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24 ABSTRACT

25 The human pathogens Borrelia afzelii, which causes Lyme borreliosis and B. miyamotoi, which causes 

26 relapsing fever, both circulate between Ixodes ricinus ticks and rodents. The spatiotemporal dynamics in the 

27 prevalence of these pathogens have not yet been fully elucidated, but probably depend on the spatiotemporal 

28 population dynamics of small rodents. We aimed to evaluate the effect of different forest types on the density 

29 of infected nymphs in different years and to obtain more knowledge about the spatial and temporal patterns 

30 of ticks and tick-borne pathogens. We analysed unfed nymphal ticks from 22 stands of four different forest 

31 types in Belgium in 2009, 2010, 2013 and 2014 and found that the density of nymphs in general and the 

32 density of nymphs infected with B. afzelii and B. miyamotoi varied yearly, but without temporal variation in 

33 the infection prevalence. The yearly variation in density of infected nymphs in our study thus seems to be 

34 caused most by the variation in the density of nymphs, which makes it a good predictor of disease risk. The 

35 risk for rodent-associated tick-borne diseases also varied between forest types. We stress the need to 

36 elucidate the contribution of the host community composition to tick-borne disease risk.

37 KEYWORDS

38 Host community; Lyme borreliosis, mast year; spatiotemporal dynamics; tick-borne disease risk
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41 INTRODUCTION

42 Tick-borne diseases are a growing public health concern (Dantas-Torres et al., 2012). The most common 

43 tick-borne disease in the northern hemisphere is Lyme borreliosis, which is caused by some genospecies of 

44 the Borrelia burgdorferi sensu lato (s.l.) complex (Stanek et al., 2012), of which B. afzelii is the most 

45 prevalent in many Western European regions (Bingsohn et al., 2013; Gassner et al., 2011; Rauter and 

46 Hartung, 2005; Ruyts et al., 2016). Both B. afzelii and B. miyamotoi, the latter causing relapsing fever, 

47 circulate in the same tick species and the same vertebrate hosts (Cosson et al., 2014; Hanincová et al., 2003). 

48 In Europe, Ixodes ricinus is the main vector for B. afzelii transmission to humans (Piesman and Gern, 2004) 

49 and especially the host-seeking nymphs contribute most to the Lyme borreliosis risk (Barbour and Fish, 

50 1993). In addition, this tick species is an important carrier for B. miyamotoi, and as with other tick-borne 

51 pathogens, B. afzelii regularly co-occurs with B. miyamotoi in the same tick individuals (Cosson et al., 2014; 

52 Gern et al., 2010; Kjelland et al., 2015). 

53 The different genospecies of B. burgdorferi s.l. and B. miyamotoi each appear to be associated with a 

54 particular host species, or a range of hosts. Borrelia afzelii is commonly transmitted to ticks by small 

55 rodents, such as the wood mouse (Apodemus sylvaticus Linnaeus, 1758) and the bank vole (Myodes 

56 glareolus Schreber, 1780) (Hanincová et al., 2003; Humair et al., 1995). Also Eurasian red squirrels (Sciurus 

57 vulgaris Linnaeus, 1758) and European hedgehogs (Erinaceus europaeus Linnaeus, 1758) have been 

58 suggested to transmit B. afzelii to ticks (Jahfari et al., 2017; Pisanu et al., 2014; Ruyts et al., 2017; Skuballa 

59 et al., 2012). Like B. afzelii, B. miyamotoi appears to be associated with rodents (Barbour et al., 2009; 

60 Cosson et al., 2014; Taylor et al., 2013).

61 The preferential habitat of I. ricinus is forest, due to the sheltered microclimate and availability of vertebrate 

62 hosts for their blood meals (Gray et al., 1998; Lindstrom and Jaenson, 2003). Juvenile ticks (larvae and 

63 nymphs) generally feed most often on small to medium sized hosts, while adults tend to feed on medium 

64 sized to large hosts. A recent European meta-analysis including 44 hosts, however, showed that only a few 

