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Abstract

We introduce and evaluate a post-processing technique for fast denoising diffusion-weighted MR 

images. By exploiting the intrinsic redundancy in diffusion MRI using universal properties of the 

eigenspectrum of random covariance matrices, we remove noise-only principal components, 

thereby enabling signal-to-noise ratio enhancements, yielding parameter maps of improved quality 

for visual, quantitative, and statistical interpretation. By studying statistics of residuals, we 

demonstrate that the technique suppresses local signal fluctuations that solely originate from 

thermal noise rather than from other sources such as anatomical detail. Furthermore, we achieve 

improved precision in the estimation of diffusion parameters and fiber orientations in the human 

brain without compromising the accuracy and/or spatial resolution.
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1. Introduction

In vivo exploration of microstructure of biological tissues has been made possible by the 

development of diffusion Magnetic Resonance Imaging (dMRI) (Jones, 2010a). The dMRI 

signal is sensitized to the stochastic thermal motion of water molecules and their interaction 

with surrounding microstructure by applying diffusion-encoding gradients. Unfortunately, 

due to the signal-attenuation induced by diffusion-sensitization and T2 relaxation resulting 

from the long echo time necessary to accommodate gradient pulses, the signal-to-noise ratio 

(SNR) of the diffusion-weighted (DW) MR signals is inherently low (Jones, 2010b).

Thermal noise that corrupts dMRI measurements propagates to the diffusion parameters of 

interest and, as such, hampers visual inspection and quantitative interpretation of the 
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underlying diffusion process. Although attempts have been made to minimize the noise 

propagation by optimizing diffusion encoding settings (Jones et al., 1999; Poot et al., 2010; 

Hansen et al., 2013, 2015), scan time limitations put a bar on what is to gain with protocol 

optimization in terms of precision. Therefore, image denoising, i.e. minimizing the variance 

of the dMRI signals in a post-processing step, is essential to raise that bar.

Denoising has been an important and long-standing problem in image processing. Some of 

the proposed techniques were adopted by the dMRI community in the last few years because 

of their ability to deal with the spatially varying and non-Gaussian nature of noise in 

magnitude MR data. Overall, many of these methods share an underlying similarity in terms 

of their structure, which is based on weighted averages of voxels, where the voxels (and 

weights) are selected by metric similarity of patches (Buades et al., 2005; Coupé et al., 2006; 

Manjón et al., 2008, 2010; Orchard et al., 2008; Rajan et al., 2011, 2012; Foi, 2011). 

Limitations are typically loss of spatial resolution of the image (blur) and introduction of 

additional partial volume effects that lead to complications in further quantitative analyses or 

to biases in diffusion modeling. An alternative approach was pioneered by Rudin et al. 

(1992), who proposed total variation (TV) minimization, which is a method based on the 

principle that local signal fluctuations increase the L1 norm of image gradient. The main 

benefit of such TV-based noise removal techniques is that they are well-suited to remove 

local noise variations while preserving the edges in the images. Limitations are the 

dependency on a regularization term, introduction of reconstruction artifacts, and the fact 

that thermal noise is not the sole source of local variations. Indeed, fine anatomical details 

might be removed as well by this non-selective technique (Block et al., 2008; Knoll et al., 

2011; Veraart et al., 2015; Perrone et al., 2015).

In 1933, Hotelling seeded the idea of noise removal by means of transforming a redundant 

dataset into a principal component basis and preserving only the signal-carrying principal 

components by suggesting “perhaps neglecting those whose contributions to the total 
variance are small.” (Hotelling, 1933). Indeed, the principal component analysis (PCA) of 

redundant data shows that most of the signal-related variance is contained in a few 

components, whereas the noise is spread over all components. Redundancy in data is 

commonly pursued by a local or non-local selection of image patches, a non-trivial and 

time-consuming approach, especially in case of spatially varying noise (Deledalle et al., 

2011; Manjón et al., 2015). Fortunately, it has been shown that typical dMRI data exhibit 

sufficient redundancy due to common practice of oversampling the q-space (Veraart et al., 

2016).

The number of signal-carrying principal components, i.e. the number of components that 

significantly contribute to the description of the underlying diffusion process, is unknown 

and is expected to depend on imaging factors such as resolution, b-value and SNR. Hence, 

an objective criterion to discriminate between the signal-carrying and noise-only 

components has been missing. In other words, it had remained unclear what “small 

contributions to the total variance” (Hotelling, 1933) actually means. Commonly used 

criteria include thresholding of the eigenvalues associated with the principal components by 

an empirically set value (Manjón et al., 2013).

