Orbitrap in-
struments continue to be improved, obtain-
ing higher resolution and sensitivity, the detec-
tion of fine structure is becoming routine.t™
As much as 20M FWHM has already been
recorded.” The rise of high-resolution (HRMS)
and high-throughput mass spectrometry leads
to more informative data providing valuable in-
sights into, e.g., molecular identity. Experi-
ments confirm superior identification powers of
HRMS, enabling, for instance, correct recogni-
tion of metabolites® and lipids.©

However, more information is more data to
analyze: a low resolution full scan mass spec-
trum of a single molecule consists of only a few
peaks, where each peak counts ions that have
roughly the same nominal mass. HRMS can re-
solve these clusters of ions into finer ones. Ide-
ally, with high enough resolution, one could re-
solve individual isotopologues”, i.e. molecules
with the same isotopic composition. For in-
stance, using HRMS one can discern water
isotopologues HD'®0O and H217O, both with a
nominal mass equal to 19 Da. In consequence,
more peaks need to be interpreted.

Regardless of the resolution reached by mod-
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ern instruments and its theoretical limits result-
ing from thermodynamics®, it is instructive to
consider the unrealizable case of infinite reso-
lution. In such a setting, the full isotopic dis-
tribution of Bovine Insulin, Cy5yHg7-NgO-5Sg,
would be composed of more than 1.5 trillion
different isotopologues. This number can be
massively reduced if one introduces the prob-
abilistic concept of the chance of finding a
given type of isotopologue. Assuming statis-
tical independence of the isotopic variants of
atoms”, 414 configurations are enough to rep-
resent around 99% of the overall probability.
This phenomenon is known as probability mea-
sure concentration.t?
Related Research. To bypass the problem
of the rapid increase in the number of isotopo-
logues traditional approaches to isotope cal-
culations have mostly assumed nominal mass
approximation™™4 binning isotopologues with
the same mass number; see Valkenborg et al.l?
In this approach isotopologues with the same
nominal mass are indistinguishable: the theo-
retical distribution is centroided so that highly
resolved peaks are represented together with
their mass averaged out. The Fourier transform
method proposed by Rockwood™® exempts this
rule: it relies on probing the Fourier transform
of the mass distribution and offers, in principle,
extremely high levels of resolutions. Still, one
cannot expect to know a priort where to probe
the transform and has to resolve to a meticu-
lous search over a grid of mass values, which
raises the task’s computational complexity.
Recently, the interest shifted towards direct
calculation of fine isotopic peaks, giving rise to
elegant algorithms, such as ECIPEX* or EN-
VIPAT.'® ECIPEX generalizes the Fourier trans-
form approach investigated by Rockwood to
higher dimension. ENVIPAT has recently bested
ECIPEX in terms of runtime, which can be at-
tributed to direct inspection of the problem on
the level of counts of isotopes and by performing
pruning of the so called transition trees. Both
approaches do harness the probability measure
concentration we exposed on the Bovine Insulin
example. However, they specify their outcome
in terms of heights of the reported peaks. For
instance, they let one neglect all peaks below a
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Figure 1: Division of isotopic envelope into optimal p-sets,
p € {80%, 90%,95%,100%}, for a toy molecule. Red peaks cor-
respond to the smallest set of isotopologues that is at least 80%
probable; in green we show the minimal additional layer of peaks
that together with all previous ones are at least 90% probable; in
cyan — 95%, in violet - 100%. IsoSpEec finds minimal sets with
a given joint probability without requiring a threshold on peak
height, i.e. without a cut-off on the y-axis.

given percentage of the highest peak, which is
a heuristics first developed by Yergey.' A dif-
ferent approach to fine structure calculations,
presented by Li??, does not present such a dis-
advantage and the user can specify some joint
probability p of the fine structure to be re-
vealed. However, the output of that approach
might not be the smallest possible set of iso-
topologues that is p probable. Together these
peaks might be jointly p probable, but there are
smaller sets of peaks with this quality.

