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A B S T R A C T   

Background and purpose: Treatment plans in radiotherapy are subject to measurement-based pre-treatment ver-
ifications. In this study, plan complexity metrics (PCMs) were calculated per beam and used as input features to 
develop a predictive model. The aim of this study was to determine the robustness against differences in machine 
type and institutional-specific quality assurance (QA). 
Material and methods: A number of 567 beams were collected, where 477 passed and 90 failed the pre-treatment 
QA. Treatment plans of different anatomical regions were included. One type of linear accelerator was repre-
sented. For all beams, 16 PCMs were calculated. A random forest classifier was trained to distinct between 
acceptable and non-acceptable beams. The model was validated on other datasets to investigate its robustness. 
Firstly, plans for another machine type from the same institution were evaluated. Secondly, an inter-institutional 
validation was conducted on three datasets from different centres with their associated QA. 
Results: Intra-institutionally, the PCMs beam modulation, mean MLC gap, Q1 gap, and Modulation Complexity 
Score were the most informative to detect failing beams. Eighty-tree percent of the failed beams (15/18) were 
detected correctly. The model could not detect over-modulated beams of another machine type. Inter- 
institutionally, the model performance reached higher accuracy for centres with comparable equipment both 
for treatment and QA as the local institute. 
Conclusions: The study demonstrates that the robustness decreases when major differences appear in the QA 
platform or in planning strategies, but that it is feasible to extrapolate institutional-specific trained models be-
tween centres with similar clinical practice. Predictive models should be developed for each machine type.   

1. Introduction 

Volumetric modulated arc therapy (VMAT) is currently a state-of- 
the-art technique for the treatment of different tumour sites by 
providing a highly conformal dose distribution to the target volume 
while minimizing the dose deposition in the surrounding organs at risk 
(OARs) [1]. Despite its advantages compared to previous techniques, the 
creation of deliverable VMAT plans involves repeatedly solving a large- 
scale modulation problem with iteratively updated treatment 

parameters, which in parallel may lead to an (unnecessary) increase in 
treatment plan complexity [2]. Although a certain degree of complexity 
may be required to achieve an acceptable dose distribution, it has been 
reported that increasing plan complexity may lead to higher un-
certainties both in dose calculation and in treatment delivery due to 
limitations in the calculation algorithm or in the defined beam model 
[2]. In addition, the dose accuracy can be further influenced by me-
chanical uncertainties as well as patient’s position. Consequently, the 
general suitability of a treatment plan should not only be evaluated 
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based on calculated dose distributions, but also on accuracy of dose 
calculation and delivery [3]. Therefore, it is useful to assess the level of 
plan complexity as it is relevant to avoid future pre-treatment QA fail-
ures during the treatment process and to have an overall high-quality 
plan with a certain degree of robustness against most common un-
certainties during treatment delivery. 

In order to quantify the complexity of the treatment plan, several 
plan complexity metrics (PCMs) have been proposed [1,4]. These met-
rics emphasize multiple aspects of the treatment plan by focusing on for 
instance beam aperture modulation (e.g., size and irregularity) and 
machine parameter modulation (e.g., variations in gantry speed, etc.). 
During the optimization process, PCMs can assist the dosimetrist or 
medical physicist expert (MPE) to interactively evaluate the trade-offs 
between dosimetric performance and plan complexity. 

Before the actual delivery of the plan to the patient, measurement- 
based pre-treatment quality assurance (QA) is an established routine 
practice to detect plans that are too complex to be delivered as planned 
by comparing the calculated dose with the delivered dose, commonly 
evaluated using the percent dose difference (DD) and distance to 
agreement (DTA) (cf. gamma analysis) [5]. As this procedure is 
considered as a resource-intensive and time-inefficient task, Artificial 
Intelligence (AI) model architectures have been proposed by multiple 
institutions to automatically correlate different PCMs to the pre- 
treatment QA results, in which measurements could be reduced or 
completely bypassed by accurate predictions [6–8]. Such implementa-
tion can have high potential during (real-time) adaptive RT, where 
measurement-based QA verifications of adapted plans are not possible. 
Some AI proposals focused on the direct value prediction of gamma 
passing rate (GPR) based on the complexity features, whereas others 
focused on a classification between failed and passed plans based on this 
metric [9,10]. In addition, accelerator parameters can be included in the 
training data to take into account the day-to-day performance of the 
machine [7]. More recently, deep learning (DL) algorithms have been 
proposed to establish GPR prediction models based on planar dose dis-
tribution as input [10,11]. Such models can classify whether the beam 
passes the QA, predict the GPRs of different gamma criteria and predict 
the trend and position of the dose difference [11]. 

