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Abstract

Crested penguins (genus Eudyptes) have a peculiar hatching pattern, with the first-laid egg (A-egg) hatching after the
second-laid egg (B-egg) and chicks from A-eggs typically having a much lower survival probability. Maternal yolk androgens
have been suggested to contribute to the competitive superiority of the B-chick in southern rockhopper penguins Eudyptes
chrysocome, given their important role in mediating sibling competition in other species. We therefore increased the yolk
androgen levels in freshly-laid eggs and examined the consequences for sibling competition - via effects on embryonic
developmental times, chick growth and early survival. We placed one androgen-treated egg and one control egg into each
foster nest, matching them for mass, laying date and laying order. The androgen treatment did not significantly affect
embryonic developmental times or chick measurements at hatching. However, elevated yolk androgen levels benefitted
chick growth in interaction with the number of siblings in a brood. Chicks from androgen-treated eggs had faster growth in
the presence of a sibling than chicks from control eggs. Under these circumstances they also had a higher survival
probability. Thus maternal androgens appear to reinforce the observed hatching pattern, facilitating brood reduction. This
contrasts to most previous studies in other species where yolk androgens have been shown to compensate for the negative
consequences of delayed hatching within the brood hierarchy.
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Introduction

In most bird species, parents initially produce more offspring

than they are able to raise [1–4]. This overproduction commonly

results in an intense competition between siblings that may

ultimately lead to the elimination of part of the brood. Parents

influence the level of sibling competition by producing offspring

that differ in age, size or quality. Parents achieve this in particular

by varying the onset of incubation before clutch completion, which

leads to asynchronous hatching of the offspring. Hatching

asynchrony creates an age and size hierarchy within a brood

[5,6]. During poor years, hatching asynchrony may serve as a

mechanism to adjust brood size to food availability during the

nestling period (‘‘brood reduction hypothesis’’ [1]). It is typically

the smallest/youngest siblings that die, those in which parents

have invested the least in terms of time and energy [7].

Although hatching asynchrony is assumed to be the main factor

influencing sibling competition and chick survival, mothers also

influence the survival probability of individual chicks through

differential allocation of egg mass, yolk hormones, yolk carotenoids

and yolk antibodies [7–9]. Among the egg components, maternal

yolk androgens have been proposed to play an important role in

mediating sibling competition (see reviews in [8,10,11]). Maternal

yolk androgens have been shown to influence the outcome of

sibling competition through potential effects on embryonic

developmental times, begging behaviour, post-hatching growth,

and survival (see for example [12–14]).

Within-clutch variation in yolk androgen levels is therefore

typically interpreted in the context of sibling competition.

Decreasing levels of maternal yolk androgens with laying order

are observed in some bird species exhibiting hatching asynchrony

(for example, cattle egrets Bubulcus ibis [15], American coots Fulica

americana [16] or zebra finches Taeniopygia guttata [17,18]). They are

thought to represent a mechanism for females to reinforce

asymmetries between chicks, facilitating brood reduction [8]. On

the other hand, increasing levels of maternal yolk androgens with

laying order are found in other bird species also exhibiting

hatching asynchrony (for example, canaries Serinus canaria [19],

great tits Parus major [20] or black-headed gulls Larus ridibundus

[21]). They have been interpreted as compensatory strategy by

females for the competitive disadvantages suffered by later

hatching chicks (‘‘hatching asynchrony adjustment hypothesis’’

[8]).

Crested penguins (genus Eudyptes), including our study species,

the southern rockhopper penguin Eudyptes chrysocome, have a

unique pattern of hatching asynchrony in their two-egg clutches

[22,23]. The second-laid egg (B-egg) is 28% bigger and heavier

than the first-laid egg (A-egg) (see [24]) and, although incubation
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starts only at clutch completion, the A-egg usually hatches one day

after the B-egg [25–27]. Although both eggs commonly hatch, the

chick hatching from the A-egg generally dies of starvation within a

few days after hatching [27,28]. The mechanisms by which

reversed hatching asynchrony is achieved remain elusive [25].

