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Abstract. We introduce a dissipation term in the Gross–Pitaevskii equation
that describes the stimulated relaxation of condensed bosons due to scattering
with different types of particles. This situation applies to Bose–Einstein
condensates of quasi-particles in the solid state, such as magnons and excitons.
Our model is compatible with the phenomenology of superfluidity: supercurrents
are stable up to a critical speed and decay when they are faster. We apply our
model to a description of the relaxation of polariton condensates in a shallow
trap.
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1. Introduction

The Gross–Pitaevskii equation (GPE) provides an excellent description of an isolated dilute
Bose gas at low temperature. For example, the GPE accurately describes the density profiles
and frequencies of elementary excitations of trapped ultracold atomic Bose gases [1].
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Figure 1. Schematic illustration of the relaxation of polaritons due to scattering
with phonons. Several modes in a random potential are macroscopically
occupied. Where they spatially overlap, relaxation takes locally place from the
high- to the low-frequency modes, as indicated by the arrows.

Systems featuring Bose–Einstein condensation (BEC) of quasi-particles in the solid state,
such as (exciton-) polaritons [2] and magnons [3], are however not so well isolated from their
environment as the atomic gases. In semiconductor microcavities for example, the polaritons
that form a Bose–Einstein condensate undergo scattering with lattice phonons and with high-
energy excitons. These interactions allow the polaritons to relax toward lower energy.

The Boltzmann equation is the easiest way of modeling these scattering dynamics
theoretically [4]. The semiclassical approximation involved in this approach becomes,
however, problematic when the polariton gas enters the condensed phase. Most importantly,
supercurrents, which are a gradient of the phase of the polariton field, are missed. This precludes
e.g. the description of vortices in polariton condensates [5], which appear naturally in the GPE.

In order to allow for a simultaneous description of supercurrents and of the relaxation
due to interactions with the environment, we will present here a dissipation term that can be
added to the GPE. This term models the transitions between components of the GPE field at
different frequencies (see figure 1). For specificity, we will use in the following the terminology
of ‘polaritons’ relaxing through ‘phonon scattering’, but our formalism is applicable to any
dilute Bose gas that dissipates energy into the environment.

The same model has already been applied to the description of the relaxation of currents
in polariton nanowires [13] in the paper [14]. Here, we will discuss in general the properties of
extensions of the GPE that include dissipation. In particular, an important requirement of the
theory is compatibility with superfluidity. According to the Landau criterion [1], the superflow
cannot relax due to phonon scattering as long as the superfluid velocity is below the critical
speed. A Boltzmann description that includes phonon scattering violates this requirement:
a Bose gas with initially all the particles at finite momentum k = kc will relax to a state with the
majority of particles in the ground state k = 0. We will show below that our GPE-based model
for phonon relaxation is instead fully in agreement with the Landau criterion for the stability
of superflow slower than the critical speed. In addition, it provides a dynamical model for the
dissipation of superflow when the speed exceeds the critical one.
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The outline of the paper is as follows. In section 2, we will derive the dissipation term that
can be added to the GPE. As a first example, it is applied to the simple case of two coupled
traps (Josephson junction) in section 3. In the next section, we consider the homogeneous Bose
gas, for which we investigate the damping of the elementary excitations. Finally, in section 5,
we turn to a more complex example of nonresonantly excited polaritons that relax in a quadratic
trapping potential. The conclusions are presented in section 6.

2. The model

The states in sketch 1 can be labeled by their frequencies ω. This involves a coarse graining
of the time, analogous to the coarse graining of space used in the semiclassical Boltzmann
equation [6]. We will use the following definition of the time-dependent spectrum of the Bose
field ψ(x, t):

ψω(x, t)=
1

T

∫ t

t−T
eiωt ′ ψ(x, t ′) dt ′, (1)

where T is the coarse graining time step. The inverse transform reads

ψ(x, t)=

∑
ω

e−iωtψω(x, t). (2)

We will derive the classical field equation that describes relaxation between the states at
different frequencies in two different ways. First, we will start from a rate equation model that
we rewrite as a field equation. The second derivation will be more fundamental and start from
the Heisenberg equations of motion for the Bose field that interacts with a localized phonon
bath.

