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Abstract 

 

Over the past two decades, several cell types with fibroblast-like morphology, including 

mesenchymal stem/stromal cells, but also other adult, embryonic and extra-embryonic 

fibroblast-like cells, have been brought forward in the search for cellular therapies to 

treat severe brain injuries and/or diseases. Although current views in regenerative 

medicine are highly focused on the immune modulating and regenerative properties of 

stromal cell transplantation in vivo, many open questions remain regarding their true 

mode of action. In this perspective, we integrate insights gathered over the past 10 years 

to formulate a unifying model of the cellular events that accompany fibroblast-like cell 

grafting in the rodent brain. Cellular interactions are discussed step-by-step, starting 

from the day of implantation up to 10 days after transplantation. During the short period 

that precedes stable settlement of autologous/syngeneic stromal cell grafts, there is a 

complex interplay between hypoxia-mediated cell death of grafted cells, neutrophil 

invasion, microglia and macrophage recruitment, astrocyte activation and neo-

angiogenesis within the stromal cell graft site. Consequently, we speculate that 

regenerative processes following cell therapeutic intervention in the CNS are not only 

modulated by soluble factors secreted by grafted stromal cells (bystander hypothesis), 

but also by in vivo inflammatory processes following stromal cell grafting.  
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Introduction 

 

During the past two decades, pre-clinical research aiming to cure severe neurological 

injuries has witnessed a spectacular increase of highly promising experimental 

therapeutic interventions, jointly referred to as “stem cell therapy” (Stoltz, et al., 2015). 

Various multipotent cell types, including adult mesenchymal stem/stromal cells (MSC) 

and adult/embryonic/extra-embryonic fibroblast-like cells, are investigated in 

experimental cellular therapies to overcome the nearly irreversible nature of brain 

injuries (Dulamea, 2015, Rivera and Aigner, 2012). As ex vivo culture-expanded MSC 

and other fibroblast-like cells (independent of their origin) are phenotypically and 

functionally indistinguishable they will be referred to as stromal cells further on in this 

perspective (Costa, et al., 2015, Hematti, 2012, Jones, et al., 2007, Mueller and Coles, 

2014). While numerous studies provide evidence for the beneficial effects on 

neuropathology by stromal cell grafting in the CNS (Jaramillo-Merchan, et al., 2013, 

Lee, et al., 2010, Yoo, et al., 2013, Zanier, et al., 2014), to date the true mode of action 

remains unknown. To shed light on the underlying mechanisms, it is not only necessary 

to investigate the effects exerted by grafted cells on CNS function/physiology, but it is 

equally important to focus on the response of the host niche to the cell graft (Costa, et 

al., 2015, De Vocht, et al., 2013, De Vocht, et al., 2013, Le Blon, et al., 2014, Praet, et 

al., 2014). In this perspective, we try to create a new model focusing on the bidirectional 

interplay of cellular events following stromal cell grafting in the CNS of mice, 

integrating current literature with our own efforts over the past 10 years. 
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Immune remodeling of stromal cell grafts in the central nervous system. 

 

Although neglected for many years, it is now well established that direct grafting of 

both autologous (syngeneic) and allogeneic/xenogeneic stromal cells, including MSC 

and embryonic/extra-embryonic fibroblast-like cells, in brain tissue induces a severe 

immunological response. While xenogeneic and allogeneic stromal cell grafts become 

rapidly rejected upon grafting in immune competent hosts (Camp, et al., 2009, Ronsyn, 

et al., 2007, Tambuyzer, et al., 2009), grafting of syngeneic stromal cells seems to be 

well tolerated (Coyne, et al., 2007, De Vocht, et al., 2013, Praet, et al., 2012) despite 

complex immune remodeling within and surrounding the graft site (Le Blon, et al., 

2014, Praet, et al., 2014). Here, we will provide a step-by-step overview of cellular 

events that occur following syngeneic stromal cell grafting into brain tissue starting 

from the day of implantation until 10 days after implantation. We consider this 10-day 

period to be the most critical time frame for stromal cell grafts to settle in - for them - 

the non-natural brain environment.  