However, there are still challenges in this RT field and the clinical 
implementation of methods to control and evaluate plan complexity is 
very heterogeneous across different RT centres according to the results 
of a 2020 ESTRO survey [2]. Different PCMs that focus on different plan 
parameters give different results and there is no clear consensus which 
ones should be used, and which tolerance level should be assigned. This 
latter issue shows similarities with heterogeneous measure 

interpretation for quantitative evaluation of contouring in RT [12] with 
no straightforward harmony of correct usage. To overcome this issue, it 
is reasonable to train ML models on PCMs information that has been 
validated across different centres with the intention to determine the 
need for pre-treatment verifications based on PCMs and facilitate the use 
of plan complexity in clinical practice. 

Therefore, an in-house ML model was initially trained to correlate 
PCMs to pre-treatment electronic portal imaging devices (EPID)-based 
QA failure in the context of multi-site VMAT beams for different treat-
ment sites (i.e., pathologies). Afterwards, the ML model’s generaliz-
ability and robustness was tested in two steps. Firstly, it was intra- 
institutionally validated on beams of another machine type to see if 
models are transferrable to other machine types. Secondly, an inter- 
institutional validation was conducted on three independent datasets, 
collected from different RT centres, consisting of VMAT plans with their 
associated QA results that showed different degrees of similarity in 
clinical practice in comparison to the centre where the ML was trained. 

2. Material and methods 

2.1. Proposed QA workflow 

A full-integrated web-based software was implemented in 2018 to 
provide QA data for all intensity modulated radiotherapy (IMRT)/ 
VMAT/dynamic conformal arcs (DCA) plans based on EPID measure-
ments. In Fig. 1, an additional, automated procedure is proposed to 
complement the current QA workflow. The purpose of the prediction 
model was not intended to completely replace the established QA flow, 
but to help reduce the measurement burden of pre-treatment QA. 
Different PCMs (cf. Section 2.3) were calculated per arc and used as 
input features for a ML classifier to solve a binary classification problem 
distinguishing beams that will fail or pass the local QA procedure. The 
predicted output can automatically trigger a reduction in the level of 
complexity of the treatment plan by alerting the physicist/dosimetrist 
investigation (cf. orange arrow). In Fig. S1I (Supplementary materials), 
an illustration is given of a failed VMAT beam in the QA software. 

2.2. In-house data collection 

The clinical database was queried for patients that were treated in 
2022 for the following treatment sites: prostate, head and neck (H&N), 
and lung. All plans in this dataset were delivered by the same linear 
accelerator type (cf. Linac type 1). In a previous study, our institution 
determined for all different treatment sites and prescriptions the most 

Fig. 1. Representation of the synergetic interaction of the clinical QA workflow with the AI model.  

M. Claessens et al.                                                                                                                                                                                                                              



Physics and Imaging in Radiation Oncology 29 (2024) 100525

3

‘useable’ parameters for pass/fail criteria, i.e. those with a good balance 
between detection of clinically relevant problems and the total number 
of false positive results [13]. For the considered pathologies, a gamma 
passing rate of 3 %/2 mm was applied with a passing tolerance of 98 %. 
All beams that did not meet these criteria were selected for this study 
and classified as ‘failed’. Further analysis was performed of these indi-
vidual QA results to avoid the presence of false positives (FP). The most 
prominent causes for FP were 1) unexpected interruptions of beams, 2) 
the need for EPID imager calibration, and 3) a wrong set-up position of 
the EPID imager. As a result, a total of 567 VMAT beams (cf. 477 passed, 
90 failed) were collected. 

2.3. Plan complexity metrics calculation 

An overview of the used PCMs is given in Table 1. These 16 features 
were calculated by a dedicated MATLAB script for every separate beam, 
which only needed the DICOM RTplan (cf. dicom file) for analysis. These 
metrics were subsequently used as input features for an AI model to 
make correlations with the failure degree of the different beams of 
VMAT plans. 