Spontaneous scattering is a quantum feature that is difficult to describe with a classical
field model such as the GPE. We therefore, restrict the relaxation to the stimulated processes,
which are described by the rate equation

dnω(x, t)= nω(x, t)
∑
ω′

r(ω, ω′)nω′(x, t) dt, (3)

where r(ω, ω′) is the net scattering rate from the mode at frequency ω′ to the mode at ω. In
order to conserve particle number, the relaxation rate should change sign under exchange of ω
and ω′: r(ω, ω′)= −r(ω′, ω). The first term in the expansion of the rate as a function of the
frequency difference is therefore

r(ω, ω′)= κ (ω′
−ω), (4)

where the relaxation constant κ has the dimension of an inverse density. Equation (4) is, for
example, the form of the scattering rate obtained with the golden rule for the relaxation of
quantum well excitons due to scattering with acoustic phonons [7].

The rate equations (3) describe transitions between states that are characterized by their
position and energy. We have chosen a dissipation mechanism that is local in real space. The
validity of this assumption depends on the specific system under study. It is expected to be a
good approximation when the coherence length of the ‘phonon bath’ is much shorter than the
characteristic length scale of the Bose system. This is for example the case for the relaxation of
polaritons through scattering with high-energy excitons.
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Under the change of the density (3), the wave function varies as

ψω(x, t)+ dψω(x, t)=

√
nω(x, t)+ dnω(x, t)

nω(x, t)
ψω(x, t), (5)

where we used the fact that a stimulated relaxation process does not change the phase of ψ .
Expanding equation (5) to first order in dnω, we obtain for the change of the wave function

d

dt
ψω(x, t)=

(
1

2nω(x, t)

dnω(x, t)

dt

)
ψω(x, t). (6)

Substituting into equation (6) equations (3) and (4) and using the inverse transform (2), one
obtains for the relaxation dynamics of the wave function

∂

∂t
ψ(x, t)

∣∣∣∣
relax

=
κ n̄(x, t)

2

[
µ̄(x, t)−

i∂

∂t

]
ψ(x, t). (7)

In the derivation, boundary terms in the partial integration that scale as 1/T were neglected,
because we consider the limit of a large coarse graining time where 1/T is smaller than any
other relevant frequency scale. In equation (7), n̄ and µ̄ are the time-averaged density and
chemical potential, respectively:

n̄(x, t)=
1

T

∫ t

t−T
|ψ(x, t ′)|2dt ′, (8)

µ̄(x, t)=
1

n̄(x, t)
Re

[
1

T

∫ t

t−T
ψ∗(x, t ′)

i∂

∂t
ψ(x, t ′)dt ′

]
. (9)

The real part is taken in equation (9), because it is readily shown with the Madelung
transformation ψ =

√
n eiθ that the imaginary part of the integral in equation (9) scales as 1/T .

Equation (7) gives the term that was sought to describe the stimulated relaxation of a classical
Bose field due to local scattering with phonon-like particles. The appearance of the effective
chemical potential in equation (7) should not be confused with its appearance in the usual GPE.
In this case, it gives rise to an exponential variation of the field amplitude and does not give a
mere phase factor.

Let us now rederive equation (7) starting from a Hamiltonian that couples the Bose field to
a phonon bath. For a localized phonon bath, the coupling can be described by

HP =

∑
x,i

giψ
†(x)ψ(x)[bi(x)+ b†

i (x)], (10)

which describes the interaction of the bosonic field ψ with localized phonons bi , whose
frequency we denote by ωi . Because we are deriving a mean-field theory, we replace the
quantum field ψ by classical field in the following derivation.

Treating the effect of HP as a perturbation on the equation of motion for the bosons, we
have to first order in the coupling constant gi

[δψ(x, t)−ψ(x, t = 0)]relax =

(∑
i

∫
dt ′ e−iωi (t−t ′)ψ†(x, t ′)ψ(x, t ′)

)
ψ(x, t). (11)
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Using the Fourier expansion (2), we can rewrite to lowest order the relaxation contribution
to the dynamics as

[δψ(x, t)−ψ(x, t = 0)]relax

=

∑
ω,ω1,ω2

(∑
i

|gi |
2

∫ t

0
dt ′ e−iωi (t−t ′)−i(ω2−ω1)t ′−iωtψ†

ω1
(x, t ′)ψω2(x, t ′)

)
ψω(x, t).

