
This item is the archived peer-reviewed author-version of:

A PDEVS simulator supporting multiple synchronization protocols : implementation
and performance analysis

Reference:
Cardoen Ben, Manhaeve Stijn, Van Tendeloo Yentl, Broeckhove Jan.- A PDEVS simulator supporting multiple synchronization
protocols : implementation and performance analysis
Simulation - ISSN 0037-5497 - (2017), p. 1-23 
Full text (Publishers DOI): http://dx.doi.org/doi:10.1177/0037549717690826

Institutional repository IRUA

http://anet.uantwerpen.be/irua


A PDEVS Simulator Supporting Multiple Synchronization
Protocols: Implementation and Performance Analysis

Ben Cardoen, Stijn Manhaeve, Yentl Van Tendeloo, and Jan Broeckhove

February 23, 2017

Abstract

With the ever increasing complexity of simulation mod-
els, parallel simulation becomes necessary to perform
simulation within reasonable time bounds. The built-in
parallelism of Parallel DEVS is often insufficient to tackle
this problem on its own. Several synchronization pro-
tocols have been proposed, each with their distinct ad-
vantages and disadvantages. Due to the significantly dif-
ferent implementation of these protocols, most Parallel
DEVS simulation tools are limited to only one such pro-
tocol. In this paper, we present a Parallel DEVS simula-
tor, grafted on C++11 and based on PythonPDEVS, sup-
porting both conservative and optimistic synchronization
protocols. The simulator not only supports both proto-
cols but also has the capability to switch between them at
runtime. The simulator can combine each synchroniza-
tion protocols with either a threaded or sequential imple-
mentation of the PDEVS protocol. We evaluate the per-
formance gain obtained by choosing the most appropriate
synchronization protocol. A comparison is made to adevs
in terms of CPU time and memory usage, to show that
our modularity does not hinder performance. We com-
pare the speedup obtained by synchronization with that of
the inherent parallelism of PDEVS in isolation and com-
bination, and contrast the results with the theoretical lim-
its. We further allow for an external component to gather
simulation statistics, on which runtime switching between
the different synchronization protocols can be based. The
effects of allocation on our synchronization protocols is
also studied.

1 Introduction

DEVS [48] is a popular formalism for modelling com-
plex dynamic systems using a discrete-event abstraction.
In fact, it can serve as a simulation “assembly language”
to which models in other formalisms can be mapped [43].
A number of tools have been constructed by academia
and industry that allow the modelling and simulation of
DEVS models.

But with the ever increasing complexity of simula-
tion models, parallel simulation becomes necessary to
perform the simulation within reasonable time bounds.
Whereas Parallel DEVS [9] was introduced to in-
crease parallelism, its inherent parallelism is often insuf-
ficient [21]. Several synchronization protocols from the
discrete event simulation community [15] have been ap-
plied to (Parallel) DEVS simulation [27]. With synchro-
nization protocols, different simulation kernels can be at
different points in simulated time, significantly increas-
ing parallelism at the cost of synchronization overhead.
While several parallel DEVS simulation tools exist, they
are often limited to a single synchronization protocol. The
reason for different synchronization protocols, however,
is that their distinct nature makes them applicable in dif-
ferent situations, each outperforming the other for specific
models [23]. The parallel simulation capabilities of cur-
rent tools are therefore limited to specific domains.

This paper introduces DEVS-Ex-Machina1 (“dxex”):
our simulation tool [7] which offers 6 synchronization
protocols. The simulation tool can spawn multiple ker-
nels, each of which has its own simulation time and sim-

1https://bitbucket.org/bcardoen/
devs-ex-machina

1

https://bitbucket.org/bcardoen/devs-ex-machina
https://bitbucket.org/bcardoen/devs-ex-machina


ulation control, though they may exchange timestamped
events with each other. Each kernel can spawn multi-
ple threads, each of which will be mapped to a physical
CPU core by the operating system. We note the presence
of two kinds of synchronization: inter-kernel and intra-
kernel. Inter-kernel synchronization uses either no syn-
chronization, conservative synchronization, or optimistic
synchronization. Intra-kernel synchronization uses either
no synchronization or exploits the inherent parallelism of
Parallel DEVS to allocate concurrent transitions to sepa-
rate threads. The inherent parallelism in the intra-kernel
synchronization protocol is used pSim in the remainder of
this paper.

This results in the following set of synchronization pro-
tocol combinations:

• No inter-kernel synchronization, no intra-kernel syn-
chronization (NN)

• Conservative inter-kernel synchronization, no intra-
kernel synchronization (CN)

• Optimistic inter-kernel synchronization, no intra-
kernel synchronization (ON)

• No inter-kernel synchronization, pSim intra-kernel
synchronization (NP)

• Conservative inter-kernel synchronization, pSim
intra-kernel synchronization (CP)

• Optimistic inter-kernel synchronization, pSim intra-
kernels synchronization (OP)

When refering to a set of them, we use the notation x to
denote any possible algorithm. For example, xP refers to
NP, CP, and OP.

The selected synchronization protocol is transparent to
the simulated model: users only determine the protocol
to use. Users who simulate a wide variety of models,
with different ideal synchronization protocols, can keep
using the exact same tool, but with different synchroniza-
tion protocols. As model behaviour, and thus the ideal
synchronization protocol, might change during simula-
tion, runtime switching of synchronization protocols is
also supported. This runtime switching can be based on
performance metrics, which are logged during simulation.
Information is made available to a separate component,

where a choice can be made about which synchronization
protocol to use. Additionally, we investigate how model
allocation influences the performance of our synchroniza-
tion protocols. To this end, we have included an allocation
component in our simulation kernel.

Our tool is based on PythonPDEVS [39], but imple-
mented in C++11 for increased performance, using fea-
tures from the new C++14 standard when supported by
the compiler. Unlike PythonPDEVS, dxex only supports
multicore parallelism, thus no distributed simulation.

Using several benchmark models, we demonstrate the
factors influencing the performance under a given syn-
chronization protocol. Additionally, we investigate a
model which changes its behaviour (and corresponding
ideal synchronization protocol) during simulation. Dxex,
then, is used to compare simulation using exactly the
same tool, but with a varying synchronization protocol.
With dxex users can always opt to use the fastest proto-
col available, and through its modularity, users could even
implement their own, or variants of existing ones. To ver-
ify that this modularity does not hamper performance, we
compare to adevs [32], another Parallel DEVS simula-
tion tool.

The remainder of this paper is organized as follows:
Section BACKGROUND introduces the necessary back-
ground on synchronization protocols. Section DEVS-
EX-MACHINA elaborates on our design that enables the
flexibility to switch protocols. In Section PERFORMANCE
EVALUATION, we evaluate the performance of our tool
using the different synchronization protocols, and we also
compare with adevs’s performance. We continue by in-
troducing runtime switching of synchronization proto-
cols and different options for model allocation in Sec-
tion RUNTIME SWITCHING and Section MODEL ALLO-
CATION, respectively. Related work is discussed in Sec-
tion RELATED WORK. Section CONCLUSIONS AND FU-
TURE WORK concludes the paper and presents ideas for
future work.

2 Background
This section briefly introduces the two most prominent
synchronization protocols: conservative and optimistic
synchronization. Both algorithms are supported by dxex.
These protocols synchronize between kernels, but do not

2



specify the parallelization of events within a single kernel.
For example, pSim is orthogonal to this as it decides upon
the parallelization of events within a single kernel.

2.1 Conservative Synchronization

The first synchronization protocol we introduce is conser-
vative synchronization [15]. In conservative synchroniza-
tion, a node progresses independent of all other nodes, up
to the point in time where it can guarantee that no causal-
ity errors happen. When the simulation reaches this point,
the node blocks until it can guarantee a new time until
which no causality errors occur. In practice, this means
that all nodes are aware of the current simulation time of
all other nodes, and the time it takes an event to propagate
(called lookahead). Deadlocks can occur due to a depen-
dency cycle of models. Multiple algorithms are defined in
the literature to handle both the base protocol, as well as
resolution schemes to handle or avoid the deadlocks [15].

The main advantage of conservative synchronization is
its low overhead if lookahead is high. Each node then
simulates in parallel, notifying other nodes about its local
simulation time. The disadvantage, however, is that the
amount of parallelism is explicitly limited by the looka-
head. If a node can influence another (almost) instanta-
neously, no matter how rarely it occurs, the amount of par-
allelism is severely reduced throughout the complete sim-
ulation run. The user is required to define the lookahead,
using knowledge about the model’s behaviour. Defining
an accurate and high lookahead is far from a trivial task
if there is no detailed knowledge of the model. Even
slight changes in the model or its allocation can change
the lookahead, and can therefore have a significant influ-
ence on simulation performance.

