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1Université catholique de Louvain, CORE, B-1348 Louvain-la-Neuve, Belgium, joel@raucq.be
2University of Antwerp Operations Research Group – ANT/OR, Prinsstraat 13, 2000 Antwerp,

Belgium, kenneth.sorensen@uantwerpen.be
3Katholieke Universiteit Leuven, Centre for Industrial Management, Celestijnenlaan 300a, 3001

Heverlee, Belgium, dirk.cattrysse@cib.kuleuven.be

(December 2018)

Abstract

In this paper, we develop an intelligent solution to a complex, real-life vehicle

routing problem in the waste management sector. Waste management companies

deliver various types of empty waste containers to industrial customers, to be filled

with different types of waste, after which the containers are picked up again. The full5

containers are transported to a so-called waste management depot or waste handling

depot, where they are emptied, after which they are reused. Empty containers are

stocked in various stock depots. Time windows in which containers may be picked

up and delivered at the customers and opening hours of the different depots have to

be taken into account additionally. Very importantly, there are two types of waste10

collection trucks, that can respectively carry one or two containers.

The resulting vehicle routing problem belongs to a class of so-called roll-on–roll-

off problems, characterized by unit demand. Additionally, the problem discussed

in this paper has several characteristics (multiple waste types, multiple container

types, multiple depots, a heterogeneous fleet, pick-up and delivery, time window15

constraints, and other) that make solving it a difficult task.

To solve this problem, we develop a novel column generation scheme that incorpo-

rates a heuristic approach to generate new columns. The master problem is solved

by linear relaxation of a set partitioning problem. New routes (columns) are gen-

erated by a constructive heuristic loosely based on Solomon’s insertion heuristic for20

the vehicle routing problem with time windows. The construction heurisic operates

on a reformulated version of the roll-on–roll-off problem, that is a generalized ve-

hicle routing problem with time windows. The algorithm — called wmpopt — is
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submitted to an extensive sensitivity analysis to determine its response to different

parameter settings. After this, we test it on four real-life problem instances and com-25

pare its results to those obtained by a commercial solver. We show that wmpopt

achieves much better solutions than the commercial solver in similar computing

times.

Key words: Roll-on–roll-off, vehicle routing, waste management, column gener-

ation, constructive heuristic30

1 Introduction

For the disposal of industrial waste, companies often have a contract with a waste man-

agement company that picks up the waste in standardized containers. To this end, waste

containers of different types are delivered by the waste management company and picked

up when they are full. Transport is usually done using specialized trucks, that have spe-35

cific handling equipment to pick up and drop off the containers. The transport of the

empty and full containers between the customers’ sites and the depots gives rise to a

so-called roll-on–roll-off vehicle routing problem with some specific characteristics.

In this paper, we describe a specific variant of this problem faced by several waste

management companies. These companies have two types of trucks that are able to40

transport the containers, with a capacity of one or two containers respectively. The

motivation for using two-container trucks is that they are much cheaper to operate

than two one-container trucks, even though some flexibility is lost. Furthermore, only a

limited number of each truck type is usually available. Empty containers are stored at

so-called stock depots, whereas full containers are emptied in waste management depots.45

Some waste management depots may also serve as stock depots (i.e., they may store

empty containers), but this is not required.

The waste management companies receives four types of service requests:

• Exchange orders (EXC): An empty container is picked up from a stock depot

and brought to the customer’s site. The container can also be picked up from a50

waste handling depot that maintains a stock of empty containers, or from another

customer, in which case it is first emptied at a waste depot. A full container

is picked up at the customer immediately after the empty container has been

delivered. The full container is brought to a waste handling depot to be emptied.
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• Round trip orders (ROU): A full container is picked up at the customer first,55

emptied at a waste handling depot, after which the same container is brought

back to the customer. The truck makes the return trip to the waste handling

depot without intermediate stops.

• New customers (NEW): An empty container is picked up from a stock depot and

dropped at the customer’s site. No container is picked up.60

• End-of-Contract customers (END): A full container is picked up at the customer’s

site and brought to a waste management depot. No empty container is brought

back.

The waste management companies handle different types of waste, and each waste type

can be deposited only in a subset of the available waste management depots. Stock65

depots usually store every type of container. For each container type, there is also a list

of waste types that it may or may not contain, although situations arise in which each

container can hold every type of waste.

Companies may call for any of the service requests, indicating the day they want to

receive the service. The planning is done on a daily basis, based on service requests70

made up to the previous day. Each customer may also specify a time window for their

service request, i.e., an earliest and latest time at which the truck should arrive. The

truck type (one or two containers) with which a service request is carried out, is irrelevant

for all service requests (except for the special case in which a customer demands two

containers at the same time, see further). Also, each truck can carry each container type75

and the order in which containers are loaded or unloaded is unimportant.

The objective of this problem is to minimize the total active time. This includes driving

time between customers and depots, service and waiting time at the customers and han-

dling time at the depots. All of these times are assumed to be known and deterministic

and may depend on the truck type. The vehicle routing problem described here is a80

pick-up and delivery vehicle routing problem with time windows and unit demands, in

which each truck has a capacity of either one or two. Such problems are known in the

literature as roll-on–roll-off problems.

The decisions that have to be made in our problem are the following:

• The truck type (one or two containers) with which to execute each route.85

• The order in which to visit the customers on a given route.
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• The position in the route to visit stock depots and waste management depots.