Given the effects of yolk androgens on embryonic developmental

times (see review in [29]), it has been suggested that differential

allocation of yolk androgens may be an important mechanism to

reverse the hatching pattern (see [30]). Indeed, in southern

rockhopper penguins, B-eggs contain yolk androgen concentra-

tions and total yolk androgen amounts at least 50% higher than A-

eggs [30,31]. This was observed consistently for the three different

androgens analysed (testosterone, androstenedione and dihydro-

testosterone). Interestingly, clutches laid late in the breeding season

had proportionally higher androgen levels in the B-egg compared

to the A-egg than early clutches [30]. Late in the season, weather

and food conditions may deteriorate and/or feeding parents may

initiate pre-moult storage, and the likelihood that both chicks will

be able to survive decreases (see [32]). Given the role that maternal

yolk androgens play in mediating sibling competition (see above),

we previously suggested that yolk androgens reinforce the

competitive superiority of the chick hatched from B-egg (B-chick)

when the survival of both chicks becomes unlikely [30].

In the present experimental study, we increased the levels of

yolk androgens (testosterone, androstenedione and dihydrotestos-

terone) in freshly-laid eggs of free-living southern rockhopper

penguins to test whether and to what extent yolk androgens

contribute to the superiority of the B-chick. Given the dramatic

differences in egg mass between A- and B-eggs [24], we excluded

these potentially confounding effects by placing eggs of similar

mass and the same position in the laying order into each foster

nest. We examined the consequences of embryonic exposure to

elevated yolk androgen levels on embryonic developmental times,

chick growth and early survival, controlling for chick sex and the

presence of a sibling during growth.

Materials and Methods

Ethical statement
The study was performed under proper legislation of the

Belgian and Flemish law and was approved by the ethical

committee on animal experimentation (ECD, ID numbers: 2011/

44 and 2011/45). All work was conducted under a research license

granted by the Environmental Planning Department of the

Falkland Islands Government (Research Licence No: R06/

2009). This license covered animal welfare in addition to the egg

injection procedure. The methods that we used (nest check, egg

manipulation, chick capture and measurement) probably created a

low level of stress and did not cause any desertion from nestling

activity or mortality. The impact of the injection itself is described

in the manuscript. Manipulated clutches that failed to hatch any

eggs were replaced with eggs found outside their own nest that we

considered as lost by their original parents in order to avoid

affecting the breeding success of the colony.

General field procedures
The study was carried out at the ‘‘Settlement colony’’ (51u439S,

61u179W) on New Island, Falkland/Malvinas Islands from

October to December 2010. In 2010, this colony held about

7500 breeding pairs of southern rockhopper penguins. Birds

mainly breed in open rocky areas fringed by tussac grass Poa

flabellata. The breeding biology at this large colony has been

described previously [27]. Briefly, males arrive at the colony first

(early October) and establish nest sites. Females arrive a few days

later, for pairing and copulation in late October/early November.

Laying and hatching intervals are relatively fixed; the second egg

(B-egg) is generally laid four days after the first one (A-egg),

incubation starts at clutch completion but the A-egg usually

hatches one day after the B-egg (reversed hatching asynchrony).