2.2 Optimistic Synchronization

A completely different synchronization protocol is opti-
mistic synchronization [24]. Whereas conservative syn-
chronization prevents causality errors at all costs, opti-
mistic synchronization allows them to happen, but cor-
rects them as soon as they are detected. Each node simu-
lates as fast as possible, independent of other nodes. It as-
sumes that no events occur from other nodes, unless it has
explicitly received one at that time. When this assumption

is violated (i.e., an event arrives that should have been pro-
cessed in the past), the node rolls back its simulation time
and state to right before the moment when the event has
to be processed. As simulation is rolled back to a point in
time before the event has to be processed, the event can
be processed as if no causality error ever occurred.

Rolling back simulation time requires the node to store
past model states, so that they can be restored later.
All incoming and outgoing events need to be stored as
well. Incoming events are injected again after a rollback,
when their time has been reached again. Outgoing events
are cancelled after a rollback, through the use of anti-
messages, as potentially different output events have to
be generated. Cancelling events can cause further roll-
backs as the receiving node might also have to roll back
its state. In practice a single causality error can have sig-
nificant repercussions on performance.

Further changes are required for unrecoverable oper-
ations, such as I/O and memory management. These
are only executed after the lower bound of all simulation
times, called Global Virtual Time (GVT) [15], has pro-
gressed beyond their execution time.

The main advantage is that a small lookahead, caused
by infrequent events, does not limit performance. If an
(almost) instantaneous event rarely occurs, performance
is only impacted when it occurs, and not at every sim-
ulation step. The disadvantage is unpredictable perfor-
mance due to the arbitrary cost of rollbacks and their
propagation. Even the occurence of rollbacks is non-
deterministic, as it is caused by the interleaving of dif-
ferent simulation nodes and their communication. If roll-
backs occur frequently, state saving and rollback overhead
can cause simulation to grind to a halt. Nonetheless, it can
be proven that simulation always progresses, and even-
tually always terminates. Apart from overhead in CPU
time, a significant memory overhead is present: interme-
diate states are stored up to a point where they can be con-
sidered irreversible. Note that, while optimistic synchro-
nization does not explicitly depends on lookahead, per-
formance still implicitly depends on lookahead. Instead
of depending on the theoretically defined safe lookahead,
performance is related to the actually perceived looka-
head.

3



3 DEVS-Ex-Machina
Historically, dxex is based on PythonPDEVS [39]. Python
is a good language for prototypes, but performance has
proven insufficient to compete with C++-based simula-
tion kernels [37]. Dxex is a C++11-based Parallel DEVS
simulator, based on the design of PythonPDEVS. Whereas
the feature set is not too comparable, the architectural de-
sign, simulation algorithms, and optimizations are highly
similar.

We will not make a detailed comparison with Python-
PDEVS here, but only mention some supported features.
Dxex supports, similarly to PythonPDEVS, the follow-
ing features: direct connection [8], Dynamic Structure
DEVS [2], termination conditions [42], and a modular
tracing and scheduling framework [39]. We do not elabo-
rate on these features in this paper. But whereas Python-
PDEVS only supports optimistic synchronization, dxex
support multiple synchronization protocols (though not
distributed). This is in line with the design principle of
PythonPDEVS: allow users to pass performance hints [38]
to the simulation kernel. In our case, a user can configure
the simulation kernel with the synchronization protocol
to use, or even switch the synchronization protocol dur-
ing runtime. Our implementation in C++11 also allows
for (compiled) optimizations which were plainly impossi-
ble in an interpreted language, such as Python. Dxex uses
new optimizations from the C++14 standard when possi-
ble. The C++11 standard threading primitives are used
to run the different simulation kernels. Within a single
simulation kernel, OpenMP [33] is used to parallelize the
transition functions, as is usual in Parallel DEVS.

Since there is no universal DEVS model standard, dxex
models are incompatible with PythonPDEVS and vice
versa. This is due to dxex models being grafted on C++11,
whereas PythonPDEVS models are grafted on Python.

In the remainder of this section, we elaborate on our
prominent new feature: the efficient implementation of
multiple synchronization protocols within the same simu-
lation tool, offered transparently to the model.

3.1 Synchronization protocols
We previously explained the existence of different syn-
chronization protocols, each optimized for a specific kind
of model. As no single synchronization protocol is ideal

for all domains, a general purpose simulation tool should
support multiple protocols. We argue that a general pur-
pose simulation tool should support all six standard syn-
chronization protocols, as is the case for dxex.

Different protocols relate to different model character-
istics. For example, Cx is for when high lookahead exists
between different nodes, whereas Ox is for when looka-
head is unpredictable. It is possible for the synchroniza-
tion overhead to become larger than the achieved paral-
lelism, resulting in slower simulation than fully sequential
execution (NN).

Data exchange between different simulation kernels
happens through shared memory, using the new C++11
synchronization primitives. This was also possible in pre-
vious versions of the C++ standard by falling back to non-
portable C functions. C++11 further allows us to make
the implementation portable, as well as more efficient:
the compiler makes further optimizations to heavily used
components.

3.1.1 Inter-Kernel Synchronization

Our core simulation algorithm is very similar to the one
found in PythonPDEVS, including many optimizations.
Minor modifications were made though, such that it can
be overloaded by different synchronization protocol im-
plementations. This way, the DEVS simulation algo-
rithm is implemented once, but parts can be overridden
as needed.

An overview of dxex’s design is given in Figure 1.
It shows that there is a simulation Kernel, which
simulates the AtomicModels connected to it. The
superclass Kernel represents a standalone simula-
tion kernel (Nx). Subclasses define specific variants,
such as ConservativeKernel (conservative syn-
chronization), OptimisticKernel (optimistic syn-
chronization), and DynamicKernel (Dynamic Struc-
ture DEVS). In theory, more synchronization protocols
(e.g., other algorithms for conservative synchronization)
can be added without altering our design.

The following inter-kernel synchronization protocols
are implemented.

None (Nx) No inter-kernel synchronization is the base
case, implemented in the Kernel. It can be overloaded

4



Figure 1: Dxex design.

5



by any of the other simulation kernels, which augment it
with inter-kernel synchronization methods.

Conservative (Cx) For conservative synchronization,
each kernel determines the kernels it is influenced by.
Each model needs to provide a lookahead function, which
determines the lookahead depending on the current simu-
lation state. Within the returned time interval, the model
promises not to raise an event.

Optimistic (Ox) For optimistic synchronization, each
node must be able to roll back to a previous point in time.
This is implemented with state saving. This needs to be
done carefully in order to avoid unnecessary copies, and
minimize the overhead. We use the default: explicitly
save each and every intermediate state. Mattern’s algo-
rithm [29] is used to determine the GVT, as it runs asyn-
chronously and uses only 2n synchronization messages.
Once the GVT is found, all nodes are informed of the new
value, after which fossil collection is performed, and irre-
versible actions (e.g., printing) are committed. The main
problem we encountered in our implementation is the ag-
gressive use of memory. Frequent memory allocation and
deallocation caused significant overheads, certainly when
multiple threads do so concurrently. This made us switch
to the use of thread-local memory pools. Again, we made
use of specific new features of C++11, that are not avail-
able in Python, or even previous versions of the C++ lan-
guage standard.

3.1.2 Intra-Kernel Synchronization

In our tool, each simulation kernel is capable of executing
concurrent transitions in parallel, whether they are exter-
nal, internal, or confluent.

None (xN) No intra-kernel parallelism is used, meaning
that all concurrent transitions are processed sequentially.
Note that the order in which they are processed is non-
deterministic.

pSim (xP) With intra-kernel parallelism, a configurable
number of threads is allocated to optimally divide the pro-
cessing load of concurrent transitions. The parallel exe-
cution of transitions introduces some overhead in thread

pooling and locking, and disallows some optimizations
in optimally rescheduling models. The concurrency of
events and the combined computational load of the tran-
sitions has to outweigh this overhead to obtain a signifi-
cant speedup, as we will demonstrate in Section PERFOR-
MANCE EVALUATION.

3.2 Synchronization Protocol Transparency

We define synchronization protocol transparency as hav-
ing a single model, which can be executed on any kind of
kernel, without any modifications. User should thus only
provide one model, implemented in C++11, which can be
simulated using any of the six synchronization protocols.
The synchronization protocol to use is a simple configu-
ration option. The exception is conservative synchroniza-
tion (Cx), where a lookahead function is required, which
is not used in other synchronization kernels. Two options
are possible: either a lookahead function must always be
provided, even when it is not required and possibly not
used, or we use a default lookahead function if none is
defined.

Always defining a lookahead function might seem re-
dundant, especially should the user never want to use con-
servative synchronization. Defining the lookahead is dif-
ficult and can often be unpredictable. The more attractive
option is for the simulation tool to provide a default looka-
head function, such that simulation can run anyway, but
likely not at peak performance. Depending on the model,
simulation performance might still be faster than Nx.