65 host species (small rodents, thrushes and roe deer) feed the majority of I. ricinus individuals (Hofmeester et 

66 al., 2016). Roe deer are generally the most important feeding host for female ticks in Europe and are 

67 important in the maintenance and reproduction of I. ricinus populations (Gray, 1998; Hofmeester et al., 

68 2016; Ruiz-Fons and Gilbert, 2010). In most regions, larvae mainly feed on small rodents, and rodents are 
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69 generally responsible for the majority of B. burgdorferi s.l. infections in I. ricinus larvae (Hofmeester et al., 

70 2016). The densities of small rodents such as wood mouse and bank vole in our study region, but also of 

71 other important host species such as roe deer, are positively correlated with the presence of a shrub layer and 

72 are higher in deciduous forests than in coniferous forests (Tack, 2013; Tack et al., 2012a). Furthermore, 

73 infection prevalence of nymphs with B. afzelii tends to be higher in pine than in oak forests, which suggests 

74 that small rodents feed more larvae in pine than in oak forests, relative to other host species (Ruyts et al., 

75 2016). The densities of nymphs are also highest in structure rich deciduous forests (Gray et al., 1998; Ruyts 

76 et al., 2016; Tack et al., 2012b). Besides the type of forest, also the availability of seeds influences the 

77 occurrence and population dynamics of rodents, which is shown to affect the density of nymphs (Ostfeld et 

78 al., 2006, 2001; Tack, 2013; van Duijvendijk, 2016). Therefore, it is expected that the spatial and temporal 

79 differences in population dynamics of small mammals are important in explaining the density of infected 

80 nymphs, which is a commonly used tick-borne disease risk measure (Ostfeld et al., 2006). 

81 The temporal dynamics in the prevalence of many important tick-borne pathogens, such as the Lyme 

82 borreliosis bacteria, remain largely unclear. In the light of the reported rise in incidence of tick-borne 

83 diseases in recent years, the study of the ecology and the spatial and temporal patterns of ticks, hosts and 

84 tick-borne pathogens is becoming increasingly important (Estrada-Peña et al., 2011; Gray et al., 2009; 

85 Randolph, 2010). With our temporal survey, we provide data on the annual variability of the impact of forest 

86 characteristics on the density of ticks and the infection prevalence of the rodent-associated pathogens B. 

87 afzelii and B. miyamotoi.

88

89 MATERIALS AND METHODS

90 Study area

91 This study was performed in two forest sites in the Campine region in northern Belgium; one in the 

92 municipality Postel (51°17’26.35” N, 5°11’40.11” E), the other between the municipalities Herselt and 

93 Averbode (51°02’42.91” N, 4°57’17.19” E). The climate is temperate with warm summers (Peel et al., 

94 2007). Forests in this region mainly consist of even-aged homogenous stands of Scots pine (Pinus sylvestris 

95 L), and to a smaller extent Corsican pine [P. nigra Arnold subsp. laricio (Poiret). Maire] interspersed with 
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96 more diverse, structure-rich deciduous forests composed of pedunculate oak (Quercus robur L.), Northern 

97 red oak (Q. rubra L.), common beech (Fagus sylvatica L.), silver birch (Betula pendula Roth.) and downy 

98 birch (B. pubescens Ehrh.). The forests in the Campine region are frequently visited for recreational purposes 

99 and Lyme borreliosis incidence in this region is relatively high compared to other regions in Belgium (Linard 

100 et al., 2007; Vanthomme et al., 2012).

101 Forest stand selection

102 The 22 forest stands we used in this study were selected in the framework of the study of Tack et al. (2012b) 

103 and were also studied in Ruyts et al. (2016). The forest stands lie in a larger matrix of forest stands of 

104 different forest types. We investigated stands of four different forest types, i.e. stands dominated either by 

105 pines (‘pine stands’) or oaks (‘oak stands’), with (> 50% of the forest floor covered by shrubs) or without (< 

106 25%) a well-developed shrub layer. The 22 studied stands included five pine stands without a shrub layer, six 

107 pine stands with a shrub layer, six oak stands without a shrub layer and five oak stands with a shrub layer. 