• The actions to perform at stock and waste management depots (how many con-

tainers to pick up or drop off).

The difference between our problem and most other pick-up-and-delivery vehicle routing90

problems is the fact that the depot to pick up or drop off a container is not given. In

other words, either the pick-up or the drop-off location becomes a decision variable. For

example, a container picked up from a customer can be delivered to any waste depot.

Which waste depot to visit is a decision that is an integral part of this roll-on–roll-off

problem.95

An example of a solution to a waste collection vehicle routing problem, that shows the

complexity of the problem, is shown in figure 1. Notice that we assume for reasons

of simplicity that there is only one type of container and one type of waste in this

example. This solution consists of two routes, one performed by a two-container truck

(dashed line) and the other by a one-container truck (solid line). The time windows are100

not shown. Note that all trucks start and end from the same location in this figure,

something which is not required. We also assume that the truck needs to return to the

depot empty. The numbers on the arcs between trucks stops show the order in which

the stops are executed.

2 Literature review105

Several types of waste collection vehicle routing problems can be distinguished. Urban

garbage collection problems, are usually modeled as a capacitated arc routing problem

(Golden and Wong, 1981; Hertz et al., 2002). The objective of such problems is to

determine the order in which to drive through a set of streets (i.e., visit the arcs of

a graph, rather than the nodes), possibly in both directions, minimizing the number110

of vehicles used and the total distance traveled. Each street has a certain amount of

waste to be picked up and the capacity of the vehicles should not be exceeded. Ghiani

et al. (2005) use a two-stage cluster-first route-second method to solve a waste collection

problem in Italy. An ant-colony based algorithm for an urban waste collection problem

can be found in Bautista et al. (2007).115

Whereas urban waste collection problems are best modeled as arc routing problems, this

is not the case for industrial waste collection problems. In these problems, waste is picked

up at specific locations and not in streets and hence these problems are best tackled as
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Figure 1: An example of a solution with two trucks of different types
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node routing problems. Waste collection vehicle routing problems belong to the general

class of pick-up and delivery vehicle routing problems (Parragh et al., 2008; Berbeglia120

et al., 2007). In several papers, a periodic vehicle routing model is used, in which a

schedule for several days is created. One of the earliest uses of the PVRP for waste

collection problems is due to Beltrami and Bodin (1974). In some papers, the specific

waste collection variant is made difficult by the necessity to schedule intermediate waste

disposal facilities, where the waste can be dropped off once the vehicle is full. This125

problem, the periodic vehicle routing problem with intermediate facilities is surveyed in

Guastaroba et al. (2016) and addressed by Angelelli and Speranza (2002a), who develop a

tabu search procedure for it. This algorithm is applied in Angelelli and Speranza (2002b)

to estimate and compare the operating costs of different waste-collection systems. A

similar model can be found in Kim et al. (2006), who add time windows for both the130

stops and the waste disposal facilities to the formulation.

The problem discussed in this paper is an example of a so-called roll-on–roll-off vehicle

routing problem (RRVRP) (Cristallo, 1994; Cattrysse et al., 1996; Golden et al., 2002;

Wy and Kim, 2013; Derigs et al., 2013). Roll-on–roll-off vehicle routing problems are

special cases of pick-up and delivery problems (Nanry and Wesley Barnes, 2000; Mitrović-135

Minić et al., 2004) but differ from them in that the product (waste, in this case) is not

picked up as such, but in containers of unit capacity. These containers are delivered to

waste management depots where they are emptied, after which they may be reused. In

the models of De Meulemeester et al. (1997), Bodin et al. (2000), and Baldacci et al.

(2006), the vehicles can only move one container at a time. De Meulemeester et al.140

(1997) present a problem with multiple disposal facilities and a single inventory/depot

location. They present two heuristics and an exact algorithm. Bodin et al. (2000) present

a problem with a single disposal facility and a single depot/inventory location. They

develop a mathematical model for this problem, two lower bounds and four heuristic

algorithms. An extension of this problem can be found in Baldacci et al. (2006), who145

introduce the multiple disposal facilities and multiple inventory locations roll-on–roll-

off vehicle routing problem. They formulate the problem as a time-constrained vehicle

routing problem on a multigraph and develop an exact algorithm for it. This problem is

very similar to our problem, with the exception that our problem has two different types

of vehicles, which can take either one or two containers. The number of containers on150

a single vehicle is extended to two in le Blanc et al. (2006). Hauge et al. (2014), on the

other hand, model a similar problem where vehicles can take up to eight containers, two

of which can be full, and solve it using a hybrid column generation approach. Contrary to

our method, the authors use a tabu search algorithm to generate columns. Their model
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also differs from ours in the specificities of the actions performed on the containers.155

Another related problem is modelled in Wy et al. (2013): a roll-on roll-off problem with

multiple disposal facilities, multiple container storage yards, different service types of

customer demands, time windows for customer demands and facilities, various types

and sizes of containers, and the lunch break of tractor drivers. They solve this problem

with a large neighborhood search based algorithm. Aringhieri et al. (2017) consider a160

real-life case study of a waste collection RRVRP in which two objectives are considered,

the number of vehicles as well as the total route duration. Finally, Elbek and Wøhlk

(2016) develop a multiperiod model of the RRVRP.

Recently, authors have started to look at waste collection routing problems (Ramos

et al., 2018), where sensors in the various bins transmit the fill level. Such “smart”165

installations may allow a waste collection company to pro-actively determine which sites

to visit before containers fill up completely and potentially offers more opportunities for

further optimization.