2.4. Failure prediction 

An in-house random forest (RF) model was trained based on PCMs 

(cf. Section 2.3) of plans delivered on Linac 1. It was used to make a 
classification between acceptable and non-acceptable beams according 
to the local QA tolerances (cf. Table 2). The original dataset was divided 
into a training 453 beams) and test set (114 beams) in a stratified way, 
where the latter contained the same ratio of classes (96 passed beams 
and 18 failed beams). During the training phase, k-fold cross-validation 
(k = 10) was used, and various hyperparameter combinations were 
exhausted by grid search. During every fold, 10 % of the dataset was 
selected as validation set with the preservation of the relative class 
frequencies and scored based on balanced accuracy. After cross- 
validation, the model architecture with highest mean balanced accu-
racy was re-trained on the whole training set. The performance of the RF 
model on the test set was characterised by the confusion matrix. 

In addition, feature importance was investigated to determine which 
PCMs had the highest clinical relevance to detect potential QA failure. 
This was calculated as the decrease in node impurity weighted by the 
probability of reaching that node. The node probability was calculated 
by the number of samples reaching the node divided by the total number 
of samples. The higher the value, the more important the feature. An 
additional decision threshold tuning strategy was performed to fully 
optimize the decision function. Scripting of these models was performed 
in Python using dedicated ML libraries (cf. Tensorflow/scikit-learn). 

2.5. Different machine validation 

The in-house RF model was only trained on PCMs that were calcu-
lated on treatment plans for delivery on Linac type 1. Besides this type of 
machine, our institution has one ‘older generation’ device: the Linac 
type 2, with a Millennium 120 MLC. To investigate if the Linac type 1- 
dedicated correlation between the PCMs and the QA failure status can 
be translated to a different machine, a random validation set of 101 
Linac type 2 beams (i.e. 42 passed beams and 59 failed beams) was 
composed. The same pathologies (i.e., prostate, H&N, and lung) were 
incorporated with the same optimisation/calculation engine and pre- 
treatment verification criteria. The performance of the RF model was 
characterised by the confusion matrix. 

2.6. Multi-institutional validation 

During the commissioning phase, the RF model was exclusively 
trained and tested on historical patient data. To gain insight in the 

Table 1 
Overview of the different plan complexity metrics calculated per beam used in 
the creation of the model. Note that mean DR and mean GS are actually plan 
parameters, which were computed to fully characterize the treatment plan. For 
ease of use, they are considered as PCMs in this study.  

Plan complexity metric Characteristics 

Modulation Complexity 
Score [14] (MCS) 

This score integrates two contributions to 
complexity: variability in the shape of segments and 
variations in their area. The value ranges from 0 to 1 
(cf. maximum to no complexity). 

Modulation Index Total  
[15] (MITotal) 

This index evaluates the variations in speed and 
acceleration of the MLC as well as variations of the 
gantry speed and the dose rate. 
It is the only complexity index that takes into account 
the modulation of the dose rate and the gantry speed. 

Plan Irregularity [16] (PI) The metric describes the deviations of aperture 
shapes from a circle, being 1 for a perfect circle. 

Beam Modulation [16] (BM) It indicates to what extent the beam is delivered into 
smaller apertures. The values range from 0 to 1 (cf. 
the higher the value, the more modulated the plan). 

EdgeMetric [17] (EM) This metric computes the complexity of MLC 
apertures based on the ratio of MLC side edge length 
within the beam aperture and aperture area. 

Leaf Travel [18] (LT) / 
ArcLength (AL) 

This index indicates the average distance travelled by 
the moving leaves, divided by the AL. 

Leaf interdigitation This refers to the end of a trailing leaf extending past 
the end of an adjacent leading leaf. Namely, opposing 
leaves of adjacent rows can overlap [19]. 

Mean MLC gap This represents the average leaf pair opening (in mm) 
Q1 gap First quartile of the distribution of leaf gap sizes 

(mm). 
Mean Tongue and Groove 

index (TGi) 
Mean value for the ratio of the distance between 
adjacent leaves and their MLC gap size. The value 
ranges from 0 (all leafs aligned) to 1 (full 
interdigitation and maximum T&G). 

Mean MLC Speed This metric represents the mean speed of all in-field 
leaves (cm/s). 

MLC Speed Modulation This represents the mean variation of MLC speeds. 
It is computed as the sum of MLC speed variations 
divided by the total leaf travel. 