(12)

We now assume that the temporal Fourier components at different frequencies have no fixed
phase relation. This means that only the terms with ω1 = ω2 and ω1 = ω contribute. The former
implies that the phonon frequency ωi = 0, while the latter contribution describes a relaxation
process where a particle from the mode at frequency ω relaxes to the mode at frequency ω1. For
phase matching conditions ωi = ω2 −ω, the time integral in equation (12) rises linearly with t ,
giving

[δψ(x, t)−ψ(x, t = 0)]relax = t
∑
ω2

r(ω, ω2) e−iω2t
|ψω(x, t)|2ψω2(x, t). (13)

Under assumption (4), we obtain again equation (7).
The right-hand side of equation (7) resembles the frequency-dependent amplification term

that was introduced in [9] to describe an energy-dependent gain mechanism:

∂ψ/∂t = (P/�K )[�K − i∂/∂t]ψ. (14)

Two main differences should be emphasized. First, here the relaxation term is proportional to
the polariton density n̄, whereas in [9], the relaxation is proportional to the gain from the
reservoir P . The second important difference is that the gain cut-off frequency �K is replaced
by the average frequency µ̄. As a consequence, particle loss and gain balance each other and
there is no net gain in equation (7). The modes with frequency ω > µ̄ experience loss, where
the ones with ω < µ̄ are amplified. Phonon absorption is thus not included in our model. The
relaxation (7) is due to the interaction with an environment that is effectively at zero temperature.

Our dissipation term also resembles the one that was phenomenologically introduced by
Pitaevskii [8] for liquid helium and investigated by Choi et al for cold atoms [22] and reads

dψ(x, t)

dt

∣∣∣∣
relax

= −3
i∂

∂t
ψ. (15)

In the case of ultracold atoms, where the bosons are extremely well isolated from any
environment, the relaxation processes are due to the interaction of the condensate with the
thermal atoms. Microscopic calculations considering such interactions that lead to an equation
of the form (15) can be found in [20].

Despite the similarity between equations (7) and (15), there are several differences. Firstly,
the relaxation rate in equation (15) does not depend on the condensate density, but it does
in equation (7). Physically, stimulated relaxation however accelerates the relaxation when the
density is higher. Secondly, the model (15) does not conserve the number of particles. This is
remedied in practice by restoring the norm of the wave function in the numerical integration of
the dynamics after each relaxation step by a global normalization of the wave function. Such a
normalization may affect the density in regions where no relaxation has taken place at all. In
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Figure 2. Dynamics of the relative phase (1θ ) and density on the first well
(n1) for two wells coupled by tunneling and dissipating through the emission of
phonons. The initial condition was taken to be ψ1,2 = e±i0.05. Inset: the decay of
the projection of the wave function on the excited state from the full model (16)
(full line) is excellently reproduced by the exponential decay exp(−2Jκn1t)
obtained from equation (3) (dashed line). The phonon relaxation constant was
taken as κ = 0.05 and the coarse graining time scale T = 20J −1.

this sense, the model (7) is more satisfactory from a physical point of view, because the particle
number is locally conserved.

3. Decay of Josephson oscillations

As a first application, we add the dissipation term (7) to the GPE for noninteracting particles
in two coupled levels. In the context of polariton condensation, the coupled two-level system
describes, for example, the situation of spatially distinct potential wells [10] or the polarization
degree [11]. The full dynamics is

i
∂

∂t
ψ j(t)= −Jψ3− j + i

κ n̄ j(t)

2

[
µ̄ j(t)−

i∂

∂t

]
ψ j(t) (16)

for j = 1, 2, where J is the coupling energy. Figure 2 shows the time evolution of the densities
in the two states, obtained from the numerical integration of equation (16). The initial wave
function is taken to have equal amplitudes on the two states and a small phase difference
between them. Due to the dissipation, the Josephson oscillations are damped. Note that the time
evolution (16) drives the system automatically into the ground state and that the eigenstates
of the Hamiltonian were not explicitly needed to compute the phonon scattering rates. The
contribution of the excited state |ψA〉 to the wave function is shown in the inset of figure 2. Its
exponential decay predicted by equation (16) (solid line) is excellently reproduced with the rate
obtained from equation (3) (dashed line).
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We have numerically checked that the dissipative dynamics conserves particle number in
the limit of a small time step in the numerical integration. We correct the residual deviation by
restoring the norm of the wave function after each application of the dissipation operator.