To our best knowledge, the question of how
the choice of the threshold relates to the joint
probability of the envelope has not yet been in-
vestigated. As demonstrated in Fig. S.4 in Sup-
porting Information, this relation is far from
trivial, potentially leading to calculations in-
volving isotopologues that are altogether not
so important for the analysis. In the case of
Bovine Insulin, the smallest set that is 99.99%
probable contains 6196 isotopologues in addi-
tion to the 414 contained in the smallest 99.9%
probable set. On average, these 6196 isotopo-
logues will amount to one per mille of all of
the observed ions, making it impractical to con-
sider them. The effect of overrepresenting an
improbable set is more pronounced for bigger
compounds, especially with many atoms of el-
ements that have more than one abundant iso-
tope, such as selenium or sulfur. This under-



lines the role of precision in the choice of proper
pruning threshold.

Our Approach. In this paper we study in de-
tail the relationship between the threshold and
the joint probability. We present an algorithm
for retrieving the smallest possible set of iso-
topologues with a given probability that the
user wishes to unveil. Our algorithm bridges
the apparent gap between algorithms such as
ENVIPAT or ECIPEX and the recursive approach
developed by Li.?Y In contrast to many other
approaches, we also analyze the computational
complexity of the presented solutions. We prove
that our algorithm is optimal in terms of time
complexity. Finally, we present an implementa-
tion of ISOSPEC that is superior to the fastest
fine structure calculator to date, ENVIPAT, as
tested on a set of more than 800,000 chemical
formulas obtained by in silico fragmentation of
1000 human proteins.

The infinitely resolved spectrum can com-
prise thousands of peaks for just one molecule.
One could doubt the usefulness of this concept
arguing that this is experimentally unachiev-
able. However, isotopologues can be aggregated
based on the similarity of their masses so as to
match the resolution of the used instrument, see
Li.”Y Our approach guarantees that this can be
achieved quickly and with control over the error
of the approximation.

In the rest of the article we describe the theo-
retical gains from any strategy resulting in op-
timal pruning. Then, we describe the [ISOSPEC
algorithm. Finally, we compare its runtime
with the ENVIPAT algorithm. In our presenta-
tion we focus on proteins; however, the imple-
mentation and the analysis both apply to any
known compounds, even those containing other
elements than carbon, hydrogen, nitrogen, oxy-
gen, and sulfur.

The Complexity of Pruning

Consider a protein with ¢ atoms of carbon, h
hydrogen, n nitrogen, o oxygen, and s sulfur,
C.H, O N,S,. Denote by £ the set of the chem-
ical elements the protein is composed of and by
n. the number of atoms of a given element e
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Figure 2: The threshold function obtained for Bovine Insulin.
The function relates the choice of peak height threshold 7 with
the joint probability p of the resulting set of isotopologues, i.e.
the ones with peak height at least 7. It usually happens that
there is no peak with height exactly 7: the effective configuration
(in red) is then to be found to the right on the same level. Trim-
ming peaks less than 6%-probable (height below 0.06) one gets
a set of 4 isotopologues (red dots on the blue background) with
joint probability 36.7%. Higher intensity of red in top-left cor-
ner indicates that lower thresholds rapidly increase the number
of resulting isotopologues.

composing the protein, i.e. n. € {c,hn,o0,s}.
Finally, denote by i, the number of stable
isotopes of that element. The total number
of different isotopic compositions assumed by
C.H,O/N,_S;, i.e. the total number of isotopo-
logues'™, equals [T, ("7, which is asymp-
totically polynomial in the numbers of atoms,
O([].ce nie™"), see SI, Section 4. Section 1 pro-
vides an example deciphering the above nota-
tion. Carbon, nitrogen and hydrogen have two
stable isotopes each, resulting roughly in a lin-
ear increase in isotopologues with the number
of atoms of these elements. With respectively
three and four stable isotopes the relation for
oxygen becomes quadratic, and cubic for sulfur.
This quantifies the extent of combinatorial ex-
plosion of the direct enumeration of all isotopo-
logues. We would like to avoid finding unlikely
isotopologues. Assuming that the isotopic vari-
ants of atoms composing C_H, O N S, are inde-
pendent and drawn with the same abundances
across elements”, one pinpoints the probability
of an isotopologue to be a product of multino-
mial distributions, equal to

Ne Ne,0 Neie—1
H ( )pe,o o Deqtrs (1)
UZIE
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and mass to ) .. Zze:_ol Me,iNe,i, Where ne; is
the count of element e’s j™ isotope, and p.; and
me; are respectively its abundance and mass
in daltons, both reported by IUPAC.?Y With
Eq. at hand, it is natural to search for sets
of isotopologues that jointly surpass some lim-
iting value of probability that is close to 100%,
say p. Many such sets exist, so it seems rea-
sonable to limit one’s attention to the smallest
one. We call such a set an optimal p-set — Fig.
explores that concept; see also SI, Section 2 for
a discussion on uniqueness of the optimal p-set.

