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Abstract

We consider a routing problem for ambulances in a disaster response scenario, in which
a large number of injured people require medical aid at the same time. The ambulances
are used to carry medical personnel and patients. We distinguish two groups of patients:
slightly injured people who can be assisted directly in the field, and seriously injured
people who have to be brought to hospitals. Since ambulances represent a scarce resource
in disaster situations, their efficient usage is of the utmost importance. Two mathematical
formulations are proposed to obtain route plans that minimize the latest service completion
time among the people waiting for help. Since disaster response calls for high-quality
solutions within seconds, we also propose a Large Neighborhood Search metaheuristic.
This solution approach can be applied at high frequency to cope with the dynamics and
uncertainties in a disaster situation. Our experiments show that the metaheuristic produces
high quality solutions for a large number of test instances within very short response time.
Hence, it fulfills the criteria for applicability in a disaster situation. Within the experiments,
we also analyzed the effect of various structural parameters of a problem, like the number
of ambulances, hospitals, and the type of patients, on both running time of the heuristic
and quality of the solutions. This information can additionally be used to determine the
required fleet size and hospital capacities in a disaster situation.

Keywords: Ambulance routing, Disaster response, Service time, Local search, Large
neighborhood search

1. Introduction

Recent examples such as Hurricane Katrina in 2005, the Indian Ocean tsunami in
2004, or any of the recent armed conflicts around the globe demonstrate that disasters
can have a devastating impact on a society. Regardless of whether their cause is natural
(e.g., earthquakes, floods, hurricanes, wildfires) or man-made (e.g., terrorist attacks, war
situations), disasters can cause large-scale loss of life as well as damage to a society’s
infrastructure, housing, and industrial complex. It has been widely recognized (see e.g.,
Berkoune et al. (2012) and Holgúın-Veras et al. (2012)) that the severity of a disaster can
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be, to a large extent, influenced by the efficacy of the logistics operations during the re-
sponse phase. Although the disaster itself can certainly cause a lot of casualties, a large
fraction of the victims usually perish because of a lack of medical aid in the immediate
aftermath of a disaster. Clearly, the post-disaster situation results in the response actions
having to be executed under extremely challenging conditions: limited availability of re-
sources (transportation, supplies, manpower, hospital capacity), damaged transportation
and communication infrastructure, as well as uncertain information regarding the number
and locations of people in need of medical assistance, see e.g., Najafi et al. (2013, 2014) and
Yi et al. (2010). Despite these challenges, it is essential that the logistics relief operations
are initiated quickly and well planned to be most effective. Hence, there is a strong need for
decision support tools that generate solutions to the underlying optimization problems in a
few seconds or less (Berkoune et al., 2012). However, research on transportation problems
and vehicle fleet management for disaster response operations is emerging only recently,
see de la Torre et al. (2012) and Pedraza-Martinez and van Wassenhove (2012). With this
paper, we propose a decision support approach for the routing of ambulances in response
to a disaster.

The central task of managing ambulances in a disaster response situation is to provide
first aid to slightly injured people and to bring seriously injured people to operating hos-
pitals. Managing the operations of ambulances in the immediate aftermath of a disaster
is massively complicated by the dynamics and uncertainty with which the planning condi-
tions (especially the relevant information) change over the course of time. The information
required to support the planning of ambulances includes the number and location of people
calling for help, the availability of ambulances, the capacity of the nearby hospitals, as well
as the accessibility of incident sites due to the damaged infrastructure and the current
traffic situation, see Jotshi et al. (2009). Another issue is that, in contrast to the daily
operations in the public health care sector, the number of requests for help in a disaster
situation strongly exceed the capacity of the available ambulance fleet. Hence, it is of
utmost importance to use the ambulances efficiently in such a way that they provide as
much medical aid as possible.

