

This item is the archived peer-reviewed author-version of:

Year-to-year variation in the density of **Ixodes ricinus** ticks and the prevalence of the rodent-associated human pathogens **Borrelia afzelii** and **B. miyamotoi** in different forest types

Reference:

Ruyts Sanne C., Tack Wesley, Ampoorter Evy, Coipan Elena C., Matthysen Erik, Heylen Dieter, Sprong Hein, Verheyen Kris.- Year-to-year variation in the density of **kodes ricinus** ticks and the prevalence of the rodent-associated human pathogens **Borrelia afzelii** and **B. miyamotoi** in different forest types Ticks and tick-borne diseases - ISSN 1877-959X - 9:2(2018), p. 141-145 Full text (Publisher's DOI): https://doi.org/10.1016/J.TTBDIS.2017.08.008 To cite this reference: https://hdl.handle.net/10067/1462810151162165141

uantwerpen.be

Institutional repository IRUA

1	
2	
3	
4	
5	
6	
0	
1	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
21	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
20	
38	
39	
40	
41	
42	
43	
44	
45	
46	
/7	
41	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
52	
50	
59	

1	Year-to-year variation in the density	of <i>Ixodes ricinus</i> ticks and the prevalence of the rodent-associated				
2	human pathogens Borrelia afzelii and B. miyamotoi in different forest types.					
3	SANNE C. RUYTS ^{1, *} , WESLEY TACK ² , EVY AMPOORTER ¹ , ELENA C. COIPAN ³ , ERIK					
4	MATTHYSEN ⁴ , DIETER HEYLEN ⁴ ,	HEIN SPRONG ⁵ & AND KRIS VERHEYEN ¹				
5	¹ Forest & Nature Lab, Depart	ment of Forest and Water Management, Ghent University,				
6	Geraardsbergsesteenweg 267, 9090 Me	elle-Gontrode, Belgium				
7	² Avia-GIS NV, Risschotlei 33	8, 2980 Zoersel, Belgium				
8	³ Wageningen University and I	Research, Plant Sciences Group, Bio-interactions and Plant Health				
9	Business Unit, P.O. Box 16, 6700 AA Wageningen, The Netherlands					
10	⁴ Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan					
11	171, 2020 Antwerp, Belgium					
12	⁵ Centre for Infectious Disease Control Netherlands, National Institute for Public Health and					
13	Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands					
14	* Corresponding author					
5 15						
16	Sanne C. Ruyts	sanne.ruyts@ugent.be				
)) 17	Wesley Tack	wtack@avia-gis.com				
18	Evy Ampoorter	evy.ampoorter@ugent.be				
19	Elena C. Coipan	elenaclaudiarv@gmail.com				
20	Dieter Heylen	dieter.heylen@uantwerpen.be				
21	Hein Sprong	hein.sprong@rivm.nl				
22	Erik Matthysen	erik.matthysen@uantwerpen.be				
23	Kris Verheyen	kris.verheyen@ugent.be				

ABSTRACT

The human pathogens Borrelia afzelii, which causes Lyme borreliosis and B. miyamotoi, which causes relapsing fever, both circulate between Ixodes ricinus ticks and rodents. The spatiotemporal dynamics in the prevalence of these pathogens have not yet been fully elucidated, but probably depend on the spatiotemporal population dynamics of small rodents. We aimed to evaluate the effect of different forest types on the density of infected nymphs in different years and to obtain more knowledge about the spatial and temporal patterns of ticks and tick-borne pathogens. We analysed unfed nymphal ticks from 22 stands of four different forest types in Belgium in 2009, 2010, 2013 and 2014 and found that the density of nymphs in general and the density of nymphs infected with B. afzelii and B. miyamotoi varied yearly, but without temporal variation in the infection prevalence. The yearly variation in density of infected nymphs in our study thus seems to be caused most by the variation in the density of nymphs, which makes it a good predictor of disease risk. The risk for rodent-associated tick-borne diseases also varied between forest types. We stress the need to elucidate the contribution of the host community composition to tick-borne disease risk.

37 KEYWORDS

38 Host community; Lyme borreliosis, mast year; spatiotemporal dynamics; tick-borne disease risk

INTRODUCTION

Tick-borne diseases are a growing public health concern (Dantas-Torres et al., 2012). The most common 123 42 tick-borne disease in the northern hemisphere is Lyme borreliosis, which is caused by some genospecies of the Borrelia burgdorferi sensu lato (s.l.) complex (Stanek et al., 2012), of which B. afzelii is the most prevalent in many Western European regions (Bingsohn et al., 2013; Gassner et al., 2011; Rauter and Hartung, 2005; Ruyts et al., 2016). Both B. afzelii and B. miyamotoi, the latter causing relapsing fever, circulate in the same tick species and the same vertebrate hosts (Cosson et al., 2014; Hanincová et al., 2003). In Europe, Ixodes ricinus is the main vector for B. afzelii transmission to humans (Piesman and Gern, 2004) and especially the host-seeking nymphs contribute most to the Lyme borreliosis risk (Barbour and Fish, 1993). In addition, this tick species is an important carrier for B. miyamotoi, and as with other tick-borne pathogens, B. afzelii regularly co-occurs with B. miyamotoi in the same tick individuals (Cosson et al., 2014; Gern et al., 2010; Kjelland et al., 2015).

The different genospecies of B. burgdorferi s.l. and B. miyamotoi each appear to be associated with a 145 53 particular host species, or a range of hosts. Borrelia afzelii is commonly transmitted to ticks by small rodents, such as the wood mouse (Apodemus sylvaticus Linnaeus, 1758) and the bank vole (Myodes glareolus Schreber, 1780) (Hanincová et al., 2003; Humair et al., 1995). Also Eurasian red squirrels (Sciurus vulgaris Linnaeus, 1758) and European hedgehogs (Erinaceus europaeus Linnaeus, 1758) have been suggested to transmit B. afzelii to ticks (Jahfari et al., 2017; Pisanu et al., 2014; Ruyts et al., 2017; Skuballa et al., 2012). Like B. afzelii, B. miyamotoi appears to be associated with rodents (Barbour et al., 2009; Cosson et al., 2014; Taylor et al., 2013).