Defining a lookahead function is therefore recom-
mended in combination with conservative synchroniza-
tion, but it is not a necessity, as a default value ε (i.e., the
smallest representable timestep) is used otherwise. Pro-
viding this default implementation has no impact in se-
quential or optimistic simulation; as the function is never
called, the compiler will optimize it out. By providing this
default implementation in the model base class we ensure
that a model can run with any synchronization protocol.

3.3 Increasing Parallelism

The goal of our contribution is to increase simulation per-
formance as much as possible, leveraging parallel compu-
tation in the process. Parallelizing goes further, however,

6



than merely implementing the different synchronization
protocols.

We observed that after implementing all synchroniza-
tion protocols, performance was still not within accept-
able levels. Profiling revealed that most of the overhead
was caused by two issues: memory management and ran-
dom number generation. For both, it is already known
that they can have significantly impact on parallelizabil-
ity of code, since they introduce sequential blocks. Both
were tackled using approaches that are in common use in
the parallel programming world. We briefly mention how
the application of these techniques influences our perfor-
mance.

3.3.1 Memory Management

Memory management is traditionally seen as one of the
major bottlenecks in parallel computation [12], since
memory bandwidth doesn’t increase as fast as the number
of CPU cores using it. While this is always a problem,
it is aggravated in dxex by providing automatic memory
management for events and states. A model written for
Nx synchronization will run correctly with conservative
(Cx) or optimistic (Ox) synchronization without altering,
from the point of view of the modeller, the (de)allocation
semantics of events or states.

Furthermore, allocating and deallocating memory by
making calls to the operating system, as is typically
done by calls such as malloc, happens sequentially.
To counter this, our memory allocators are backed by a
thread-aware pooling library. With Nx synchronization,
no allocated event persists beyond a single time advance,
even allowing the use of an arena-style allocator. Conser-
vative and optimistic simulation need to use generic pool
allocators since events are shared across kernels and thus
have a different lifetime.

Intra-kernel events can be (de)allocated without syn-
chronization with the other kernels. They can be returned
immediately to the memory allocator as the lifetime of
these objects is known at creation. In contrast, inter-
kernel events need a GVT algorithm to determine when
safe deallocation can occur. Intra-kernel synchroniza-
tion protocols therefore have a lower overhead than inter-
kernel synchronization protocols. Simulations with many
inter-kernel events suffer a performance hit, whereas the
impact of many intra-kernel events can be minimized us-

Figure 2: Effect of memory allocators with ON synchro-
nization.

ing arena allocators [19].
Dxex uses Boost Pool [10] allocators for Cx and Ox syn-

chronization, and arena-style allocators for Nx synchro-
nization. The latter can be faster, but at the cost of ad-
ditional configuration. The allocators are supplemented
by the library tcmalloc [17], reducing lock contention in
malloc calls.

We primarily investigate this for optimistic simulation,
as this is the most memory consuming mode of simula-
tion [15]. Simulation execution times for all four com-
binations are shown in Figure 2. Optimistic simulation
greatly benefits from the use of tcmalloc, regardless of
the allocator. Nonetheless the pool allocator also reduces
the allocation overhead, though only by a relatively small
fraction. Both techniques are required to reduce the over-
head of memory allocations in dxex, and are turned on by
default.

Both pools and tcmalloc try to keep memory allocated
instead of returning it to the Operating System (OS). As
a result, the OS will usually report memory consumption
that is higher than the actual amount of stored data.

3.3.2 Random Number Generators

Random Number Generators (RNG) are another aspect of
the program that can limit parallelization. All accesses to
the RNG will result in the modification of a global (i.e.,
shared between threads) variable. This easily becomes
a bottleneck in simulation, since random numbers are a
common occurrence in simulation [28]. As such, a non-

7



Figure 3: Speedup with different RNG usage patterns
compared to STL random number generator.

trivial amount of time in a simulation is often spent wait-
ing for an RNG.

We still need to guarantee determinism and isolation
between the calls to the RNG, as well as avoiding exces-
sive synchronization. Dxex uses the Tina RNG collection
(TRNG) [4] as an alternative random number generator
with performance and multithreading in mind. Since the
RNG is an implicit part of the state in the Parallel DEVS
formalism, though often not implemented as such, we
evaluated performance for both approaches: one global
RNG per thread, and one RNG per atomic DEVS model.

We see in Figure 3 that storing the RNG in the state is
very expensive for the default Standard Template Library
(STL) random number generator with optimistic synchro-
nization. This is primarily caused by the significant differ-
ence in size: 2504 bytes for the STL random number gen-
erator, and 24 bytes for the Tina random number genera-
tor. Only Ox synchronization seems affected, as it needs
to copy more bytes in every transition due to state saving.
No additional copies need to happen in Nx or Cx synchro-
nization.

Figure 3 shows that, for NN synchronization, any of
the three alternatives is three times faster than STL RNG.
For Cx and Ox synchronization, the synchronization over-
head seems to be the main bottleneck, as seen by the big
speedup gap with Nx synchronization. Cx synchroniza-
tion is almost unaffected by changing the RNG.

4 Performance Evaluation
In this section, we evaluate the performance of different
synchronization protocols in dxex. We also compare to
adevs [32], currently one of the most efficient simulation
tools [46, 41], to show that our modularity does not im-
pede performance. CPU time and memory usage is com-
pared for different synchronization protocols.

We start with a comparison of NN synchronization, to
show how adevs and dxex relate in this simple case. Af-
terwards, we compare inter-kernel synchronization pro-
tocols, including a comparison with adevs again. Inter-
kernel synchronization protocols are then compared in
combination with intra-kernel synchronization protocols,
in the context of recent theoretical work [47].

For all benchmarks, results are well within a 5% de-
viation of the average, such that only the average is
used in the remainder of this section. The same com-
pilation flags were used for both adevs and dxex bench-
marks (“-O3 -flto”). To guarantee comparable re-
sults, no I/O was performed during benchmarks. Before
benchmarking, simulation traces were used to verify that
adevs and dxex return exactly the same simulation results.
Benchmarks were performed using Linux, but our simu-
lation tool works equally well on Windows and Mac. The
exact parameters for each benchmark can be found in our
repository.

The benchmarks are ran on a machine with 8 x AMD
Opteron(TM) Processor 6274 with 8 cores per CPU (for a
total of 64 cores) and 192 GB RAM.

4.1 Benchmark Models
We use three different benchmark models, covering dif-
ferent aspects of the simulation tool.

First, the Queue model, based on the HI model of DEV-
Stone [18], creates a chain of hierarchically nested atomic
DEVS models. A single generator pushes events into the
queue, which get consumed by the processors after a fixed
or random delay. It takes two parameters: the width and
depth of the hierarchy. This benchmark reveals the com-
plexity of the simulation kernel for an increasing amount
of atomic models and an increasingly deep hierarchy. An
example for a width and depth of 2 is shown in Figure 4.

Second, the Interconnect model, a merge of PHold [14]
and the HI model of DEVStone [18], creates n atomic

8



Figure 4: Queue model for depth and width 2.

Model

Model

Model

Figure 5: Interconnect model for three models.

models, where each model has exactly one output port.
Similar to PHold, all models are connected to one an-
other, but all through the same port: every atomic model
receives each generated event (i.e., the event is broad-
casted). The model takes one parameter: the number of
atomic models. This benchmark shows the complexity
of event creation, event routing, and simultaneous event
handling. An example for three atomic models is shown
in Figure 5.

Third, the PHold model [14], creates n atomic models,
where each atomic model has exactly n− 1 output ports.
Each atomic model is directly connected to every other
atomic model. After a random delay, an atomic model
sends out an event to a randomly selected output port.
Output port selection happens in two phases: first it is
decided whether the event should be sent within the same
kernel, or outside of the kernel. Afterwards, a uniform se-
lection is made between the possible atomic models. The
model takes two parameters: the percentage of remote
events (determining the percentage of events routed to
other kernels), and the percentage of high-priority events.
High-priority events are events generated in a very short
time after the previous event. This benchmark shows how
the simulation kernel behaves in the presence of many
local or remote events, in combination with a varying
percentage of high-priority events. An example for four
atomic models, split over two kernels, is shown in Fig-
ure 6.

4.2 Single kernel (NN Synchronization)

We start by evaluating NN synchronization performance,
in order to obtain a baseline for our comparison of other

Model

Model

Model

Model

Figure 6: PHold model for four models. Color denotes
the two nodes.

Figure 7: Queue benchmark results with NN synchroniza-
tion.

synchronization protocols.

4.2.1 Queue

For the first benchmark, we tested the effect of hierar-
chical complexity of the model in the performance of the
simulator. A set of three tests was performed, where each
test has the same number of atomic models but an increas-
ing depth. The results can be seen in Figure 7. Since
dxex performs direct connection [8] on the model, there
is no performance hit when the depth is increased. Direct
connection only needs to be done at initialization, making
it a neglible one time cost for long running simulations.
Adevs, on the other hand, suffers from the increased depth,
even though some similar (but not identical) optimization
to event passing was made [30]. With every new hierar-
chical layer, routing an event from one atomic model to
the next becomes more expensive, resulting in an increase
in runtime.