3 Problem formulation and solution overview

3.1 Mathematical formulation170

In this roll-on–roll-off problem we are given a set of n service requests, and a set of

m depots. We will from now on assume without loss of generality that each customer

places exactly one service request and, consistent with the routing literature, use the term

“customer” to indicate a service request in a specific location. Customers and depots

therefore jointly form n + m nodes on a graph, from now on referred to as locations.175

The customers require one of four possible operations (end-of-contract, new contract,

exchange or round-trip). The service time at customer or depot i is denoted si. At the

depot, the service time may depend on the depot and the operation performed there.

The start of service at customer i, denoted bi, must be between an earliest start ei and a

latest start li. The interval [ei, li] is called the time window of customer i. Although the180

start of service at depot i is also referred to as bi, there is no time window for the depot.

The travel time between location i and location j is denoted tij . If a truck arrives early

(before ei) at customer i, it will wait until ei.

In this paper, we reformulate our waste collection problem as a generalized vehicle rout-

ing problem with time windows (GVRPTW). In the generalized version of routing prob-185

lems a set of node clusters are given, which are mutually exclusive, i.e., no node appears
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in more than one cluster. The aim is to find the best solution that visits exactly one

node in each cluster. Ghiani and Improta (2000) solve the GVRP by reformulating it

as a capacitated arc routing problem. In this paper, we use a route generation heuristic

loosely based on the famous I1 insertion heuristic due to Solomon (1987).190

In the real-life roll-on–roll-off problem, routes usually consist of a relatively small number

of customers, mostly not more than ten. This motivates the use of a column generation

solution method, that decomposes the waste collection problem into a master problem

and a subproblem.

The master problem is a set covering problem given by the following formulation:

min

q∑
j=1

cjxj (1)

s.t.

q∑
j=1

aijxj ≥ 1 ∀i ∈ {1, . . . , n} (2)

q∑
j=1

bkjxj ≤ Vk ∀k ∈ {1, 2} (3)

xj ∈ {0, 1} ∀j ∈ {1, . . . , q} (4)

In this formulation, each column j of the matrix {aij} represents a route. The number195

of routes is equal to q and cj is the cost of route j, equal to the total time spent in this

route, and aij is equal to 1 if customer i is included in route j and 0 otherwise. The

decision variables xj are equal to 1 if route j is selected and 0 otherwise. The objective

function (1) represents the total cost of all selected routes. Constraints (2) ensure that

each customer is included in a route at least once. Vk is the number of trucks of type k200

available, bkj is 1 if route j is executed with a truck of type k. Constraints (3) ensure

that all routes can be executed with an available truck. Finally, constraints (4) ensure

that the decision variables are binary. To obtain the final feasible solution at the end of

the algorithm, equation 2 is replaced by
∑

j aijxj = 1 ∀i, which transforms the master

problem into a set partitioning problem and enforces each customer to be visited in a205

single route. It is important to note that this step is necessary to ensure that the final

solution is feasible. If a customer is planned twice, it does not suffice to just delete the

most expensive copy of this customer from the route (unlike in the standard VRPTW).

The reason is that there may be intermediate operations planned before or after this

customer that make the route infeasible once this customer is removed (e.g., a container210
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is picked up there, and dropped at another customer).

3.2 Column generation method overview

Even though recent alternative aggregated/disaggregated formulations (Bruck and Iori,

2017; Bianchessi and Irnich, 2019) have also been successful, LP-based column genera-

tion approaches remains an important approach to solve various types of problems in215

production planning and scheduling (Cattrysse et al., 1993, 1990), generalized assign-

ment (Savelsbergh, 1997; Cattrysse et al., 1994), cutting stock (Cintra et al., 2007), and

also in routing (Desrochers et al., 1992; Bramel and Simchi-Levi, 1997; Fukasawa et al.,

2006; Choi and Tcha, 2007). The decomposition results in a master problem that is a

set covering or set partitioning problem. The subproblem contains all the characteristics220

of the problem and is solved using dynamic programming, metaheuristics a.o. For rout-

ing problems the LP-bound generated with Dantzig-Wolfe decomposition is very tight

and frequently an integer solution is obtained. The integer solution obtained by solving

the master problem is not necessarily an optimal one but the LP-bound of the master

problem provides a performance measure for the heuristic.225

At each iteration of the column generation heuristic, the dual variables obtained by

solving the linear relaxation of the restricted master problem are used to determine

which customers will be used to form a new route. Forming a new route is done by

the subproblem pricing heuristic, that schedules as many customers as possible with an

insertion heuristic. In section 5 we explain in detail how the linear relaxation of the230

restricted master problem is solved and how customer lists are generated to be supplied

to the subproblem heuristic. First, we discuss how this heuristic finds good routes to

add to the master problem. Algorithm 1 describes the iterative procedure.

At each iteration, information from the optimal solution of the linear relaxation of the

restricted master problem is used to generate a candidate list of service requests or cus-235

tomers. Of this list, as many customers as possible should be scheduled in an efficient

route, including the picking up and dropping off of containers at stock and waste man-

agement depots respectively. This is done by applying a heuristic route construction

procedure loosely based on the I1 insertion heuristic of Solomon (1987).

