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Abstract We address the geometrical structure of the
‘skewed’ correlator of two space-like separated (almost)
oppositely directed Wilson lines. Similar objects occur in the
analysis of the transverse-momentum broadening probabil-
ity function, the first moment of which is associated with the
jet quenching parameter. We start from the Euclidean space
formulation and then transform the result to the Minkowski
light-cone geometry, arguing that this procedure is consis-
tent in the leading order of the perturbative expansion. We
discuss as well the issues of the UV, rapidity and IR singular-
ities, and the possible use of the proposed approach in lattice
simulations.

1 Definitions and setting the hierarchy of scales

Fast partons, created as a result of heavy-ion collisions, prop-
agate through the nuclear medium and lose their energy
due to different mechanisms (collinear pair production,
Bremsstrahlung, etc.). This class of phenomena is collec-
tively known as jet quenching. The energy loss shows up in
the spectrum of high-p, hadrons in the final state, as well as
in the kinematical parameters of the jets produced by the par-
ton. In the former, the jet quenching can cause a suppression
of the spectrum, while the latter can exhibit an imbalance
of the transverse momentum of high-p | back-to-back jets
and an increased angular broadening of the final jets [1]. Jet
quenching is observed in the heavy-ion collisions at RHIC
[2-5] and at the LHC [6,7]. It is assumed that the above men-
tioned medium is a dense, deconfined state of quarks and glu-
ons is formed in such collisions, known as the quark-gluon
plasma (QGP) [8—11]. For a recent review of jet quenching,
see, e.g., Ref. [1], while [12] provides an up-to-date report
on the quark-gluon plasma.
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In the leading approximation, the multiple soft interac-
tions of the hard parton with the medium do not change the
parton energy, but they do affect its momentum component
transverse to the initial (collinear) direction. Within a jet,
there will be therefore no change in mean momentum, but
rather an increase in the transverse momentum spread. This
effect is known as transverse momentum broadening, and it
can be characterized by the so-called jet quenching parameter
q [13-17]:

G=L ) = L) /d2kLki P(ky). (1)

where k| is the acquired transverse momentum after prop-
agation through the medium for a (longitudinal) distance L
and P (k) is the probability distribution. The dimension of
q is, therefore, [mass3], and ¢ measures the average trans-
verse momentum squared in unit of length. Within the frame-
work of soft-collinear effective theory (SCET) [18], the jet
quenching parameter can be computed in general covari-
ant gauge, yielding a thermal correlator of two transversely
separated light-like Wilson lines [19-24]. Recently it was
demonstrated that, by the addition of transverse Wilson lines
at light-cone infinity (these objects were first introduced in
order to save gauge invariance in the operator definition of
the transverse-momentum dependent PDFs, by taking into
account the effects of initial/final state interactions [25-27],
and, subsequently, by considering the renormalization-group
properties of the TMD matrix elements [28—31]), this result
can be generalized to the light-cone gauge [22-24].

In this paper we study those properties of the jet quench-
ing parameter which are overlooked in the current litera-
ture, namely, the geometrical structure of the correspond-
ing transverse-distance (or momentum) dependent correlator
and the issue of continuation from Euclidean to Minkowski
space-time. For that reason, we concentrate on the non-
thermal medium with zero temperature 7 = 0. This setup
allows us to study the ‘cold background’ of the jet quench-
ing process, in contrast to the medium with finite tempera-

@ Springer



2721 Page2of7

Eur. Phys. J. C (2014) 74:2721

ture that is created by the nuclear collisions. We take into
account, however, that even in the cold medium the correla-
tion functions may be nonperturbative. We will make use of
the general covariant two-gluon correlation function, which
can contain dependence on an additional low-energy scale
Or, so that

A=01/0K1, ()

where Q is the large scale characterizing the momentum of
the primordial jet [22]. The transverse momentum broaden-
ing is, therefore, of the order

pr — broadening ~ L0 = QOr, 3)

while the virtuality of the parton is proportional to the length
of the light-like Wilson line and is of the order

virtuality ~ L™% ~ (A:0)* = 0% . 4)

Hence we have two independent low-energy scales, which
obey the relation Q7L ~ 1. This assumption will be shown
below to play a significant role in the scale dependence of
the Wilson lines correlator under consideration. It is worth
mentioning that the hierarchy of scales includes unavoidably
other, even ‘softer’ energy parameters, e.g., gQ7, g2 0T,
where g is a coupling constant. In the present work we explore
the region between the two first scales, [gOQ7, O], so that
Qr is an effective UV cutoff, while g Q7 is an IR one.