Veraart et al. Page 2

Neuroimage. Author manuscript; available in PMC 2017 November 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this work, we will objectify the above-mentioned threshold for PCA denoising by 

exploiting the fact that noise- only eigenvalues are expected to obey the universal 

Marchenko-Pastur law, a result of the random matrix theory for noisy covariance matrices 

(Marchenko and Pastur, 1967). This article is an extension of our previous work that was 

concerned with the estimation of spatially varying noise maps using random matrix theory 

(Veraart et al., 2016). Whereas we previously focused on the noise level estimation, here we 

will demonstrate that an objective threshold on the eigenvalues for PCA denoising can be 

derived from the noise level. We will show that the proposed technique preserves the 

underlying signal better than other state-of-the-art techniques at the level of the diffusion 

sensitized images and diffusion MR parameters of general interest. Indeed, we propose here 

a denoising technique that preserves local signal fluctuations of any origin different than 

thermal noise, including fine anatomical detail. The noise level, being an additional product 

of the method (Veraart et al., 2016), offers the opportunity to correct the denoised signal for 

Rician or noncentral-χ distributed noise bias (Aja-Fernández et al., 2011; Gudbjartsson and 

Patz, 1995) using the method of moments (Koay and Basser, 2006).

2. Materials and Methods

2.1. Marchenko-Pastur distribution

A redundant M × N data matrix X is the one that can be synthesized by a combination of a 

few, P ≪ min{M, N} linearly independent sources, or principal components, derived via the 

singular value decomposition of X:

[1]

with U and V unitary matrices whose columns are the left-singular and right-singular vectors 

of X, respectively. Without loss of generality, we assume M < N. The diagonal elements 

Λ1,1, ···,ΛM,M of the M × N matrix Λ are the singular values, with  being the ith 

eigenvalue of the M × M matrix:

[2]

In agreement with an asymptotic universal law resulting from random matrix theory for 

noisy covariance matrices, the M̃ = M − P smallest nonzero eigenvalues λP+1 ≥ ··· ≥ λM are 

described by the Marchenko-Pastur (MP) distribution if the noise level is constant amongst 

all elements of X (Marchenko and Pastur, 1967):

[3]
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where  with γ = M̃/N and σ the noise level if M̃ ≫ P (see Fig. 1). Note 

that the width of the MP bulk spectrum equals:

[4]

and the expectation value of an MP distribution is given by:

[5]

However, the coherent repulsion of the pure noise eigenvalues by the signal-carrying 

eigenvalues will introduce an error of order  to Eq. [5] (Johnstone, 2006).

The distribution edge λ+ distinguishes between noise- and significant signal carrying 

principal components. Nullifying all λ ≤ λ+, Λ → Λ̃, and reconstructing the matrix results 

in a denoised matrix:

[6]

Using Eq. [5], one can derive that the variance accumulated in the omitted eigenvalues is 

given by:

[7]

Since the omitted and residual principal components are linearly uncorrelated, the variance 

σ̃2 of the residual noise, contained within the P significant components, can be computed as:

[8]

Combining Eqs. [7] and [8] gives an estimate of the noise reduction achieved by nullifying 

the M̃ lowest eigenvalues:

[9]

The SNR after denoising should thus scale with .

In what follows, X will be a real-valued dMRI matrix, with rows representing M dMRI 

measurements and columns representing N voxels within a local neighborhood, typically a 
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sliding window (note that M and N are re-denoted compared to Veraart et al. (2016)). To 

comply with the MP theory, we assume the noise level to be constant and uncorrelated 

within the local neighborhood and across the dMRI measurements (Veraart et al., 2013a; 

Blackledge et al., 2011).

2.2. Denoising algorithm

We aim to remove M̃ “pure noise” eigenvalues (see Fig. 1). For that, we need to estimate the 

noise level σ and the number of significant signal components P simultaneously. The 

simultaneous estimation of σ and P roots in the idea that the mean of the lowest p 
eigenvalues will exceed the expectation value of the MP distribution p(λ|σ, γp) with γp = 

(M − p)/N if at least one of the p eigenvalues corresponds to a signal-carrying component.

In particular, we estimate the number P̂ of significant components by incrementally 

increasing p until

[10]

Given that λP+1 and λM serve as a proxy for, respectively, λ+ and λ−, Eq. [4] results in:

[11]

After solving Eqs. [10–11] for p, we update our estimate of σ̂2:

[12]

to avoid the discretization bias inherent to Eq. [11]. Then, we nullify λP+1, ···, λM and 

reconstruct the signal using Eq. [6]. Afterwards, P̂ and σ̂ can be corrected for the Rician or 

noncentral-χ biases using the well documented inversion technique described by Koay and 

Basser (2006). The same routine is then applied to different neighborhoods, or sliding 

windows, until the entire region-of-interest is processed. In case of a sliding window 

operation, the user can choose to adopt the center voxel only, or to average the results of 

overlapping voxels from multiple windows (Manjón et al., 2013). Here, we use the latter 

strategy with a sliding window of [5 × 5 × 5] voxels unless stated otherwise.

Note that the proposed technique to fit the MP distribution to the PCA eigenspectrum is 

conceptually different than the approach presented in our previous work (Veraart et al., 

2016). Although no significant differences in terms of accuracy or precision have been 

observed, the new approach reduces the computation time dramatically. More details are 

given in the Discussion.
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Hereafter, we will refer to the proposed method as MPPCA. The accuracy and precision of 

MPPCA will be compared to two widely adopted state-of-the-art techniques: adaptive non-

local means (Manjón et al., 2010) (ANLM) and second order total generalized variation 

(Knoll et al., 2011) (TGV). Source code of both techniques was kindly provided by the 

respective authors. Default parameters were used for ANLM, whereas the regularization 

term of TGV was optimized according to Veraart et al. (2015). Unlike MPPCA, ANLM and 

TGV are applied on the individual 3D imaging volumes.