Mean Dose Rate (DR) This defines the Mean Dose Rate (MU/min). 
DR modulation Total Dose Rate (MU/min) variations divided by the 

arc length. 
Mean Gantry Speed (GS) Average GS (degree/s). 
GS Modulation This metric represents the Total Gantry Speed 

variation (cf. sum of variations divided by the arc 
length).  

Table 2 
Overview of the most important similarities and differences between the 
different validation sets.   

Study 
Institution 

Institution 1 Institution 2 Institution 3 

Number of test 
beams 

114 62 80 40 

Anatomy 
Localisation 

Pelvis 
Chest & 
Abdomen 
H&N 

Prostate 
Lung 
Breast 

Prostate 
Lung 
H&N 

Prostate 
H&N 

TPS algorithm Eclipse 
AAAv16.1 

Eclipse AAA 
v16.1 

Eclipse AAA 
v16.1 

Eclipse AAA 
v16.1 

Dose resolution 3 mm 2.5 mm 2 mm 2 mm 
Complexity 

reduction 
strategy used? 

No No Yes Yes 

Linac Type Linac type 1 Linac type 1 Linac type 1 Linac type 1 
QA device EPID EPID EPID/Point 

dosimetry 
Delta4 

(Absolute) DD/ 
DTA 

3 %/2 mm 3 %/2 mm 2 %/2 mm 2 %/2 mm 

Low threshold 10 % (H&N) 
20 % (Chest 
& Abdomen) 

10 % 10 % 20 % 

Acceptable 
(global) GPR 

98 % 98 % 95 % 95 %  
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Fig. 2. A) Confusion matrix representing the classification results on the independent test set of the study-specific institution. B) Mean and standard deviation of the 
relative feature importance of 16 PCMs to distinguish acceptable and non-acceptable beams by the overall RF model. 
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general applicability of the correlations between the plan complexity 
and QA pass/fail status across different centres, treatment plans from 
three independent RT institutions were collected with their centre- 
specific QA results. Centres were specifically selected in a way that 
they showed increased dissimilarity in QA procedures and tolerances in 
comparison to our institution. Institution 1 has the same QA platform/ 
software with EPID as QA device and 3 %/2 mm as absolute DTA/DD for 
VMAT plans. Institution 2 gradually deviates from this similarity by 
using another software in combination with EPID and point dosimetry as 
QA device and an absolute DTA/DD of 2 %/2 mm. Institution 3 mainly 
differs from the latter by using Delta4 (IBA) as main QA device. Insti-
tution 2 and 3 also quantify and minimize plan complexity during plan 
optimization. In Table 2, an overview of the composition of different 
validation sets at the level of plan creation, QA procedure and tolerances 
per centre are given. 

Considering the planning and verification processes as a single pro-
cess could be useful to understand the complex relationship between 
plan quality, plan complexity, plan deliverability and pre-treatment 
verification results, especially in a multi-centre environment where 
multiple planning strategies, anatomical localisations, and TPSs can be 
presented [20]. 

3. Results 

3.1. Intra-institutional validation 

The performance on the independent test set of the overall (random 
forest) RF model after k-fold (k = 10) cross-validation is shown in the 
confusion matrix in Fig. 2. The dataset contained 96 passed and 18 failed 
beams based on the local QA criteria. Fig. 2A shows the classification 
accuracy of the model, where 83 % of the failed beams (15/18) were 
assigned to the correct class with 17 % of false negatives (3/18). The 
ranking of the PCM features used to train the RF model is shown in 
Fig. 2B. In comparison to the other features, the beam modulation 
showed the highest correlation to the EPID-based local institute QA re-
sults, followed by meanMLCgap, Q1gap and MCS. 

In Fig. 3A, the confusion matrix shows that only 19 % of the failed 
Linac type 2 beams could be detected with a high false negative rate (81 
%). In Fig. 3B, according to the high misclassification results, the feature 
value distribution BM is shown in function of the GPR (cf. 3 %/2 mm) for 
all the failed Linac type 2 and Linac type 1 beams respectively. As 
mentioned in Table 2, a VMAT beam passed the local QA with a strict 
GPR of 98 %. For the Linac type 2 data, failed beams were randomly 
distributed over the total BM value range. All Linac type 2 beams were 
under a cut-off value of 0.78 (cf. blue line, Fig. 3.2B). In contrary, the 
Linac type 1 BM values range up to the maximum value of 1.0 with a 
majority of failed Linac type 1beams across the 0.78 value. Beneath this 
specific value, the majority of the Linac type 1 beams had a GPR value 
close to the acceptance level, where a less strict DTA/DDA, for example 
3 %/3 mm, will remarkably reduce the number of failed Linac type 1 
beams. 