Following the results of Ref. [22], we assume that the
probability distribution P (k) exists and can be defined as
the Fourier transform of the expectation value of two light-
like Wilson lines (for the sake of simplicity, we take the fields
A = A% - t* in the fundamental representation of the gauge
group, hence the factor 1/N,)

Pki;n) = /d2u e L P(zy)

. 1 "
- /dzu e LTl | —Tr (W' [0, 21 ]
NC n
X W,-[0, 0 T}*), (5)

where |*) denotes the state accumulating information about
the properties of the medium, and the explicit dependence
on the light-like vector n™ is included. The generic light-like
Wilson line operator evaluated along the light-like direction
Yy~ =n" o reads
L2
WLyt y 1 =P exp | ig / dy AT Gy |-
—L)2
(6)
where the length L sets the longitudinal scale of the medium.
Note that path-ordering operator P orders color matrices ¢4,

but not time-dependent fields A“. The latter must be ordered
by an additional ordering, time- or anti-time, if we want
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Eq. (5) to be consistent with the physical situation. This issue
is not, however, our concern in the present work since in the
g? order, the diagram contributing to P(z) contains only the
contraction of two space-like separated gluon fields, which
obviously commute. Of course, in the NLO calculations one
has to take the time- and anti-time-ordering into account.

2 Calculation in Euclidean space

Perturbative calculations of the Wilson lines and loops call
for a careful treatment of the angular dependence (e.g., cusps,
self-intersections, etc.) and the possible divergences of vari-
ous kinds both in Minkowski and Euclidean space-time (see,
e.g., Refs. [32-56]). On the other hand, nonperturbative anal-
ysis of the jet quenching is possible, which can be carried
out by making use of other methods—see, e.g., [19,57-60].
Here we address the issue of the angular dependence of
the generic skewed correlator of two Wilson lines, defined
first in Euclidean space, and then show how to transform
to the Minkowskian geometry on the light cone. We do not
specify the way how the expectation values in the medium
(*|WTW|*) must be evaluated, instead we try to retrieve as
much as possible information, making as less as possible con-
jectures about the properties of the two-gluon contraction in
a medium.

To this end, let us consider the following object defined in
Euclidean space:

~ _ 1
P(z1;v,9) =<* ST {Wizowaiou) *>, (7)
where
o0
Wyl0L ] =P exp|igv, f do A, (y) |,y = vo, )
—0Q
and
Wg[u]:P exp | —igu, / do’ A, (y) | . ¥y =vo'+z1,
—00
9

where the directions of the Euclidean vectors v and v are
determined by the angles ¢, ¢

vy = (vo,vZ,OL) = L(cos¢/2,sin¢/2,0]), (10)
O = (@°,9%,01) = —L(cos ¢/2,sin¢/2,0,) (11)
v =92 = L% (12)
This object is more general than is needed for the straightfor-

ward calculation of the jet quenching parameter. We define as
well an asymmetric function of the Euclidean vectors (v, v)
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1 . -
o, v) = T /dsz K /dZZJ_ e* L7l Pz, 1),
(13)

which formally arises as the skewed analogue of the physical
q, so that we assume that there exists an appropriate transition
procedure,

p(v,0) = guc - (14)

However, it is not our concern in the present work to specify
this procedure.

Naively, the realistic situation is supposed to be achieved
by making the transformation of the angles to the Minkowski
geometry (¢, ¢) = i(¥, V) and setting them equal. The
light-cone case can be obtained, formally, by taking the limit
of large Minkowskian angles v and . We will see, how-
ever, that this straightforward strategy does not work in our
case. Instead we will keep the two angles different after
transformation to Minkowski space-time and, given that the
angular dependence gets factorized into a covariant multi-
plier, demonstrate that the light-cone limit can be consistently
performed in the skewed layout.

Another important change as compared to the standard
definition of P (k) is that we evaluate the line integrals
in the Wilson functionals along the infinite paths, keeping
IR singularities under control, if needed, by an additional
energy scale A ~ gQr. In the dimensional regularization,
A is introduced formally as an energy parameter in the inte-
gration measure. On the other hand, the length L provides the
natural longitudinal scale. Recall that the length of an inte-
gration contour in the coordinate space corresponds to the
inverse virtuality of the eikonalized particle in the momen-
tum space L ~ m~! [41]. Let us note that the contribution
under consideration is UV finite due to the space-like sepa-
ration of the Wilson lines. This is not the case anymore in the
NLOs.