4. The homogeneous Bose gas and superfluidity

In extended systems, the macroscopic phase coherence of the Bose gas leads to the appearance
of superfluid properties. A specific manifestation is the stability of condensate superflows. When
a condensate is created with a finite momentum kc, it will maintain this momentum even when
it can scatter with the environment.

The original discussion by Landau of this stability of the supercurrents was based on
thermodynamic considerations for the creation of excitations on top of the condensate. When
the low-energy dispersion of the excitations is linear ω(k)= ck, it is energetically not favorable
to create excitations when the condensate speed vc = kc/m is below the speed of sound c [1].
This results in a dissipationless flow of the condensate. For the case when the excitations are
created by elastic scattering on static defects, it was shown that the force on the defect can be
extracted from the GPE [23]. When vc < c, this force is indeed found to vanish, whereas it is
nonzero when vc > c.

The GPE description of the effect of inelastic scattering with the environment, such as
dissipation by phonon emission, is the subject of the discussion below. The GPE for the
homogeneous interacting Bose gas supplemented with the phonon-scattering term reads

i
∂

∂t
ψ =

[
−

∇
2

2m
+ g|ψ |

2 + i
κ n̄

2

(
µ̄−

i∂

∂t

)]
ψ. (17)

The usual steady-state solution ψ0(x, t)=
√

nc e−iµt+ikcx is still a solution to equation (17)
with µ= k2

c/2m + gnc, where kc is the condensate momentum, g the interaction constant and
nc the condensate density. This solution describes a superflow. In order to find out whether
it is dynamically stable, we linearize the GPE around this solution. The excitations on top
of the condensate can be described by the wave function ψ(x, t)= ψ0(x, t)[1 + u eikx−iω(k)t +
v∗ e−ikx+iω∗(k)t ]. Linearizing the equations of motion in u and v is not more difficult than in the
standard case, because to first order in u and v, the average density n̄ and frequency µ̄ do not
change. The spectrum of the elementary excitations is given by the eigenvalues of the matrix

B =


(k2/2 + kkc)/m + gnc

1 + iκnc/2

gnc

1 + iκnc/2

−gnc

1 − iκnc/2

(−k2/2 + kkc)/m + gnc

1 − iκnc/2

 . (18)

In the small dissipation limit κn � 1, the frequencies of the elementary excitations read

ω(k)= ±

√
ω2

B(k)− (gκn2
c/2)2 + kkc/m − i

κnc

2

[
k2/2m + gnc

ωB(k)

]
[ωB(k)± kkc] . (19)

Note that the correction quadratic in κnc to the usual Bogoliubov dispersion ωB(k)=√
gnck2/m + k4/4m under the square root on the first line in equation (19) is necessary to satisfy

the Goldstone theorem that requires at least one branch of elementary excitations to have exactly
zero real and imaginary parts of the frequency for k → 0.

New Journal of Physics 14 (2012) 075020 (http://www.njp.org/)

http://www.njp.org/


8

Importantly, for a condensate wave vector below the critical one kcrit = min[ωB(k)/k],
the elementary excitations have a negative imaginary part and the condensate is dynamically
stable against decay into a lower-energy state. As soon as kc > kcrit, the imaginary part of the
excitations becomes positive and the condensate becomes unstable with respect to decay toward
a lower momentum. In agreement with the thermodynamical considerations of Landau [1], the
phonon scattering is able to dissipate the supercurrent only when the condensate velocity is
above the critical speed. In the present dynamical model (17), the energetic instability gives rise
to a dynamical one, because the dissipative environment is explicitly included and describes the
kinetics of the supercurrent’s decay.