 

Entry routes to the CNS: stromal cell administration 

Several routes of administration can be applied for stromal cell delivery to the (injured) 

CNS. Although for practical reasons intravenous (iv) injection would be preferred in 

current clinical settings, this route strongly relies on the original assumption that stromal 

cells can migrate to the site of injury in the CNS via intrinsic expression of multiple 

homing receptors (Cornelissen, et al., 2015, Eggenhofer, et al., 2014). However, various 

studies have demonstrated that iv administered stromal cells are unable to reach the 

CNS in sufficient numbers to be of clinical relevance, due to cell retention in lung 
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capillaries, the spleen or lymph nodes (Acosta, et al., 2015, Jackson, et al., 2010, 

Reekmans, et al., 2011). Although iv administered stromal cells may exert immune-

modulating effects on peripheral immune cells in those retention tissues, only to migrate 

to the lesion sites in the CNS at a later time point and induce an indirect beneficial 

effect on neuropathology (Morando, et al., 2012, Salinas Tejedor, et al., 2015), current 

clinical trials for multiple sclerosis and amyotrophic lateral sclerosis have not yet 

provided a proof-of-principle for successful iv administered stromal cell therapy in 

human pathology. So far, only safety and tolerability of stromal cell injection have been 

validated by these clinical trials (Lublin, et al., 2014, Martinez, et al., 2012, Oh, et al., 

2015, Prockop, et al., 2014). However, several studies comparing various administration 

routes of stromal cells have observed a superior effect when cells were injected at the 

targeted location (Moscoso, et al., 2009, Paul, et al., 2009, Seo, et al., 2011). Therefore, 

potential alternative routes for cell delivery to the injured CNS are intrathecal, 

intraventricular, intracerebral (comprising multiple regions) or intraspinal injection. 

Based on our own experience, we will here further discuss the cellular remodeling 

events following intracerebral implantation of stromal cells (see Figure 1) (Bergwerf, et 

al., 2009, De Vocht, et al., 2013, Le Blon, et al., 2014, Reekmans, et al., 2012). 

 

The day of intracerebral stromal cell grafting: hypoxic stress 

Conceptually, intracerebral injection of a stromal cell suspension consists of a precise 

slowly timed mechanical injection of minute volumes of cells into the CNS, thereby 

subtly pushing and possibly damaging the surrounding tissue. Immediately following 

injection, the stromal cell graft will present itself as a bolus of viable cells entrapped 

within the host’s tissue (Figure 1A) (Praet, et al., 2014).  Due to the absence of blood 
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vessels within the cell graft, the core of the stromal cell graft will be subjected to severe 

hypoxic stress within the first hours post-grafting (Figure 1B) (De Vocht, et al., 2013, 

Praet, et al., 2014). Although detrimental for the stromal cell graft itself, this natural 

feature is not necessarily negative in terms of therapeutic potential, as stromal cells 

under hypoxic conditions are known to alter their gene expression and the secretion of 

paracrine factors (Page, et al., 2014, Zhu, et al., 2006). For instance, expression of 

vascular endothelial growth factor (VEGF) is upregulated, which is involved in the 

induction of angiogenesis, while secretion of monocyte chemotactic protein-1 (MCP-1), 

which is involved in the chemotaxis of monocytes towards the site of injury/disease, 

and matrix metalloproteinase-2 (MMP-2), which is involved in the breakdown of 

extracellular matrix, is decreased (Page, et al., 2014). These hypoxia-induced alterations 

in gene/protein expression by cellular grafts might possibly act as pro-survival and/or 

neuro-protective signals for the injured brain (Plotnikov, et al., 2013, Tong, et al., 

2015), although this hypothesis will need further confirmation in vivo. 