Note that the resulting route should have two (contradicting) characteristics: (1) it240

should contain as many customers as possible and (2) it should be as short as possible,

i.e., the total time required to execute all operations in the route (including the waiting

time at a customer when a vehicle arrives early) should be minimal. A balance between

9



Algorithm 1: Column generation for the roll-on–roll-off vehicle routing prob-
lem

Initialize: generate “virtual” routes, one for each customer;
Generate a mono-customer route per vehicle for each customer (Phase I);
repeat

(Phases II+III);
Solve the linear relaxation of the restricted master problem;
Determine the candidate list of customers to plan;
Solve the subproblem, generating routes using customers in this candidate
list;

Insert the corresponding columns in the restricted master problem;

until stopping condition;
Solve the restricted master problem to (integer) optimality;
Optimize the individual routes (Phase IV);

these characteristics is found by applying a constructive heuristic that attempts to add as

many customers as possible, i.e., until no more customers can be feasibly added or until245

no more customers are left to schedule. The constructive heuristic attempts to schedule

each customer in such a way that the resulting route will be of minimal length.

Efficiently scheduling the intermediate depots adds a new layer of complexity to the

problem. We therefore develop a route construction procedure that operates on a refor-

mulated version of the roll-on–roll-off problem, effectively removing the depots from the250

formulation. The resulting problem is a generalized vehicle routing problem with time

windows, and the transformation is explained below.

3.3 Modeling as a generalized vehicle routing problem with time windows

Modeling the roll-on–roll-off problem as a generalized vehicle routing problem with time

windows (GVRPTW) is done in three steps:255

1. Determining the node clusters for each customer.

2. Adding the inter-cluster arcs.

3. Determining the inter-cluster travel times.
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3.3.1 Determining node clusters for each customer

In the new formulation, each customer is modeled as a node cluster, that contains dif-260

ferent nodes. The nodes are used to model the fact that different trucks (one or two

container capacity) may arrive at a customer in different states, i.e., empty, or carrying

empty or full containers of different types and containing different waste types. In our

new formulation, the costs and travel times of the edges between nodes in different clus-

ters now include the costs and times of intermediate operations (dropping off or picking265

up empty or full containers at stock or waste depots), effectively removing the depots

from the formulation.

For each customer in the original formulation, we define a node cluster in the new

formulation. The types of nodes included in a node cluster depend on the order type.

Figure 2 shows the different node clusters for the different order types for a problem270

with one type of waste and one type of container. A node in a node cluster should be

interpreted as the combination of (1) a customer and (2) the state the truck that services

this customer is in upon arrival.

ROU END EXC NEW

Legend

One-container truck node

Two-container truck node

Figure 2: Node clusters in the GVRPTW formulation

Trucks arriving at an end-of-contract customer or a round trip customer, need to have

at least one empty position. Therefore, all vehicle states that have at least one empty275

position are allowed. Trucks arriving at a new customer or an exchange customer need

to carry an empty container. Allowable states are therefore those that have at least one

11



empty container. The node clusters for round-trip and end-of-contract customers are

therefore the same, as are the node clusters for new customers and exchange customers.

Some customers demand two containers to be picked up and/or delivered at the same280

time. For these customers, only one configuration is possible, and hence their node

clusters contain only one node, such as can be seen in figure 3.

ROU END EXC NEW

Figure 3: Node clusters for customers that require pickup and/or delivery of two containers at
the same moment

When the problem involves multiple waste and/or container types, the number of nodes

in a node cluster is increased. Figure 4 shows examples of node clusters when two

types of waste and two types of containers are present. The exchange customer on the285

right demands a container of type 2. Note that forbidden combinations of waste type

and container type can be taken into account by simply not adding a node in the node

clusters. In the example in figure 4, containers of type 2 are not allowed to contain waste

of type 2.

3.3.2 Adding the inter-cluster arcs290

When the nodes of the GVRPTW formulation graph have been determined, the edges

are added to this graph. In principle, an edge is added for each pair of nodes in different

node clusters, although some edges represent an impossible operation, as we will see,

and therefore do not need to be added. For each edge, the cheapest possible route

between the two nodes it connects, including the visit to a waste or stock depot, can be295

calculated. Because a node inside of a cluster unambiguously defines the vehicle state

at the visit to this customer, the actions that need to be undertaken to arrive at the

customer in this state, are easy to define.

To illustrate this, we give in figure 5 an example of the different edges that are drawn

between a new customer and an end-of-contract customer (again assuming one type300

of waste and one type of container). In table 1, these edges are explained, showing

the intermediate operations that are required to traverse this edge in the graph. For
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Figure 4: Example node clusters for two types of waste and two types of containers

simplicity, we assume again that only one type of container and one type of waste are

present.

A

NEW

B

END

1

2
3

4

5
6

7
8

Figure 5: Edges between a new customer A and an end-of-contract customer B

It is clear that a one-container truck cannot transform into a two-container truck. There-305

fore, there are no edges between nodes corresponding to different vehicle types. In

practice, this means that the graphs corresponding to each vehicle type are completely

disjoint, since they do not share any edges or any vertices. The subproblem heuristic
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Table 1: Edges between a new customer A and an end-of-contract customer B, including inter-
mediate operations

Vehicle state
# At A After A At B Intermediate operations

1 -
2 -
3 Pick up empty container
4 Drop off empty container
5 -
6 Dispose waste, drop off empty container
7 Dispose waste
8 -

therefore always attempts to find routes for both vehicle types separately (see section

4).310

Note that even between the nodes representing a two-container truck, two potential edges

are not included: those that would require the truck to pick up a full container between

two customers. Clearly, full containers are only picked up at customer locations, and

including one of these edges would therefore imply that a customer was visited between

A and B. Similarly, edges that are impossible due to time constraints are not added.315

To perform this check, we calculate the duration of the travel from A to B, taking into

account the intermediate actions that need to be performed to arrive and depart in

the correct configuration, and check whether this travel from A to B is feasible while

respecting both customer’s time windows.