108 The forest stands were on average 1 ha in size, ranging from 0.5 to 4 ha. In our study region, the years 2006, 

109 2007 and 2011 were mast years of pedunculate oak and 2011 was a mast year of beech (Nussbaumer et al., 

110 2016). Corsican pine experienced a high seed crop in 2012 and 2013 and Scots pine in 2013 (Verstraeten A., 

111 personal communication). No data for these pine species are available for our region before 2009.

112 Data collection

113 Questing nymphs were sampled three to four times per year in a fixed representative part of each forest stand 

114 between June and October in 2009, 2010, 2013 and 2014. All stands were sampled with comparable intensity 

115 and in the same period each year. For the exact procedure of tick sampling we refer to Ruyts et al. (2016). 

116 The differences in structure and composition of the herbaceous community between the different stands were 

117 negligible so that the sampling could be performed in a standardized way (Tack et al., 2012a). The stands 

118 were sampled in a random order each time, to account for daily fluctuations in temperature and humidity 

119 during the sampling sessions. Nymphs were removed from the blanket after sampling each transect and 

120 transferred to vials containing 70% ethanol and afterwards stored at -22 °C. We counted and pooled nymphs 

121 from all sampling occasions from each year per forest stand. From each pool, 35 individual nymphs were 

122 randomly selected to examine for infection with B. burgdorferi s.l. genospecies and B. miyamotoi. For the 

123 procedure of DNA extraction of the individual nymphs and the simultaneous detection of B. burgdorferi s.l. 
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124 and B. miyamotoi by multiplex qPCR, and for the identification of B. burgdorferi s.l. genospecies, we refer 

125 to the methods described in Hansford et al. (2014). As the conventional Borrelia-PCR followed by Sanger 

126 sequencing is less sensitive than our duplex Borrelia-qPCR, we could not assign a genospecies to all ticks 

127 that were B. burgdorferi s.l.-positive by qPCR. To correct for this shortcoming, we approximated the 

128 infection prevalence of nymphs with each B. burgdorferi s.l. genospecies for each plot following the 

129 procedure described in Jahfari et al. (2017). 

130 Statistical analysis

131 All analyses were conducted in R version 3.3.1 (R Core Team, 2017). DON is the average yearly density of 

132 nymphs per plot. The nymphal infection prevalence (NIP) is the proportion of infected nymphs per year, 

133 averaged over all sampling occasions per year per plot, and the density of infected nymphs (DIN) is the 

134 product of DON and NIP. We calculated NIP and DIN for the B. burgdorferi s.l. complex, for each B. 

135 burgdorferi s.l. genospecies and for B. miyamotoi. Due to low numbers for B. burgdorferi s.l. genospecies 

136 other than B. afzelii, only NIPsl, DINsl, NIPafzelii, DINafzelii, NIPmiyamotoi, and DINmiyamotoi were included in the 

137 statistical analyses. 

138 We used linear mixed-effect models (lme) from the package nlme (Pinheiro et al., 2015) to explore the effect 

139 of sampling year and forest characteristics on the response variables DON, NIPsl, DINsl, NIPafzelii, DINafzelii, 

140 NIPmiyamotoi and DINmiyamotoi. As fixed effects, we used sampling year (levels ‘2009’, ‘2010’, ‘2013’, ‘2014’), 

141 the dominant tree species (‘pine’ or ‘oak’), the presence of a shrub layer (‘yes’ or ‘no’) and all two-way 

142 interactions. We added forest stand as a random effect to take into account the repeated measures in each 

143 stand. Significance of the predictor variables in all model fits were assessed using analysis of variance 

144 (ANOVA) with Chi-square (χ²) test and we checked for heterogeneity of the residuals following the 

145 approach described in Zuur et al. (2009). Finally, to estimate if changes in DON correlate to changes in NIP, 