The preferential habitat of *I. ricinus* is forest, due to the sheltered microclimate and availability of vertebrate 163 62 hosts for their blood meals (Gray et al., 1998; Lindstrom and Jaenson, 2003). Juvenile ticks (larvae and nymphs) generally feed most often on small to medium sized hosts, while adults tend to feed on medium 165 63 sized to large hosts. A recent European meta-analysis including 44 hosts, however, showed that only a few host species (small rodents, thrushes and roe deer) feed the majority of I. ricinus individuals (Hofmeester et al., 2016). Roe deer are generally the most important feeding host for female ticks in Europe and are important in the maintenance and reproduction of I. ricinus populations (Gray, 1998; Hofmeester et al., 2016; Ruiz-Fons and Gilbert, 2010). In most regions, larvae mainly feed on small rodents, and rodents are

generally responsible for the majority of *B. burgdorferi* s.l. infections in *I. ricinus* larvae (Hofmeester et al., 2016). The densities of small rodents such as wood mouse and bank vole in our study region, but also of other important host species such as roe deer, are positively correlated with the presence of a shrub layer and are higher in deciduous forests than in coniferous forests (Tack, 2013; Tack et al., 2012a). Furthermore, infection prevalence of nymphs with B. afzelii tends to be higher in pine than in oak forests, which suggests that small rodents feed more larvae in pine than in oak forests, relative to other host species (Ruyts et al., 2016). The densities of nymphs are also highest in structure rich deciduous forests (Gray et al., 1998; Ruyts et al., 2016; Tack et al., 2012b). Besides the type of forest, also the availability of seeds influences the occurrence and population dynamics of rodents, which is shown to affect the density of nymphs (Ostfeld et al., 2006, 2001; Tack, 2013; van Duijvendijk, 2016). Therefore, it is expected that the spatial and temporal differences in population dynamics of small mammals are important in explaining the density of infected nymphs, which is a commonly used tick-borne disease risk measure (Ostfeld et al., 2006).

The temporal dynamics in the prevalence of many important tick-borne pathogens, such as the Lyme
borreliosis bacteria, remain largely unclear. In the light of the reported rise in incidence of tick-borne
diseases in recent years, the study of the ecology and the spatial and temporal patterns of ticks, hosts and
tick-borne pathogens is becoming increasingly important (Estrada-Peña et al., 2011; Gray et al., 2009;
Randolph, 2010). With our temporal survey, we provide data on the annual variability of the impact of forest
characteristics on the density of ticks and the infection prevalence of the rodent-associated pathogens *B*. *afzelii* and *B. miyamotoi*.

MATERIALS AND METHODS

90 Study area

7 91 This study was performed in two forest sites in the Campine region in northern Belgium; one in the
7 92 municipality Postel (51°17'26.35" N, 5°11'40.11" E), the other between the municipalities Herselt and
7 93 Averbode (51°02'42.91" N, 4°57'17.19" E). The climate is temperate with warm summers (Peel et al.,
7 94 2007). Forests in this region mainly consist of even-aged homogenous stands of Scots pine (*Pinus sylvestris*8 95 L), and to a smaller extent Corsican pine [*P. nigra* Arnold subsp. *laricio* (Poiret). Maire] interspersed with

295

more diverse, structure-rich deciduous forests composed of pedunculate oak (*Quercus robur* L.), Northern
red oak (*Q. rubra* L.), common beech (*Fagus sylvatica* L.), silver birch (*Betula pendula* Roth.) and downy
birch (*B. pubescens* Ehrh.). The forests in the Campine region are frequently visited for recreational purposes
and Lyme borreliosis incidence in this region is relatively high compared to other regions in Belgium (Linard
et al., 2007; Vanthomme et al., 2012).

101 Forest stand selection

102The 22 forest stands we used in this study were selected in the framework of the study of Tack et al. (2012b)3103and were also studied in Ruyts et al. (2016). The forest stands lie in a larger matrix of forest stands of5104different forest types. We investigated stands of four different forest types, i.e. stands dominated either by6pines ('pine stands') or oaks ('oak stands'), with (> 50% of the forest floor covered by shrubs) or without (825%) a well-developed shrub layer. The 22 studied stands included five pine stands without a shrub layer, six107pine stands with a shrub layer, six oak stands without a shrub layer and five oak stands with a shrub layer.2310842007 and 2011 were mast years of pedunculate oak and 2011 was a mast year of beech (Nussbaumer et al.,62016). Corsican pine experienced a high seed crop in 2012 and 2013 and Scots pine in 2013 (Verstraeten A.,8personal communication). No data for these pine species are available for our region before 2009.

12 Data collection

274 113 Questing nymphs were sampled three to four times per year in a fixed representative part of each forest stand ₂₇₆114 between June and October in 2009, 2010, 2013 and 2014. All stands were sampled with comparable intensity ₂₇₈115 and in the same period each year. For the exact procedure of tick sampling we refer to Ruyts et al. (2016). 280¹¹⁶ The differences in structure and composition of the herbaceous community between the different stands were 282¹¹⁷ negligible so that the sampling could be performed in a standardized way (Tack et al., 2012a). The stands were sampled in a random order each time, to account for daily fluctuations in temperature and humidity 118 119 during the sampling sessions. Nymphs were removed from the blanket after sampling each transect and ²⁸⁷ 288</sub>120 transferred to vials containing 70% ethanol and afterwards stored at -22 °C. We counted and pooled nymphs ²⁸⁹121 from all sampling occasions from each year per forest stand. From each pool, 35 individual nymphs were ²⁹¹ 122 randomly selected to examine for infection with B. burgdorferi s.l. genospecies and B. miyamotoi. For the ²⁹³123 procedure of DNA extraction of the individual nymphs and the simultaneous detection of B. burgdorferi s.l. 294

and *B. miyamotoi* by multiplex qPCR, and for the identification of *B. burgdorferi* s.l. genospecies, we refer to the methods described in Hansford et al. (2014). As the conventional *Borrelia*-PCR followed by Sanger sequencing is less sensitive than our duplex *Borrelia*-qPCR, we could not assign a genospecies to all ticks that were *B. burgdorferi* s.l.-positive by qPCR. To correct for this shortcoming, we approximated the infection prevalence of nymphs with each *B. burgdorferi* s.l. genospecies for each plot following the procedure described in Jahfari et al. (2017).