3.3.3 Determining edge costs320

The cost of an edge between a node in node cluster A and a node in node cluster B should

be equal to the minimum cost of driving from customer A to customer B, including the

time required for performing the intermediate operation(s). For example: to traverse

edge 6 in figure 5 (i.e., to start from the new customer carrying a full container and

arrive at the end-of-contract customer with two empty positions), the two-container325

truck needs to drop the full container at a waste management depot. This should be

done in the waste depot for which the cost of travelling is minimized. Moreover, the cost

of the edge in the new graph should be equal to sum of travel costs between customer
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A and the waste depot and between the waste depot and customer B and may include

the service time at the waste depot.330

Some of the edges in the GVRPTW graph may represent rather complex operations.

For example, an edge from the “no container + full container” node of a round-trip

customer C to the “empty container + empty container” node of an exchange customer

D will represent the following operations: traveling from C to the waste management

depot and unloading the container, traveling back to C to drop the empty container,335

traveling to a storage depot to pick up two empty containers and finally, driving from

the storage depot to customer D. In each of the possible cases, however, it is easy to

determine the cheapest possible way in which the complex sequence of operations can

be accomplished.

In our method, we calculate the minimum cost of an edge by an exhaustive enumera-340

tion of all feasible intermediate combinations. Feasibility of an edge cost requires that

all necessary operations be performed, potentially taking into account precedence con-

straints. For example, a one-container truck that picks up a full container at customer

A and needs to arrive with an empty container at customer B needs to go to a waste

management depot first to drop off the full container and can only then go to a stock345

depot to pick up an empty container (except if B requires the same container type as A,

in which case the truck does not need to go to a stock depot, but can use the emptied

container from A). In all cases, the number of combinations of intermediate operations

is small, as there are only a limited number of stock and waste management depots.

One of the most important advantages of the column generation approach is that we350

only need to generate edge costs if they are required. In other words, edge costs are

only calculated when the algorithm generates a route, and only between customers in

that route. The reason this is important is that the new formulation is defined on a

graph that has a number of vertices that is a multiple of the number of customers in the

original formulation (because each customer corresponds in the new graph to a customer355

cluster that consists of a vertex per truck configuration in which the truck can arrive

at this customer). When a large number of container and waste type combinations are

possible, the number of vertices can grow quite large (e.g., 70 nodes per customer). Of

course, the increase in number of edges is a quadratic function of this. Generating the

entire graph, including all edge costs, is therefore intractable for all but the smallest of360

problems.

In the GVRPTW formulation, each node cluster has a time window, which is equal
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to the time window of the customer it corresponds to. Alternatively, we may say that

each node in a node cluster has a time window equal to the customer this node cluster

corresponds to.365

4 Subproblem route construction heuristic

Because of the expected size of the GVRPTW graph, we opt for a simple constructive

heuristic, that is a modified version of the I1 insertion heuristic by Solomon for the

VRPTW. Our procedure builds a route by inserting one customer at a time into the

route that is currently being built. It chooses these customers from a candidate list370

that is created based on information from the optimal solution to the linear relaxation

of the restricted master problem (see section 5). Contrary to the original I1 heuristic

(that starts another route when no more customers can be inserted), our procedure

stops when no more customers can be inserted into the route. Another difference is that

our procedure uses only travel time, instead of an (arbitrarily weighted) combination of375

travel time and travel distance.

Given the fact that the number of customers is small and not all customers need to be

added to the route, our procedure attempts to use each node as a seed. After this, the

method iteratively adds one customer at a time until no more customers can be added.

Finally, the best solution found using this procedure is returned to be added as a column380

to the restricted master problem.

Customers are added one by one to the route as follows. First, the best possible

insertion position is calculated for each unplanned customer. Given a partial route

(i0, i1, i2, . . . , im), the best possible feasible insertion position for a customer u is deter-

mined as

κ∗(u) = min
p

[κ(ip−1, u, ip)], p = 1, . . . ,m (5)

where ip−1 and ip do not belong to the same node cluster, and

κ(i, u, j) = ακ1(i, u, j) + (1− α)κ2(i, u, j), α ∈ [0, 1] (6)

κ1(i, u, j) = tiu + tuj − µtij , µ ≥ 0; (7)

κ2(i, u, j) = buj − bj (8)
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where buj is the new time for service to start at customer j, given that customer u is

inserted between customers i and j. When the best possible insertion location for each

customer has been determined, the customer u∗ to insert is established:

u∗ = arg max[λt0u − κ∗(u)], u unrouted and feasible.

The procedure has three parameters: µ and α and λ.