9



Figure 8: Interconnect benchmark results with NN syn-
chronization.

4.2.2 Interconnect

In the Interconnect model, we increase the number of
atomic models, quadratically increasing the number of
couplings and the number of external transitions. As
shown in Figure 8, adevs now outperforms dxex by a fair
margin. Analysis showed that this is caused by the high
amount of events: event creation is much slower in dxex
than it is in adevs, despite dxex’s use of memory pools. To
shield the user from threading and deallocation concerns,
dxex provides an event superclass from which the user can
derive to create a specialized event type. Copying, deallo-
cation, and tracing are done at runtime, adding significant
overhead when events happen frequently. Profiling the
benchmarks revealed the increased cost of output genera-
tion and deallocation as the determining factor.

4.2.3 PHold

The PHold model is very similar to the Interconnect
model. The biggest difference is that the amount of mes-
sages sent is much lower. The number of events scales lin-
ear with the number of atomic models, not quadratic. Fig-
ure 9 shows that in terms of performance dxex and adevs
are very close to each other, with adevs slightly outper-
forming dxex.

Figure 9: PHold benchmark results with NN synchroniza-
tion.

4.3 Inter-Kernel Parallelism (CN and ON
synchronization)

We now continue by describing our inter-kernel paralle-
lims performance for different synchronization protocols,
compared to adevs. The speedup of adevs is computed
with the corresponding dxex NN synchronization bench-
mark. This was done to take into account the performance
difference observed in NN synchronization. As such,
the highest speedup indicates the fastest results among
all tools, independent of NN synchronization results for
adevs. We only compare xN results, as we are now only
interested in the differences between the various inter-
kernel synchronization protocols, and have thus disabled
all other forms of parallelism. These results are gener-
alized to conservative and optimistic synchronization in
general. The comparison between xN and xP is made later
on.

4.3.1 Queue

The Queue model is one single chain of atomic models,
resembling a pipeline. This structure can be exploited to
prevent cyclic dependencies in CN and ON synchroniza-
tion.

Figure 10 shows the speedup compared to NN syn-
chronization for a fixed problem size, with an increas-
ing number of used CPU cores (i.e., strong scaling). As
the number of cores increases, ON quickly becomes the
worst choice. This is mainly caused by the pipeline struc-
ture of the model: the last atomic models in the queue

10



Figure 10: Queue model strong scaling speedup com-
pared to dxex NN synchronization. Each kernel uses one
thread, and has one physical CPU core allocated to it.

Figure 11: Queue model weak scaling speedup compared
to dxex NN synchronization. Each kernel uses one thread,
and has one physical CPU core allocated to it.

only respond to incoming messages and therefore have to
be rolled back frequently. The difference between dxex
CN and adevs CN becomes smaller when more and more
cores are used. The same effect can be seen when the
problem size is increased in tandem with the number of
used CPU cores (i.e., weak scaling) in Figure 11.

4.3.2 Interconnect

In the Interconnect model, we determine how broadcast
communication is supported across kernels. The num-
ber of atomic models is now kept constant at eight. Re-
sults are shown in Figure 12. When the number of ker-
nels increases, performance decreases due to increasing

Figure 12: Interconnect benchmark results for ON and CN
synchronization, compared to dxex NN synchronization.
Each kernel uses one thread, and has one physical CPU
core allocated to it.

contention in conservative simulation and the increasing
number of rollbacks in optimistic simulation. All atomic
models depend on each other and have no computational
load whatsoever, negating any possible performance gain
by splitting up the work over multiple kernels.

4.3.3 PHold

In the PHold model, we first investigate the influence of
the percentage of remote events on the speedup. A remote
event in this context is an event that is sent from an atomic
model on one kernel to an atomic model on another ker-
nel. When remote events are rare, optimistic synchroniza-
tion rarely has to roll back, thus increasing performance.
With more frequent remote events, however, optimistic
synchronization quickly slows down due to frequent roll-
backs. Conservative synchronization, on the other hand,
is mostly unconcerned with the number of remote events:
the mere fact that a remote event can happen, causes it
to block and wait. Even though a single synchroniza-
tion protocol is ideal throughout the whole simulation run,
it shows that different synchronization protocols respond
very differently to a changing model.

Adevs is significantly slower for CN synchronization.
Analysis of profiling callgraphs shows that exception han-
dling in adevs is the main cause. To keep the mod-
els equivalent, the adevs version does not provide the
{begin,end}Lookahead methods, which accounts for the
exception handling. These functions require the user to

11



Figure 13: PHold benchmark results using four kernels,
with varying percentage of remote events.

Figure 14: PHold benchmark results using four kernels,
with varying amount of high-priority events.

implement a state saving method. But in contrast to
PythonPDEVS and dxex, which handle this inside the ker-
nel, users need to manually define this. We feel this would
lead to an unfair comparison as we would like to keep
the models agnostic of the underlying protocols across all
benchmarks.

Contrary to normal events, high-priority events happen
almost instantaneously, restricting lookahead to a very
small value. Even when normal events occur most of-
ten, conservative synchronization always blocks until it
can make guarantees. Optimistic synchronization, how-
ever, simply goes forward in simulation time and rolls
back when these high-priority events happen. This situ-
ation closely mimics the model typically used for com-
paring conservative and optimistic synchronization [15].

Figure 14 shows how simulation performance is influ-
enced by the fraction of these high-priority events. If
barely any high-priority events occur, conservative syn-
chronization is penalized due to its excessive blocking,
which often turned out to be unnecessary. When many
high-priority events occur, optimistic synchronization is
penalized due to its unconditional progression of simula-
tion, which frequently needs to be rolled back. Results
show that there is no single perfect synchronization algo-
rithm for this kind of model: depending on configuration,
either synchronization protocol might be better.

4.4 Intra-Kernel Parallelism (xP synchro-
nization)

The abstract simulator of Parallel DEVS included its own
notion of parallelism, which we refered to as pSim, and
have implemented as xP synchronization. The xP syn-
chronization protocol is trivial, as it merely executes a set
of independent functions concurrently. As indicated be-
fore, intra-kernel synchronization is independent of inter-
kernel synchronization in dxex. That is, all six combi-
nations are possible. Following the theoretical analysis
published in [47], a comparison is warranted between xN
and xP synchronization.

Model We have opted to use the Queue model for this
comparison, as it allows for many interesting configura-
tions. We have three different configurations, each using
16 threads in total, to be ran on a CPU with 16 CPU cores:
NP synchronization uses one kernel with 16 threads each;
OP and CP synchronization use 4 kernels with 4 threads
each; and ON and CN synchronization use 16 kernels with
1 thread each. Additionaly, NN synchronization only uses
one kernel and one thread, as it is completely sequen-
tial. All speedup results are shown in comparison to NN
synchronization. Atomic models are always equally dis-
tributed over the available kernels.

This allows us to observe which is more efficient in ob-
taining a speedup, each with the same number of CPU
cores available. We simulate a computational load by a
sleep of 5 milliseconds. The model is configured with
depth 4 and width 300 if the transition function has no
load (i.e., no sleep), and width 50 if the computational
load is active (i.e., sleeps for 5 milliseconds). In our con-

12



figuration, an imminent atomic model always generates
output, resulting in the receiving atomic model becoming
imminent. The probability that an internal transition in an
atomic model generates output and is connected to a re-
ceiving atomic model is 1 (q = 1 [47]). The probability
that an atomic model becomes immediately imminent de-
pends on whether fixed or random time advance is used
(p [47]). In the case of a fixed time advance, a model will
always become immediately imminent (p = 1). When
random time advance is used, this probability is 1

n , with n
denoting the total amount of atomic models, as only one
atomic model becomes active (p = 1

n ).
The benchmarks are run sufficiently long enough to

guarantee that the frequency of internal and external tran-
sitions is equal within a benchmark, regardless of the ran-
domness of the time advance. In our model each atomic
model executes internal and external transitions, creating
an ideal use case to evaluate the speedup xP synchroniza-
tion can obtain. The key difference is that although the
event frequency is the same, their concurrency is not. The
coefficient of variation of our results is less than 1%. The
communication overhead is hard to estimate, but given
our coefficient of variation, we can expect this overhead
to be constant.

We consider two cases: one where all transition func-
tions happen simultaneously, and one where transition
functions never happen simultaneously. We defer the dis-
cussion on which of these two is the most realistic, as
this depends on the problem domain. For example, in a
simulation with a fixed timestep (e.g., cell-based mod-
els, discretization of continuous model), transition func-
tions often occur simultaneously. Conversely, simulations
with an arbitrary timestep (e.g., many independent sys-
tems communicating together) have very few simultane-
ous events.