2.3. Data

Simulations I—A set of 1000 Rician distributed M × N data matrices was computed by 

projecting N, ranging from 100 to 2500, axially symmetric diffusion tensors onto M = 30, 

60, and 90 diffusion gradient directions with b = 1ms/μm2. The first eigenvectors of the 

diffusion tensors were uniformly distributed on a hemisphere. The underlying FA and MD 

for each tensor was sampled from a distribution with mean 0.6 and 0.8 μm2/ms, respectively, 

and standard deviation 0.1.

Next, we fixed M = 90, N = 125, and SNR = 25, but varied the diffusion encoding protocol 

used to generate the simulated diffusion-weighted signals. We evaluated two single-shell 

protocols: (Ia) 90 × 1ms/μm2 and (Ib) 90×2.5ms/μm2, as well as (II) 2-, (III) 3-, (V) 5-, and 

(VI) 6-shell protocols. For the n-shell protocols, we distributed or repeated the M = 90 

diffusion gradient directions equally over the number shells, whereas the b-values were 

equidistantly spread in the range [2.5/n, 2.5] ms/μm2. Note that for the former, M is 

consistently 90 (or M/n directions per shell), whereas in the latter, M = n × 90, with n being 

the number of shells.

Simulations II—We derived simulated DW data from a hybrid diffusion atlas that was 

created from DW measurements of 10 healthy subjects (Dhollander et al., 2011). The DW 

atlas data provides high precision and a high order parameterization of the underlying 

diffusion signal by spherical harmonics, allowing us to employ it as a noise-free “ground 

truth” that represents a typical human brain. The b = 1ms/μm2-shell of the atlas data was 

resampled on 30, 60, and 90 isotropically distributed gradient directions. After adding 

complex Gaussian noise, the magnitude images were computed to generate Rician 

distributed DW data. The noise level was spatially uniform and the average SNR of the 

skullstripped b = 0 image varied between 25 and 50.

Clinical data—A healthy volunteer underwent imaging on a Siemens Prisma (3T) MR 

scanner (Siemens AG, Siemens Medical Solutions, Erlangen, Germany) after obtaining 

informed consent, using a 64-channel receiver head coil. The body coil was used for 

transmission. An EPI-DWsequence was used to acquire 3 repetitions of the following dMRI 

data. Besides the acquisition of 6 nondiffusion-weighted images, diffusion weighting was 

applied along 90 isotropically distributed gradient directions for b = 1 and 2.5ms/μm2, 

resulting in a total of 186 images per repetition. Following imaging parameters were kept 

constant throughout the data acquisition sequences: TR/TE : 4000/76, ms, matrix: 92×92, 

voxel dimensions: 2.5×2.5 mm, slice thickness: 2.5 mm, slices: 50, parallel imaging factor: 
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GRAPPA with acceleration factor 2, reconstructed using the adaptive combine algorithm and 

simultaneous multisclice factor 2.

We will refer to subsets of this data as follows, e.g. Mb=1 = 30 represents a subset of 30 DW 

images of the dMRI data that was acquired with b = 1μm2/ms. Alternatively, Mb={1,2.5} = 

{30, 30} indicates a subset of 30 DW images with b = 1ms/μm2 and 30 DW images with b = 

2.5ms/μm2 that are analyzed simultaneously. Six non-DW images were always included in 

the subsets. Hence, Mb=0 = 6 without further notice. M equals sum of the number DW 

images per analyzed shell, that is, respectively, 36 and 66 in the examples above.

HCP data—We used a randomly chosen single subject from the MGH Adult Diffusion 

Data of the Human Connectome Project (HCP) for this study. While the diffusion 

acquisition is covered in detail in (Setsompop et al., 2013), a brief summary is given here. 

Whole-brain EPI acquisitions were acquired with a 64-channel, tight-fitting brain array coil 

(Keil et al., 2013) on the customized Siemens 3T Connectom scanner with TR = 8800 ms, 

TE = 57 ms, BW = 1984 Hz/Px, in-plane FOV = 210 × 210 mm, 96 slices, 1.5 mm isotropic 

voxels, with iPAT factor of 3. Diffusion weighting was applied along 64, 64, 128, and 256 

DWgradient directions for b = 1, 2, 5, and 10 ms/μm2, respectively. Additionally, 41 

nondiffusion-weighted images were acquired.

2.4. Diffusion MR analysis

Without loss of generality, we limit ourselves to studying the effect of denoising on diffusion 

parameters such as the fractional anisotropy (FA), mean diffusivity (MD) and main fiber 

orientations. Both the FA and MD were calculated from the eigenvalues of the diffusion 

tensors, which were estimated from dMRI data with b ≤ 1ms/μm2 with Diffusion Tensor 

Imaging (DTI) (Basser et al., 1994) using the weighed linear least squares estimator (Veraart 

et al., 2013b).