Observe that the optimal p-sets in Fig. (1] are
separated by horizontal dashed lines up to con-
figurations with the same probability. To ob-
tain an optimal p-set one can choose a thresh-
old on peak height and then discard some of the
low probable peaks of the same height, see SI,
Section 3. Usually there is only one peak with
minimal height, so that the output of both the
ENVIPAT and ECIPEX algorithms coincides with
an optimal p-set, for some joint probability p.
However, to get p one has to establish a set of
isotopologues first.

The relationship between the input threshold
and the joint probability of the output p is pre-
sented in Fig. 2] on the example of Bovine In-
sulin. The resulting threshold function is locally
flat, non-increasing, and right-continuous. The
input threshold will usually be smaller than the
actual minimal probability observed in the out-
put p-set: we call isotopologues with that prob-
ability effective. They are depicted as red, semi-
transparent circles in Fig. [2] and correspond to
right ends of the intervals that make up the
curve. High concentration of the effective iso-
topologues in the top left region suggests high
sensitivity of the number of configurations in
the optimal p-set to the choice of the input
threshold. The idea behind the ISOSPEC al-
gorithm is to reach the input joint probability
p by moving along the graph of the threshold
function, from bottom-right to upper-left.

Before describing in detail the ISOSPEC algo-
rithm, let us briefly elaborate on the potential
gains resulting from peak height thresholding.
An isotopologue of C_H, O N_S can be fully de-
scribed by the numbers of isotopes of differ-
ent elements that compose it, called subisotopo-
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A subisotopologue corresponding to element
e can be thus represented as a tuple n, =
(Me,05 - - - > Me,—1) of specific isotope counts,
where 23.6;01 Nej = nNe. The inspection of
the probability of an isotopologue described by
equation further reveals that each multino-
mial distribution present in the product corre-
sponds to the probability of exactly one subiso-
topologue. If e has three isotopes, then one
can depict subisotopologues on a ternary plot,
as in any subplot of Fig. [3] In general, subiso-
topologues constitute a discrete grid on a struc-
ture called simpler. With a growing number of
atoms of each element in a chemical compound,
the multinomial distributions in Equation
can be individually approximated by multi-
variate Gaussian distributions with the same
mean and covariance matrix, see SI, Section 6.
The asymptotical behavior results from the
Central Limit Theorem. Considered together,
these form yet a higher dimensional multivari-
ate Gaussian distribution, with a mean g and
covariance matrix X, specified in SI. That nor-
mal distribution approximates the product of
multinomials. By inspecting its smallest p-
probable sets we can asymptotically investigate
the behavior of the corresponding optimal p-set.

It is well known that ellipsoid of radius R de-
fined by inequality (z—pu)'Y " (z—p) < R? con-
stitutes the smallest region with a given proba-
bility for the Gaussian distribution. Moreover,
its probability can be easily obtained by eval-
uating the cumulative y? distribution function
with & = > __cic — |&] degrees of freedom in
point R% where |£| is the number of elements
in the compound. The number of isotopologues
in the optimal p-set is asymptotically propor-
tional to the volume of a p-probable ellipsoid,
which is in turn proportional to

k ie—1
tem®)? [[ne® (2)

eef



% isotope 3
(a) P = 0.0172

(b) P =0.9926

(c) P =0.9999
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Figure 3: The principle behind the IsoSpEc algorithm. Consider a ne = 50 atoms molecule made up entirely out of one fictitious
element with three isotopes. The concepts of subistopologue and isotopologue coincide. Isotope content of isotopologues is represented
as points in the above ternary plots. In general, isotopologues correspond to tuples of points on different simplices. To find the optimal
99.9%-set, one first establishes the most probable isotopologue, like in (a) in red. Then, one finds the first optimal pi-set, as in (b) by
choosing some threshold 7, like in (b) in grey. One then sums all peaks heights to see that p1 = 99.26%, smaller than 99.9%. One gets
another threshold 72, establishes new layer of isotopologues, (c¢) in orange, and finds that po = 99.99%. This set is too big and one trims
out the isotopologues in blue in (d). Then, p > 99.99%, but removing more isotopologues would bring joint probability below 99.99%.