Concurrent events (q = 1; p = 1) First we create a
model where all transitions happen simultaneously, with a
significant computational load in the transition functions.
In Figure 15, we observe that all synchronization proto-
cols result in a speedup of about 10. In this scenario there
is no real advantage between the different parallel config-
urations. Note, however, that NP synchronization is triv-
ial to implement, whereas Ox and Cx synchronization are
much more difficult to implement.

Figure 15: Queue speedup benchmark with p = 1, q = 1,
and significant computational load

Random events (q = 1; p = 1
n ) Now we randomize

the time advance in the atomic models, resulting in very
few transition functions that happen simultaneously. Even
when two transitions are only minimally apart in simu-
lated time, they cannot be executed in parallel, as there
might otherwise be a causality error. The transition func-
tion has the same computational load as in the previous
configuration. Results are shown in Figure 16. We ob-
serve that NP synchronization adds little overhead, but
doesn’t achieve any significant speedup either. With ON
and CN synchronization, we again achieve high speedups.
This is not the case with OP and CP synchronization, as
we only have four kernels available for inter-kernel syn-
chronization. The four threads per kernel, in this case,
are not used fully as only two transitions occur simultane-
ously at all times.

Computational load Finally, we remove the compu-
tation load from the transition function, in combination
with many concurrent events. Figure 17 shows that for
NP synchronization, the overhead of thread management
and shared memory communication is crippling for per-
formance. Even though many events occur concurrently,
the computation in the transition function does not out-
weigh the overhead. This results in much slower simu-
lation than NN synchronization. Even OP and CP syn-
chronization are unable to achieve any performance in-
crease, whereas ON and CN synchronization increase per-
formance marginally. This is because the overhead of
thread management is avoided, similar to the results ob-

13



Figure 16: Queue speedup benchmark with p = 1
n , q = 1,

and significant computational load

Figure 17: Queue speedup benchmark with p = 1, q = 1,
and trivial computational load

tained by Himmelspach et al. [21]

Discussion In dxex, any inter-kernel synchronization
protocol can be combined with any intra-kernel synchro-
nization protocol. While xP synchronization can offer
a significant speedup at a trivial implementation cost, p
must be high throughout the whole simulation. Addi-
tionally, the computational load of the transition functions
should be high enough to warrant the thread management
overhead. We conclude that each synchronization proto-
col has its distinct advantages and disadvantages: inter-
kernel synchronization protocols depend on the coupling
of models and are difficult to implement, whereas intra-
kernel synchronization protocols depend on the number
of concurrent transitions and are trivial to implement.

4.5 Memory Usage

Apart from simulation execution time, memory usage dur-
ing simulation is also of great importance. Having insuf-
ficient memory may cause sudden deterioration in perfor-
mance, even to the point of making the simulation infea-
sible. We therefore also investigate the memory usage of
different synchronization protocols, again comparing to
adevs.

We do not tackle the problem of states that become too
large for a single machine to hold. This problem can be
mitigated by distributing the state over multiple machines,
which neither dxex nor adevs support.

4.5.1 Remarks

Both dxex and adevs use tcmalloc as memory allocator,
allowing for thread-local allocation. Additionally, dxex
uses memory pools to further reduce the frequency of ex-
pensive system calls (e.g., malloc and free). tcmalloc only
gradually releases memory back to the OS, whereas our
pools will not do so at all. Due to our motivation for
memory usage analysis, we will only measure peak al-
location in maximum resident set size as reported by the
OS. We only show results for xN synchronization, as xP
synchronization has no significant additional memory re-
quirements for a reasonable number of threads.

4.5.2 Results

Figure 18 shows the memory used by the different bench-
marks. Results are in megabytes, and show the total mem-
ory footprint of the running application (i.e., text, stack,
and heap). Note the logarithmic scale due to the high
memory consumption of optimistic synchronization.

Unsurprisingly, Ox synchronization results show very
high memory usage due to the saved states. Note the log-
arithmic scale that was used for this reason. Optimistic
synchronization results vary heavily depending on thread
scheduling by the operating system, as this influences the
drift between nodes. Comparing similar approaches, we
notice that dxex and adevs have very similar memory use.

Cx synchronization always uses more memory than Nx
synchronization, as is to be expected. Additional memory
is required for the multiple kernels, but also to store all
events that are processed simultaneously.

14



Figure 18: Memory usage results.

4.6 Conclusions on Performance Evalua-
tion

We have shown that our contribution is invaluable for high
performance simulation: depending on the expected be-
haviour, modellers can choose the most appropriate syn-
chronization protocol. Each synchronization protocol has
its own specific kind of models for which it is the best
one. But even with the right synchronization protocol, we
have seen that two problems remain.

First, although a synchronization protocols might be
ideally suited for specific model behaviour, nothing guar-
antees that the model will exhibit the same behaviour
throughout the simulation. Similarly to the polymor-
phic scheduler [37], we wish to make it possible for the
ideal synchronization protocol to be switched during sim-
ulation. When changes to the model behaviour are no-
ticed, the used synchronization protocol can be switched
as well.

Second, the allocation of models is nontrivial and has
a significant impact on performance. While speedup for
the Queue model, for example, was rather high in most
cases, this is mostly due to characteristics of the model:
the dependency graph does not contain any cycles. When
cycles were introduced, as in the Interconnect model, per-
formance became disastrous.

In the next two sections, we elaborate on these two
problems.

5 Runtime Switching
Simply because a synchronization protocol is ideal at the
start of the simulation, does not mean that it stays ideal
during the simulation. It is well known, and repeated in
the previous section, that model behaviour significantly
influences the ideal synchronization protocol. Contrary
to many modelling formalisms, the DEVS formalisms
makes it possible to model basically any kind of discrete
event model. As such, it is possible for the model to sig-
nificantly change its behaviour throughout the simulation.

Defining the ideal synchronization protocol at the start
of the simulation, when information about future model
behaviour is scarce, might therefore not offer the best pos-
sible performance. In dxex, we not only make it possi-
ble to define the synchronization protocol to use, but also
to change this decision throughout simulation. To switch
between intra-kernel synchronization protocols, we only
have to execute all concurrent transitions sequentially.
This case is trivial, as it just flips a boolean, and is thus
not further considered in this section. To switch between
inter-kernel synchronization protocols, all kernels are no-
tified of the switch and they are forced to stop simulation.
When stopped, each kernel instantiates a new kernel, with
the new synchronization protocol, that is provided with
the simulation state of the previous kernel. Simulation is
then resumed with the new kernels after the previous ones
are destroyed.

As usual, switching imposes an overhead and should
thus only be done if the benefits outweigh the induced
overhead. This overhead depends on the size of the model
and the number of kernels. For a simple model and a few
kernels, the overhead is less than a second. Creating new
kernels and moving the simulation models has an over-
head linear in the amount of kernels and atomic models.
The time required to synchronize and halt the existing
kernels is variable, especially if the old synchronization
protocol is optimistic since there is no real limit on the
virtual time difference between kernels. Given that the
existing kernels are equally loaded, this time difference
will in practice scale linearly with the number of kernels.

Although we currently only support manual switches
between different synchronization protocols, this is not
necessarily the case. Ideally, a new component is added
to the kernel, which monitors model behaviour and simu-
lation performance, and toggles between them automat-

15



ically. Our interface is augmented with the necessary
bindings for such a decision component. Also, our in-
terface is augmented with an interface for statistics gath-
ering and model behaviour analysis. With all interfaces
implemented and tested, we only leave open the actual
switching logic. Machine learning is a possible direction
for future implementations of this decision component.

5.1 Statistics Gathering
Traditionally, models are not exposed to simulation ker-
nel details as they work at a different level of abstrac-
tion: modellers only care about simulation results, and not
about how these results are obtained (e.g., through paral-
lel or distributed simulation). This is different for a new
kernel component that has to monitor the behaviour of not
only the model, but the simulator as well.

We add performance metrics in the kernel, which logs
relevant performance metrics and processes them for use
in other components. These metrics include the number
of events created and destroyed, the number of inter- and
intra-kernel events, the number of rollbacks, the measured
lookahead, details of the GVT and EOT calculations, and
information on the fairness between kernels. With all
these metrics, the decision component can get a global
view on both model and kernel behaviour.

For example, if the actually seen lookahead is signifi-
cantly higher than the defined lookahead, it might be in-
teresting to switch to optimistic synchronization. When
the number of rollbacks is excessively high, switching to
conservative synchronization might be considered.

5.1.1 Visualization of Communication

To provide more insight in our benchmark models, we
created a simple visualization of their simulation trace.
This trace visualizes the allocation of the model and all
defined connections. For each connection, the number
of events transferred is annotated. Examples are shown
for the three benchmark models used before: Figure 19,
Figure 20, and Figure 21 show traces for the Queue, In-
terconnect, and PHold models, respectively. Using this
information, we notice that the Interconnect benchmark
indeed has a lot of inter-kernel events. Despite the similar
structure, the PHold model does not have as many inter-
kernel events. These results are relevant information that

can be used by the hotswapping component.