Constrained spherical deconvolution (CSD) was used to estimate the fiber orientations 

(Tournier et al., 2007). First, the fiber orientation distribution function (fODF) is estimated 

by deconvolving the b = 2.5ms/μm2-images with a data-specific single-fiber response 

function. By expressing the components of the CSD in terms of spherical harmonics, here up 

to the 6th order, the deconvolution becomes a linear estimation problem. The single-fiber 

voxels are identified using the recursive response function calibration technique proposed by 

Tax et al. (2014). Second, the fiber orientations are selected as the distinct peaks of the fODF 

with an amplitude exceeding a user-defined threshold (Jeurissen et al., 2013). Note that all 

data was corrected for eddy current distortion and subject motion prior to diffusion MR 

analyses (Glasser et al., 2013). Finally, probabilistic streamline fiber tractography was 

performed to investigate the effect of denoising on the tractogram using the MRtrix software 

package (Jeurissen et al., 2013; Tournier et al., 2012).

2.5. Bootstrapping

Bootstrapping is a non-parametric statistical procedure that enables the estimation of the 

uncertainty of a given statistic by randomly selecting individual measurements from 

repetitions of the same measurement (Efron, 1992). Note that all bootstrap realizations (n = 
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500) have an identical diffusion encoding scheme. However, they are all unique because of 

the random drawing of individual data points from one out of three repetitions. By 

computing the diffusion parameters of interest from each of many bootstrap realizations, 

with or without denoising, and measuring the variability of those parameters amongst the 

different realizations, we evaluate the effect of denoising on the precision of diffusion 

parameter estimators. Diffusion parameters were estimated after correcting the resultant 

images for eddy current distortions and subject motion. Affine transformation matrices for 

motion and distortion correction were estimated from original images and applied to 

denoised data, regardless of the used technique, to exclude difference in registration quality 

after denoising. We also analyze systematic differences between the bootstrap realizations 

and all b ≤ 1ms/μm2 data to evaluate the effect of denoising on accuracy.

In particular, we probe the variability of the principal diffusion peaks ζi(x), i = 1, ···, n in 

voxel x by means of a coherence metric κ(x)(Jones, 2003):

[13]

with β1(x) ≥ β2(x) ≥ β3(x) the eigenvalues of the average dyadic tensor Ξ:

[14]

and n the number of bootstrap realizations. The first eigenvector of the dyadic tensor, ζ̄ (x), 

represents the average principal diffusion directions over all realizations (Basser and Pajevic, 

2000). The angular error to a certain peak ψ(x) is given by θ(x) = arccos(ζ̄(x) · ψ(x)). We 

repeat this calculation for the secondary diffusion peak extracted from the orientation 

distribution functions. Note, however, that we order the diffusion peaks based on their 

alignment with the directions associated to the respective non-denoised data instead of the 

magnitude of the respective fODF peaks, to avoid a sorting bias.

3. Results

For the human DW data, Rician noise correction was not applied because denoising and bias 

corrections are technically independent problems that need to be evaluated separately. In 

particular, we demonstrated that MPPCA is signal preserving, i.e. accurate, by studying the 

residuals. Evaluating the statistics of residuals is a powerful way to study the performance of 

post processing techniques when no real ground truth exists. Unfortunately, Rician bias 

correction would distort the residual maps, making them unsuited for the evaluation of 

accuracy of the denoising technique. Moreover, the accuracy of the Rician bias correction 

technique has been demonstrated independently in previous work (Koay and Basser, 2006; 

Veraart et al., 2016). Nonetheless, in the simulations, ground truth was available and, as 

such, the errors were used to assess the accuracy of denoising in combination with Rician 

bias correction.
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Simulation I—The accuracy of the denoising method, including Rician bias correction, as 

a function of M and N is evaluated. In Fig. 2, the average and standard deviation of the error, 

that is, the difference between denoised and noise-free signal, are plotted as function of M, 

N, and SNR. First, overall, the accuracy of denoising is very high. Indeed, the mean error, 

normalized by noise-free data, με is unbiased with a significance of α = 0.05 for SNR=50, 

whereas the underestimation of the signal for SNR=25 is limited to 0.01% after Rician bias 

correction. The standard deviation of the error, that is the standard deviation of the non-

suppressed noise, normalized by , σε decays with M and N. A universal expression of 

the decay for finite N is missing though.

In Fig. 2, it is shown that MPPCA is unbiased for the different diffusion encoding protocols 

for fixed M, N, and SNR. Indeed, the error in the estimation of noise-free signal is not 

significantly different than zero. However, we observe a slight, yet significant, elevated 

residual noise level for multi-shell protocols in comparison with the single-shell protocols if 

M is kept constant (blue). This observation demonstrates that more significant components 

are needed to approximate the diffusion-weighted signal as function of b-value in the PCA 

eigenbasis. However, simulations also show that combining multiple shells (M = n × 90) 

boost the performance of MPPCA due to the increased redundancy (red).