130 Statistical analysis

All analyses were conducted in R version 3.3.1 (R Core Team, 2017). DON is the average yearly density of nymphs per plot. The nymphal infection prevalence (NIP) is the proportion of infected nymphs per year, averaged over all sampling occasions per year per plot, and the density of infected nymphs (DIN) is the product of DON and NIP. We calculated NIP and DIN for the *B. burgdorferi* s.l. complex, for each *B. burgdorferi* s.l. genospecies and for *B. miyamotoi*. Due to low numbers for *B. burgdorferi* s.l. genospecies other than *B. afzelii*, only NIP_{sl}, DIN_{sl}, NIP_{afzelii}, DIN_{afzelii}, NIP_{miyamotoi}, and DIN_{miyamotoi} were included in the statistical analyses.

We used linear mixed-effect models (*lme*) from the package *nlme* (Pinheiro et al., 2015) to explore the effect of sampling year and forest characteristics on the response variables DON, NIP_{sl}, DIN_{sl}, NIP_{afzelii}, DIN_{afzelii}, NIP_{miyamotoi} and DIN_{miyamotoi}. As fixed effects, we used sampling year (levels '2009', '2010', '2013', '2014'), the dominant tree species ('pine' or 'oak'), the presence of a shrub layer ('yes' or 'no') and all two-way interactions. We added forest stand as a random effect to take into account the repeated measures in each stand. Significance of the predictor variables in all model fits were assessed using analysis of variance (ANOVA) with Chi-square (χ^2) test and we checked for heterogeneity of the residuals following the approach described in Zuur *et al.* (2009). Finally, to estimate if changes in DON correlate to changes in NIP, we performed a Spearman Rank Correlation using the package *Hmisc* (Harrell et al., 2016) on DON and NIP_{sl}, NIP_{afzelii} and NIP_{miyamotoi}.

We did not statistically test the effect of weather variables such as precipitation and temperature on the tickborne disease risk, since our sample size of four years and 22 stands was too low.

RESULTS

In the 22 forest stands, a total of 21,376 questing *I. ricinus* nymphs were collected. We used 3,080 nymphs 359 152 360 for further analysis. Overall, 17.63% of the analysed nymphs was infected with at least one pathogen. We ₃₆₁ 153 362 ₃₆₃154 identified six different B. burgdorferi s.l. genospecies in 341 of the 471 (72.4%) infected nymphs, namely B. 364 ₃₆₅ 155 afzelii, B. garinii, B. burgdorferi s.s., B. valaisiana, B. spielmanii and B. bavariensis (Supplementary Table), 366 367¹⁵⁶ but we were unable to identify the genospecies in 130 B. burgdorferi s.l.-positive nymphs. Thirteen nymphs 368 369¹⁵⁷ were co-infected with B. burgdorferi s.l. and B. miyamotoi. For eight of these co-infected nymphs, B. 370 158 mivamotoi occurred together with B. afzelii. The B. burgdorferi s.l. genospecies in the remaining five cases 371 ³⁷²159 of co-infection could not be identified. 373 374

375 160Figure 1 visualizes DON, NIP_{afzelii} and DIN_{afzelii} in each year. DON (p < 0.01) significantly differed among376377 161377 161years, with highest values in 2010 and lowest in 2014 (Table 1 and Fig. 1). DON was consistently higher in378379 162379 162oak forests than in pine forests (Fig. 1, Table 1). DON was significantly higher in stands with a shrub layer380381 163381 163than in stands without a shrub layer in 2009 and 2010, but no difference was found in 2013 and 2014.

The variables NIP_{sl}, NIP_{afzelii} and NIP_{miyamotoi} did not show significant temporal variation (Table 1). NIP_{afzelii} was significantly higher in pine forests, consistently throughout the years (Table 1 and Fig. 1). We found no correlation between DON and NIP_{sl} (p = 0.17, $\rho = -0.15$), between DON and NIP_{afzelii} (p = 0.24, $\rho = -0.13$) or between DON and NIP_{miyamotoi} (p = 0.32, $\rho = -0.11$).

392 **168** Like DON, DIN_{sl} (p = 0.02) significantly differed among years, with highest values in 2010 and lowest in 393 2014 (Table 1 and Fig. 1). DIN_{miyamotoi} and DIN_{afzelii} did not show significant temporal variation (Table 1). 394 **169** 395 ₃₉₆ 170 Like DON, DIN_{sl} and DIN_{mivamotoi} were higher in oak forests than in pine forests, consistently throughout the 397 ₃₉₈ 171 years (Table 1). DIN_{sl} was significantly higher in stands with a shrub layer compared to stands without a 399 400 172 shrub layer in 2010, while in the other years, no significant effect could be detected of the presence of a 401 402 173 shrub layer.

403

382

391

404 **174** 405

406 407 **175** DISCUSSION

408

In this temporal survey, we looked at the inter-annual dynamics in tick densities and the infection prevalence
of tick-borne bacteria, with special attention to the rodent-associated human pathogens *B. afzelii* and *B.*

miyamotoi, in relation to forest types in Belgium. Our results indicate that the risk of rodent-associated tickborne disease varies both between different types of forest and between years. This spatiotemporal variation can be related to the response of both ticks and hosts to the biotic and abiotic conditions influenced by the dominant tree species, and can be predicted by the density of nymphs.

In our study, the rodent-associated pathogens *B. afzelii* and *B. miyamotoi* were the most common bacteria in the investigated nymphs. The bird-associated *B. burgdorferi* s.l. genospecies *B. garinii* and *B. valaisiana* occurred at low infection prevalence in our study sites. Together, this suggests that rodents are most likely the most important feeding hosts for larvae in our study area, as stated by Hofmeester et al. (2016). In our study, *B. miyamotoi* displayed co-infection with *B. afzelii*, which supports the assumption that they share the same hosts (Barbour et al., 2009; Cosson et al., 2014; Taylor et al., 2013).