6 Model Allocation
Although the synchronization protocol is one of the defin-
ing factors in simulation performance, model allocation
has a significant impact on which protocol is ideal. De-
pending on the model structure, and how it is mapped
to the different kernels, it might not even make sense to
parallelize at all. Indeed, if the model is allocated such
that frequent communication is necessary between ker-
nels, parallelism is naturally reduced. This brings us to the
topic of model allocation, as also implemented in Python-
PDEVS [40]. In this section we focus on the inter kernel
synchronization protocols, as intra kernel synchronization
is unaffected by the inter kernel topology.

The modeller can specify which kernel a model should
be allocated to, should such manual intervention be re-
quired. This is handled by the default model allocator. If
no preference is given, a simple striping scheme is used
but this is often insufficient. By overriding the default
allocator, a modeller tunes the allocation scheme for a
specific model. This interface can be linked to graph al-
gorithms for automatic allocation scheme generation, for
example to avoid cycles in the dependency graph.

6.1 Performance Evaluation
To evaluate the influence of model allocation, we define a
new model, based on PHold [14]. The model structure re-
sembles a tree: an atomic model can have a set of children,
with children being connected to each other recursively.

Unlike the Queue model, the width of the hierarchy is
still present in the topology of the atomic models after di-
rect connection. The PHoldTree model allows us to inves-
tigate speedup in terms of model allocation, by modifying
the depth and width (fanout) model parameters.

The PHoldTree model is similar in structure to models
of gossiping in social networks [25]. The lookahead of
an atomic node is the minimally allowed ε, as is often
the case in realistic models (e.g., if it is unknown what
the lookahead might be). We demonstrate the importance
of allocation by comparing performance of a breadth-first
versus a depth-first scheme. Both options are automated
ways of allocation that are independent of the model.

16



Core 0 Core 1 Core 2 Core 3 

Generator Processor_0
49

Processor_1
49

Processor_2
47

Processor_3
45

Processor_4
43

Processor_5
42

Processor_6
41

Figure 19: Queue model simulation trace across 4 kernels.

Core 0 Core 1 Core 2 

Generator0

Generator3

4

Generator1
4

Generator2

4

Generator4

4

Generator5

44 4 4

4

4

4

4

4

4 4

4

4

4

4 44

4

4 4

4

44 4 4

4

Figure 20: Interconnect simulation trace for 6 atomic
models on 3 kernels.

Core 0 Core 1 Core 2 

Processor_0

Processor_1

21

Processor_2

Processor_3

2

Processor_4

Processor_5

21 1 1 1241

1

24 11

2

121 12

Figure 21: PHold simulation trace for 6 atomic models on
3 kernels.

Model

Model

Model Model Model Model

Model

Figure 22: PHoldTree model for depth 3 and width 2.

Figure 23: Effect of hierarchy with NN synchronization.

PHoldtree, like Queue, is highly hierarchical, but its
flattened structure cannot be partitioned into a chain, as
was the case in the Queue model. This topology is inter-
esting since it highlights the effects of allocation. First,
we evaluate the model with NN synchronization to pro-
vide a baseline for further results.

6.1.1 No Inter-Kernel Synchronization (NN)

Since adevs does not use direct connection, we expect
a noticeable performance difference between dxex and
adevs. This is shown in Figure 23, where the fanout (n)
determines the performance penalty adevs suffers com-
pared to dxex. Profiling indeed indicates that an increase
in width per subtree (n) leads to higher overheads in adevs
due to the lack of direct connection. Dxex uses direct con-
nection, making it independent of fanout. Performance of
dxex is, for this model, only dependent on the number of
models. Slight deviations can still be seen, though, caused
by the initialization overhead of direct connection. Both
adevs and dxex scale linearly in the number of atomic
models.

17



Model

Model Model Model

Model Model Model Model Model Model Model Model Model

Figure 24: PHoldTree model breadth first allocation with
4 kernels.

Model

Model Model Model

Model Model Model Model Model Model Model Model Model

Figure 25: PHoldTree model depth first allocation with 4
kernels.

6.1.2 Inter-Kernel Synchronization (CN and ON)

Next, we run the model using two different alloca-
tion schemes, based on Breadth-First Search (BFS) and
Depth-First Search (DFS). First, we explain both alloca-
tion schemes.

Breadth-first allocation traverses the tree in a breadth-
first way, allocating subsequently visited atomic models
to the same node. Intuitively, atomic models at the same
level in the tree, but not necessarily siblings, are fre-
quently allocated to the same node. Since there is only
infrequently some communication between siblings, and
even never between different subtrees, this does not sound
an intuitive allocation. This allocation strategy is shown
in Figure 24.

Depth-first allocation traverses the tree in a depth-first
way, allocating subsequently visited atomic models to the
same node. Intuitively, subtrees are frequently allocated
to the same node, as shown in Figure 25.

Both allocators will try to divide models evenly over
kernels. The effects of varying the number of atomic mod-
els per kernel are already evaluated in the previous section
on scaling. Here we want to highlight the overhead of
communication and inter-kernel dependence.

The breadth first allocation scheme results in a depen-
dency chain with multiple branches, much like in the
Queue model. Such a linear dependency chain can re-
sult in a higher speedup, as demonstrated with the Queue
model. This is not always true though: a single kernel

with an unbalanced computational load slows down the
remainder of the chain. This effect is also apparent if
the thread a kernel runs on is not fairly scheduled by the
operating system. With conservative synchronization this
leads to excessive polling of the EOT of the other kernels.
With optimistic synchronization this leads to a cascade of
rollbacks, since dependent kernels will simulate ahead of
the slower kernel.

After simulation the traces can be visualized for both
breadth-first and depth-first allocation. Using a breadth-
first allocation scheme, as shown in Figure 26, we notice
that many events get exchanged between kernels. This
is caused by the high number of inter-kernel connections
and the high number of events exchanged over these con-
nections. The number of connections between atomic
models at the same simulation kernel is also rather low.
Using a depth-first allocation scheme, however, as shown
in Figure 27, minimizes inter-kernel connections while
maximizing intra-kernel connections.

Simulation results are shown in Figure 28 for both allo-
cation schemes in combination with both synchronization
protocols. We see that for both synchronization proto-
cols, the depth-first allocation is significantly better than
breadth-first allocation. This is what we expected for this
model: depth-first allocation preserves locality better than
breadth-first allocation. Whereas this is the case in this
example, this is not true in general, as the ideal allocation
depends on the model being simulated.

The most prominent aspect of these results is the low
performance for conservative depth-first allocation for
two kernels. This is mostly caused by the introduction
of synchronization protocols: suddenly we need to take
into account other kernels and passing around of looka-
head values. And since the number of kernels is low, the
overhead dominates. Optimistic is less sensitive to the
number of atomic models per kernel as it does not need to
poll each model for a lookahead, this explains the lower
runtime penalty observed for optimistic.

Interestingly, we see that optimistic synchronization is
less influenced by the allocation than conservative syn-
chronization. This is likely caused by the lower number of
connections to take into account in conservative synchro-
nization. Whereas conservative synchronization needs to
take into account even scarcely used connections, opti-
mistic synchronization does not. The same is true in the
opposite direction, though, where optimistic synchroniza-

18



Core 0 

Core 1 

Core 2 

Core 3 

Processor_1

Processor_3

13

Processor_9

18

Processor_15

14 1

Processor_4

6

Processor_5

4

Processor_6

2

7

Processor_10

Processor_11

5

Processor_12

6

Processor_16

8

Processor_17

7

Processor_18

6

6

105 7

14

0

0

Figure 26: Visualization of a simulation of the model in
Figure 24.

Core 0 

Core 1 

Core 2 

Core 3 

Processor_15

Processor_16

8

Processor_17

7

Processor_18

67

14

Processor_9

7

Processor_10

Processor_11

5

Processor_12

6

5

Processor_3

1

Processor_4

6

Processor_5

4

Processor_6

26

10

Processor_1

14

18

13

0

0

Figure 27: Visualization of a simulation of the model in
Figure 25.

19



Figure 28: PHoldTree model performance using different
allocation schemes.

tion is slower when a good allocation is chosen. Conser-
vative synchronization will then be able to make better
estimates, whereas optimistic synchronization does not
make estimations.

7 Related Work

Several similar DEVS simulation tools have already been
implemented, though they differ in several key aspects.
We discuss several dimensions of related work, as we try
to compromise between different tools.

In terms of code design and philosophy, dxex is most
related to PythonPDEVS [39]. Performance of Python-
PDEVS was decent through the use of “hints” from the
modeler. In this spirit, we offer users the possibility
to choose between different synchronization protocols.
This allows users to choose the most appropriate syn-
chronization protocol, depending on the model. Con-
trary to PythonPDEVS, however, dxex doesn’t support
distributed simulation [42], model migrations [40], or ac-
tivity hints [38].