A natural question is whether the decay rate of the excitations (19) that follows from the
extended classical GPE is reproduced by a quantum calculation for the decay of Bogoliubov
excitations. To this end, we compute with the golden rule the decay rate of Bogoliubov
excitations due to the interaction Hamiltonian (10).

When there is a condensate, the dominant contribution comes from the terms in which one
component of the Bose field is at k = 0,

HP ≈
√

nc

∑
x,i

gi [δψ
†(x)+ δψ(x)][bi(x)+ b†

i (x)], (20)

in linear approximation in the field fluctuations, defined as ψ(x)=
√

nc + δψ(x).
With the golden rule, the decay rate is proportional to the square of the matrix element

M = 〈 f |HP|i〉. (21)

The initial state contains one Bogoliubov excitation |i〉 = α
†
k |0〉, where αk = ukψk + v∗

−kψ
†
−k

anihilates the Bogoliubov quasi-particles. The final state contains a phonon | f 〉 = b†
i (y)|0〉.

Substituting equation (20) into (21) gives

|M |
2
∼ (uk + vk)

2
=

k2/2m + 2gnc

ωB(k)
. (22)

This matrix element is of the same form as the factor in square brackets in equation (19), but
the interaction term in the numerator is multiplied by a factor of two. The same expression as
in equation (19) would be obtained when equation (22) would read |M |

2
∼ u2 + v2, suggesting

that the classical approximation involved in the GPE does not retain the coherence between the
normal and the anomalous component of the Bogoliubov excitations. The incoherence of the
waves at different frequencies was indeed an assumption in the transition between equations (12)
and (13).

In the context of ultracold atoms in optical lattices, the connection between the Landau
critical velocity and the decay rate of excitations was investigated with a dissipative GPE in [21].
The origin of the damping was in this case the Landau damping of the condensate due to
collisions with atoms in the thermal cloud [1]. They also found that the decay rate changes
sign when the superfluid velocity exceeds the Landau critical velocity.

5. Relaxation in polariton traps

As a last illustration, we describe the relaxation of polaritons in a harmonic trap as observed
in [12]. When polaritons were created off-center, relaxation toward the lower-energy state
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Figure 3. Relaxation of a polariton condensate that is nonresonantly created
by a pump profile (yellow line) that is not centered at the minimum of the
effective trapping potential (gray line). (a) In the absence of a relaxation
mechanism (κ = 0), the polaritons accelerate ballistically when moving toward
the bottom of the potential: the energy-resolved real-space distribution shows
a single frequency for the condensate. (b) When the dissipation mechanism
is present (κ = 0.05µm2), the polaritons relax to the bottom of the trap. The
condensate frequency in the center of the trap is different from the condensate
frequency in the pumping area. (c) When disorder is added, also states at
intermediate energy are populated. The yellow line shows the excitation intensity
P and the gray line represents the effective potential Veff. Other parameters:
h̄γ = 0.05 meV, mL P/h̄

2
= meV−1 µm−2, h̄ P = 1 meVµm−2, h̄γR = 0.5 meV

and h̄ R(nR)= (1 meVµm2)nR.

in the middle of the trap was observed. This experimental configuration is illustrated in
figure 3. Another striking evidence of the relaxation mechanism modeled here is the very recent
experimental result reported by Wertz et al [13, 14].

In polariton condensates, a steady state can be reached when new particles are continuously
injected by optical excitation. In order to avoid the pinning of the condensate phase by the
excitation laser, the additional particles are created at a frequency different from the condensate
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one (nonresonant excitation). In the case of a far detuned laser, the excitation creates free
electron hole pairs that relax to form an excitonic reservoir. Further relaxation of the excitons
into the lower polariton branch then provides a gain for the condensate. A steady state is reached
when gain and losses compensate for each other. The stimulated part of the scattering into the
lower polariton branch can be modeled by introducing a gain term in the GPE [15, 16]. The full
dynamics of the polariton gas including trapping, nonresonant pumping and relaxation is given
by

i
∂

∂t
ψ = −

[
h̄∇

2

2m
+ Veff −

i

2
[γ − R(nR)] + g|ψ |

2 +i
κ n̄

2

(
µ̄−

i∂

∂t

)]
ψ. (23)