 

Day 1: Early infiltration of neutrophils 

Despite grafted stromal cells reside under hypoxic conditions for the first 24 hours, 

which may generate a beneficial effect on neuro-repair, it is also well-known that severe 

oxidative stress on cells will lead to caspase-dependent apoptosis (Zhu, et al., 2006). As 

a consequence of this hypoxic and most likely also nutrient-deprived environment, 24 hours 

after cell implantation the core of a stromal cell graft will be highly apoptotic and 

necrotic, leading to a very early influx of neutrophils (Figure 1C). The influx of 

neutrophils is by no way surprising as the direct injection of a stromal cell graft in the 

CNS will inevitably cause a disruption of the blood-brain-barrier in proximity of the 
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graft-site and needle tract, a feature also observed following sham-injection (Praet, et 

al., 2014). Whether this disruption is only temporary still needs to be defined. 

Furthermore, as at this stage a large portion of grafted cells will be apoptotic and 

necrotic, cell debris in the core of the implant will give rise to a large amount of 

damage-associated molecular patterns (DAMPs), e.g. heat shock proteins (HSP), ATP, 

nucleic acids, consequently being an additional driving force for attracting neutrophils 

(Caielli, et al., 2012, Vernon and Tang, 2013). 

 

Day 3: Second phase of immune cell invasion and first sign of neo-angiogenesis 

By day three post-implantation, neutrophils will have cleared most of the cell debris 

present within the core of the stromal cell graft. This is also the stage where several 

major changes will occur within the stromal cell graft in the CNS (Figure 1D). First, the 

size of the cellular graft will strongly decrease as all necrotic tissue will be cleared, with 

less than an average of 20% of the initial grafted cell number remaining (De Vocht, et 

al., 2013). Second, once neutrophils have exerted their phagocytic function, they will 

start expressing several soluble mediators. These include so-called ‘find-me’-signals, 

which serve as a tracking signal for phagocytic leukocytes, such as microglia and 

macrophages (Martin, et al., 2015, Vernon and Tang, 2013). Next, neutrophils may be 

killed via death receptor-induced apoptosis, as both infiltrating macrophages and brain-

resident microglia are able to release death receptor ligands, e.g. TNFα and Fas-ligand 

(Geering and Simon, 2011, Martin, et al., 2015). In line with this, at day three post-

implantation phagocytic leukocytes, microglia and/or macrophages, are abundantly 

present at the graft site, most likely in order to phagocytose apoptotic neutrophils and/or 

remaining cellular debris (Denes, et al., 2007, Neumann, et al., 2008). Note that it is 
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extremely difficult to distinguish between both phagocytic cell populations, especially 

in wild type mice (Durafourt, et al., 2012, Hickman, et al., 2013). Third, while stromal 

cells can produce VEGF under hypoxic conditions (Page, et al., 2014), they also 

produce high levels of VEGF in the presence of pro-inflammatory microglia (Costa, et 

al., 2015). Moreover, several other stromal cell-derived factors, including basic 

fibroblast growth factor (bFGF), angiopoietin-1, MCP-1 may support this process 

(Kinnaird, et al., 2004, Watt, et al., 2013). As a result, the first signs of neo-

angiogenesis can be appreciated at this stage by the appearance of endothelial cell 

structures within the stromal cell graft (Costa, et al., 2015, Praet, et al., 2014). Fourth, at 

this time point a significant increase in GFAP-expression can be noticed around the 

graft, which implicates the start of astroglial scarring (Praet, et al., 2014). The process 

of reactive astrogliosis is known to be triggered by several factors, of which in the case 

of stromal cell implantation the most important ones are hypoxia, ATP release by 

damaged cells, ROS and NO production, and cytokines such as IL6, IL10, IL1, TNFα 

and IFNγ (Sofroniew, 2009). Altogether, our data demonstrate that the initial 

remodeling of stromal cell grafts in the CNS is triggered by hypoxia-mediated cell death 

of grafted cells, which subsequently activates neutrophils, microglia, macrophages, 

endothelial cells and astrocytes.  