Simulation II—Fig. 4 shows the results of denoising the simulated data with M=30, 60, 

and 90 using MPPCA with a sliding window size of [5 × 5 × 5] for SNR=25 and 50. Next to 

a randomly chosen DW image (top row), the corresponding error maps are shown (middle 

row). The errors are computed as the difference between the denoised images, corrected for 

Rician noise bias, and the noise-free ground truth data. Scatter plots show the noise-free 

simulated data (S ) against the corresponding noisy data points (S̃ ; red) and against the 

corresponding denoised and Rician corrected data points (S̃ ; green) (bottom row). The lack 

of anatomy in the error maps indicates high accuracy of denoising and signal-preservation. 

More quantitatively, the relative errors, that is the error normalized by the noise-free data, 

are centered around zero. Indeed the center of the distribution of relative errors are not 

significantly different from zero with p = 0.05. The average signal of the skullstripped b = 0 

image divided by the standard deviation of the error gives the SNR of the denoised data. For 

SNR=25, the resulting SNR after denoising equals 54, 63, and 68 for M=30, 60, and 90, 

respectively. The respective denoised SNR values for SNR=50 are 92, 110, and 117.

In vivo data—We applied the proposed denoising method, excluding the Rician bias 

correction, to subsets Mb=1 = 60 and Mb={1,2.5} = {60, 60} of the first repetition with a 

sliding window size of [5 × 5 × 5], i.e. N = 125, and compared the result to ANLM and 

TGV. The resultant maps for a single dMRI image of b = 0, 1, and 2.5ms/μm2 are shown for 

qualitative comparison in Fig. 5. Note that the results for b = 0 and 1ms/μm2 are derived 

from the Mb=1 = 60 subset, whereas b = 2.5ms/μm2 resulted from the multishell Mb={1,2.5} = 

{60, 60} subset.

The maps of the σ-normalized residuals r(x), i.e. the residuals at coordinate x divided by σ̂ 

(x), for those images are shown in the left panel of Fig. 6. Although anatomical structure can 

already be observed in the normalized residual maps of ANLM and TGV, these effects 
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become really pronounced after averaging the residual maps of all images per b value. The 

lack of anatomical structure and zero-centered residuals indicate good preservation of signal, 

or accuracy. Clearly, MPPCA outperforms ANLM and TGV in that respect.

The distribution of the σ-normalized residuals, r, resulting from denoising following subsets 

Mb=1 = 30, 60, and 90 or Mb=1,2.5 = {30, 30}, {60, 60}, and {90, 90} of the first repetition 

of the clinical data are shown in Fig. 7. The logarithm of the distribution p(r) is shown as 

function of r2. A zero-centered normal distribution with variance σ2 is then represented by a 

straight line with slope 1/2. Ideally, normalized residuals are described by the standard 

normal distribution because only then all the noise is accumulated in the residuals. First, we 

observe that MPPCA residuals are well approximated by a normal distribution. Small 

deviations in the distribution’s tail are to attributed to Rician noise effects. Second, more 

importantly, MPPCA has a lower variance than unity, whereas TGV and ANLM have a 

higher variance. In the latter, the residuals contain more variance than explained by the 

noise. Indeed, genuine signal fluctuations (e.g. fine anatomical details) are removed by 

ANLM and TGV and add to the variance of the residuals. Conversely, MPPCA does not 

remove anatomical details, conservatively removing only noise. The variance of the MPPCA 

residuals ranges from 68% to 89% of the estimated noise variance. This translates to an 

MPPCA induced SNR increase between 77% and 201%.

The apparent blurring for ANLM and TGV is quantitatively confirmed by comparing the 

differential k-energy density as function of the distance to the k-space center k (Fig. 8, cf. 

Veraart et al. (2015)). Given a discrete k-space ûk, [nx × ny], with frequency step Δk, the k-

energy density is computed as ||ûk(Ω;(nkΔk))||2 for nk = 1 to min(nx, ny) with Ω;(nkΔk) being 

the 2d square shell centered around the k-space center. A reference energy density is 

predicted by subtracting the noise power NΩ;σ2 with NΩ; the number of samples falling 

within the shell Ω; from the corresponding kspace density of the original data (black line). 

This normalized quantity shows the observed loss of higher frequencies for ANLM and TV 

(cf. low-pass filtering). Spatial resolution loss and blur are the direct consequence. The 

suppression of frequencies that are not strictly rooted in thermal noise also results in 

residuals that follow a distribution with standard deviation exceeding the noise standard 

deviation (meaning that they are contaminated by signal). We can see that MPPCA preserves 

the actual signal better than competing methods.

In Fig. 9, denoised DW images of the HCP data with b = {0, 1, 3, 5, and 10} ms/μm2 are 

shown. Here, the sliding window size was [7 × 7 × 7]. The data quality enhancement is 

clearly visible in all methods. However, significant differences are noticeable. Overall, 

MPPCA preserves anatomical detail better than ANLM and TGV. Moreover, artifactual 

features present in TGV at high b are not shown in MPPCA. The MPPCA residuals do not 

show anatomical details. Indeed only a spatially varying noise trend can be observed and this 

is, in line with previous results, a marker for accuracy.