Our results show that DON, but not NIP, displays inter-annual fluctuations. Some European studies have reported that an increased supply of acorns can increase the population density of wood mouse and bank vole the next year (Tack, 2013; van Duijvendijk, 2016). Moreover, they show that this increased rodent density leads to more feeding opportunities for larvae, and a high DON one year later, while NIP remains stable. Also densities of other host species, such as roe deer, red squirrel and wild boar, may increase after a high seed crop of oak, beech or pine (Cutini et al., 2013; Tixier and Duncan, 1996; Wauters et al., 2004; Wauters and Lens, 1995). Oak experienced a high seed crop in 2006, 2007 and 2011, beech in 2011 and pine in 2012 and 2013. Based on this, we would expect DON to be highest in the years 2009, 2013 and 2014. However, DON is highest in 2010 and 2013. Yearly variation in weather conditions such as temperature and the amount of precipitation can also influence DON. Since ticks are sensitive to desiccation (Needham and Teel, 1991), they will be more prone to death in dry conditions, or will seek shelter in the litter layer or lower vegetation which makes it more difficult to collect them with the standard sampling methods and thereby biasing the results. In our study, it is not possible to conclude if mast years or weather conditions affect DON, as these and other possible influencing factors are not accounted for.

Lyme borreliosis incidence has increased significantly the last decades in many European countries (Ducoffre, 2010; Hofhuis et al., 2006; Sprong et al., 2012). We found no clear pattern in DON, NIP_{sl} or DIN_{sl} but rather DON and DIN_{sl} varied from one year to the other. Similar to our results, Estrada-Peña et al. (2011) detected no specific temporal trend at the European level in the prevalence of *B. burgdorferi* s.l. genospecies

⁴⁷⁴206 and relate the prevalence of genospecies across Europe to temperature and vegetation stress, which are 475 ⁴⁷⁶207 important drivers of both tick and host populations. Like in other studies (James et al., 2013; Jouda et al., 477 478 208 2004; Vourc'h et al., 2016), but contrary to Tälleklint and Jaenson (1996), we found no correlation between 479 480 209 DON and NIP. As NIP in our study did not vary from year to year, the temporal variation in DIN resembles 481 the temporal variation in DON. This confirms that DON can be a good predictor of disease risk, as already 482210 483 suggested by e.g. Jaenson et al. (2009). The relationship between DON and NIP, however, can depend on the 484211 485 specific host community composition (Kurtenbach et al., 2006; Tälleklint and Jaenson, 1996; van Buskirk 486212 487 and Ostfeld, 1995). 488213

⁴⁹⁰ In accordance with other studies (Ruyts et al., 2016; Tack et al., 2012b), we found a higher DON in oak 491 492 493**215** forests and a higher NIP_{afzelii} in pine forests. The higher DON in oak stands can be explained by the more ⁴⁹⁴216 favourable biotic and abiotic conditions for ticks in oak forests than in pine forests, such as a better 495 ⁴⁹⁶217 microclimate or a higher abundance of hosts (Gray et al., 1998). Previous research has shown that oak forests 497 ⁴⁹⁸218 in our study region harbour higher densities of small rodents and roe deer compared to pine forests, and thus 499 500 219 more feeding opportunities for ticks (Tack, 2013; Tack et al., 2012a). Although the densities of small rodents 501 502 220 are higher in oak than in pine forests, it is possible that, due to their wide ecological tolerance (Douglass et 503 al., 1992), wood mouse and bank vole contribute more to the host community in pine than in oak forests, 504221 505 relative to other host species. This way they feed relatively more larvae in pine forests, as already suggested 506222 507 by Ruyts et al. (2016). Squirrels are also generally more abundant in pine than in oak forests (Wauters and 508223 509 Lens, 1995). Since squirrels are, like mice and voles, believed to be associated with B. afzelii (Hanincová et 510224 511 al., 2003; Humair et al., 1995; Pisanu et al., 2014; Ruyts et al., 2017), this might explain the higher NIP_{afzelii} 512225 513 514226 in pine than in oak stands.

⁵¹⁶_227 From our results, we may conclude that the density of nymphs can be used to predict yearly variation in tick-517 ⁵¹⁸228 borne disease risk. We found that the effect of the dominant tree species on the density of nymphs, which 519 ⁵²⁰229 reflects changes in biotic and abiotic conditions, is consistent through time. In this study, we did not directly 521 ⁵²²230 examine the host community of the ticks. Further research should therefore try to determine the exact 523 ⁵²⁴231 contribution of the different host species and of the whole host community to the enzootic cycle of human 525 526232 pathogens, and to test the effect of weather conditions and different host community compositions to the 527 tick-borne disease risk. 528233 529

530 531

515

473

532		
⁵³³ 234	CONFLICT OF INTEREST	
534 535		
536235	The authors declare no conflict of interest.	
537		
538 224		
539 230		
540		
541 237	ACKNOWLEDGMENTS	
542		
543	The authors thank Manoi Fonville (RIVM) for the excellent technical assistance	
544	<i></i>	
545		
540239		
548		
₅₄₉ 240	FUNDING	
550		
⁵⁵¹ 241	This study was funded by IWT-Flanders, the Institute for the Promotion of Innovation through Science and	
552		
553 242	Technology in Flanders. Part of study was supported by the Dutch Ministry of Health, Welfare and Sport	
554		
555243	(VWS), and was performed under the umbrella of the COST project (EurNegVec, TD1303).	
557 557		
558 244		
559		
560		
561		
562		
563		
564		
565		
567		
568		
569		
570		
571		
572		
573		
574		
575 576		
577		
578		
579		
580		
581		
582		
583		
004 585		
586		
587		
588		
589		10
590		τŪ