Algorithm 2: Insertion heuristic (based on Solomon I1)

Input: A candidate list of customers C, a seed node
Output: One route for each combination of vehicle type and starting depot,

each containing a subset of the customers in C
for each vehicle type/starting depot combination do

for each customer i do
Start a new route using seed customer i ;
for each customer s ∈ C do

Add s to the route;
repeat

Calculate cheapest insertion location for each unrouted customer;
Calculate cheapest customer u∗ to insert;
Insert u∗ in its cheapest insertion location;

until no more customers can be inserted ;

Determine the cheapest route for the combination vehicle type/starting
depot;

5 Solution of the linear relaxation of the restricted master problem

and generation of new columns

At each iteration of the main loop, i.e., after one or more new columns have been added,385

the linear relaxation of the restricted master problem is solved to optimality using the

dual simplex method implemented in the GLPK callable library. Dual prices are then

calculated for all customers and added to the travel time from this customer to the seed

customer, i.e., the first customer added to the route (see further). The obtained value

is an approximation of the reduced cost generally used in column generation methods390

and is used to create a candidate list of “interesting” customers that are then reported

to the subproblem. The subproblem heuristically attempts to create an efficient route

incorporating as many customers as possible. The costs of these routes, the vehicle type
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used, and the list of customers they contain, are reported back to the master problem

and inserted as new columns. In this section, we explain this column generation scheme395

in detail.

5.1 Initialization of the master problem

An initial (infeasible) solution is created by adding a virtual route for each customer.

These routes become the first n columns of the restricted master problem (n is the num-

ber of customers). The columns corresponding to these virtual routes contain a single 1400

in the row of the corresponding customer, and are given an arbitrarily high cost. They

do not correspond to any vehicle type, so in these columns bkj = 0 ∀j ∈ {1, . . . , n}, k ∈
{1, 2}. Because of this, the fleet size constraints do not apply to these columns, ensuring

that the linear programming relaxation of the restricted master problem (which we will

refer to as LP) has at least one feasible solution, albeit one that cannot be implemented405

because no vehicle types are assigned to the routes.

The reason for adding these virtual routes is the following. When virtual routes appear

in a solution of the non-relaxed problem, this means that the customers corresponding

to these routes are yet unplanned (if the customer would appear in another route, the

virtual column could not have been included in the optimal solution). This knowledge410

is used to determine later on which customers to select for route building. Since the

first n columns are virtual, the value of σx =
∑n

j=1 xj is an indication of the number

of customers that are still unplanned. Note that this value may be fractional, since the

xj-values result from a linear relaxation of the master problem. This value is used to

determine later whether we should explicitly attempt to plan unplanned customers.415

5.2 Generation of columns

In a first phase, we generate a second set of initializing columns, one per customer–vehicle

type combination. The generation of “real” columns happens in two phases (II and III),

that are executed sequentially and iterated a limited number of times. After each column

is added, the linear relaxation of the restricted master problem is re-optimized, starting420

from the previous solution to save time.
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Phase I generation of mono-vehicle columns In phase I, a column is generated for each

customer–vehicle type combination, i.e., we generate routes with one service, for each

type of vehicle. Usually no implementable solution can be found after this phase be-

cause of vehicle restrictions. Note that — because of the virtual columns — the master425

problem always has a solution that is technically feasible. Therefore we use the term

“implementable” to mean a solution that does not retain any virtual columns.

Phase II generation of multi-vehicle columns In phase II, we attempt to generate can-

didate lists of customers that can be put together in a route. These lists are reported

to the subproblem, that attempts to put as many of them in a route as possible. Gen-430

erating these candidate lists is done by first selecting a seed customer and then adding

customers that appear well-suited for inclusion in the same route as the seed customer.

When many customers are unplanned in the current solution, we attempt to plan them

explicitly. The value of σx =
∑n

j=1 xj is used as proxy of the actual number of unplanned

customers.435

If σx > σmax (“high”) many customers are unplanned and we use an unplanned customer

as the seed. If σx is “medium”, the customer with the highest dual value is chosen as

the seed customer. This is the case if 2 ≤ σx ≤ σmax during the first iteration of this

phase, and if 0 < σx ≤ σmax during all other iterations.

When the seed customer has been determined, a fixed number of customers are deter-440

mined, based on their desirability to be in the same route as the seed customer. The

desirability of a customers is calculated as the sum of two factors: (1) the dual price of

the row corresponding to this customer, which gives a general indication of how “diffi-

cult” this customer is to plan; and (2) its distance to the seed customer. The resulting

value is an approximation of the reduced cost generally used in column generation al-445

gorithms. However, if the vehicle is of type 1 and the order is an exchange order or an

end order, we take the distance to the waste depot into account because we know that

the truck will have to return immediately to the waste depot after this visit and cannot

visit another customer first.

The number of customers to add to the seed customer varies throughout the algorithm450

in order to examine both long and short routes. At each iteration, we generate two large

and two small routes, for a one-container and a two-container vehicle respectively. As

the iterations progress, the length of the large routes generated is reduced and that of

the short routes increased slowly. In general, we found that this strategy yields a good
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mix of different column lengths. The length of the small, respectively the large route are455

given by bj/P c+M and M̄ − bj/P c where M is the minimum route length and M̄ the

maximum route length. j is the current iteration and P is a parameter that determines

how fast the size of the large route shrinks and how fast the small route grows.

In this phase, multi-vehicle columns are generated until a certain maximum number of

columns cmax is reached or until σx is “low” (σx < 2 during the first iteration of this460

phase, σx = 0 during all other iterations). The algorithm then moves to phase III.

Phase III: generation of merged columns In this phase, we attempt to merge routes

in order to attempt to find better columns than the ones already generated. In this

phase, if a route has a cost that is lower than a certain threshold, the route becomes a

candidate for merger. Additionally, all unplanned orders are also candidates for merger465

into existing routes.