Diffusion parameter maps—Bootstrapping (n = 500) with replacement based on the 3 

repetitions was used to assess the effect of the different denoising strategies on the 

variability in FA and MD maps (Fig. 10). Note that the gradient directions for every single 

generated data set were the same. All denoising techniques improve the precision of 
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diffusion parameter estimators, in all structures of the brain. The excelling results of ANLM 

in terms of precision are superficial. It may look as if ANLM does a good job, however 

studying the residuals between the denoised results and a ground truth derived from a 

concatenation of the 3 repetitions of all DW data up to b = 1ms/μm2, i.e. 3×[5×b = 0] and 3×

[90×b = 1ms/μm2], one reveals severe biases. Indeed, by averaging the residual maps 

between parameters maps with and without denoising, one clearly notices systematic 

differences for ANLM and TGV in every brain structure (Fig. 11). The differences root in 

the accumulation of signal inaccuracies introduced during denoising of the individual 

images. MPPCA shows structure-free, zero-centered residuals for MD and FA.

A similar bootstrapping approach is used to evaluate the effect on the estimation of diffusion 

directions using constrained spherical convolution. The distribution of angular precision, 

probed by the coherence metric κ (Eq. [13]), and the angular deviation from original data 

amongst white matter voxels is shown in Fig. 12. Again, for all evaluated M, ANLM, 

MPPCA, and – to a lesser degree – TGV improve the variability or dispersion in the primary 

and secondary diffusion directions. However, consistent with previous results, MPPCA 

outperforms all other methods in terms of accuracy. Indeed, MPPCA shows minimal angular 

deviation from the original data, whereas the deviations are significantly higher for TGV, 

and more so for ANLM.

In Fig. 13, we show the fODF corresponding to a single voxel for each of the three 

repetitions (limited to Mb=2.5 = 60), with and without applying the different denoising 

techniques. In the particular voxel, the callosal commissure, superior longitudinal fasciculus, 

and corticospinal tract cross. This complex fiber crossing is assumed to be represented by a 

fODF with three distinct lobes. The success rate to detect the third lobe strongly depends on 

the method. MPPCA returns in 98% of the n = 100 bootstrap realizations exactly three 

distinct peaks. The success rate lowers to 65% and 48% for ANLM and TGV, respectively, 

whereas no denoising (ORIGINAL) results in a success rate of 70%. A spurious fourth peak 

(yellow arrows in Fig. 13) is detected in 2%, 30%, 52%, and 28% of the cases for MPPCA, 

ANLM, TGV, and ORIGINAL, respectively.

Finally, we performed probabilistic tractography on the denoised images corresponding to 

one of the repetitions (again restricted to Mb=2.5 = 60) to render digital reconstructions of the 

major fiber pathways as colorful tubes (see Fig. 14). (Jeurissen et al., 2011) Some obvious 

spurious fibers aside, all tractograms look perfectly plausible, yet very different, especially 

towards the cortical areas. Those differences reflect the differences in noise and signal 

patterns that depend on the used denoising technique (see Figs. 3–6, 10, and 11).

4. Discussion

4.1. Noise versus artifacts

In the literature, the term “noise” has been used to refer to different sources of undesired 

signal fluctuations. Here, we restrict the definition of noise to the random signal fluctuations 

induced by the motion of electrons or ions, i.e. the thermal noise (Johnson, 1928; Nyquist, 

1928). The collection of spatially and temporally varying image distortions, such as cardiac 

pulsation and motion, often referred to as physiological noise (Chang et al., 2005) are 
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imaging artifacts. Clearly distinguishing between “noise” and “artifacts” is important to 

interpret the performance of image denoising techniques.

The ideal denoising technique is selective in the sense that it suppresses the local signal 

fluctuations rooted in thermal noise, not from other origins such as fine anatomical detail, 

motion, or Gibbs ringing. By studying residual maps, we demonstrated that the proposed 

denoising technique, MPPCA, outperforms ANLM and TGV in that respect. Although all 

evaluated techniques showed show improved precision in the estimation of diffusion model 

parameters, MPPCA was the only technique that did not compromise the accuracy. The 

reduced accuracy originates from a low-pass filtering component present in the competing 

methods, causing image blur and partial voluming.

4.2. Noise reduction, not removal

Despite its popularity, the term “denoising” might be misleading, as it can be misinterpreted 

as full noise suppression or removal. However, noise reduction is the highest achievable 

goal. No single technique can make a complete separation of signal and noise. Neither can 

PCA. Indeed, noise corrupts all M principal components and not only those M̃ components 

that are nullified during the procedure. The noise corruption of the eigenvectors and 

eigenvalues of the remaining P components cannot be undone. Consequently, the standard 

deviation of the residuals is systematically lower than the estimated noise standard deviation 

(see Fig. 7). Basically, the noise variance reduction primarily scales with P/min(M, N). M is 

typically the maximum number of DW images in the data, where N needs to be set by the 

user. We suggest to choose N > M. However, in case of spatially varying noise, it might be 

beneficial to select a sliding window with N ≳ M. Note that simulations and experiments 

showed that P, and as such, the performance of MPPCA depends on the diffusion encoding 

protocol. However, both single- and multi-shell strategies showed significant increase in 

SNR without loss in accuracy. Moreover, the redundancy (M − P) is expected to increase 

when analyzing multiple shells simultaneously.