Although PythonPDEVS offers very fast turnaround
cycles, simulation performance was easily outdone by
compiled simulation kernels. In terms of performance,
adevs [32] offered much faster simulation, at the cost of
compilation time. While this is beneficial for long run-
ning simulations, small simulations are therefore nega-
tively impacted. The turnaround cycle in adevs is much
slower, specifically because the complete simulation ker-
nel is implemented using templates in header files. As
a result, the complete simulation kernel has to be com-
piled again every time. Similarly to vle [35] and Pow-
erDEVS [5], dxex compromises by separating the simula-
tion kernel into a shared library. After the initial compila-
tion of the simulation tool, only the model has to be com-
piled and linked to the shared library. This significantly
shortens the turnaround cycle, while still offering good
performance. In terms of performance, dxex is shown to
be competitive with adevs. Despite its high performance,
adevs does not support optimistic synchronization, which
we have shown to be highly relevant for certain kinds of
models.

Previous DEVS simulation tools have already im-
plemented multiple synchronization protocols, though
none have done so in a strictly modular way that al-
lows straightforward protocol switching for a single given
model. For example, adevs only supports conservative
synchronization, and vle only supports experiment-level
parallelism (i.e., run independent experiments in paral-
lel). Closest to our support for multiple synchronization
protocols is CD++ [45]. For CD++, both a conservative
(CCD++ [22]) and optimistic (PCD++ [36]) variant ex-
ist. Despite the implementation of both protocols, they
are entirely different projects. Some features might there-
fore be implemented in CCD++ and not in PCD++, or
vice versa. And while this might not be a problem at this
time, the problem will only get worse when each project
follows its own course. Dxex, on the other hand, is a sin-
gle project, where the choice of synchronization protocol
is a simple configuration option. CD++, however, im-
plements both conservative and optimistic synchroniza-
tion for distributed simulation, whereas we limit ourselves
to parallel simulation. A new architecture for sequen-
tial PDEVS simulation has been introduced in [44] with
promising performance results. This algorithm achieves a
speedup by using xP synchronization. By limiting our ap-
proach to pure parallel simulation (i.e., no distributed sim-

20



ulation), we are able to achieve higher speedups through
the use of shared memory communication. Recent work
on parallel speedup in DEVS investigates theoretical lim-
its of PDEVS [6, 47]

In the PDES community, the problem of choosing be-
tween synchronization protocols is well known and doc-
umented [26]. The challenges of implementing such
runtime switching have previously been explored al-
ready [11], and implemented [34]. Our contribution en-
tails bringing this same feature to the Parallel DEVS
community, further expanding upon our support for mul-
tiple synchronization protocols.

Model allocation and its impact on parallel perfor-
mance has previously also been studied in the PDES
community [1]. Referenced as partitioning of the simu-
lation model, most studies distinguish between commu-
nication and computation as the two dimensions to par-
tition over. Partitioning a model is identified as an issue
to achieve scalability [31]. Some research in this context
has been done for Parallel DEVS [20, 13]. Our contri-
bution studies the effect of partitioning with emphasis on
the effect of communication between kernels and in the
presence of a flattened hierarchy. We focus on static par-
titioning since this is a limiting factor for our conservative
synchronization implementation which does not support
model migration. Model migration, as implemented by
PythonPDEVS, might be an interesting addition to model
allocation.

In summary, dxex tries to find the middle ground be-
tween the concepts of PythonPDEVS, the performance
of adevs, and the multiple synchronization protocols of
CD++. To further profit from our multiple synchroniza-
tion protocols in a single tool, we further added runtime
switching between synchronization protocols and model
allocation support.

8 Conclusions and Future Work
In this paper, we introduced DEVS-Ex-Machina (“dxex”),
a new C++11-based Parallel DEVS simulation tool. Our
main contribution is the implementation of multiple syn-
chronization protocols for parallel simulation. We have
shown that there are indeed models which can be simu-
lated significantly faster using either synchronization pro-
tocol. Dxex allows the user to choose between any of

the six supported synchronization protocols. We distin-
guish between inter-kernel (none, conservative, and op-
timistic synchronization) and intra-kernel (sequential or
parallel concurrent transitions) synchronization protocols,
which are orthogonal to one another. Depending on ob-
served model behaviour and simulation performance, run-
time switching between synchronization protocols can be
used.

Notwithstanding our modularity, dxex achieves perfor-
mance competitive to adevs, another very efficient DEVS
simulation tool. Performance is measured both in elapsed
time, and memory usage. Our empirical analysis shows
that allocation of models over kernels is critical to enable
a parallel speedup. Furthermore we have shown when and
why optimistic synchronization can outperform conserva-
tive and vice versa. We have also shown the influence
of using the parallelism inherent in the Parallel DEVS
formalism, and its interaction with inter-kernel synchro-
nization algorithms. Finally we investigated the effect of
memory (de)allocation on parallel simulation.

Future work is possible in several directions. First, our
implementation of optimistic synchronization should be
more tolerant to low-memory situations. In its current
state, simulation will simply halt with an out-of-memory
error. Having simulation control, which can throttle the
speed of nodes that use up too much memory, has been
shown to work in these situations [15]. Faster GVT im-
plementations [16, 3] might further help to minimize this
problem. Second, the runtime switching between syn-
chronization protocols can be driven using machine learn-
ing techniques. The simulation engine is already capable
of collecting data to inform such a process, and is de-
signed to listen for commands from an external compo-
nent. Third, automatic allocation might be possible by
analysis of the connections between models. This infor-
mation is already used in dxex to construct the depen-
dency graph in conservative synchronization. A graph
algorithm that distributes models, while avoiding cycles,
could be used to offer a parallel speedup in either opti-
mistic or conservative synchronization. Similarly, it could
serve as a default parallel allocation scheme that can be
improved by the user. Finally, the use of transactional
memory can offer several advantages in this project. If it
becomes part of the new C++17 standard it would be of
great interest to see if it can help reduce the performance
effects of memory allocation and synchronization.

21



ACKNOWLEDGMENTS
This work was partly funded with a PhD fellowship grant
from the Research Foundation - Flanders (FWO). Partial
support by the Flanders Make strategic research centre
for the manufacturing industry is also gratefully acknowl-
edged.

References
[1] Ketan Bahulkar, Jingjing Wang, Nael Abu-

Ghazaleh, and Dmitry Ponomarev. Partitioning
on dynamic behavior for parallel discrete event
simulation. In Proceedings of the ACM/IEEE/SCS
26th Workshop on Principles of Advanced and
Distributed Simulation, pages 221–230, 2012.

[2] Fernando Barros. Modeling formalisms for dynamic
structure systems. ACM Transactions on Modeling
and Computer Simulation, 7:501–515, 1997.

[3] David Bauer, Garrett Yaun, Christopher Carothers,
Murat Yuksel, and Shivkumar Kalyanaraman.
Seven-O’Clock: A new distributed GVT algorithm
using network atomic operations. In Proceedings of
the Workshop on Principles of Advanced and Dis-
tributed Simulation, pages 39–48, 2005.

[4] Heiko Bauke and Stephan Mertens. Random num-
bers for large-scale distributed Monte Carlo sim-
ulations. Physical Review E, 75(6):066701:1–
066701:14, 2007.

[5] Federico Bergero and Ernesto Kofman. Pow-
erDEVS: a tool for hybrid system modeling and
real-time simulation. Simulation, 87(1-2):113–132,
2011.

[6] Laurent Capocchi, Jean-François Santucci, and
Bernard Zeigler. PDEVS protocol performance pre-
diction using activity patterns with Finite Probabilis-
tic DEVS. In Proceedings of the 2016 Symposium on
Theory of Modeling and Simulation - DEVS, pages
605–613, 2016.

[7] Ben Cardoen, Stijn Manhaeve, Tim Tuijn,
Yentl Van Tendeloo, Kurt Vanmechelen, Hans

Vangheluwe, and Jan Broeckhove. Performance
analysis of a PDEVS simulator supporting multiple
synchronization protocols. In Proceedings of
the 2016 Symposium on Theory of Modeling and
Simulation - DEVS, pages 614–621, 2016.

[8] Bin Chen and Hans Vangheluwe. Symbolic flatten-
ing of DEVS models. In Proceedings of the 2010
Summer Simulation Multiconference, pages 209–
218, 2010.

[9] Alex Chung Hen Chow and Bernard Zeigler. Paral-
lel DEVS: a parallel, hierarchical, modular, model-
ing formalism. In Proceedings of the 1994 Winter
Simulation Multiconference, pages 716–722, 1994.

[10] Stephen Cleary and Paul Bristow. Boost
Pool: Fast memory pool allocation. http:
//www.boost.org/doc/libs/1_61_0/libs/
pool/doc/html/, 2011.

[11] Samir Das. Adaptive protocols for parallel discrete
event simulation. In Proceedings of the 1996 Winter
Simulation Conference, pages 186–193, 1996.