Figure 4: Merging subisotopologues into isotopologues on a toy
example of a two element molecule. The lengths of the edges of
rectangles correspond to probabilities of subisotopologues: these
are decreasing for both the red and the blue element, and cor-
respond to subisotopologues that concentrate around the most
probable subisotopologue, as in the ternary plot. Isotopologues
are visited lexicographically: first, one travels down the red path-
way (column with rectangles a and b) till reaching a dark rect-
angle with area below threshold 7. Then, one travels down the
orange pathway (column with rectangle ¢); and so on. Dark rect-
angles form the fringe: a set of neighbors of isotopologues more
probable than 7. Having obtained another threshold v < 7, one
continues the lexicographic descent starting from the fringe until
first isotopologues less probable than v are reached, forming a
new fringe.

where q,2)(p) is the p-th quantile of the afore-

mentioned y2-distribution, see SI, Section 6.
The overall number of isotopologues above a

given probability behaves therefore asymptoti-

cally like O(

root of the order of the total number of isotopo-
logues obtained before. This both explains the
sublinear growth of the optimal p-sets and pro-
vides asymptotic bounds on memory usage for
any peak height trimming algorithm. There-
fore, trimming truly effectively averts the com-
binatorial explosion.

[Lce nﬁ;‘l) — roughly a square

The IsoSpec Algorithm

We will describe ISOSPEC in four steps: how
to generate subisotopologues; how to merge
subisotopologues into sets of isotopologues
above a given threshold; how to generate a
sequence of consecutive thresholds; and how
to trim the output into the final shape. The
first two steps are interwoven and describe a
fully operational peak height trimming algo-
rithm we call ISOSPEC THRESHOLD. With
these four procedures, ISOSPEC first generates
the top probable subisotopologues. Eq.
indicates that together they form the top prob-
able isotopologue. Then, ISOSPEC iteratively
produces optimal p-sets of isotopologues, each
corresponding to some threshold 7 from the
sequence of thresholds. Every time a p-set is
obtained, its joint probability p is established
and compared with the target value P. This
is repeated until p gets larger than P. Finally,
the last layer of peaks is trimmed leaving the
required optimal P-set. Fig. [3| visualizes this
approach on a simplified molecule composed of
exactly one element.

Calculating subsequent subisotopologues cor-
responds to reporting configurations of a given
multinomial distribution with decreasing prob-
ability. This is easy thanks to its unimodality.
To define what we mean by unimodality, we
first relate subisotopologues of element e spa-
tially: let two subisotopologues n! and n? be
neighbors, n! ~ n? | iff one is obtainable from
the other by changing the isotopic variant of



exactly one atom. For instance, '°0,~'"0'%0,
as one atom changed from '°0 to '"O. How-
ever, 1%0,70,'°0, as two atoms would have
to change from '°0 to 0. Two neighbors are
also close on the simplex in the geometric sense,
like dots in Fig. A discrete distribution is
unimodal, iff the set of global maxima is con-
nected. Consequently, every configuration not
top probable has an equally or more probable a
neighbor. The multinomial distribution is uni-
modal in that sense.?

Unimodality simplifies the task of reporting
subisotopologues sorted by decreasing probabil-
ity for a given element e. Call such procedure a
subgenerator; see SI, Algorithm 1. A subgenera-
torstarts from top probable subisotopologue. It
gets there by a simple hill climbing algorithm:
it starts with a subisotopologue close to the
mean of the multinomial distribution and fol-
lows the direction of increasing probability un-
til the maximum is reached. By unimodality, it
must be a global one. It then enlists it in an
empty priority queue P(Q), with priorities set to
probabilities of subisotopologues; check SI Ta-
ble S3 for P(@) properties. Then, it iteratively
extracts the top probable element from P() and
inserts its yet unvisited neighbors. By uni-
modality one can only insert subisotopologues
less probable than those popped out. Each con-
figuration has a limited number of neighbors,
so the size of P() is of the order of the number
of already visited subisotopologues, n. Using
the standard heap implementation of the PQ),
calculations involving n configurations take up
O(nlog(n)) time.