4.3. Targeted post-processing

The accuracy and precision of diffusion parameter estimation will be affected by the 

presence of imaging artifacts. Although artifacts such as Gibbs ringing (Veraart et al., 2015) 

often result in spurious local signal oscillations, our denoising technique will not detect or 

remove them. Despite the convenience of a brute force technique, e.g. smoothing or total 

variation minimization (Block et al., 2008; Veraart et al., 2015; Perrone et al., 2015), that 

might deal with different types of unwanted fluctuations simultaneously, we here advocate 

the use of targeted artifact correction techniques for improved accuracy and specificity. 

Other examples of targeted image processing tools are the Gibbs correction framework of 

Kellner et al. (2015) or FSL’s TOPUP and EDDY for EPI and eddy current distortion 

corrections, respectively (Smith et al., 2004; Sotiropoulos et al., 2013; Glasser et al., 2013). 

Note, however, that denoising should be applied as the first step of the processing pipeline 

because data interpolation or smoothing will change the noise characteristics on which 

MPPCA relies.
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4.4. Rician signal bias

The SNR dependent difference between the expectation value of a Rician – or more 

generally, a noncentral χ – distributed value and its underlying noise-free value causes 

inaccuracies in the estimation of the diffusion parameters. Since the SNR of the dMRI 

signals depends on factors such as diffusion gradient direction, b-value, diffusivity, and 

diffusion anisotropy, the so-called noise bias is omnipresent in quantitative dMRI. Indeed, 

many noise-related artifacts have been discussed earlier (Jones and Basser, 2004; Veraart et 

al., 2013a, 2011a,b). MPPCA returns an estimate of the expectation value of the signal and, 

as such, the denoised signal needs to be further corrected for the well known noise bias. 

Because MPPCA outputs the noise level as well (Veraart et al., 2016), the correction can 

easily be done by using the methods of moments, often referred to as Koay’s inversion 

technique (Koay and Basser, 2006). Note that in our experiments, we omitted this step to 

avoid interference of the signal-dependent correction with the residual analysis. However, 

our simulations demonstrated very high accuracy of MPPCA in combination with the 

inversion technique resulting in a bias of only 0.01%. Theoretically, the SNR-dependency of 

the variance of a Rician distributed variable might violate the assumption of having a 

constant noise level within the sliding window or across the DW images. This potential 

pitfall is expected to be a theoretical instead of a practical concern as it was not detected in 

our experiments, which included high b-valued data.

4.5. Computation time and code sharing

Compared to our previous work on the use of Marchenko-Pastur distribution for noise map 

estimation, we revised and sped up our algorithm for the simultaneous denoising and noise 

map estimation (Veraart et al., 2016). The histogram fitting routine is replaced here by a 

non-iterative technique that exploits the knowledge that the omitted noise variance must be 

well explained by universal properties from random matrix theory. By doing so, we lost the 

dependency on binning of the eigenspectrum and, more importantly, we highly reduced the 

computational expense. Denoising of a clinical whole brain dMRI data set can now be done 

in a few minutes on a single-core computer, which is an order of magnitude faster than the 

previous approach. However, no significant differences in terms of accuracy or precision 

between both approached have been observed. The code is publicly available as part of the 

open-source MRtrix framework (command: dwidenoise; http://www.mrtrix.org).

4.6. Beyond dMRI

Noise analysis using random matrix theory has previously been explored in the context of 

finance (Laloux et al., 1999), wireless communication systems (Ahmed et al., 2014), cardiac 

MRI (Ding et al., 2010), DCE-MRI (Jahani et al., 2013), and fMRI (Sengupta and Mitra, 

1999). However, this work is the first to demonstrate the power of random matrix theory and 

a highly computationally efficient algorithm in the context of the denoising of dMRI data. 

Note that despite our focus on a few commonly used diffusion metrics throughout this work, 

similar conclusions will apply for all diffusion parameters, both empirical and from 

biophysical models, because noise variance is a signal property that will propagate to all 

metrics derived from it. For example, we demonstrated that denoising, not to mention signal 

suppression by competing denoising tools, has local and global effects on the tractogram that 
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are often indistinguishable from anatomy. Hence, we would advocate evaluating the 

accuracy of post-processing tools at the signal level using analysis of residuals, instead of 

studying their accumulated effect on the tracts, especially because the ground truth is 

typically missing. Furthermore, due to the unfavorable fitting landscapes of many 

microstructural models, denoising might be even more important in more complex models of 

diffusion (Jelescu et al., 2016).