The leading non-trivial term of the weak-field expansion
of the skewed probability distribution (7) reads, see Fig. 1

o o0 1
PY(z v, 0) = —(ig)? (v,ﬁ;v)/ da/ do/Trﬁ
—00 —00 ¢

x (x| PLAL(vo +z1) Ay (00 )]l%).  (15)

The most general Lorenz and color structure of the two-
gluon non-thermal correlator, which takes into account both
perturbative and possible nonperturbative contributions [61]

(x| [A% (vo + 2 1) AL (D)%) =8" Dy (vo — V6" +21),
(16)

20 =

D (T;0,7,2,)

j2a

23

Fig. 1 Leading-order transverse-distance dependent contribution to
the skewed configuration of the Wilson lines in Euclidean space with a
generic two-gluon non-thermal small energy scale dependent correlator

D (Qr.2)

is determined as follows:

Dy (2) = gv0>D1(z%) — 8,8, D2(z?)
= g0 Qwd, +42%03) D1 (z%)

— (2800 +42,2007) D2 (), (17)
where u = z% and z = vo + z, — Uo’. Dimension regular-
ization provides IR finiteness under w = 4 — 2¢, ¢ < 0. We
will also make use of the Laplace transform of the functions
D1 and their derivatives DY)Z = BLIIDLg(u) in Euclidean
space:

o
DY) = (—1)’/ do o'e ™ Dy 5 () . (18)
0

Equation (15) can be split up into the following four con-
tributions:

PV v 0) =g Cel, I=L+ 1+ DL+ Iy,

ez Ne—1 (19)
F= N
and
o0 o0
Ilzvuﬁ,,/ do/ do’ 2wg""d, D1 (z%),
—00 —00
o0 o0
Iy =v,v, / do f do’ 4glLU2283D1(12)’

!
3
!
3
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o0 o0

12=—UM5V/ dcr/ do’ 2g""8, Dy(z%),
—0o0 —00

o o
Iy = —v,0, / do / do’ 421792 D2 (2%). (20)
—00 —00
Evaluating the line integrals (20), we use the representation
o0 _ g—al?(o+cos(Ap)o’) —aLlo"? sin’(Ag)o—abl (o)
where A¢ = @

After a straightforward, but tedious calculation (see for
technical details Ref. [62]), we finally obtain

- A
Pz, 0. 7) = g2Cp2m —22¢
(@150, 0) = g Cr2m e

x [(a) —2)Di1(2%: A)+222 D|(Z2; A)] :

(22)

where we take into account the IR-cutoff A ~ gQr in Dy,
which might be IR singular. In contrast, the UV-finiteness
is guaranteed by the effective UV cutoff z . Equation (22)
is our main result for the skewed probability distribution in
Euclidean space-time in the leading non-trivial order. Let us
note that the contribution of the second term in the two-gluon
correlator, D», falls out, which is indeed required by gauge
invariance.

To establish the connection of this function with the phys-
ical jet quenching parameter (1), it is instructive to rewrite
the angular factor in covariant form,

K(v.7) = cc.)s A¢ _ (v-v) ’

[sin Agl  /v232 — (v - v)?
which allows us to study in detail the transition to the light-
cone Minkowskian layout.

In Minkowski space-time, for each pair of time-like vec-
tors v and v traveling in the opposite time direction, a rest
frame can be found in which they are parametrized as fol-
lows:

(23)

v=L (1, =Biy1,01)=L (cosh % — sinh % 01.);

v=—L (y2, —B2y2,01)=—L (COSh % — sinh % OL)-
(24)

Evaluated in dependence of these two vectors, the function
K (v, v) reads

Kwi)=—— 2 ;N\ 2 ) (25

Vol — (-2 ‘sinh (—‘/";”2)‘

In the case we are interested in, i.e. the case {¥r; = , this
expression is singular. Thus, in the limit of v and v lying in

Y=y
- .cosh( ‘2 2)

@ Springer

the opposite space-time direction, the parametrization (25)
of K (v, v) is ill defined.