The response process that is executed by the responsible organizations in the aftermath
of a disaster has to be designed in such a way that it is able to cope with the challenges of a
dynamic planning situation for the scarce ambulance resource. The routing of ambulances
in such a situation can be treated as a static or a dynamic routing problem. In the static
case, a set of emergencies requests is collected first and, then, the routing problem is solved
for this set of requests. In the dynamic case, the routes of ambulances are updated whenever
new help requests arrive, which can reduce the response time. However, this approach
requires that communication with the ambulances is possible at all time, which might not
be the case in a disaster situation and, furthermore, the rescue teams may perceive this to
be disturbing under stressful circumstances. Therefore, in this paper, we consider a three-
step response process that aims at solving a static ambulance routing problem, see Fig. 1.
The process is executed by a central dispatching unit, which collects requests and manages
ambulance operations repeatedly until no further emergency requests are received. The
first step is to answer incoming emergency calls and to collect relevant information like
the location and the condition of the people being in need of help. The dispatcher collects
several requests that are then classified according to their severity in a second process step.
The classification reflects the priority with which a patient should receive help, which is
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1. Collect incoming requests 

2. Classify requests according to severity/urgency

3. Solve routing problem and send out ambulances 

Disaster event

Repeat as 

long as 

required

Figure 1: Disaster response process.

taken into account when routing the ambulances in the third process step. Collecting and
classifying a number of requests before actually sending out the ambulances supports an
efficient use of the vehicles, because instead of dispatching ambulances on a first-come
first-served basis they can be used to serve the most urgent requests first. Therefore, the
first two process steps do not represent a waste of precious time but they collect valuable
information to come up with high-quality route plans in the third process step. In fact, the
time spent for the first two steps is rather short if numerous requests arrive within short
time (as in the case of a disaster event) and if the classification of requests is performed
directly while answering an emergency call or automatically from the collected data. Hence,
the three-step process can be repeated at high frequency (for example each time a certain
number of requests has been collected or a certain time limit has elapsed) such that it
causes little delay in the service process. Clearly, if the dispatcher classifies an incoming
request as so urgent that it cannot wait at all, a suitable ambulance may be deployed
directly without waiting for further requests. This, however, would constitute a mixed
static-dynamic response process, which is out of scope of this paper. A further advantage
of the sketched three-step process is that up-to-date information regarding the availability
of ambulances, infrastructure conditions, etc. can be included in the planning.

The scope of this paper is to investigate the routing problem that occurs in the third
step of the response process. The ambulances are used to bring medical personnel to the
casualties and to carry injured people to the hospitals. Each ambulance carries medical
personnel that can provide first aid to slightly injured people in the field. Seriously injured
individuals are accompanied by the medical staff on their way to the hospital where skilled
doctors are available. According to this, we distinguish two types of patients:

• Red code patient : A person with red code classification is seriously injured and needs
to be brought to a hospital by an ambulance.

• Green code patient : A person with green code classification is slightly injured and
can be helped directly in the field.

There exist more detailed classification schemes for patients (see e.g., Andersson and
Värbrand, 2007; Gennarelli and Wodzin, 2008) and several so-called triage systems have
been developed for classifying and prioritizing patients rapidly in a mass-casualty incident
with an overwhelming number of victims, limited time and scarce medical resources, see
Killeen et al. (2006). The goal of triage is to allocate a limited set of medical resources
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to patients such that these resources are used as efficiently as possible, providing the best
possible care to a large number of patients. The triage system therefore assigns priority
to those patients who will substantially benefit from a rapid intervention, even if these
patients are not the most critical ones. This makes disaster response different from civil
health care where resources are usually not scarce and the most severe patients always re-
ceive highest priority. Typical triage systems classify and prioritizes patients based on their
conditions into four groups (Garner et al., 2001): patients who require immediate trans-
portation to a hospital, patients who can wait some time for transportation, patients who
require no hospital treatment, and patients who are unlikely to survive at all. Including
further categories (as done for example in Gennarelli and Wodzin, 2008) allows for a finer
distinction of patients and their needs but makes the application of triage systems more
difficult. However, the two types of patients considered in this paper are sufficient to distin-
guish the fundamental tasks that have to be performed by the ambulances, namely serving
patients in the field and bringing them to hospitals. For this reason, we just consider two
patient classes in this paper.