146 we performed a Spearman Rank Correlation using the package Hmisc (Harrell et al., 2016) on DON and 

147 NIPsl, NIPafzelii and NIPmiyamotoi.

148 We did not statistically test the effect of weather variables such as precipitation and temperature on the tick-

149 borne disease risk, since our sample size of four years and 22 stands was too low. 
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151 RESULTS

152 In the 22 forest stands, a total of 21,376 questing I. ricinus nymphs were collected. We used 3,080 nymphs 

153 for further analysis. Overall, 17.63% of the analysed nymphs was infected with at least one pathogen. We 

154 identified six different B. burgdorferi s.l. genospecies in 341 of the 471 (72.4%) infected nymphs, namely B. 

155 afzelii, B. garinii, B. burgdorferi s.s., B. valaisiana, B. spielmanii and B. bavariensis (Supplementary Table), 

156 but we were unable to identify the genospecies in 130 B. burgdorferi s.l.-positive nymphs. Thirteen nymphs 

157 were co-infected with B. burgdorferi s.l. and B. miyamotoi. For eight of these co-infected nymphs, B. 

158 miyamotoi occurred together with B. afzelii.  The B. burgdorferi s.l. genospecies in the remaining five cases 

159 of co-infection could not be identified.

160 Figure 1 visualizes DON, NIPafzelii and DINafzelii in each year. DON (p < 0.01) significantly differed among 

161 years, with highest values in 2010 and lowest in 2014 (Table 1 and Fig. 1). DON was consistently higher in 

162 oak forests than in pine forests (Fig. 1, Table 1). DON was significantly higher in stands with a shrub layer 

163 than in stands without a shrub layer in 2009 and 2010, but no difference was found in 2013 and 2014. 

164 The variables NIPsl, NIPafzelii and NIPmiyamotoi did not show significant temporal variation (Table 1). NIPafzelii 

165 was significantly higher in pine forests, consistently throughout the years (Table 1 and Fig. 1). We found no 

166 correlation between DON and NIPsl (p = 0.17, ρ = -0.15), between DON and NIPafzelii (p = 0.24, ρ = -0.13) or 

167 between DON and NIPmiyamotoi (p = 0.32, ρ = -0.11).

168 Like DON, DINsl (p = 0.02) significantly differed among years, with highest values in 2010 and lowest in 

169 2014 (Table 1 and Fig. 1). DINmiyamotoi and DINafzelii did not show significant temporal variation (Table 1). 

170 Like DON, DINsl and DINmiyamotoi were higher in oak forests than in pine forests, consistently throughout the 

171 years (Table 1). DINsl was significantly higher in stands with a shrub layer compared to stands without a 

172 shrub layer in 2010, while in the other years, no significant effect could be detected of the presence of a 

173 shrub layer. 

174

175 DISCUSSION

176 In this temporal survey, we looked at the inter-annual dynamics in tick densities and the infection prevalence 

177 of tick-borne bacteria, with special attention to the rodent-associated human pathogens B. afzelii and B. 
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178 miyamotoi, in relation to forest types in Belgium. Our results indicate that the risk of rodent-associated tick-

179 borne disease varies both between different types of forest and between years. This spatiotemporal variation 

180 can be related to the response of both ticks and hosts to the biotic and abiotic conditions influenced by the 

181 dominant tree species, and can be predicted by the density of nymphs. 

182 In our study, the rodent-associated pathogens B. afzelii and B. miyamotoi were the most common bacteria in 

183 the investigated nymphs. The bird-associated B. burgdorferi s.l. genospecies B. garinii and B. valaisiana 

184 occurred at low infection prevalence in our study sites. Together, this suggests that rodents are most likely 

185 the most important feeding hosts for larvae in our study area, as stated by Hofmeester et al. (2016). In our 

186 study, B. miyamotoi displayed co-infection with B. afzelii, which supports the assumption that they share the 

187 same hosts (Barbour et al., 2009; Cosson et al., 2014; Taylor et al., 2013). 