592₂₄₅

REFERENCES

595 246	Barbour, A.G., Bunikis, J., Travinsky, B., Hoen, A.G., Diuk-Wasser, M.A., Fish, D., Tsao, J.I., 2009. Niche
596 597 247	partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian
598 599 248 600	reservoir species. Am. J. Trop. Med. Hyg. 81, 1120-1131. doi:10.4269/ajtmh.2009.09-0208
⁶⁰¹ 249 602	Bingsohn, L., Beckert, A., Zehner, R., Kuch, U., Oehme, R., Kraiczy, P., Amendt, J., 2013. Prevalences of
⁶⁰³ 250 604	tick-borne encephalitis virus and Borrelia burgdorferi sensu lato in Ixodes ricinus populations of the
605 251 606	Rhine-Main region, Germany. Ticks Tick. Borne. Dis. 4, 207–213. doi:10.1016/j.ttbdis.2012.11.012
607 608 252	Cosson, JF., Michelet, L., Chotte, J., Le Naour, E., Cote, M., Devillers, E., Poulle, ML., Huet, D., Galan,
609 610 253	M., Geller, J., Moutailler, S., Vayssier-Taussat, M., 2014. Genetic characterization of the human
611 612 ²⁵⁴	relapsing fever spirochete Borrelia miyamotoi in vectors and animal reservoirs of Lyme disease
613 614 255	spirochetes in France. Parasit. Vectors 7, 233. doi:10.1186/1756-3305-7-233
615 616 256	Cutini, A., Chianucci, F., Chirichella, R., Donaggio, E., Mattioli, L., Apollonio, M., 2013. Mast seeding in
617 618 257	deciduous forests of the northern Apennines (Italy) and its influence on wild boar population dynamics.
619 620 258 621	Ann. For. Sci. 70, 493–502. doi:10.1007/s13595-013-0282-z
622 623 259	Dantas-Torres, F., Chomel, B.B., Otranto, D., 2012. Ticks and tick-borne diseases: A One Health
624 625 260 626	perspective. Trends Parasitol. 28, 437–446. doi:10.1016/j.pt.2012.07.003
627 261 628	Douglass, R.J., Douglass, K.S., Rossi, L., 1992. Ecological distribution of bank voles and wood mice in
629 262 630	disturbed habitats - Preliminary results. Acta Theriol. 37, 359–370.
631 632 263	Ducoffre, G., 2010. Jaarverslag van de surveillance van infectieuze aandoeningen door een netwerk van
⁶³³ 634 264	peillaboratoria, 2009 + Epidemiologische Trends 1983-2008. Wetenschappelijk Instituut
635 636 637	Volksgezondheid, Afdeling Epidemiologie, Brussel.
638 266 639	Estrada-Peña, A., Ortega, C., Sánchez, N., DeSimone, L., Sudre, B., Suk, J.E., Semenza, J.C., 2011.
640 267 641	Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific
642 268	abiotic traits in the Western Palearctic. Appl. Environ. Microbiol. 77, 3838-3845.
644 269 645	doi:10.1128/AEM.00067-11
⁶⁴⁶ 647 648	Gassner, F., van Vliet, A.J.H., Burgers, S.L.G.E., Jacobs, F., Verbaarschot, P., Hovius, E.K.E., Mulder, S.,

650	
⁶⁵¹ 271 652	Verhulst, N.O., van Overbeek, L.S., Takken, W., 2011. Geographic and temporal variations in
⁶⁵³ 272 654	population dynamics of Ixodes ricinus and associated Borrelia infections in the Netherlands. Vector-
655 273 656	Borne Zoonotic Dis. 11, 523–532. doi:10.1089/vbz.2010.0026
657 658 274	Gern, L., Douet, V., López, Z., Rais, O., Cadenas, F.M., 2010. Diversity of Borrelia genospecies in Ixodes
660 275	ricinus ticks in a Lyme borreliosis endemic area in Switzerland identified by using new probes for
662 276	reverse line blotting. Ticks Tick. Borne. Dis. 1, 23–29. doi:10.1016/j.ttbdis.2009.11.001
664 277 665	Gray, J.S., Dautel, H., Estrada-Pena, A., Kahl, O., Lindgren, E., 2009. Effects of climate change on ticks and
666 278 667 668	tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009. doi:10.1155/2009/593232
669 279	Gray, J.S., Kahl, O., Robertson, J.N., Daniel, M., Estrada-Peña, A., Gettinby, G., Jaenson, T.G.T., Jensen, P.,
671 280	Jongejan, F., Korenberg, E., Kurtenbach, K., Zeman, P., 1998. Lyme borreliosis habitat assessment.
673 281	Zentralblatt für Bakteriol. 287, 211–228. doi:10.1016/S0934-8840(98)80123-0
675 282 676	Hanincová, K., Schäfer, S.M., Etti, S., Sewell, H.S., Taragelová, V., Ziak, D., Labuda, M., Kurtenbach, K.,
677 283 678	2003. Association of <i>Borrelia afzelii</i> with rodents in Europe. Parasitology 126, 11-20.
679 284 680	doi:10.1017/S0031182002002548
681 682 285	Hansford, K., Fonville, M., Jahfari, S., Sprong, H., Medlock, J.M., 2014. Borrelia miyamotoi in host-seeking
684 685	Ixodes ricinus ticks in England. Epidemiol. Infect. Infect 143, 1079–1087. doi:S0950268814001691
686 687	[pii]\r10.1017/S0950268814001691
688 288 689	Harrell, F.E.J., Dupont, C., Others, 2016. Hmisc: Harrell Miscellaneous. R package version 4.0-1.
690 289 691	https://CRAN.R-project.org/package=Hmisc.
692 693 290	Hofhuis, A., van der Giessen, J., Borgsteede, F., Wielinga, P., Notermans, D., van Pelt, W., 2006. Lyme
694 695 291	borreliosis in the Netherlands: strong increase in GP consultations and hospital admissions in past 10
696 697 698	years. Eurosurveillance 11.
699 293 700	Hofmeester, T.R., Coipan, E.C., van Wieren, S.E., Prins, H.H.T., Takken, W., Sprong, H., 2016. Few
701 294 702	vertebrate species dominate the Borrelia burgdorferi s.l. life cycle. Environ. Res. Lett. 11, 1-16.
703 295 704	doi:10.1088/1748-9326/11/4/043001
705 706 296 707	Humair, P.F., Peter, O., Wallich, R., Gern, L., 1995. Strain variation of Lyme disease spirochetes isolated
708	12