During the laying period, we visited the study site daily, to mark

and weigh freshly-laid eggs. From each of the monitored nests,

which were homogeneously distributed within the study site, we

randomly created one of two artificial nest categories (AA-nests

with two A-eggs and BB-nests with two B-eggs). All egg pairs were

matched for laying date (difference within foster clutches: mean 6

SE [range]: 0.2260.04 [0–1] day for AA-nests and no difference

within foster clutches for BB-nests) and egg mass (difference within

foster clutches: mean 6 SE [range]: 4.6860.27 [0–9.9] g for AA-

nests and 1.6760.18 [0–12.2] g for BB-nests) in order to obtain

foster clutches with two foster-sibling eggs which were as similar as

possible (for a similar design see [33]). We performed the yolk

androgen injections on five consecutive days during the peak of the

B-egg laying period. A-eggs were injected after clutch completion

(four to six days after they were laid) and B-eggs were injected on

the day after they were laid. The eggs were not incubated for

longer than 24 h before androgen injection (normal incubation

time: mean 6 SD: 33.261.3 days for A-eggs and 32.161.0 days

for B-eggs [27]). For each foster clutch, we injected one egg

(control) with 50 ml sesame oil into the yolk while the second egg

(androgen-treated) was injected with a mixture of androgens

dissolved in 50 ml sesame oil. We injected a total of 400 eggs,

creating 100 AA-nests and 100 BB-nests. All eggs were incubated

in their foster nest after manipulation.

Yolk androgen injection
The amount of each androgen injected into each A-egg was the

amount needed to increase the total quantity of that androgen in a

typical A-egg to the level found in a typical B-egg (see table 1). The

amount of each androgen injected into each B-egg was such that

the increase in concentration (relative to yolk mass) was the same

as in an androgen-treated A-egg (see table 1). Data on yolk mass

(mean 19.6 g in A-eggs and 22.5 g in B-eggs) and hormone levels

were assessed in a number of previous studies [30,31,34,35]. The

injected amount of androgens corresponded on average to 2.61

times the standard deviation observed in natural clutches (table 1),

which is comparable to previous injection studies [36–38].

The same method was used to inject all eggs. Before injection,

the eggs were left horizontal for a few minutes to allow the yolk to

migrate towards the injection site (top of the equator). The

injection site was carefully cleaned and disinfected with a pad

impregnated with 70% isopropyl alcohol. A hole was drilled in the

egg shell between the equator and the acute pole of the egg using a

DremelH StylusTM Lithium-Ion with a sterile 0.9-mm bit. The

solution was delivered into the yolk using a 1-ml syringe mounting

23-G sterile needle that was exchanged for each egg. The injection

hole was then sealed with a piece of OpSite wound dressing (Smith

& Nephew Medical Limited, Hull, England [13]) immediately

after injection. Dissection of 10 eggs that were injected with a dye

invariably revealed that the dye had been correctly injected into

the yolk. After manipulation, eggs were placed under the

incubating parents. All incubating parents stayed on the nests

during the egg injection and after we returned the eggs.

Egg and chick monitoring
From the beginning of the hatching period, we checked the

foster nests twice a day (8:00 am and 8:00 pm) to keep track of the

hatching pattern. We noted when the pipping process started (i.e.

first crack in the egg shell) and when chicks were fully emerged.

Elevated Yolk Androgens in Penguins
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Two eggs started to hatch but were lost before we could classify

them as fully hatched. Each new chick was weighed and measured

within 12 h of hatching (hatching mass and size). The chicks were

weighed to the nearest gram using a digital balance. We measured

head length to the nearest 0.1 mm using a calliper and flipper

length (extended from axilla) to the nearest millimetre with a ruler

[39]. A drop of blood was taken from the brachial vein for

molecular sexing. We were not able to obtain blood from one

chick that died before its second capture. Newly hatched chicks

were marked with a patch of non-toxic colour marker, later

completed with a 23-mm glass encapsulated electronic transpon-

der (TIRIS, Texas Instruments, USA) implanted under the skin of

the upper back. After hatching, we checked foster nests daily for

the survival and the identity of chicks during the first 13 days of

early growth. During this period, chicks were also weighed and

measured about every second day (interval: mean 6 SE:

1.8860.05 days). On a few occasions (i.e. when the weather

conditions were too bad), we did not perform size measurements in

order to minimise the chick manipulation time. All measurements

were made by the same observer.

Eggs that failed to hatch (i.e. that were not hatched five days

after their expected hatching date) were removed from the nests. If

both eggs in a nest failed to hatch, we replaced them with one

chick found outside its own nest that we considered as lost by its

original parents. This guaranteed that all pairs could raise at least

one chick, which is the typical brood size at fledging.