5. Conclusion

We propose a fast and accurate denoising technique that reduces signal fluctuations solely 

rooted in thermal noise, not from other origins such as fine anatomical detail. The thermal 

noise-selective nature of the proposed technique is based on data redundancy in the PCA 

domain using universal properties of the eigenspectrum of random covariance matrices. The 

resulting images show highly enhanced SNR and enable improved precision in the 

estimation of diffusion model parameters whereas the accuracy is preserved.
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Highlights

• Denoising enhances the image quality for visual, quantitative, and 

statistical interpretation

• Random matrix theory enables data-driven threshold for PCA 

denoising

• The Marchenko-Pastur distribution is a universal signature of noise

• The technique suppresses signal fluctuations that solely originate in 

thermal noise

• Precision of diffusion parameter estimators increases without lowering 

accuracy
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Figure 1. 
(left) The upper edge λ+ of the Marchenko-Pastur distribution, a universal signature of noise 

in sample covariance matrices, distinguishes between noise- and significant signal-carrying 

principal components. (right) Validitiy of Eq. [8] as function of p nullified eigenvalues (color 

encoding). if p > M̃, suppressed signal leaks into the residuals and, as such, the variability of 

the residual map, σ̃2, start to deviate from σ2 − ℘σ with σ2 being the noise variance and ℘σ 
the noise variance accumulated in the p omitted eignvalues. Simulated data (cf. Data) with 

M = 90 and N = 250 was used to generate the graphs.
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Figure 2. 
The bias [%] in the estimation of the noise-free signal is shown as function of N for different 

values for M and SNR (top row: SNR=25, bottom row: SNR=50). After Rician correction, 

the maximal error reduced to ~ 0.01%. The remaining noise standard deviation, normalized 

by , converges to  (dashed line).
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Figure 3. 
The 95% confidence intervals of the mean error (με, [%]) in the estimation of the noise-free 

signal for the different diffusion encoding schemes show that MPPCA lacks a significant 

bias in single- and n-shell protocols. The remaining noise standard deviation, normalized by 

σ, is significantly higher for the multi-shell protocols if M is kept constant (blue). This 

observation indicates that more principal components are needed to approximate the 

diffusion weighted signal as function of the b-value in a linear basis if M is spread across a 

few shells and, as such, P increases. Nonetheless, MPPCA boosts SNR without 

compromising the accuracy for all evaluated protocols. Moreover, analyzing multiple shells 

(M = n × 90; red) simultaneously when the number of directions per shell is fixed improves 

the performance of MPPCA because the increase in M is generally larger than the associated 

increase in P.
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Figure 4. 
(top row) A randomly chosen DW image after denoising the simulated whole brain data with 

M=30, 60, and 90 using MPPCA for SNR=25 and 50. (middle row) The corresponding error 

maps, computed as the difference between the denoised images, corrected for Rician noise 

bias, and the noise-free ground truth data, do not show anatomical features. (bottom row) 

Scatter plots show the noise-free simulated data (S ) against the corresponding noisy data 

points (S̃ ; red) and against the corresponding denoised and Rician corrected data points (S̃ ; 

green)
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Figure 5. 
Denoised diffusion-weighted images for different b-values. Although the noise reduction is 

clearly visible in all denoising techniques, ANLM and TGV introduce image blur and/or 

reconstruction artifacts.
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Figure 6. 
(left panel) The σ-normalized residual maps between the denoised diffusion-weighted 

images from Fig. 5 and the original data. (right panel) The presence of anatomical structure 

in ANLM and TGV anatomical maps indicates interference of the denoising algorithm with 

the “signal”. The effect becomes more visible after averaging the residual maps of the Mb>0 

= 60 images per b value.
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Figure 7. 
The logarithm of the distribution of normalized residuals p(r) as a function of r2 for different 

b-values, Mb>0, and methods as observed (*) and best fitting normal distribution (solid line). 

The standard normal distribution is shown for reference (black line). ANLM and TGV 

clearly over-do the denoising (i.e. standard deviation >1) by interfering with the underlying 

signal.
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Figure 8. 
k-space energy density as function of the distance to the k-space center. ANLM and TGV 

have a low-pass filtering effect resulting in spatial resolution loss. MPPCA overshoots the 

predicted k-space density (black), i.e. Ref = Original - NΩ;σ2. This observation indicated 

incomplete noise suppression.
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Figure 9. 
Denoised single DW images for different methods and b-values and the corresponding 

residuals maps for MPPCA.
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Figure 10. 
Effect of denoising on the variability in the estimated MD [μm2/ms] and FA as function of 

the denoising method and the number of measurements M
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Figure 11. 
Effect of denoising on the bias in the estimation of MD [μm2/ms] and FA. MD and FA maps, 

derived from a concatenation of the 3 repetitions of all DW data up to b = 1ms/μm2, are 

shown for reference.
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Figure 12. 
The effect of denoising on the angular precision, probed by a coherence metric κ, and the 

angular accuracy of the primary and secondary diffusion directions are shown as function of 

the number of measurements M and the denoising technique.
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Figure 13. 
Effect of denoising on the fiber ODF for a voxel with a three-fiber crossing (crosshair). 

Studying the three repetitions of the Mb=2.5 = 60 data subsets separately shows that MPPCA 

consistently improves the estimation of the third peak. Other methods show low coherence 

of the third direction and often a spurious fourth peak.
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Figure 14. 
Overlay of all tractograms derived from a single repetition of the Mb=2.5 = 60 data subset 

before and after denoising with the different techniques. Tractography was seeded in the 

corpus callosum. The cores of the major fiber bundles overlap well (white color). However, 

changing noise characteristics and possibly signal suppression introduced by ANLM and 

TGV have very different local and global effects on the tractogram that are often 

indistinguishable from anatomy (arrows) because of their plausible appearance.
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