188 Our results show that DON, but not NIP, displays inter-annual fluctuations. Some European studies have 

189 reported that an increased supply of acorns can increase the population density of wood mouse and bank vole 

190 the next year (Tack, 2013; van Duijvendijk, 2016). Moreover, they show that this increased rodent density 

191 leads to more feeding opportunities for larvae, and a high DON one year later, while NIP remains stable. 

192 Also densities of other host species, such as roe deer, red squirrel and wild boar, may increase after a high 

193 seed crop of oak, beech or pine (Cutini et al., 2013; Tixier and Duncan, 1996; Wauters et al., 2004; Wauters 

194 and Lens, 1995). Oak experienced a high seed crop in 2006, 2007 and 2011, beech in 2011 and pine in 2012 

195 and 2013. Based on this, we would expect DON to be highest in the years 2009, 2013 and 2014. However, 

196 DON is highest in 2010 and 2013. Yearly variation in weather conditions such as temperature and the 

197 amount of precipitation can also influence DON. Since ticks are sensitive to desiccation (Needham and Teel, 

198 1991), they will be more prone to death in dry conditions, or will seek shelter in the litter layer or lower 

199 vegetation which makes it more difficult to collect them with the standard sampling methods and thereby 

200 biasing the results. In our study, it is not possible to conclude if mast years or weather conditions affect 

201 DON, as these and other possible influencing factors are not accounted for.

202 Lyme borreliosis incidence has increased significantly the last decades in many European countries 

203 (Ducoffre, 2010; Hofhuis et al., 2006; Sprong et al., 2012). We found no clear pattern in DON, NIPsl or DINsl 

204 but rather DON and DINsl varied from one year to the other. Similar to our results, Estrada-Peña et al. (2011) 

205 detected no specific temporal trend at the European level in the prevalence of B. burgdorferi s.l. genospecies 
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206 and relate the prevalence of genospecies across Europe to temperature and vegetation stress, which are 

207 important drivers of both tick and host populations. Like in other studies (James et al., 2013; Jouda et al., 

208 2004; Vourc’h et al., 2016), but contrary to Tälleklint and Jaenson (1996), we found no correlation between 

209 DON and NIP. As NIP in our study did not vary from year to year, the temporal variation in DIN resembles 

210 the temporal variation in DON. This confirms that DON can be a good predictor of disease risk, as already 

211 suggested by e.g. Jaenson et al. (2009). The relationship between DON and NIP, however, can depend on the 

212 specific host community composition (Kurtenbach et al., 2006; Tälleklint and Jaenson, 1996; van Buskirk 

213 and Ostfeld, 1995).

214 In accordance with other studies (Ruyts et al., 2016; Tack et al., 2012b), we found a higher DON in oak 

215 forests and a higher NIPafzelii in pine forests. The higher DON in oak stands can be explained by the more 

216 favourable biotic and abiotic conditions for ticks in oak forests than in pine forests, such as a better 

217 microclimate or a higher abundance of hosts (Gray et al., 1998). Previous research has shown that oak forests 

218 in our study region harbour higher densities of small rodents and roe deer compared to pine forests, and thus 

219 more feeding opportunities for ticks (Tack, 2013; Tack et al., 2012a). Although the densities of small rodents 

220 are higher in oak than in pine forests, it is possible that, due to their wide ecological tolerance (Douglass et 

221 al., 1992), wood mouse and bank vole contribute more to the host community in pine than in oak forests, 

222 relative to other host species. This way they feed relatively more larvae in pine forests, as already suggested 

223 by Ruyts et al. (2016). Squirrels are also generally more abundant in pine than in oak forests (Wauters and 

224 Lens, 1995). Since squirrels are, like mice and voles, believed to be associated with B. afzelii (Hanincová et 

225 al., 2003; Humair et al., 1995; Pisanu et al., 2014; Ruyts et al., 2017), this might explain the higher NIPafzelii 

226 in pine than in oak stands. 