[12] Ulrich Drepper. What every pro-
grammer should know about memory.
https://lwn.net/Articles/250967/, 2007.

[13] Roland Ewald, Jan Himmelspach, and Adelinde
Uhrmacher. A non-fragmenting partitioning algo-
rithm for hierarchical models. In Proceedings of
the 2006 Winter Simulation Conference, pages 848–
855, 2006.

[14] Richard Fujimoto. Performance of Time Warp un-
der synthetic workloads. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages
23–28, 1990.

[15] Richard Fujimoto. Parallel and Distributed Simula-
tion Systems. John Wiley & Sons, Inc., New York,
NY, USA, 1st edition, 1999.

[16] Richard Fujimoto and Maria Hybinette. Computing
Global Virtual Time in shared-memory multiproces-
sors. ACM Transactions on Modeling and Computer
Simulation, 7(4):425–446, 1997.

22

http://www.boost.org/doc/libs/1_61_0/libs/pool/doc/html/
http://www.boost.org/doc/libs/1_61_0/libs/pool/doc/html/
http://www.boost.org/doc/libs/1_61_0/libs/pool/doc/html/


[17] Sanjay Ghemawat and Paul Menage. TC-
Malloc: Thread-caching malloc. http:
//goog-perftools.sourceforge.net/doc/
tcmalloc.html, 2005.

[18] Ezequiel Glinsky and Gabriel Wainer. DEVStone: a
benchmarking technique for studying performance
of DEVS modeling and simulation environments.
In Proceedings of the 9th IEEE/ACM International
Symposium on Distributed Simulation and Real-
Time Applications, pages 265–272, 2005.

[19] David Hanson. Fast allocation and deallocation of
memory based on object lifetimes. Software: Prac-
tice and Experience, 20(1):5–12, 1990.

[20] Jan Himmelspach, Roland Ewald, Stefan Leye, and
Adelinde M. Uhrmacher. Parallel and distributed
simulation of Parallel DEVS models. In Proceed-
ings of the 2007 Spring Simulation Multiconference
- Volume 2, pages 249–256, 2007.

[21] Jan Himmelspach and Adelinde Uhrmacher. Se-
quential processing of PDEVS models. In Proceed-
ings of the 3rd European Modeling & Simulation
Symposium, pages 239–244, 2006.

[22] Shafagh Jafer and Gabriel Wainer. Flattened con-
servative parallel simulator for DEVS and Cell-
DEVS. In Proceedings of International Conferences
on Computational Science and Engineering, pages
443–448, 2009.

[23] Shafagh Jafer and Gabriel Wainer. Conservative vs.
optimistic parallel simulation of DEVS and Cell-
DEVS: A comparative study. In Proceedings of the
2010 Summer Simulation Multiconference, pages
342–349, 2010.

[24] David Jefferson. Virtual time. ACM Transactions
on Programming Languages and Systems, 7(3):404–
425, 1985.

[25] Márk Jelasity. Gossip, pages 139–162. Springer
Berlin Heidelberg, 2011.

[26] Vikas Jha and Rajive Bagrodia. A unified framework
for conservative and optimistic distributed simula-
tion. In Proceedings of the 8th workshop on Parallel
and distributed simulation, pages 12–19, 1994.

[27] Ki Hyung Kim, Yeong Rak Seong, Tag Gon Kim,
and Kyu Ho Park. Distributed simulation of hier-
archical DEVS models: Hierarchical scheduling lo-
cally and time warp globally. Transactions of the
SCS, 13(3):135–154, 1996.

[28] Pierre L’Ecuyer. Random numbers for simulation.
Communications of the ACM, 33(10):85–97, 1990.

[29] Friedemann Mattern. Efficient algorithms for dis-
tributed snapshots and global virtual time approxi-
mation. Journal of Parallel and Distributed Com-
puting, 18(4):423–434, 1993.

[30] Alexandre Muzy and James Nutaro. Algorithms
for efficient implementations of the DEVS & DS-
DEVS abstract simulators. In 1st Open International
Conference on Modeling and Simulation (OICMS),
pages 273–279, 2005.

[31] David Nicol. Scalability, locality, partitioning and
synchronization PDES. In Proceedings of the 12th
Workshop on Parallel and Distributed Simulation,
pages 5–11, 1998.

[32] James Nutaro. adevs. http://www.ornl.gov/

˜1qn/adevs/, 2015.

[33] OpenMP Architecture Review Board. OpenMP
application program interface version 4.5.
http://www.openmp.org/mp-documents/
openmp-4.5.pdf, 2015.

[34] Kalyan Perumalla. µsik-a micro-kernel for paral-
lel/distributed simulation systems. In Workshop on
Principles of Advanced and Distributed Simulation,
pages 59–68, 2005.

[35] Gauthier Quesnel, Raphaël Duboz, Éric Ramat, and
Mamadou Traoré. VLE: a multimodeling and simu-
lation environment. In Proceedings of the 2007 Sum-
mer Simulation Multiconference, pages 367–374,
2007.

[36] Alejandro Troccoli and Gabriel Wainer. Implement-
ing Parallel Cell-DEVS. In Proceedings of the 36th
Annual Symposium on Simulation, pages 273–280,
2003.

23

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://www.ornl.gov/~1qn/adevs/
http://www.ornl.gov/~1qn/adevs/
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf


[37] Yentl Van Tendeloo. Activity-aware DEVS sim-
ulation. Master’s thesis, University of Antwerp,
Antwerp, Belgium, 2014.

[38] Yentl Van Tendeloo and Hans Vangheluwe. Activity
in PythonPDEVS. In Proceedings of the workshop
on Activity-based Modeling and Simulation, pages
2:1–2:10, 2014.

[39] Yentl Van Tendeloo and Hans Vangheluwe. The
modular architecture of the Python(P)DEVS simu-
lation kernel. In Proceedings of the 2014 Sympo-
sium on Theory of Modeling and Simulation - DEVS,
pages 387–392, 2014.

[40] Yentl Van Tendeloo and Hans Vangheluwe. Python-
PDEVS: a distributed Parallel DEVS simulator. In
Proceedings of the 2015 Symposium on Theory of
Modeling and Simulation - DEVS, pages 844–851,
2015.

[41] Yentl Van Tendeloo and Hans Vangheluwe. An eval-
uation of DEVS simulation tools. SIMULATION,
2016.

[42] Yentl Van Tendeloo and Hans Vangheluwe. An
overview of PythonPDEVS. In Collectif Workshop
RED, editor, JDF 2016 – Les Journées DEVS Fran-
cophones – Théorie et Applications, pages 59–66,
2016.

[43] Hans Vangheluwe. DEVS as a common denomina-
tor for multi-formalism hybrid systems modelling.
In IEEE International Symposium on Computer-
Aided Control System Design, pages 129–134, 2000.

[44] Damián Vicino, Daniella Niyonkuru, Gabriel
Wainer, and Olivier Dalle. Sequential PDEVS archi-
tecture. In Proceedings of the 2015 Symposium on
Theory of Modeling and Simulation - DEVS, pages
165–172, 2015.

[45] Gabriel Wainer. CD++: a toolkit to develop
DEVS models. Software: Practice and Experience,
32(13):1261–1306, 2002.

[46] Gabriel Wainer, Ezequiel Glinsky, and Marcelo
Gutierrez-Alcaraz. tudying performance of devs

modeling and simulation environments using the de-
vstone benchmark. SIMULATION, 87(7):555–580,
2011.

[47] Bernard Zeigler, James Nutaro, and Chungman Seo.
What’s the best possible speedup achievable in dis-
tributed simulation: Amdahl’s law reconstructed. In
Proceedings of the 2015 Symposium on Theory of
Modeling and Simulation - DEVS, pages 189–196,
2015.

[48] Bernard Zeigler, Herbert Praehofer, and Tag Gon
Kim. Theory of Modeling and Simulation. Aca-
demic Press, 2nd edition, 2000.

24


	Introduction
	Background
	Conservative Synchronization
	Optimistic Synchronization

	DEVS-Ex-Machina
	Synchronization protocols
	Inter-Kernel Synchronization
	Intra-Kernel Synchronization

	Synchronization Protocol Transparency
	Increasing Parallelism
	Memory Management
	Random Number Generators


	Performance Evaluation
	Benchmark Models
	Single kernel (NN Synchronization)
	Queue
	Interconnect
	PHold

	Inter-Kernel Parallelism (CN and ON synchronization)
	Queue
	Interconnect
	PHold

	Intra-Kernel Parallelism (xP synchronization)
	Memory Usage
	Remarks
	Results

	Conclusions on Performance Evaluation

	Runtime Switching
	Statistics Gathering
	Visualization of Communication


	Model Allocation
	Performance Evaluation
	No Inter-Kernel Synchronization (NN)
	Inter-Kernel Synchronization (CN and ON)


	Related Work
	Conclusions and Future Work