The algorithm then attempts to merge all candidate routes into all existing routes,

provided that both routes are not run by a truck of capacity 2. The reason for this

restriction is that we found that a successful merger of two such routes is extremely rare,

as high-quality routes generally have quite a large number of customers in them, which470

makes them difficult to combine and stay within the time windows of the customers and

the depots. The routes are merged by combining the two candidate lists of customers

into one and using this list in the route construction heuristic. If a feasible merged route

is found, it is added as a new column.

If not all customers are planned after phase 3, phases 2 and 3 are repeated until a475

maximum number of iterations (usually 4) has been executed. When this is the case,

the algorithm moves to phase IV.

Phase IV: route improvement heuristic To further improve the quality of a given route, a

route improvement heuristic is implemented. This heuristic does not change the order in

which to visit the customers, but determines the optimal visits of depots given a certain480

sequence of customer visits. The procedure uses the GVRPTW formulation and solves

a shortest path problem with time windows on this graph, from starting depot to ending

depot, thereby visiting one node in each node cluster. This shortest path problem with

time windows is also solved using the GLPK callable library.
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Unfortunately, the shortest path with time windows is NP hard. Therefore, the com-485

puting time for this procedure is quite large. We therefore only perform this operation

once at the end of the algorithm.

6 Experimental results

6.1 Experimental setup and real-life test cases

The column generation algorithm was implemented in C++ using the open source GNU490

Linear Programming KIT (GLPK) callable library version 4.33 (http://www.gnu.org/

software/glpk/glpk.html). This prototype version of the code was called wmpopt.

Since no data sets are available for testing or comparison (even to closely related prob-

lems), we are forced to compare wmpopt to the performance of the commercial solver it

was designed to replace. To this end, several real-life instances, obtained from a Belgian495

waste management company, were used in the testing and calibration phases. These

data sets are available from the authors upon request. Table 2 describes these different

cases.

Table 2: Description of the 4 real-life cases

Case Customer Trucks
no. requests Capacity 1 Capacity 2

1 86 11 8
2 101 13 9
3 69 9 7
4 92 10 9

6.2 Sensitivity analysis

Prior to solving the real-life case, wmpopt was subjected to a thorough sensitivity anal-500

ysis. The main goals of this phase were to calibrate the parameters and to judge the

robustness of the performance of wmpopt with respect to these parameters. In this

analysis, we varied the values of several parameters in a systematic way and measured

the performance of wmpopt in terms of (1) the objective function value (total distance

traveled), (2) the number of trucks of both types used, (3) the number of unplanned505

customers and (4) the computing time.
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The parameters that were tested where the maximum number of columns to generate

cmax, the threshold value of σx for using unplanned customers as the seed for new

columns σmax, and P , the value that determines the speed of growth or shrinkage of

the generated routes. For each of these parameters, we determined several values that510

we considered reasonable and ran a series of 64 experiments. The results are shown in

tables 3 to 5. Each row shows the value of the parameter, and the averages of the cost,

number of unplanned customers, number of trucks used, and CPU time in seconds for

the experiments corresponding to this parameter value.

Table 3: Influence of the value of P on the performance of wmpopt

P Avg. Cost Avg. Unpl. Avg. Trucks CPU (s)

6 542374 0,75 19 320
7 546978 0,75 19 293
8 554084 0,44 19 261
9 541563 1,75 19 391

Table 4: Influence of the value of σmax on the performance of wmpopt

σmax Avg. Cost Avg. Unpl. Avg. Trucks CPU (s)

5 542687 1,25 19 326
6 550402 0,75 19 224
7 555696 0 19 229
8 551246 0,6 19 278
9 559096 0 19 276
10 560230 0,25 19 290
11 553439 0,75 19 277

Table 5: Influence of the value of cmax on the performance of wmpopt

cmax Avg. Cost Avg. Unpl. Avg. Trucks CPU (s)

30 559139 0,25 19 270
40 557611 0 19 207
50 551007 0,625 19 286
60 557611 0 19 227
70 557611 0 19 229

The experiments clearly show that the performance of wmpopt is very robust with re-515

spect to the different parameter values. The different performance measures only deviate

slightly when the parameters are changed. Based on this result, we can confidently set
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the parameters to the values that yield lowest cost, i.e., P = 9, σmax = 5, cmax = 50.

6.3 Performance benchmark

To benchmark the performance of wmpopt, we compare it to the performance of a520

commercial vehicle routing solver, that was adapted as much as possible to the specific

problem formulation. Unfortunately, the solver cannot cope with some of the more

complex constraints present in the real problem (which was one of the main motivations

for the commissioning of this work). The solution of the commercial solver therefore

needs to be “repaired” to restore its feasibility. An example of such a problem with525

the solver is that it cannot be forced to perform a round-trip operation in which no

intermediate operations are scheduled (i.e., in which the truck immediately goes to the

nearest waste depot with the full container and immediately returns to the customer

with an empty container). If such a situation occurs, the truck needs to be manually

forced to perform these operations before continuing with the tour. The repair procedure530

consists of trivial manipulations to the final solution and were performed exactly like a

planner would apply them. Contrary to wmpopt, the commercial solver makes intensive

uses of randomness to search for better solutions. We therefore perform three runs and

report the average cost of the commercial solver’s solution after the repair.