Here γ is the loss rate and the function R(nR) describes the gain of the lower polariton branch
thanks to stimulated scattering from the nonresonantly excited excitons in the reservoir with
density nR. The exciton density can be described by the rate equation

d

dt
nR = −γRnR − R(nR)|ψ |

2 + P, (24)

where γR is the reservoir relaxation rate and P the nonresonant pumping rate. The effective
potential Veff = Vtrap + Vexc consists of the trapping potential Vtrap and the blue shift due to the
high-energy excitons, proportional to the pumping term Vexc = GP [17].

It is worth pointing out that equation (23) actually describes two relaxation mechanisms:
(i) from the excitonic reservoir into the lower polariton branch and (ii) from high- to low-
energy polariton states. Only the second relaxation process is modeled with the new dissipation
mechanism derived here (the term on the second line of equation (23)).

In the absence of the relaxation term, the model (23) and (24) predicts a condensate at a
single frequency (see figure 3(a)). The frequency of the condensate coincides with the potential
energy at the center of the pumping spot. Away from the pumping spot, the potential energy is
converted into kinetic energy.

On the other hand, when the relaxation is included (figure 3(b)), a condensate also appears
at an energy close to the bottom of the trap. It is important to highlight that the steady-state
solution consists of two condensates at well-defined frequencies. As our mean-field model only
describes the coherent part of the bosonic field and neglects the fluctuations due to spontaneous
scattering and losses, the condensate line width vanishes. To make them visible in the figure,
the linewidths of the states in the figures are numerically enhanced.

Physically, it is likely that a large contribution to the relaxation within the lower polariton
branch comes from the scattering of polaritons with reservoir excitons. Indeed, estimates
based on the golden rule for exciton–phonon scattering [7] yield a relaxation constant of
the order of κ ≈ 10−4 µm2. Our numerical simulations show relaxation toward the bottom
of the lower polariton branch for κn > 0.1. If exciton–phonon scattering was the only
relaxation mechanism, it would require a polariton density n = 103 µm−2, much larger than
the experimental estimates [12].

Figure 2(b) is fully in agreement with the experimental observations in [12]. Differently
from our simulations however, in experiments polariton luminescence was observed at all
frequencies between the pump region and ground state [12]. In the theoretical simulations,
this intermediate energy luminescence appears when a disorder potential is added to the global
quadratic trapping potential. In experiments, disorder acting on polaritons is present mainly due
to fluctuations in the distance between the microcavity mirrors. Figure 2(c) shows the steady
state for a simulation where a disorder potential was included. Between the polaritons in the
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pumped region and at the bottom of the trap, a state at intermediate energy appears. The disorder
enhances the occupation of states at energies between the pumped region and the bottom of the
external potential. The relaxation now occurs in a cascaded way.

6. Conclusions

We have presented a number-conserving relaxation term for the GPE that describes the
stimulated relaxation of a Bose gas due to its interaction with the environment. We have applied
this model to study the damping of the elementary excitations of the homogeneous Bose gas.
The damping rate is found to change sign when the condensate reaches the critical velocity.
Above this speed, the condensate becomes unstable, in agreement with the Landau criterion.
When the relaxation term is added to the generalized GPE for driven-dissipative condensates,
we are able to describe the relaxation of a nonresonantly pumped polariton condensate in a
shallow trapping potential.

Further applications of the relaxation in the description of polariton condensates include
the relaxation of nonresonantly excited polariton condensates in periodic potentials [18] and the
interplay of phonon relaxation with parametric scattering [19].

Acknowledgments

We are indebted to V Savona, B Pietka, I Carusotto, K Lagoudakis, T Liew and F Manni for
stimulating discussions. This work was financially supported by the FWO Odysseus program
and UA.LP.2011.