3.2. Inter-institutional validation 

In Fig. 4, the classification performance for the independent in-
stitutions is shown by means of the confusion matrix. For institution 1, 
with the same QA procedure as our institution, the RF model could 
identify 86 % of the beams (6/7) that failed the institutional-specific QA 
procedures with 14 % of false negatives (1/7). For institution 2, the RF 
model could detect 40 % of the beams (2/5) that failed the institutional- 
specific QA procedures with 60 % of false negatives (3/5). For institu-
tion 3, the RF model could detect 25 % of the beams (1/4) that failed the 
institutional-specific QA procedures with 75 % of false negatives (3/4). 

As the similarity in clinical practice and QA procedures decreased 
from institution 1 to 3, the ability of the model to predict accurately the 
failing status of a VMAT beam dropped simultaneously. In Fig. 5 and 
Supplementary materials Fig. 2, a comparison is given of the distribution 
of the four most dominant features across the different centres. Violin 
plots were used for this comparison to simultaneously illustrate sum-
mary statistics and kernel density estimation. It should also be 
mentioned that the number of failed beams for institution 1, 2 and 3 is 
respectively seven, five and four. Institution 1 had a higher mean BM 
compared to our institution and the high predictive power of BM com-
pensates for smaller deviations comparing meanMLCgap, Q1gap and 
MCS (cf. Fig. 5 and Supplementary materials Fig. 2). For institution 2, 
small differences for all four parameters decreased model’s accuracy. 
For institution 3, the mean BM values is too low, compared to our 
institution and did not allow good prediction. A summary of the clas-
sification results for the intra- and inter-institutional validation can be 
found in Supplementary materials Table S1. 

Fig. 3. A) Confusion matrix with the classification results of the RF model for 
the Linac type 2 validation set. B) Representation of The GPR (3 %/2 mm) vs 
BM value for the failed Linac type 2 beams (blue) and Linac type 1 beams 
(orange). In case of the latter, the two beams (both lung) showed a high 
divergent GPR (11,12 % and 57,41 %). According to the criteria mentioned in 
Section 2.2, no technical reason could be found to consider these as false pos-
itives and were thus maintained in the original dataset. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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4. Discussion 

In this study, we investigated the multi-institutional use of ML model 
based on PCMs to predict the pre-treatment QA. The robustness of the 
model decreased when major differences appear in the QA platform or in 
planning strategies, but that it is feasible to extrapolate institutional- 
specific trained models between centres with similar clinical practice. 
Such strategies could be used in combination with secondary dose cal-
culations to trigger further necessary adaptations of the treatment plan 
and reduce plan-specific QA (PSQA) measurements to streamline the 
patient’s individualized care path in an adaptive RT workflow. 

Recently, different studies focused on the use of PCMs to directly 
assign a degree of delivery uncertainty to each treatment plan [8]. Some 
complexity indices provided similar information and can be considered 
equivalent (e.g., MCS, PI and EM). However, indices that focused on 
different plan parameters yielded different results (cf. MITotal and EM) 
and there is no general consensus on which tolerance levels should be 
used for each complexity metric [2,4]. In addition, dedicated evalua-
tions of metrics with the purpose to increase information on the dosi-
metric uncertainty of a plan beyond common QC results, are scarce [21]. 

Given the wide variety of metrics available, the first aim of this study 
was to identify correlations between department’s planning data for 

three different treatment sites (cf. Pelvis, Chest & Abdomen and H&N) 
and QA results at beam level considering the most relevant published, 
correlated PCMs (cf. Section 2.3) [2]. Intra-institutionally, Fig. 3B 
showed that BM, mean MLC gap, Q1 gap, and MCS were top ranked and 
most correlated to the local institution’s QA results, which were not 
highlighted in other ML-based studies [6,7,9]. 