Moreover, one has to be careful in using the definition
(23) K (v, v) in the light-cone case. To illustrate this, take
the parametrization (24) of v and v in the limit of infinite
rapidity:

L
ve =7 (e‘m/z, —e¥1/2, 0¢>, (26)

e = —% (e‘”z/z, —el?/?, OL),

2 -
vic = Vic =0.
In the light cone limit i1, {2 — oo, formula (25) is clearly
ill defined as well. However, one cannot simply insert (26)
into definition (23), since that would yield
12 eV1/20v2/2 _ o¥1/20¥2/2

K@ -vc=—— =0
4 \/_% (eM12ev2/2 — et /2evar2)? O

Thus, although we have a covariant definition (23) of the
angular dependence K (v, v), we are facing problems both
in the evaluation of K (v, v) for v and v, which are opposite
vectors in Minkowski space-time, and in the evaluation of
K (v, v) for vectors on the light cone.

Let us consider a straightforward solution of this problem,
which requires just being more careful when taking the light-
cone limit. Indeed, writing

L
v* = lim 5 (e‘/"/2 + e, —eV1/? +e,0l),

e—0
L
5" = lim -3 (e¢2/2 8, —eV2/2 4, OL) ,
the definition of K (v, v) can be readily used, yielding
L? eeV2/2 L §eV1/2

K (v*,v%)= lim [——
4 \/—ll‘—g (Ee1/f2/2 —|-(Sew1/2)2

€,6—0

=i.

27

This method suggests, however, setting the primordial par-
tons off-mass-shell. An even more straightforward method is
to place only one vector on the light cone, while the other vec-
tor remains time-like (that is, we define the skewed layout),
for example

L
v e =5 (e‘p‘/z, —eV1/2, OJ_),
v = —L coshﬂ,—sinhﬂ,m_ .
2 2
In that case, using the definition of K (vic, v) yields (since
vﬁc =0):
v+ v

K (e, §) = —i. (28)
\/vfcwﬂ — (vic - D)2
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The last equation suggests that the angular multiplier K (v, v)
is invariant in the skewed layout, so that one can readily put
the second vector on the light cone.

To illustrate the consistency of the proposed method, let
us evaluate the skewed function p(Q7; v, v) in perturbative
vacuum, taking into account the hierarchy of scales. The free
gluon propagator is given by
(—w A% T'(1 —¢)

1672 &
where AZ is an IR scale, so the perturbative transverse-
distance dependent probability distribution (22) reads (for

comparison, see the LO result for the quark—quark scattering
amplitude in Ref. [41])

Di(z%) = —

. (29)

, COS A (—nAzzi)g {1 —e)
| sin Ag| 4 s
(30)

PPt (235 v, 0) =—Crg

Note that ¢ is negative. Equation (30) is IR singular in the
limit ¢ — 07, while the skewed function pper. (Q7; v, V) is,
in contrast, IR-finite but UV-divergent:
kmax,
cos A¢ d%k
Flsinagl | 2o
as one expects in the pure perturbative case. It is natural to
assume that the UV cutoff scales as follows [22]:

KI™ ~ 20 = Or .

Therefore, taking into account Egs. (2—4), one has
gZCF cos Agp QZT
4dr  |sin A¢| L

. g2071Cr cosAg
T 4m  |sinAg|
‘We have found, therefore, that Eq. (32) is consistent with
the hierarchy of scales which is adopted in the derivation of
the definition (5) within SCET [22].
Let us now estimate the nonperturbative input to the

Euclidean skewed function p(Qr, v, v) making use of the
simplest Gaussian two-gluon correlator:

PO (Oriv, D) = + 31)
pert. L L

1 _
péezt (Qr:v,0) =

0% . (32)

Di(e) = e 0D (33)

where « (g2, Q1) suppresses IR divergences in the large-
zi domain. Taking into account that the medium is char-
acterized, besides the scale Qr, by the lower scales mg ~
2071 > gk ~ g>QOr, and that we work in the energy range
[¢Or, O], one can naturally set the medium IR function to
the Debye mass:

k(g% Or) =m3% ~ g 0% (34)

Note that in our approach m g plays exactly the same role as
the effective gluon mass in Ref. [57], that is, an IR cutoff.