Sex determination was done with molecular techniques. About

1 ml of the blood sample was used for ChelexH resin-based DNA

extraction [40]. Two ml of the resulting DNA solution was used in

a polymerase chain reaction (PCR) to amplify a part of the CHD-

W gene in females and the CHD-Z gene in both sexes (for details

see [41]). The amplified products were separated in 1.5% agarose

gels containing ethidium bromide. We evaluated the reliability

with 10 individuals of known sex yielding a 100% correct match.

Statistical analysis
Statistical analyses were conducted in SPSS 16.0 for Windows

except for the Cox regression, which was conducted in Stata 12.1

for Windows. Differences in hatching success (hatched versus not

hatched) and sex ratio between the two treatments were analysed

using Generalized Estimating Equation (GEE) models with a logit

link and binomial distribution. Foster nest identity was a repeated

measure, treatments (control or androgen-treated) and nest

category (AA- or BB-nest) were factors and egg mass (in g) was a

covariate. We tested for the effects of elevated yolk androgen levels

on embryonic developmental times and hatching measurements

using GEE models for repeated measures (foster nest identity) with

a linear link and Gaussian distribution, and with treatment, nest

category and sex (male or female) as fixed factors and egg mass as

a covariate. Nine hatched eggs, which were not incubated with a

sibling egg until the end of the incubation, were removed from this

analysis. Growth in body mass and size is approximately linear for

southern rockhopper penguin chicks aged between 5 and 30 days

(see [27]). Chick growth was therefore quantified using linear

regressions of body mass, head length and flipper length according

to chick age (in days) and using the growth rate (increase per day)

for each individual with at least two measurements (see [42]).

Because of the bad weather conditions, we were unable to

calculate head and flipper growth rates for four chicks. We tested

for the effects of elevated yolk androgen levels on chick growth

using GEE models for repeated measures (foster nest identity) with

a linear link and Gaussian distribution, and with treatment, nest

category, sex and presence of a sibling chick in the nest during

early growth (0 or 1) as fixed factors. Additional tests were

performed running the same GEE model procedures for the chicks

from control and androgen-treated eggs separately. We used Cox

regression models to test for differences in early survival between

chicks according to treatment, nest category, sex and presence of a

sibling chick in the nest during early growth. Chick age was used

as the time axis and robust standard errors, clustered by foster

nest, were used to adjust for the non-independence of chicks raised

in the same nest. Observations were right-censored at 13 days of

age. In all the GEE and Cox regression procedures, we started

with all the variables and their two-way interactions with

treatment. We then simplified the models using a backward model

selection procedure, starting with the least significant interaction.

Main effects were not removed from the models, regardless of their

significance. Values are presented as means 6 standard errors

(SE). Sample sizes are mentioned throughout the text.

Results

Overall, out of the 200 eggs that were injected for each

treatment, 72 control eggs and 47 androgen-treated eggs hatched.

Twenty one broods were complete (12 AA-nests and 9 BB-nests)

while 77 were incomplete (26 hatched only the androgen-treated

egg and 51 hatched only the control egg). The hatching success of

control eggs was higher than the hatching success of androgen-

treated eggs (36% of the control eggs versus 23.5% of the

androgen-treated eggs, Wald x2 = 8.21, df = 1, P = 0.004) while nest

category and egg mass did not influence hatching success

Table 1. Amounts (in ng) of testosterone (T), androstenedione (A4) and dihydrotestosterone (DHT) injected into A- and B-eggs.