227 From our results, we may conclude that the density of nymphs can be used to predict yearly variation in tick-

228 borne disease risk. We found that the effect of the dominant tree species on the density of nymphs, which 

229 reflects changes in biotic and abiotic conditions, is consistent through time. In this study, we did not directly 

230 examine the host community of the ticks. Further research should therefore try to determine the exact 

231 contribution of the different host species and of the whole host community to the enzootic cycle of human 

232 pathogens, and to test the effect of weather conditions and different host community compositions to the 

233 tick-borne disease risk.
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406 Fig. 1. The density of nymphs (DON), nymphal infection prevalence of the rodent associated pathogen 

407 Borrela afzelii (NIPafzelii) and density of nymphs infected with B. afzelii (DINafzelii) in the different sampling 

408 years averaged over pine and oak stands (mean ± S.D.). 

409

410

411 Table 1. The effect of sampling year, dominant tree species and presence of a shrub layer and their two-way 

412 interactions on density of nymphs (DON), nymphal infection prevalence of Borrelia burgdorferi s.l. (NIPsl), 

413 B. afzelii (NIPafzelii) and B. miyamotoi (NIPmiyamotoi), and density of nymphs infected with B. burgdorferi s.l. 

414 (DINsl), B. afzelii (DINafzelii) and B. miyamotoi (DINmiyamotoi). Values represent F-values obtained by ANOVA 

415 (* p < 0.05). Higher F-values indicate higher variation in the response variable.

 year tree shrub tree:shrub tree:year shrub:year
DON 13.27* 20.29* 8.32* 0.2 2.02 5.90*
NIPsl 0.16 4.17 <0.01 0.38 0.03 0.65
DINsl 3.82* 6.54* 6.36* 1.04 0.29 2.49
NIPafzelii 0.63 9.43* 0.9 0.5 1.42 0.18
DINafzelii 1.65 1.59 1.49 1.12 0.19 0.7
NIPmiyamotoi 0.27 0.06 <0.01 0.71 0.6 1
DINmiyamotoi 2.38* 6.85* 0.2 0.5 0.36 1.56
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423 Supplementary table 1. The infection prevalence (%) of Ixodes ricinus nymphs with Borrelia miyamotoi or 

424 a distinct B. burgdorferi s.l. genospecies in 2009, 2010, 2013 and 2014 in each studied forest type, averaged 

425 over all forest stands from that forest type. We approximated the nymphal infection prevalence of the B. 

426 burgdorferi s.l. genospecies to correct for the samples that were positive in RT-PCR but could not be 

427 identified to genospecies level, as written in the text.

428

429

Bacteria Year  Pine    Oak   

   without shrub with shrub
without 
shrub

with 
shrub

B. afzelii 2009 17.9 9.1 9.0 11.1
2010 10.6 10.0 9.1 8.8
2013 16.0 16.0 9.6 6.3
2014 15.3 13.5 6.3 6.0

B. garinii 2009 0 1.3 4.8 2.0
2010 0 3.5 0.5 0.6
2013 0 1.0 1.5 2.9
2014 0 1.8 0.6 7.4

B. burgdorferi s.s. 2009 3.3 3.6 0 1.7
2010 5.4 1.8 1.2 4.3
2013 0 0.6 4.0 0.6
2014 1.2 0.9 0 0

B. valaisiana 2009 0 0.8 0.6 0
2010 0 1.4 0.6 0
2013 0 0 0.6 0.6
2014 0 1.0 1.7 0

B. spielmanii 2009 0 0 0 0
2010 0 0 0 0
2013 0 0 0.5 1.1
2014 0.7 0.0 1.3 1.5

B. bavariensis 2009 0 0 0 0
2010 0 0 0 0.6
2013 0 0 0 0
2014 0 0 0 0

B. miyamotoi 2009 0.6 3.8 3.8 2.3
2010 2.9 1.9 3.3 3.4
2013 3.4 2.9 3.8 1.7

 2014  1.7  3.3  1.9  2.3
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