Concerning the routing of ambulances, we assume that each of them can carry one red
code patient at a time and that each patient is directly brought to a hospital after having
been picked up. The decision to which hospital to bring a patient is part of the routing
problem and depends on the capacities of hospitals. Since green code patients can be
helped on the field, an ambulance can go directly to the next patient after having served
a green code patient. From this, an ambulance can provide help to multiple people on its
route before returning to a hospital. In contrast, if an ambulance has to serve multiple red
code patients, it has to visit several hospitals throughout the planning horizon. Therefore,
for the purpose of clarity, we refer here to a route as a tour that begins at one hospital,
visits one or more patients in a specified sequence, and ends at either the starting hospital
or at some other hospital. Hence, an ambulance may perform multiple routes within a
solution to the ambulance routing problem.

The optimization problem is then to determine ambulance routes to serve the two groups
of patients, red code and green code patients, which have been determined in the first two
steps of the sketched response process. The objective is to minimize the sum of the latest
service completion time among the red code patients and the latest service completion time
among the green code patients. The objective strives to reduce the longest waiting time
faced by a patient in a group. Although some authors propose to minimize the average
waiting time of patients (e.g., Créput et al. 2011), the objective pursued in our paper
ensures that no patient suffers from an excessively long waiting time. This maximizes the
probability of survival for the patient who has to wait longest to be served. Furthermore,
we also introduce weights for the latest completion times of the two patient groups. These
weights can be used to reflect the higher urgency of red code patients, but they can also
result in green code patients being served before red code patients. The latter reflects real-
world triage systems for mass-casualty incidents where priority is given to those patients
who benefit most from a rapid medical treatment without expending valuable resources
on those for whom there is little hope of recovery. Such a prioritisation is proposed, for
example, by Benson et al. (1996) who compute the expected benefit of rendering care with
the cost of achieving that benefit in order to assign the highest priority to those patients
whose treatment yields the greatest value. The weighted objective function pursued in our
paper supports such a tradeoff of the severity of a help request and the medical resources
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required for it. In order to assess a solution with regard to this performance measure, not
only the routes but also the service start and completion times, i.e., the scheduling of the
ambulance operations, have to be determined. With this paper, we provide the first models
and algorithms to solve this problem. Since in a disaster situation high-quality ambulance
routes have to be determined in short response times, we particularly strive to develop
powerful heuristic solution methods.

The paper is organized as follows. In Section 2 we review the relevant literature and
relate it to our study. The routing problem is described and modeled in Section 3 together
with an illustrating example. In Section 4, we present a Large Neighborhood Search
metaheuristic to solve the emergency routing problem. The models and the metaheuristic
are computationally tested in Section 5. Section 6 concludes the paper.

2. Literature Review

There exist several streams of research that address locating, dispatching, and routing
ambulances and supplies in public health care and in disaster response situations.

Locating ambulances entails finding deployment sites for the vehicles within an (urban)
area such that a certain response time is guaranteed to reach the potential emergency sites
within this area. Surveys of models and algorithms developed in this field of research are
provided by Brotcorne et al. (2003) and Farahani et al. (2012). The approaches typically
belong to the class of covering location models, see for example the early work of Fitzsim-
mons and Srikar (1982). Relocation of ambulances comes into the play when the coverage
becomes inadequate due to ambulances that are currently dispatched to incidents. In this
case, idle vehicles may have to be relocated to fill gaps in the coverage, which leads to a
dynamic ambulance location problem, see Gendreau et al. (2001). Recent research aims at
capturing realistic planning situations like traffic-dependent traveling times and congestion
phenomena. For example, Schmid and Doerner (2010) consider travel times that vary in the
course of a day within an ambulance location problem. From such variations, the coverage
achieved throughout a day by a certain deployment of ambulances changes dynamically
which calls for relocations. The authors propose a model and a Variable Neighborhood
Search metaheuristic to simultaneously optimize the coverage for various points in time
with varying traffic volumes. Knight et al. (2012) present a model to locate ambulances
in such a way that the expected survival probability of heterogeneous patients is maxi-
mized. The patients differ in the targeted response time and in their medical conditions.
An approximation method is proposed to solve this type of ambulance location problem.