References

[1] Pitaevskii L P and Stringari S 2003 Bose–Einstein Condensation (Oxford: Clarendon)
[2] Keeling J et al 2007 Semicond. Sci. Technol. 22 R1
[3] Demokritov O et al 2006 Nature 443 430
[4] Deng H, Haug H and Yamamoto Y 2010 Rev. Mod. Phys. 82 1489
[5] Lagoudakis K G et al 2008 Nature Phys. 4 706
[6] Haug H and Jauho A 2008 Quantum Kinetics in Transport and Optics of Semiconductors (Berlin: Springer)
[7] Cao H T et al 2004 Phys. Rev. B 69 245325
[8] Pitaevskii L P 1958 Zh. Eksp. Teor. Fiz. 35 408

Pitaevskii L P 1959 Sov. Phys.—JETP 35 282
[9] Wouters M and Carusotto I 2010 Phys. Rev. Lett. 105 020602

[10] Lagoudakis K G et al 2010 Phys. Rev. Lett. 105 120403
[11] Shelykh I A, Solnyshkov D D, Pavlovic G and Malpuech G 2008 Phys. Rev. B 78 041302
[12] Balili R et al 2007 Science 316 1007
[13] Wertz E et al 2010 Nature Phys. 6 860
[14] Wouters M, Liew T H C and Savona V 2010 Phys. Rev. B 82 245315
[15] Wouters M and Carusotto I 2007 Phys. Rev. Lett. 99 140402
[16] Keeling J and Berloff N G 2008 Phys. Rev. Lett. 100 250401
[17] Wouters M, Carusotto I and Ciuti C 2008 Phys. Rev. B 77 115340
[18] Lai C W et al 2007 Nature 450 529

New Journal of Physics 14 (2012) 075020 (http://www.njp.org/)

http://dx.doi.org/10.1088/0268-1242/22/5/R01
http://dx.doi.org/10.1038/nature05117
http://dx.doi.org/10.1103/RevModPhys.82.1489
http://dx.doi.org/10.1038/nphys1051
http://dx.doi.org/10.1103/PhysRevB.69.245325
http://dx.doi.org/10.1103/PhysRevLett.105.020602
http://dx.doi.org/10.1103/PhysRevLett.105.120403
http://dx.doi.org/10.1103/PhysRevB.78.041302
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1038/nphys1750
http://dx.doi.org/10.1103/PhysRevB.82.245315
http://dx.doi.org/10.1103/PhysRevLett.99.140402
http://dx.doi.org/10.1103/PhysRevLett.100.250401
http://dx.doi.org/10.1103/PhysRevB.77.115340
http://dx.doi.org/10.1038/nature06334
http://www.njp.org/


12

[19] Baumberg J J et al 2000 Phys. Rev. B 62 R16247
Stevenson R M et al 2000 Phys. Rev. Lett. 85 3680
Houdré R et al 2000 Phys. Rev. Lett. 85 2793

[20] Stoof H T C and Bijlsma M J 2001 J. Low Temp. Phys. 124 431
Gardiner C W and Zoller P 1997 Phys. Rev. A 55 2902
Zaremba E, Nikuni T and Griffin A 1999 J. Low Temp. Phys. 116 277

[21] Konabe S and Nikuni T 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S101
[22] Choi S, Morgan S A and Burnett K 1998 Phys. Rev. A 57 4057
[23] Astrakharchik G E and Pitaevskii L P 2004 Phys. Rev. A 70 013608

New Journal of Physics 14 (2012) 075020 (http://www.njp.org/)

http://dx.doi.org/10.1103/PhysRevB.62.R16247
http://dx.doi.org/10.1103/PhysRevLett.85.3680
http://dx.doi.org/10.1103/PhysRevLett.85.2793
http://dx.doi.org/10.1023/A:1017519118408
http://dx.doi.org/10.1103/PhysRevA.55.2902
http://dx.doi.org/10.1023/A:1021846002995
http://dx.doi.org/10.1088/0953-4075/39/10/S10
http://dx.doi.org/10.1103/PhysRevA.57.4057
http://dx.doi.org/10.1103/PhysRevA.70.013608
http://www.njp.org/

	1. Introduction
	2. The model
	3. Decay of Josephson oscillations
	4. The homogeneous Bose gas and superfluidity
	5. Relaxation in polariton traps
	6. Conclusions
	Acknowledgments
	References