The calculation is straightforward and yields

cos A¢
| sin Ag|

x [(a) —2)e 60D _ k(g2 0p)2

Xefk(gzyQT)zi] ) (35)

dkl 2/
@m)
X (1 + P(l)(zL; v, 17))

2
Fg 5 cos Ag
—38 , . 36
k(g QT)w|SinA¢| (36)

As we know from the previous discussion, expression (36),
being well defined in Euclidean space, can be safely trans-
formed to the Minkowski space-time. Taking into account
Eq. (34), we obtain the following result (in four-dimensional
Euclidean space w = 4):

PWD(z v, 0) =27g°Cr

so that

eikL'ZL

1 _
pﬁ;@(Qr; v, V)

cos Ag 2 9
~ grmy.
|sinAg|  CETE

(37

Pp(Qri v, D) = g207 Cr 32mm} 0

It is instructive to compare Eq. (37), obtained within non-
thermal scale-hierarchical effective theory with some recent
results for thermal situations available in the literature. It is
known that in the leading order, the jet quenching parameter
is given by (see, e.g., Refs. [57,63,64])

k*
~ d kJ_ 2
(2 ) ki Cky), C(ky)
TN P +0(gY (38)
- gE F ki kL + E g )

where the effective coupling and the Debye mass are
g =8'T+0@'T),
E=8T\/Ne/3+Ns/64+ 0(g’T),

and k7 takes care of the UV-divergency. Accordingly, one
has

(39)

q(k}:ge,mg) = (40)

2 mE

Equation (37) reproduces, therefore, the scale structure of
Eq. (40), where the energy scale Q7 ~ L~! arises asa ‘mock
temperature’ of the cold medium having a non-trivial non-
perturbative vacuum state. On the other hand, the naive per-
turbative contribution (32), although correct in power of O,
lacks an IR scale and thus fails to match Eq. (40). This is not
surprising since the pure perturbative treatment is not allowed
in the far IR region, where a nonperturbative approach must
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be adopted. The above comparison demonstrates that an
approach based on the Wilson lines techniques within the
SCET framework allows one to get correct estimation of the
jet quenching (which agrees with one obtained in Ref. [57])
even at zero temperature given that there exists a hierarchy
of energy scales Q > Q71 > mg ~ g0r > g ~ g2 0r
[22]. This provides us with an explicit proof of the relevance
of the SCET approach to the jet quenching study. Let us
emphasize that our approach is not related to a specific the-
ory or model of the QCD background, while the use of the
effective propagator, Eq. (17), allows one to take into account
the properties of the non-thermal medium in the most general
covariant form.

3 Conclusions and outlook

We discussed an approach which allows one to separate
the angular dependent factor from the Euclidean Wilson
lines correlator in the skewed layout and perform consis-
tently its transition to the light-cone Minkowski space-time.
The resulting expression gives, formally, the jet quenching
parameter (13) as a function of the two-gluon correlation
function at zero temperature

(x| [A% ()AL ()] 1)

expressed in the most general covariant form (17). We paid
special attention to the angular structure of the skewed func-
tion p(l) (Qr; v, v) and studied its behavior in vicinity of the
‘extremal’ configuration v = —v, v> = 0. We demonstrated
that an appropriate correspondence between the skewed
Euclidean and the light-cone Minkowskian layouts can be
established and used in practical calculations. Note that
although we addressed the problem of Euclidean analytical
continuation of the light-like correlators from the point of
view used mostly to approach the issue of the rapidity singu-
larities in transverse-momentum dependent parton densities,
(see, e.g., Refs. [28,66,67]), our result (27, 28), confirms the
boost-independence of the analytical continuation observed
in [57]. Further analysis is needed, however, in order to ensure
the possibility of the Euclidean<>Minkowski transition at
T # 0 in our formalism. In this case, the two-point gluon
correlation functions at finite temperature must replace the
simplest Ansatz (17), see, e.g., recent preprint [65].

Our formalism can be further applied in lattice simula-
tions and in calculations in the QCD vacuum and nuclear
medium models. We considered the non-thermal medium,
that is, 7 = 0. Therefore, the presence of low-energy scales
07,807, g2 Or is essential for the gauge-invariant formu-
lation of the jet quenching process in terms of the light-like
Wilson lines. We demonstrated that this definition is consis-
tent with the hierarchy of energy scales suggested by the
SCET framework, and it yields an appropriate result for

@ Springer

a generic (nonperturbative) covariant two-gluon correlation
function. For example, the effects of the non-trivial structure
of QCD vacuum (e.g., instanton and other nonperturbative
models [46]) can be investigated directly by means of the pro-
posed method. The study of the jet quenching in the medium
with finite temperature will be reported separately [68].
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