To get more insight into the model’s general applicability to detect 
failing beams related to over-modulation, the linear accelerator (Linac) 
type 1 ML model was tested for another machine type, as well as for 
treatment plans from different institutions. According to the results in 
Fig. 3A, the ML model had a low detection rate for failing Linac type 2 
beams. This could be explained by the fact that Linac type 1 models are 
less subject to beam failures than Linacs type 1which has been demon-
strated by an institution-specific follow-up study, where on the ‘new 
generation machines’, 97 % of measurements passed with the standard 
3 %/2 mm analysis, compared to 77 % on the ‘old generation machines’ 
[13]. Additional proof was given by plotting the BM distribution for 
failing Linac type 1 and 2 beams (cf. Fig. 3B). A highest value of 
approximately 0.78 can be seen for Linac type 2 beams, which shows 
that the maximum level of Linac type 2-specific over-modulation is 
lower than Linac type 1, making the model neither applicable nor 
transferable to Linac type 2 beam QA [20,21]. 

Fig. 4. Confusion matrices representing the classification results of the overall RF model on the three, independent test sets: A) Institution 1, B) Institution 2 and C) 
Institution 3. 
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Also, the multi-institutional applicability and robustness was tested. 
Valdes et al., who predicted the GPR value directly, recommended using 
different models for different combinations of delivery systems and 
energies [6]. In accordance to our study, Lambri et al. also performed a 
validation of a XGBoost regression model based on PCMs in a multi-
centric scenario [22]. Regression models can provide more quantitative 
information, whereas classification (cf. our methodology) has the 
advantage of providing a quick, unambiguous, and actionable result, 
similar to routine machine QC results. Additionally, regression analyses 
could typically underestimated large dose discrepancies, possibly due to 
the relative infrequency of such occurrences [7]. In addition, Li et al. 
developed both a regression and classification model based on fifty-four 
complexity metrics and reported that a classifier with high sensitivity 
was preferred [23]. A quantitative comparison between our model and 
published models is visualised in Supplementary materials Table 2. In 
our study, the main focus was put on the differences in clinical practice 
and QA measurements between the centres. Therefore, three institutions 
were selected, with increasing dissimilarity in clinical practice and QA 
procedures with respect to the our institution (cf. Table 2): a) ‘Institution 
1′ with the same QA platform and equipment (i.e., EPID dosimetry), b) 
‘Institution 2′ with a different QA platform, but same equipment, and c) 
‘Institution 3′ with different QA platform and equipment. The main 
concept of the inter-institutional validation was to create a scenario 
from narrow to broad generalization (so called domain shift or drift). In 
addition to the previously defined differences with the local institute, 
centres 2 and 3 evaluate and minimize plan complexity during the 
treatment planning process in combination with a strict DD/DTA (cf. 2 
%/2 mm), resulting in higher detection rate for institution 1 in com-
parison to institutions 2 and 3. Ideally, Institution 2 and 3 should use the 
same DD/DTA criteria as used in the training dataset to have more 
reliable predictions, but the rationale of the study focused on main-
taining the clinical practice without changing the QA procedures. Our 
results demonstrate that the robustness of the model decreases when 
major differences appear in the QA platform or in planning strategies (e. 
g., guided by PCM analysis), but that it is feasible to transfer 
institutional-specific trained models between centres with similar clin-
ical practice to predict failing beams. Future work in the context of 
multi-institutional analysis can be to collect a set of plans and measure 
them in all different institutions. That would isolate completely the QA 
platform/device component, since the PCMs distributions would be 

identical for each plan. 
It should be mentioned that EPID-based QA results with a pre- 

defined DD/DTA and GPR were used as output for the ML models to 
make a proper distinction between acceptable and failed beams based on 
PCMs. These QA results are depending on the imager panel character-
istics for sensitivity and stability and could result in day-to-day varia-
tions, which may affect the GPR results. However, as indicated by Wolfs 
et al., who compared different dose comparison methods for DL-based 
QA prediction models, a relative DD/DTA is still beneficial for DL per-
formance in detecting errors [24]. In addition, not all PCMs were ana-
lysed in this study. 

To conclude, based on the current external validation of its gener-
alizability, it is advisable to train predictive models using local QA re-
sults or combining results from other centres with the same QA platform 
and similar clinical procedures. Based on these results, it seems too early 
to consider that PCMs can replace PSQA for general VMAT cases. 
Nevertheless, the approach can help identifying cases that require 
attention to increase efficiency and streamline the PSQA process and 
could help to reduce the heterogeneous usage of the PCMs in the RT 
community. 
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Michaël Claessens was supported by a grant of the Flemish League 
against Cancer, Belgium (ref: 000019356). 

CRediT authorship contribution statement 
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