Observed values Injected amounts

Hormones N Min Max Mean SD in ng in SD units

A-eggs T 193 87 569 143.6 66.47 171 2.57

A4 193 1140 9681 3361 1275 4154 3.26

DHT 127 36 130 67.57 17.86 54 3.02

B-eggs T 188 198 662 315.0 101.7 197 1.94

A4 188 3006 14283 7516 1883 4782 2.54

DHT 124 53 218 121.5 26.63 62 2.33

The amounts were calculated in relation to total yolk androgen amounts (minimum, maximum and mean 6 Standard Deviation (SD), in ng) previously measured in A-
and B-eggs of southern rockhopper penguins. Injected amounts are also shown as SD units, based on the SD observed in the non-manipulated population, for each
androgen (T, A4 and DHT) and egg category (A- and B-eggs).
doi:10.1371/journal.pone.0042174.t001
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(x2 = 0.35, df = 1, P = 0.55 and x2 = 0.10, df = 1, P = 0.76, respec-

tively). None of the interactions with treatment were significant

(x2 = 0.32, df = 1, P = 0.57 for nest category and x2 = 1.30, df = 1,

P = 0.25 for egg mass).

Out of the 116 eggs that hatched and were sexed (three chicks

disappeared before blood sampling, see methods), 39 out of 70

chicks from control eggs and 22 out of 46 chicks from androgen-

treated eggs were male. There was no difference in sex ratio

between treatments (54% male for the control eggs versus 46%

male for the androgen-treated eggs, x2 = 0.72, df = 1, P = 0.39).

Nest category and egg mass also did not influence the sex ratio

(x2 = 1.79, df = 1, P = 0.18 and x2 = 0.61, df = 1, P = 0.43, respec-

tively).

Embryonic developmental times and hatching
measurements

The androgen treatment did not affect the embryonic

developmental time to pipping (from the start of incubation to

the first crack in the egg shell), the pipping duration (from the first

crack in the egg shell to the fully emerged chick) or the total

embryonic developmental time (sum of the two previous times;

table 2). These three developmental times were not significantly

different between the two nest categories or the two sexes (table 2).

The androgen treatment did not significantly influence chicks’

mass, head length or flipper length at hatching (table 2). There

were no significant nest category and sex differences, but egg mass

had a significant positive effect on all three of these hatchling

measurements.

Chick growth
The androgen treatment significantly influenced chick growth

in interaction with the presence of a sibling chick in the nest

(table 3). Chicks from androgen-treated eggs had significantly

faster mass and flipper growth rates than chicks from control eggs

when they had a sibling (fig. 1). This difference was also almost

significant for head growth rate. In other words, chicks from

control eggs had a much slower growth rates when they did have a

sibling than when they did not (mass growth: x2 = 42.03, df = 1,

P,0.001; head growth: x2 = 34.68, df = 1, P,0.001; flipper

growth: x2 = 28.76, df = 1, P,0.001) while this difference accord-

ing to the presence of a sibling was not consistently significant for

chicks from androgen-treated eggs (mass growth: x2 = 1.73, df = 1,

P = 0.19; head growth: x2 = 4.17, df = 1, P = 0.04; flipper growth:

x2 = 0.79, df = 1, P = 0.37). In addition, head growth and flipper

growth were significantly faster for males than for females (head

growth: 1.3960.05 mm/day, n = 57 for males and

1.1860.05 mm/day, n = 53 for females; flipper growth:

Table 2. Test of the variation in embryonic developmental times and hatching measurements.