We store the results of previous calls as well
as the state of the subgenerator to avoid unnec-
essary recomputations. This way the retrieval
of the already calculated probability, e.g. while
passing from red pathway to orange pathway
in Fig. ] can be done faster. Multiple vis-
its to subisotopologues can be avoided through
hashing. The computational complexity of op-
erations on subisotopologues is negligible com-
pared to subisotopologue merger.

A subgenerator provides the k-th most proba-
ble subisotopologue and its probability. To get
an isotopologue, one considers a tuple of |£| dif-
ferent subisotopologues, each obtained with a
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Figure 5: Adaptive linear approximation to the threshold func-
tion. It starts at point (P,P) — the top probable isotopologue,
0, and aims at finding the optimal 80%-set, point T. Point 1 on
line O-S is where we would get if our approximation using mul-
tiplier M was perfect. Instead, it leads to only 75% of the joint
probability, as indicated by point 2. Line 2-S provides another
approximation, and suggests point 3. In reality, we move to 4 —
already above the target 80%. The effective isotopologues on the
threshold function between points 4 and T can to be trimmed.

different subgenerator. The probability of an
isotopologue is the product of probabilities of
its constituent subisotopologues. ISOSPEC uses
a series of thresholds to obtain layers of iso-
topologues. It starts by merging top probable
subisotopologues. Given any isotopologue 7, it
uses subgenerators to establish its less proba-
ble neighbors, the successors. A successor of ~
has precisely one subisotopologue changed to
the next one in line. For instance, isotopo-
logues b and c are successors of a in Fig. [
To generate isotopologues above a threshold 7
consists in inserting and popping elements from
a queue, see Algorithm 2 in SI for details. In
comparison to subgenerator, sorting elements is
redundant, and so a priority queue can be re-
placed with a simple FIFO queue, see SI for
definition. To avoid repeated visits to the same
configurations, ISOSPEC follows a lexicographic
visiting schedule, as shown by colored arrows in
Fig. [ Each popped out isotopologue qualifies
to a given layer if its probability is above 7.
Otherwise, it is stored in a so-called fringe, and
used in the next iteration with a new thresh-
old. The procedure is repeated until the joint
probability exceeds that required by the user.
Successive threshold values result from an
adaptive linear approximation to the threshold
function, see Fig. Given the top probable
isotopologue with probability P we can draw a
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Figure 6: Comparison of ENVIPAT and IsoSpEc THRESHOLD (a,b) and of IsoSpPeEc THRESHOLD with IsoOSPEC calculating the optimal
99% and 95% sets. Absolute peak height threshold was set to equal one ten-thousandth of the highest peak height (EnvIPaT default).
Fig. (a) shows the absolute runtime as a function of the overall number of calculated configuration. In Fig. (b), we express the relative
runtime of ENVIPAT in the runtime of IsoSpec THRESHOLD, showing how much faster is our approach. Both axis in (a,b) are in
logarithmic scales. Fig. (c) shows how much faster is the calculation of the optimal 99% and 95% sets (with IsoSpPEC) than obtaining
the set of isotopologues more probable than 10~% HP (with IsoSPEc-THRESHOLD). In contrast to (a) and (b), the abscissa states the
average mass of a compound, as the number of configurations (isotopologues) is variable for the different sets. Smooth lines represent
fitted polynomial trend lines in all plots. The analysis is based on 805,367 compounds.

line between point (P, P) and point S = (0, 1).
Point S lies on the threshold function, as the
choice of a 0 threshold on peak height results in
a full set of isotopologues, i.e. a 100% probable
set. On that line we find a point slightly above
the required value P, say MP where M > 1 is
chosen heuristically. The x coordinate of that
point provides the first threshold, 7. Applying
the previous procedure on 7; we get the optimal
probability p;. A new line is drawn between
point S and (71,p;) and the procedure is iter-
atively repeated until py > P, where k is the
number of the last iteration. The slight overes-
timate is needed for the algorithm to converge.