7	0	9		
7	1	0	2	9
7	1	1	_	-
7	1	2	2	9
7	1	3		
7	1	4		
7	1	5	2	9
7	1	6		
7	1	7	3	0
7	1	8	_	_
7	1	9	3	0
7	2	0		
7	2	1	3	0
7	2	2	Ŭ	Č
7	2	3	3	0
7	2	4		
7	2	5	3	0
7	2	6		
7	2	7	3	0
7	2	8		
7	2	9	_	_
7	3	0	3	0
7	3	1	~	~
7	3	2	3	U
7	3	3	2	<u>م</u>
7	3	4	5	0
7	3	5		
7	3	6	3	0
7	3	7		
7	3	8	3	1
[3	9	_	
7	4	0 4	3	1
7	4	1		
7	4	2	3	1
7	4 1	ວ ⊿		
/ 7	4 1	4 5	3	1
7	4 1	5 6		
/ 7	4 1	7	3	1
' 7	т Д	י 8		
' 7	т Д	a	z	1
7	5	0	J	-
7	5	1	3	1
7	5	2	-	-
7	5	3	3	1
7	5	4		
7	5	5	~	
7	5	6	3	1
7	5	7	~	
7	5	8	3	T
7	5	9	ç	າ ໂ
7	6	0	J	2
7	6	1		
7	6	2	3	2
7	6	3		
7	6	4	3	2

709	
⁷¹⁰ 297 711	from Ixodes ricinus ticks and rodents collected in two endemic areas in Switzerland. J. Med. Entomol.
712 298 713	32, 433–438.
714 715 299	Jaenson, T., Eisen, L., Comstedt, P., Mejlon, H., Lindgren, E., Bergström, S., Olsen, B., 2009. Risk
716 717 300	indicators for the tick Ixodes ricinus and Borrelia burgdorferi sensu lato in Sweden. Med. Vet.
718 719 301	Entomol. 23, 226–237.
721 302 722	Jahfari, S., Ruyts, S.C., Frazer-Mendelewska, E., Jaarsma, R., Verheyen, K., Sprong, H., 2017. Melting pot
723 ₃₀₃ 724	of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne
725 304 726	diseases in natural cycles urban and suburban areas. Parasit. Vectors 10, 134. doi:10.1186/s13071-017-
727 305 728	2065-0
729 730 306	James, M.C., Bowman, A.S., Forbes, K.J., Lewis, F., McLeod, J.E., Gilbert, L., 2013. Environmental
731 732 307	determinants of Ixodes ricinus ticks and the incidence of Borrelia burgdorferi sensu lato, the agent of
⁷³³ 734 735	Lyme borreliosis, in Scotland. Parasitology 140, 1–10. doi:10.1017/S003118201200145X
736 309 737	Jouda, F., Perret, JL., Gern, L., 2004. Density of questing Ixodes ricinus nymphs and adults infected by
738 310 739	Borrelia burgdorferi sensu lato in Switzerland: Spatio-temporal pattern at a regional scale. Vector
740 311 741	Borne Zoonotic Dis. 4, 23–32.
⁷⁴² 743312	Kjelland, V., Rollum, R., Korslund, L., Slettan, A., Tveitnes, D., 2015. Borrelia miyamotoi is widespread in
⁷⁴⁴ 745313	Ixodes ricinus ticks in southern Norway. Ticks Tick. Borne. Dis. 6, 516–521.
746 747 748	doi:10.1016/j.ttbdis.2015.04.004
749 315 750	Kurtenbach, K., Hanincová, K., Tsao, J.I., Margos, G., Fish, D., Ogden, N.H., 2006. Fundamental processes
751 316 752	in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4, 660-9.
753 317 754	doi:10.1038/nrmicro1475
⁷⁵⁵ 318 756	Linard, C., Lamarque, P., Heyman, P., Ducoffre, G., Luyasu, V., Tersago, K., Vanwambeke, S.O., Lambin,
⁷⁵⁷ 319 758	E.F., 2007. Determinants of the geographic distribution of Puumala virus and Lyme borreliosis
⁷⁵⁹ 320 760	infections in Belgium. Int. J. Health Geogr. 6. doi:10.1186/1476-072X-6-15
762 321	Lindstrom, A., Jaenson, T.G.T., 2003. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in
764 322	different vegetation types in southern Sweden. J. Med. Entomol. 40, 375-378.
766 767	13

768	
⁷⁶⁹ 323 770	Needham, G.R., Teel, P.D., 1991. Off-host physiological ecology of ixodid ticks. Annu. Rev. Entomol. 36,
⁷⁷¹ 324 772	659–681.
773 774 325	Nussbaumer, A., Waldner, P., Etzold, S., Gessler, A., Benham, S., Thomsen, I.M., Jørgensen, B.B.,
775 776 326	Timmermann, V., Verstraeten, A., Sioen, G., Rautio, P., Ukonmaanaho, L., Skudnik, M., Apuhtin, V.,
777 778 327	Braun, S., Wauer, A., 2016. Patterns of mast fruiting of common beech, sessile and common oak,
779 780 328	Norway spruce and Scots pine in Central and Northern Europe. For. Ecol. Manage. 363, 237–251.
781 782 329 783	doi:10.1016/j.foreco.2015.12.033
784 330 785	Ostfeld, R.S., Canham, C.D., Oggenfuss, K., Winchcombe, R.J., Keesing, F., 2006. Climate, deer, rodents,
786 331 787	and acorns as determinants of variation in Lyme-disease risk. PLoS Biol. 4, 1058–1068.
788 332 789	doi:10.1371/journal.pbio.0040145
790 791 333	Ostfeld, R.S., Schauber, E.M., Canham, C.D., Keesing, F., Jones, C.G., Wolff, J.O., 2001. Effects of acorn
⁷⁹² 793 793 334	production and mouse abundance on abundance and Borrelia burgdorferi infection prevalence of
⁷⁹⁴ 795 796	nymphal Ixodes scapularis ticks. Vector-Borne Zoonotic Dis. 1, 55-63.
790 797 798	doi:10.1089/153036601750137688
799 337 800	Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate
801 338 802	classification. Hydrol. Earth Syst. Sci. 11, 1633–1644.
⁸⁰³ 804339	Piesman, J., Gern, L., 2004. Lyme borreliosis in Europe and North America. Parasitology 129, S191–S220.
⁸⁰⁵ 340 806	doi:10.1017/S0031182003004694
808 341 809	Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R CoreTeam, 2015. nlme: linear and nonlinear mixed effects
810 342 811	models.
812 813 343	Pisanu, B., Chapuis, J.L., Dozières, A., Basset, F., Poux, V., Vourc'h, G., 2014. High prevalence of <i>Borrelia</i>
⁸¹⁴ 815	burgdorferi s.l. in the European red squirrel Sciurus vulgaris in France. Ticks Tick. Borne. Dis. 5, 1-6.
⁸¹⁶ 345 817	doi:10.1016/j.ttbdis.2013.07.007
819 346	R Core Team, 2017. R: A language and environment for statistical computing. R Foundation for Statistical
821 347 822	Computing, Vienna, Austria. URL https://www.R-project.org/.
⁸²³ 824348	Randolph, S.E., 2010. To what extent has climate change contributed to the recent epidemiology of tick-
825 826	14