Table 6 shows the results of the experiments. It is clear that the performance of wmpopt535

far exceeds that of the commercial solver, finding a solution with on average 12.1% lower

costs with the same number of trucks. Additionally, computing times are considerably

lower in most cases, even without taking the extra time needed for the repair into account.

Most importantly however, the commercial solver is unable to model all the complex

constraints and therefore solves a relaxed version of the problem. Limits on its modeling540

capacity render the commercial solver unusable in practice. As mentioned, the final step

in the procedure to solve the problem using the commercial solver is a trivial but time-

consuming and error-prone repair phase. This makes it extremely difficult to interact

with the solver software through its graphical user interface to make manual changes to

the solution and re-optimize the solution (partially), a common practice in almost all545

planning departments. Finally, as mentioned, the commercial solver uses randomness

intensively and results are therefore prone to variation. Although solutions resulting from

different runs of the commercial software have very similar objective function values, the

company producing the software found the varying solutions difficult to explain to its

customers and therefore very undesirable.550
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7 Extensions

The GVRPTW formulation is very flexible and may be extended in several ways to allow

for more complex problems to be modeled. Currently, we are implementing several of

these extensions. Some of the extensions are rather trivial to formulate (such as time

windows at the depots or multiple time windows at the customers). Two deserve some555

further investigation: washing depots and free customers.

7.1 Washing depots

In some situations, containers have to be washed before they are returned to a customer.

This is done in so-called washing depots. These may be located at the site of a waste

depot or a stock depot, but this is not required.560

Washing depots can be easily added to the problem formulation. The shortest distance

between two customer nodes, now may include the visit to a washing depot if the cus-

tomer receiving the container requires it to be cleaned. No adaptation of the node

clusters is necessary.

7.2 Free customers565

In this paper, we have assumed that a customer that had a full container and was not an

end-of-contract customer was either a round-trip customer or an exchange customer. I.e.,

either the container of this customer was delivered at the same time the full container

was picked up, or the full container was emptied at a waste depot and then returned to

the customer.570

In practice, some customers may be indifferent as to whether they are serviced as a

round-trip or an exchange customer. Such customers are called free customers. In this

case, the model should be able to decide the cheapest way to service such a customer.

Free customers can be easily added to our formulation. A truck arriving at such a

customer must have either an empty container (so the customer can be serviced as an575

exchange customer) or an empty spot (so the customer can be serviced as a round-trip

customer). A customer node for a free customer therefore looks as in figure 6.
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FREE

Figure 6: Free customer node cluster

8 Conclusions and future research

In this paper we have described a solution to a real-life roll-on–roll-off waste collec-

tion vehicle routing problem that arises when a waste management company handles580

industrial waste in standardized containers. The main difficulty of the routing problem

treated in this paper is the fact that not only visits to customers, but also visits to stock

depots and waste management depots need to be scheduled. Moreover, not all trucks

necessarily have the same capacity: some can take only one container whereas others

can take two. Also, the company can collect different types of waste in different types585

of containers.

To solve this problem efficiently we have developed a column generation method that

combines a set partitioning master problem, solved using the GLPK open source linear

programming solver, and a route generation subproblem, solved heuristically using a

variant of Solomon’s I1 insertion heuristic. To allow the insertion heuristic to efficiently590

deal with intermediate visits to depots, the roll-on–roll-off problem was reformulated as

a generalized vehicle routing problem with time windows.

The method has been tested on four real-life case studies and compared to a commer-

cial solver that has been adapted as well as possible to the specific problem at hand.
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Our method, called wmpopt, was able to find dramatically better solutions than the595

commercial software. For this and other reasons, wmpopt was judged by the company

producing the vehicle routing software to be far better suited at solving the problem

than the commercial solver. Currently, the method is therefore being integrated into

the commercial solver code, something which will take several more man-months to be

accomplished.600

Several topics for future research arise naturally. First, several of the extensions men-

tioned in the previous section remain to be implemented. These extensions will make the

method more general and will allow us to implement it on more roll-on–roll-off routing

problems. Second, the route improvement heuristic that we developed takes too much

time. A more efficient heuristic, that can be implemented immediately after the route605

generation phase, during the column generation phase, would be a valuable addition to

our method. Finally, to obtain truly excellent solutions, the column generation method

needs to be followed by a local-search based method. The commercial solver in which

our method will be integrated, contains a large arsenal of such local search operators.

An interesting study would be to investigate the best strategy with which to follow up610

on the column generation method.
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Póvoa. The smart waste collection routing problem: Alternative operational manage-

ment approaches. Expert Systems with Applications, 2018.

M. Savelsbergh. A Branch-and-Price Algorithm for the Generalized Assignment Prob-705

lem. Operations Research, 45:831–841, 1997.

M.M. Solomon. Algorithms for the vehicle routing and scheduling problem with time

window constraints. Operations Research, 35(2):254–265, 1987.

J. Wy and B.-I. Kim. A hybrid metaheuristic approach for the rollon–rolloff vehicle

routing problem. Computers & Operations Research, 40(8):1947–1952, 2013.710

J. Wy, B.-I. Kim, and S. Kim. The rollon–rolloff waste collection vehicle routing problem

with time windows. European Journal of Operational Research, 224(3):466–476, 2013.

9 Acknowledgements

The work of J. Raucq has been funded by the Institute for Scientific Research and

Innovation in Brussels (IRSIB).715

30



The authors are grateful to Prof. L. Wolsey for many helpful discussions.

31