Finally, the trimming of the last layer of iso-
topologues can be performed in a linear time
with its size; see SI, Algorithm 3. Section 8
provides a proof of the algorithm’s optimality.

Results

We perform runtime analysis on a set of more
than 800 000 ions’ formulas generated from a
list of 1000 human proteins from Uniprot. This
set of formulas contains 1000 precursors and all
derived b and y ions. This computational ex-
periment therefore simulates the spectra prepa-
ration step for a tandem MS database driven
identification procedure.

Both ENVIPAT and ISOSPEC are implemented
in C++, however while ENVIPAT can only be
called from R, ISOSPEC can be called from
C++, C, R and PYTHON. We have used the

PYTHON interface in our simulations.

In Fig. [6] (a,b) we compare runtimes of EN-
VIPAT and ISOSPEC THRESHOLD on individ-
ual fragments. Both tools aim at calculating
the same set of isotopologues defined by a com-
mon threshold on peak height, equal to one
ten-thousandth of the highest peak, 10~*HP for
short. Fig. |§| (a) reports absolute runtimes in
seconds. Fig. [f] (b) expresses ENVIPAT’s run-
time in that of ISOSPEC THRESHOLD to show
directly how much faster is the latter, which
is roughly 2 to more than 100 fold, the gap
widening with the size of a molecule. The opti-
mal 99% and 95% sets are always smaller than
the set of isotopologues more probable than
10~*HP and can be usually obtained faster us-
ing ISOSPEC, as can be seen in Fig. [f] (c).
The advantage clearly increases with compound
size; consider SI Section 6 and Fig. S3. for the
asymptotic dependence between runtimes and
the choice of the joint probability threshold.
This opens way for various rapid scan proce-
dures that could compare the actual spectrum
with a relatively small optimal p-set to rule out
that a given compound is there.

The overall time to compute spectra for a CID
identification procedure for a given substance is
the sum of runtimes needed to obtain the spec-
tra of the precursor and all fragments. We re-
port these total runtimes in Fig.[7], which simply
aggregates information conveyed in Fig. [6 In
particular, subfigure (a) confirms that a proce-
dure based on ISOSPEC will be at least an order
of magnitude faster as compared to ENVIPAT.
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Figure 7: Comparison of ENVIPAT with IsoSpEc THRESHOLD (a,b) and IsoSpeEc THRESHOLD with IsOSPEC aiming at joint probability
equal to 99% and 95% (c) on fragment identification problem (1000 compounds). In (a) we see the absolute runtimes of ENVIPAT and
IsoSpec THRrREsHOLD: (b) specifies how much faster is the second approach in terms of the runtimes of the first one. On the x-axis of
the (a,b) plots we show the total number of configurations generated in the tandem MS theoretical simulation for a given protein. Both
axes are in logarithmic scales. In (c) one notices speedup resulting from a search for the optimal 95% and 99% sets (IsoSPEC) instead
of the set of isotopologues more probable than 10~% HP (ISOSPEC-THRESHOLD).

Concluding Remark

In this article we introduce the concept of the
optimal P-set and show its relevance in the
problem of simulating a theoretical infinitely
resolved spectrum. This concept gives rise to
an optimal algorithm, ISOSPEC, that efficiently
uses available computational resources. The
main strengths of the method are: (1) an in-
crease in runtime speed in-between one and
two orders of magnitude compared to other ap-
proaches (2) mathematically proven asymptot-
ically optimal (linear) runtime of the presented
method (3) the ability to solve the problem in
terms of joint probability rather than the peak
height threshold, if desired, (4) bindings for four
mainstream computer languages.

[SOSPEC can be freely downloaded under a 2-
clause BSD license from http://matteolacki.
github.io/IsoSpec/.

Acknowledgement Work supported by
Polish NCN grants 2014/12/W/ST5/00592,
2015/17/N/ST6/03565 and partially by Flem-
ish SBO grant InSPECtor, 120025, IWT.

Supporting Information  Available:
This material is available free of charge via
the Internet at http://pubs.acs.org/.

References

(1) Nikolaev, E. N.; Jertz, R.; Grigoryev, A.; Baykut, G. Anal.
Chem. 2012, 84, 2275-2283.