827	
⁸²⁸ 349	borne diseases? Vet. Parasitol. 167, 92–94. doi:10.1016/j.vetpar.2009.09.011
829	
830	Rauter C. Hartung T. 2005 Prevalence of <i>Borrelia burgdorferi</i> sensu lato genospecies in <i>Ixodes ricinus</i>
832	Rader, C., Hartang, T., 2005. The valence of Dorrelia our gaoijert sensu late genespecies in house rieliaus
833351	ticks in Europe : a metaanalysis. Appl. Environ. Microbiol. 71, 7203-7216.
834	
₈₃₅ 352	doi:10.1128/AEM.71.11.7203
836	
⁸³⁷ 353 838	Ruyts, S.C., Ampoorter, E.V.Y., Coipan, E.C., Baeten, L., Heylen, D., Sprong, H., Matthysen, E., Verheyen,
⁸³⁹ 354 840	K., 2016. Diversifying forest communities may change Lyme disease risk: extra dimension to the
⁸⁴¹ 355 842	dilution effect in Europe. Parasitology. doi:10.1017/S0031182016000688
844 844 845	Ruyts, S.C., Frazer-Mendelewska, E., Van Den Berge, K., Verheyen, K., Sprong, H., 2017. Molecular
845 846 847	detection of tick-borne pathogens Borrelia afzelii, Borrelia miyamotoi and Anaplasma
848 848 849	phagocytophilum in Eurasian red squirrels (Sciurus vulgaris). Eur. J. Wildl. Res. 63, 9–12.
850 851	doi:10.1007/s10344-017-1104-7
852 360 853	Skuballa, J., Petney, T., Pfäffle, M., Oehme, R., Hartelt, K., Fingerle, V., Kimmig, P., Taraschewski, H.,
854 361 855	2012. Occurrence of different Borrelia burgdorferi sensu lato genospecies including B. afzelii, B.
856 362 857	bavariensis, and B. spielmanii in hedgehogs (Erinaceus spp.) in Europe. Ticks Tick. Borne. Dis. 3, 8-
858 363 859	13. doi:10.1016/j.ttbdis.2011.09.008
860 861 364	Sprong, H., Hofhuis, A., Gassner, F., Takken, W., Jacobs, F., van Vliet, A.J., van Ballegooijen, M., van der
863 864	Giessen, J., Takumi, K., 2012. Circumstantial evidence for an increase in the total number and activity
865 865	of Borrelia-infected Ixodes ricinus in the Netherlands. Parasit. Vectors 5. doi:10.1186/1756-3305-5-
867 868	294
869 368 870	Stanek, G., Wormser, G.P., Gray, J., Strle, F., 2012. Lyme borreliosis. Lancet 379, 461–473.
871 369 872	doi:10.1016/S0140-6736(11)60103-7
⁸⁷³ 874370	Tack, W., 2013. Impact of forest conversion on the abundance of <i>Ixodes ricinus</i> ticks. PhD thesis, Ghent
⁸⁷⁵ 371 876 877	University, Ghent, Belgium. doi:10.1007/s13398-014-0173-7.2
878 372 879	Tack, W., Madder, M., Baeten, L., De Frenne, P., Verheyen, K., 2012a. The abundance of <i>Ixodes ricinus</i>
880 373 881	ticks depends on tree species composition and shrub cover. Parasitology 139, 1273-1281.
⁸⁸² 883 884	Tack, W., Madder, M., Baeten, L., Vanhellemont, M., Gruwez, R., Verheyen, K., 2012b. Local habitat and
885	T3