Dependent variable Factors B x2 P

Developmental time to pipping Treatment (androgen) 4.225 1.333 0.248

Nest category (BB) 28.884 1.360 0.244

Sex (male) 25.785 2.477 0.116

Egg mass 0.125 0.204 0.651

Pipping duration Treatment (androgen) 20.632 0.110 0.740

Nest category (BB) 22.416 0.402 0.526

Sex (male) 21.115 0.331 0.565

Egg mass 0.013 0.010 0.922

Total developmental time Treatment (androgen) 3.593 0.993 0.319

Nest category (BB) 211.299 1.742 0.187

Sex (male) 26.900 2.948 0.086

Egg mass 0.111 0.152 0.696

Hatching mass Treatment (androgen) 1.000 1.052 0.305

Nest category (BB) 1.400 0.565 0.452

Sex (male) 0.196 0.037 0.847

Egg mass 0.737 102.412 ,0.001

Hatching head length Treatment (androgen) 0.064 0.189 0.664

Nest category (BB) 20.128 0.186 0.666

Sex (male) 0.203 1.960 0.161

Egg mass 0.068 41.845 ,0.001

Hatching flipper length Treatment (androgen) 20.098 0.346 0.557

Nest category (BB) 20.228 0.408 0.523

Sex (male) 0.005 0.001 0.977

Egg mass 0.071 31.627 ,0.001

Results of the Generalized Estimating Equation (GEE) model procedures on embryonic developmental time to pipping (hours from the start of incubation to the first
crack in the egg shell), pipping duration (hours from the first crack in the egg shell to the fully emerged chick), total embryonic developmental time (sum of the two
previous times), hatching mass (g), hatching head length (mm) and hatching flipper length (mm) according to egg treatment (control or androgen-treated egg), nest
category (AA- or BB-nest), sex (male or female) and egg mass (in g). All non-significant interactions were removed from the model during the backward procedure. df is
always equal to 1. Significant P-values are marked in bold.
doi:10.1371/journal.pone.0042174.t002
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2.6260.09 mm/day, n = 57 for males and 2.3060.10 mm/day,

n = 53 for females; table 3).

Early survival
The presence of a sibling significantly reduced the survival

probability of a chick (table 4). However, there was also some

evidence suggesting that early survival depended on androgen

treatment in the presence of a sibling, but not when a chick was

alone. The interaction between treatment and sibling presence was

the last to be removed from the model (mortality hazard

ratio = 0.23, z = 21.61, P = 0.11). We nevertheless investigated

this further by conducting separate tests (as performed on chick

growth, and including all main effects) on chicks with and without

a sibling. In the absence of a sibling, treatment did not significantly

influence early survival (mortality hazard ratio = 1.53, z = 0.57,

P = 0.57; fig. 2). However, in the presence of a sibling the

androgen treatment significantly increased early survival (mortality

hazard ratio = 0.35, z = 22.19, P = 0.03; fig. 2). Among the 21

treatment-control pairs of chicks in which both hatched success-

fully, there were 11 in which only the androgen-treated chick

survived to 13 days and 4 in which only the control chick did so

(there were 2 nests in which both survived, and 4 nests where both

chicks died). Nest category and sex did not significantly influence

chick early survival (table 4).

Discussion

By increasing the amount of yolk androgens in freshly-laid eggs

of southern rockhopper penguins, a species with reversed hatching

asynchrony, we investigated whether yolk androgens contribute to

the superiority of the B-chick, through changes in developmental

time or growth. While the androgen treatment did not influence

embryonic developmental time and chick measurements at

hatching, it indeed affected chick growth in a context-dependent

manner and improved chick early survival in two-chick broods.

Table 3. Test of the variation in mass and size growths.

Dependent
variable Factors B x2 P

Mass growth Treatment (androgen) 23.644 1.778 0.182

Nest category (BB) 3.686 3.184 0.074

Sex (male) 4.025 3.055 0.081

Sibling presence (1) 220.867 41.980 ,0.001

Treatment6Sibling
presence

14.208 6.001 0.014

Head growth Treatment (androgen) 20.081 1.338 0.247

Nest category (BB) 0.023 0.182 0.670

Sex (male) 0.163 6.547 0.011

Sibling presence (1) 20.608 34.292 ,0.001

Treatment6Sibling
presence

0.346 4.369 0.037

Flipper growth Treatment (androgen) 20.264 3.945 0.047

Nest category (BB) 0.216 3.745 0.053

Sex (male) 0.303 6.844 0.009

Sibling presence (1) 20.914 28.659 ,0.001

Treatment6Sibling
presence

0.730 8.218 0.004

Results of the Generalized Estimating Equation (GEE) model procedures on
mass growth (g/day), head growth (mm/day) and flipper growth (mm/day)
according to egg treatment (control or androgen-treated egg), nest category
(AA- or BB-nest), sex (male or female) and the presence of a sibling chick in the
nest during early growth (0 or 1). All non-significant interactions were removed
from the model during the backward procedure. df is always equal to 1.
Significant P-values are marked in bold.
doi:10.1371/journal.pone.0042174.t003