(2) G. Marshall, A.; T. Blakney, G.; Chen, T.; K. Kaiser, N.;
M. McKenna, A.; P. Rodgers, R.; M. Ruddy, B.; Xian, F.
Mass Spectrom. 2013, 2, S0009.

(3) Michalski, A.; Damoc, E.; Lange, O.; Denisov, E.; Nolt-
ing, D.; Muller, M.; Viner, R.; Schwartz, J.; Remes, P.;

(22)

Belford, M.; Dunyach, J.-J.; Cox, J.; Horning, S.; Mann, M.;
Makarov, a. Mol. Cell. Proteomics

Hendrickson, C. L.; Quinn, J. P.; Kaiser, N. K
Smith, D. F.; Blakney, G. T.; Chen, T.; Marshall, A. G;
Weisbrod, C. R.; Beu, S. C. J. Am. Soc. Mass Spectrom.
2015, 26, 1626-1632.

Nagao, T.; Yukihira, D.; Fujimura, Y.; Saito, K.; Taka-
hashi, K.; Miura, D.; Wariishi, H. Anal. Chim. Acta 2014,
813, 70-76.

Schwudke, D.; Schuhmann, K.; Herzog, R.; Bornstein, S. R.;
Shevchenko, A. Cold Spring Harbor Perspect. Biol.
McNaught, A. D.; Wilkinson, A. I[UPAC Gold Book; Black-
well Scientific Publications: Oxford, 1997.

Dittwald, P.; Valkenborg, D.; Claesen, J.; Rockwood, A. L.;
Gambin, A. J. Am. Soc. Mass Spectrom. 2015, 26, 1732—
1745.

Kienitz, H. Angew. Chem. 1961, 73, 634.

Talagrand, M. Ann. Probab. 1996, 24, 1-34.

Rockwood, A. L. Rapid Commun. Mass Spectrom. 1995, 9,
103-105.

Dittwald, P.; Claesen, J.; Burzykowski, T.; Valkenborg, D.;
Gambin, A. Anal. Chem. 2013, 85, 1991-1994.

Snider, R. K. J. Am. Soc. Mass Spectrom. 2007, 18, 1511—
1515.

Bocker, S.; Letzel, M. C.; Liptak, Z.; Pervukhin, A. Bioin-
formatics 2009, 25, 218-224.

Valkenborg, D.; Mertens, I.; Lemiére, F.; Witters, E.;
Burzykowski, T. Mass Spectrom. Rev. 2012, 31, 96-109.
Rockwood, A. L.; Van Orden, S. L.; Smith, R. D. Rapid
Commun. Mass Spectrom. 1996, 10, 54-59.

Ipsen, A. Anal. Chem. 2014, 86, 5316-5322.

Loos, M.; Gerber, C.; Corona, F.; Hollender, J.; Singer, H.
Anal. Chem. 2015, 87, 5738-5744.

Yergey, J. a. Int. J. Mass Spectrom. Ion Phys. 1983, 52,
337-349.

Li, L.; Murat Karabacak, N.; Cobb, J. S.; Wang, Q.
Hong, P.; Agar, J. N. Rapid Commun. Mass Spectrom.
2010, 24, 2689-2696.

Brand, W. A.; Coplen, T. B.; Vogl, J.; Rosner, M.; Pro-
haska, T. Pure Appl. Chem. 2014, 86, 425-467.

Finucan, H. M. Biometrika 1964, 51, 513-517.


http://matteolacki.github.io/IsoSpec/
http://matteolacki.github.io/IsoSpec/
http://pubs.acs.org/

15%
o))
—,—
- p—
—
»
O 10%
S
3
l
o
5%
0%

IsoSpec

5730 5735

IMass in daltons

25%
| |
0.0% ' . ' PR L

1007\
VAR
// \\
w0 \F
7 \
/ \
/f, \\
GE,7/ \,f'
' [ B N ]
LE L
407 .. 90 \';?
(1T T IX] \
o® [ X \
N 008800 - \
/ [ E X I X \“?
20; L B \
/ AN
// \\
s
L——'———\———'———t———'——— —— 2
a % [

573260 573261

5732.62

—

5740

Figure 8: For TOC only.

5745