886	
⁸⁸⁷ 375 888	landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manage. 265,
⁸⁸⁹ 376 890	30-36. doi:10.1016/j.foreco.2011.10.028
891 892 377	Tälleklint, L., Jaenson, T.G., 1996. Relationship between Ixodes ricinus density and prevalence of infection
893 894 378	with Borrelia-like spirochetes and density of infected ticks. J. Med. Entomol. 33, 805-811.
895 896 379	doi:10.1093/jmedent/33.5.805
⁸⁹⁸ 380 899	Taylor, K.R., Takano, A., Konnai, S., Shimozuru, M., Kawabata, H., Tsubota, T., 2013. Borrelia miyamotoi
900 381 901	infections among wild rodents show age and month independence and correlation with Ixodes
902 382 903	persulcatus larval attachment in Hokkaido, Japan. Vector Borne Zoonotic Dis. 13, 92-7.
904 383 905	doi:10.1089/vbz.2012.1027
906 907 38 4	Tixier, H., Duncan, P., 1996. Are European roe deer browsers? A review of variations in the composition of
908 909 38 5	their diets. Rev. d'Ecologie (La Terre la Vie) 51, 3-17.
911 386 912	van Buskirk, J., Ostfeld, R.S., 1995. Controlling Lyme disease by modifying the density and species
913 387 914	composition of tick hosts. Ecol. Appl. 5, 1133–1140.
915 916 388	van Duijvendijk, G., 2016. The ecology of Lyme borreliosis risk. Interactions between Ixodes ricinus,
917 918 389	rodents and Borrelia burgdorferi sensu lato. PhD Thesis, Wageningen University, Wageningen, The
919 920 390 921	Netherlands.
922 391 923	Vanthomme, K., Bossuyt, N., Boffin, N., Van Casteren, V., 2012. Incidence and management of
924 392 925	presumption of Lyme borreliosis in Belgium: recent data from the sentinel network of general
926 393 927	practitioners. Eur. J. Clin. Microbiol. Infect. Dis. 31, 2385–2390. doi:10.1007/s10096-012-1580-3
928 929 394	Vourc'h, G., Abrial, D., Bord, S., Jacquot, M., Masséglia, S., Poux, V., Pisanu, B., Bailly, X., Chapuis, J.L.,
930 931 395	2016. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme
932 933 933	borreliosis, in a periurban forest in France. Ticks Tick. Borne. Dis. 7, 644-652.
935 935 936	doi:10.1016/j.ttbdis.2016.02.008
937 398 938	Wauters, L.A., Lens, L., 1995. Effects of food availability and density on red squirrel (Sciurus vulgaris)
939 399 940	reproduction. Ecology 76, 2460–2469.
941 942 400	Wauters, L.A., Matthysen, E., Adriaensen, F., Tosi, G., 2004. Within-sex density dependence and population
943 944	16

945	
946401	dynamics of red squirrels Sciurus vulgaris I Anim Ecol 73 11–25
947	dynamics of red squirrers seturus vargaris. 5. rumin. Leon. 75, 11–25.
948	
949402	Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009, Mixed effects models and
950	
051403	extensions in ecology with R Statistics for Biology and Health Springer New York doi:10.1007/978-
951400	extensions in ecology with R, Statistics for Biology and Hearth. Springer, New York, add. 10.1007/970
952	0 287 87458 6
953404	0-387-87438-0
954	
⁹⁵⁵ 405	
956	
957	
958	
959	
960	
961	
062	
062	
903	
964	
965	
966	
967	
968	
969	
970	
971	
972	
973	
974	
975	
976	
977	
079	
970	
979	
960	
981	
982	
983	
984	
985	
986	
987	
988	
989	
990	
991	
992	
002	
004	
005	
006	
330	
997	
998	
999	
1000	
1001	
1002	17
1003	17

Fig. 1. The density of nymphs (DON), nymphal infection prevalence of the rodent associated pathogen *Borrela afzelii* (NIP_{afzelii}) and density of nymphs infected with *B. afzelii* (DIN_{afzelii}) in the different sampling years averaged over pine and oak stands (mean \pm S.D.).

411Table 1. The effect of sampling year, dominant tree species and presence of a shrub layer and their two-way**412**interactions on density of nymphs (DON), nymphal infection prevalence of *Borrelia burgdorferi* s.l. (NIP_{sl}),**413***B. afzelii* (NIP_{afzelii}) and *B. miyamotoi* (NIP_{miyamotoi}), and density of nymphs infected with *B. burgdorferi* s.l.**414**(DIN_{sl}), *B. afzelii* (DIN_{afzelii}) and *B. miyamotoi* (DIN_{miyamotoi}). Values represent F-values obtained by ANOVA**415**(* p < 0.05). Higher F-values indicate higher variation in the response variable.</td>

	year	tree	shrub	tree:shrub	tree:year	shrub:year
DON	13.27*	20.29*	8.32*	0.2	2.02	5.90*
NIP _{sl}	0.16	4.17	< 0.01	0.38	0.03	0.65
DIN _{sl}	3.82*	6.54*	6.36*	1.04	0.29	2.49
NIP _{afzelii}	0.63	9.43*	0.9	0.5	1.42	0.18
DIN afzelii	1.65	1.59	1.49	1.12	0.19	0.7
NIP _{miyamotoi}	0.27	0.06	< 0.01	0.71	0.6	1
DIN _{miyamotoi}	2.38*	6.85*	0.2	0.5	0.36	1.56

Supplementary table 1. The infection prevalence (%) of *Ixodes ricinus* nymphs with *Borrelia miyamotoi* or a distinct B. burgdorferi s.l. genospecies in 2009, 2010, 2013 and 2014 in each studied forest type, averaged over all forest stands from that forest type. We approximated the nymphal infection prevalence of the *B*. burgdorferi s.l. genospecies to correct for the samples that were positive in RT-PCR but could not be identified to genospecies level, as written in the text.

Bacteria	Year	Pine	Oak		
				without	with
		without shrub	with shrub	shrub	shrub
B. afzelii	2009	17.9	9.1	9.0	11
	2010	10.6	10.0	9.1	8
	2013	16.0	16.0	9.6	6
	2014	15.3	13.5	6.3	e
B. garinii	2009	0	1.3	4.8	2
	2010	0	3.5	0.5	(
	2013	0	1.0	1.5	~
	2014	0	1.8	0.6	,
	••••	2.2	2.6	0	
B. burgdorferi s.s.	2009	3.3	3.6	0	
	2010	5.4	1.8	1.2	4
	2013	0	0.6	4.0	
	2014	1.2	0.9	0	
B. valaisiana	2009	0	0.8	0.6	
	2010	0	1.4	0.6	
	2013	0	0	0.6	
	2014	0	1.0	1.7	
B. spielmanii	2009	0	0	0	
	2010	0	0	0	
	2013	0	0	0.5	
	2014	0.7	0.0	1.3	
B. bavariensis	2009	0	0	0	
	2010	0	0	0	
	2013	0	0	0	
	2014	0	0	0	
B. miyamotoi	2009	0.6	3.8	3.8	,
	2010	2.9	1.9	3.3	
	2013	3.4	2.9	3.8	
	2014	1.7	3.3	1.9	