Figure 1. Growth rates of penguin chicks during the first 13
days after hatching. Differences in mass growth (in g/day), head
growth (in mm/day) and flipper growth (in mm/day) are represented
according to the presence of a sibling chick in the nest (left bars: chicks
without a sibling; right bars: chicks with a sibling) and treatment (white
bars: chicks from control eggs; grey bars: chicks from androgen-treated
eggs). Bars show means 6 Standard Errors. The significance of the
difference between treatments obtained from Generalized Estimating
Equation (GEE) procedures with treatment (control or androgen-treated
egg), nest category (AA- or BB-nest) and sex (male or female) as factors
and foster nest identity as a repeated measure are presented above
respective bars within each sibling presence category. The sample size
is given at the base of each bar.
doi:10.1371/journal.pone.0042174.g001
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Embryonic development
In order to explain the shorter embryonic developmental times

for B-eggs compared to A-eggs, we proposed that high yolk

androgen levels, as observed in B-eggs, may play a significant role

in reversing the hatching pattern in southern rockhopper penguins

[30]. However, we did not find evidence for shorter embryonic

developmental times for androgen-treated eggs compared to

control eggs. This was the case for the three different develop-

mental time measures we looked at. We are, therefore, unable to

validate our previous hypothesis. However, while the effects of

androgen treatment on embryonic developmental times appear to

be consistent within species (for example in black-headed gulls

[13,43] and zebra finches [14,44]), they have been observed to be

inconsistent across species. Previous studies have reported either

shortened times to hatching [13,33,43,45], postponement of

hatching [14,44,46] or no influence on embryonic developmental

times (see for example [47–49]). The reasons for these differences

between species are still elusive, and it thus remains unclear why

yolk androgens could not be shown to affect embryonic

development in our study species. However, part of the

between-species variation could be due to differences in the type

of hormones injected: some studies manipulating several andro-

gens, while others manipulated only a single androgen (e.g. only

testosterone for yellow-legged gull Larus michahellis [47,49] but

testosterone and androstenedione for black-headed gull [13,43]).

Interestingly, we did not find differences in developmental times

between A- and B-eggs, as have been reported previously under

natural conditions (see for examples [27,28]). The eggs here were

incubated with a sibling egg of similar mass. This, in combination

with a previous study showing no differences in developmental

time in single incubated eggs [27] strongly suggests that the egg

size asymmetry between A- and B-eggs drives the reversal of the

hatching pattern. The larger B-egg may get a better incubation

position and closer contact with the brood patch (see [50] for a

discussion on this subject) facilitating embryonic development.

When interpreting the results, it has to be taken into account

that the hatching failure was rather high (70%, but see

[13,14,51,52] for similar negative effects on hatching successes

with 61–69% hatching failure). This may relate to a high natural

rate of hatching failure that we previously observed for the entirely

untreated eggs of this population (34%, [27]). Yet, the hatching

success also differed between treatments. The mechanism(s) and

cause(s) behind this bias remain unclear, but testosterone has been

shown to cause developmental arrest in embryos of other animal

species (see [53]). The androgen levels reached after injection (an

average increase of 2.61 standard deviations) could also have

contributed to the hatching failures, as the elevation is somewhat

higher than the 2 standard deviations typically injected [36–38].

The observed negative effects on hatchability may, independently

of the mechanism(s) involved, form a cost of maternal androgen

deposition that has to be considered when discussing the costs and

benefits of yolk androgens. It may give rise to a biased sample in

the androgen-treated group compared to the control group,

although the treatment groups did not differ in the mass, size and

sex of chicks at hatching, which argues against the idea that the

treatment did select for the high quality offspring.