 

Day7: Astroglial barrier formation 

During the following 3-4 days, no major changes can be observed within and 

surrounding the stromal cell graft, apart from an increasing number of endothelial cells, 

microglia and/or macrophages (Praet, et al., 2014). However, at this stage, astroglial 

scarring around the stromal cell graft becomes stronger (Figure 1E). Plausibly, this is 
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induced through a STAT3-dependent mechanism by the surviving stromal cells as well 

as the ongoing inflammatory processes, as a comparable situation is observed in spinal 

cord injury lesions where the astroglial scar surrounds inflammatory and fibrotic cells in 

a STAT3-dependent manner (Wanner, et al., 2013). We may assume that the observed 

astroglial scarring will create an effective barrier to avoid stromal cell migration on the 

one hand and peripheral inflammatory cell migration into the surrounding brain tissue 

on the other hand. From a physiological point of view, both suggestions are reasonable 

as stromal cells and peripheral immune cells are non-natural cells in the healthy CNS, at 

least in the amount present at the stromal cell graft site. 

 

Day 10: Stabilization of the stromal cell graft 

By day 10 post-implantation, the remnant stromal cells become stabilized within their 

new micro-environment (Figure 1F and Figure 2a). At this stage, neutrophils are no 

longer present and a clear distinction can be made between blood-derived macrophages 

mainly within the stromal cell implant and brain-resident microglia mainly surrounding 

the stromal cell implant, both being separated by an astroglial scar. However, we cannot 

rule out that a migration of microglia or macrophages through the astroglial scar occurs, 

since a small percentage of macrophages can be found around the astrocyte barrier. Our 

study demonstrating this separation, was performed in an eGFP bone marrow 

transplantation mouse model, in which the origin of 96 ± 2% of eGFP+ macrophages 

can be claimed as bone-marrow-derived, although we cannot exclude a minority of 

macrophages being derived from microglia. Nevertheless, our findings demonstrate a 

clear distinction between both cell types, with the astroglial scar as the visual border (Le 

Blon, et al., 2014). Currently we do not yet know how and why exactly this separation 
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of grafted stromal cells and peripheral macrophages at one end and brain-resident 

microglia on the other end, is established by reactive astrocytes. However, clear 

parallels can be drawn with natural lesion site remodeling in the CNS. For example, in a 

mouse model of spinal cord injury, macrophages and microglia are similarly separated 

by an astroglial scar, with macrophages residing within the astroglial scar and microglia 

surrounding the lesion site (Zhou, et al., 2014). Another study in a mouse model for TBI 

demonstrated that there is a temporal difference in the appearance of brain-resident 

microglia and infiltrating macrophages (Morganti, et al., 2015). These findings indicate 

that CNS resident microglia and infiltrating blood-borne macrophages contribute 

differently to neuro-inflammation (Jung and Schwartz, 2012, Shechter and Schwartz, 

2013). Further analysis of macrophages and microglia phenotypes following stromal 

cell graft remodeling revealed a differential expression pattern of activation markers, 

like F4/80 and MHCII, on both microglia and macrophages. While graft-infiltrating 

macrophages express high levels of these activation markers, its expression on graft-

surrounding microglia is highly reduced (Figure 2b). Consequently, this suggests that 

both cell types are differently activated after stromal cell grafting in the CNS. And 

certainly their three-dimensional separation (Figure 2c) promotes further investigation 

of associations between microglia and macrophage phenotype and function during 

stromal cell graft remodeling and furthermore the influence on, or contribution to, 

neuroprotection following cell grafting in the CNS. 
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Towards a unifying theory 

 

In the past few years, it has become clear that stromal cell implantation into the 

(injured) CNS is not trivial. Indeed, assuming that soluble factors secreted by injected 

stromal cells and/or endogenous cell types invading the graft site will be strong enough 

to create a bystander effect that positively influences neuro-inflammatory and/or 

degenerative processes, is overly simplistic. As discussed in this manuscript, the process 

of stromal cell grafting, but also for other cell types like neural stem/progenitor cells 

(De Waele, et al., 2015, Reekmans, et al., 2012), relies on a complex interplay between 

hypoxia-mediated cell death of grafted cells, neutrophil invasion, microglia and 

macrophage recruitment, astrocyte activation and neo-angiogenesis at the graft site, 

ultimately leading to the survival of a limited number of grafted cells. Although the 

notion that only a small fraction of the initial cell graft is able to survive is well 

accepted, the immune-remodeling processes occurring after hypoxia-mediated apoptotic 

death of grafted stromal cells have been largely ignored by most studies. 