Table 4. Hazard ratios for early chick mortality according to
egg treatment (control or androgen-treated egg), nest
category (AA- or BB-nest), sex (male or female) and the
presence of a sibling chick in the nest during early growth (0
or 1).

Factors
Hazard
ratio z P [95% conf. Interval]

Treatment
(androgen)

0.501 21.63 0.103 0.218 1.151

Nest
category (BB)

0.620 21.24 0.214 0.291 1.318

Sex (male) 1.045 0.14 0.885 0.571 1.913

Sibling
presence (1)

8.509 4.81 ,0.001 3.554 20.370

Cox proportional hazards models were used. All non-significant interactions
were removed from the model during the backward procedure. df is always
equal to 1. Significant P-values are marked in bold.
doi:10.1371/journal.pone.0042174.t004

Figure 2. Early survival of the injected southern rockhopper penguin chicks during the first 13 days after hatching. Differences are
shown according to egg treatment (black lines: control eggs; grey lines: androgen-treated eggs) and the presence of a sibling chick in the nest
(dashed lines: single chick without a sibling; solid lines: chick with a sibling). The sample size is given between brackets for each of these four groups.
doi:10.1371/journal.pone.0042174.g002

Elevated Yolk Androgens in Penguins

PLoS ONE | www.plosone.org 6 July 2012 | Volume 7 | Issue 7 | e42174



Chick growth and survival
The effect of treatment on chick growth and survival differed

according to the presence or absence of a sibling, pointing towards

nutritional limitations in the context of sibling competition. The

androgen treatment benefitted chick growth in interaction with the

number of siblings in a brood. In the presence of a sibling, chicks

from androgen-treated eggs had faster growth rates than chicks

from control eggs. Under these circumstances they also had a

higher survival probability. In other words, chicks from control

eggs suffered more from sibling competition, in terms of reduced

growth and survival, while chicks from androgen-treated eggs

suffered much less from sibling competition. Although males grew

more quickly than females, as previously reported in this species

[39], we did not find a sex difference in the response to the

androgen treatment (see [44,54,55], but see [49]).

As suggested by Eising et al. [13], the effect of yolk androgens

on chick growth and survival could be at least partly mediated by

their effect on sibling competition. Similarly to plasma androgens

(see [56,57] for reviews), yolk androgens could increase aggressive

behavioural traits [43] and begging for parental food [33],

providing a competitive advantage for B-chicks (see reviews in

[8,10,11]). Yolk androgens may also directly accelerate growth

and development [11], which in turn allows better access to food

resources (from feeding females) if sibling competition is size

dependent. Alternatively, parental favouritism in food allocation

could have been indirectly affected by the androgen treatment

through an effect on plumage or beak colouration for example (but

see [12]). These three processes may have promoted the early

survival pattern observed in this study (see also [44,58]). Future

studies including behavioural observations would be necessary to

disentangle the effects of each of these potential mechanisms.

In conclusion, we did not find any evidence that yolk androgens

contribute to the reversed hatching pattern in southern rockhop-

per penguins. After hatching, however, we show that elevated yolk

androgen levels benefit the chicks in terms of their early growth

and to some extent survival in the context of sibling competition.

This is in line with the idea that maternal yolk androgens adjust

offspring phenotype to specific environmental conditions, implying

that the costs and benefits of yolk androgens depend on the

environmental circumstances. These benefits may indeed have to

be traded-off against the negative effects of elevated yolk

androgens such as on hatchability. Higher yolk androgen levels

in B-eggs could be an adaptive strategy for females to further

enhance the superiority of the (mostly older and larger) B-chick,

enabling a quicker elimination of A-chicks under unfavourable

conditions. This may also explain why late clutches had

proportionally higher androgen levels in the B-egg than early

clutches [30].
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