Comprehensibly, reports of inflammatory processes following stromal cell grafting in 

vivo, especially in the CNS, are not in favor of the current assumption that stromal cell 

grafting is a safe and well-tolerated procedure. However, we believe that it are exactly 

these inflammatory processes induced by stromal cell grafting that are of substantial 

importance to the overall observed neuroprotection in animal models of CNS injury. 

This view is supported by strong evidence in past studies demonstrating that 

macrophages, key players in the stromal cell graft-induced inflammatory environment, 

can contribute to improved disease outcome in animal models of neuropathology when 

activated in a ‘correct’-anti-inflammatory/neuroprotective- way (Corraliza, 2014, Hu, et 
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al., 2015). Therefore, it is certainly worthwhile to study not only the in vivo function of 

stromal cells, but also to reorient interest towards functional properties of stromal cell 

graft-associated microglia and macrophage responses. This way, stromal cell graft-

induced inflammatory responses, currently considered as a harmless side effect, may 

turn out to be therapeutic inflammation.     
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Figure legends 

 

Figure 1. Stromal cell graft-remodeling from day 0 until day 10 after 

transplantation in the central nervous system. 

(A) Representative image of the stromal cell graft site at the moment of transplantation. 

A bolus of viable stromal cells is present at the site of injection. (B) Representative 

image of the stromal cell graft site at 6 hours after transplantation. All stromal cells in 

the dense core have become hypoxic. (C) Representative image of the stromal cell graft 

site at 24 hours after transplantation. Nearly all hypoxic stromal cells in the core 

underwent apoptosis or necrosis, leaving a high concentration of stromal cell debris at 

the core. At this time point the graft is also infiltrated by neutrophils. (D) Representative 

image of the stromal cell graft site at day 3 after transplantation. The graft has become 

smaller with only viable stromal cells to remain. At this time point the graft becomes 

infiltrated by macrophages and surrounded by microglia. Furthermore, astrocytes are 

surrounding the implant and the first endothelial cells are appearing within the graft. (E) 

Representative image of the stromal cell graft site at day 7 after transplantation.  At this 

time point more macrophages and microglia accumulate in and around the graft. 

Furthermore, the astroglial scar surrounding the stromal cell graft has become stronger 

and blood vessels are in full development. (F) Representative image of the stromal cell 

graft site at day 10 after transplantation. The implant is completely infiltrated by 

macrophages and surrounded by microglia. Meanwhile, a very strong barrier is formed 

around the graft by the astroglial scar. Note that at this stage, neutrophils are no longer 

present at the stromal cell graft site.  
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Figure 2. Immunofluorescent images demonstrating important cellular events 

during stromal cell graft-remodelling. 

(A) Representative immunofluorescent images showing a blue fluorescent protein 

(BFP)-expressing stromal cell graft (light blue) in the CNS of CX3CR1-eGFP x CCR2-

RFP mice. Stromal cell graft surrounding microglia are visualized by direct eGFP-

fluorescence (green), the infiltrating macrophages by direct RFP fluorescence (red) and 

the astroglial scar is visualized by immunofluorescence for GFAP (blue) at day 10 after 

transplantation in the CNS. (B) Representative immunofluorescent images showing the 

activation of infiltrating macrophages (red) and surrounding microglia (green). The two 

left images demonstrate F4/80 expression (blue) on macrophages and microglia, 

signifying a general activation state. The two right images demonstrate MHCII 

expression (blue) on macrophages and microglia, signifying a more specific activation 

phenotype. The graft is delineated by a dotted line. All above scale bars indicate 100µm. 

(C) 3D recording of a cleared CX3CR1-eGFP x CCR2-RFP brain tissue block (1273 

µm² x 500 µm) containing the stromal cell graft illustrates the invasion of macrophages 

(Ma) in the center of the graft site, while microglia (Mi) are only observed surrounding 

the graft. The injection-tract shows a similar invasion pattern, with macrophages inside 

the tract, and microglia encapsulating it. A 2D (XY-XZ, left) and 3D (right) orthogonal 

view are shown. 
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FiGURE 1 
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FIGURE 2 

 

 