Dispatching is the task of assigning incoming emergency requests to ambulances. It
is sometimes solved in combination with the ambulance location problem. For example,
Toro-Dı́az et al. (2013) present an integrated location and dispatching model that captures
the impact of queuing patients in congested server systems on the achieved response time
and coverage. A Genetic Algorithm is proposed to assign locations and requests to the
vehicles. Andersson and Värbrand (2007) dispatch ambulances according to the urgency
of requests and the closeness of a vehicle to the site of an incident. The authors combine
the dispatching with a relocation of ambulances in order to maintain the coverage of the
service area when some of the ambulances are busy serving patients. Also Schmid (2012)
combines dispatching and relocation where approximate dynamic programming is used to
minimize the expected total response time of requests that occur within the planning hori-
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zon. The routing of ambulances is out of scope of these papers, because dispatching is
concerned with assigning a single emergency request to a suitable ambulance.

Ambulance routing is considered in some studies as the problem of finding a shortest
(fastest) path from one location to another taking into account traffic conditions and the
infrastructure damage caused by a disaster, see e.g., Jotshi et al. (2009) and Goldberg and
Listowsky (1994). In our paper, ambulance routing is considered as the problem of finding
vehicle routes for a set of ambulances to serve a given set of patients. Such problems are
often seen as dynamic or real-time vehicle routing problems since emergencies occur in the
course of time at unforeseeable locations, see e.g., the surveys of Ghiani et al. (2003) and
Pillac et al. (2013). If there is a strong degree of dynamism and stochasticity, the rout-
ing problem may be solved by a reactive dispatching policy, cf. Bertsimas and van Ryzin
(1991). However, if several requests occur in short time, as is assumed in our study, the
problem is to find routes each comprising several patients such that all requests are served.
Such a problem is solved in Créput et al. (2011) by means of a multi-agent approach and
local search heuristics with the objective of minimizing the average waiting time of pa-
tients. Wex et al. (2014) investigate a multiple traveling salesman problem that finds its
application in the routing of rescue units that have to serve a given set of incidents. The
authors propose several (meta-)heuristics to find routes that minimize the total weighted
completion time of the incidents. It is assumed that all patients receive aid in the field such
that transportation to hospitals is not part of the problem. Transportation of non-urgent
patients among hospitals, from homes to hospitals, or vice versa can be considered as a
dial-a-ride problem, which is to relocate patients from their individual origin location to
their destination, see e.g., Parragh (2011) and Parragh et al. (2012). A dynamic stochastic
version of this problem arises if patients brought to a hospital are discharged the same day
with a certain probability such that their return has to be added to the vehicle routes, see
Schilde et al. (2011). Since the transport requests are not urgent in these problems, the
typical objective is to minimize the travel effort of vehicles or the tardiness of violated time
windows. Also, the destination of each patient is prescribed in these problems whereas in
disaster response it needs to be decided to which hospital to bring a patient.

Another stream of research is on disaster relief routing for which de la Torre et al. (2012)
provide a recent literature survey. Here, the scope is on the distribution of humanitarian
aid supplies like water, food, medicine, and survival equipment from distribution centers
to demand points like refugee camps with respect to the available transport capacities, see
e.g., Berkoune et al. (2012). In this field, various routing problems have been investigated.
For example, Campbell et al. (2008) present models and heuristics for traveling salesman
and vehicle routing problems that aim at minimizing the latest arrival time or the aver-
age arrival time at demand locations as is of relevance in time-critical disaster response
actions. Huang et al. (2012) investigate a vehicle routing problem to distribute supplies
from a depot with the goal of a fair allocation of scarce supplies if not all demands can be
met. Rath and Gutjahr (2014) combine distribution planning with locating supply depots
such that a cost measure is minimized and a maximal coverage is achieved. A hierarchical
traveling salesman problem where demand locations require supplies with different urgency
levels is investigated in Panchamgam et al. (2013). A multi-commodity flow problem to
serve demand locations in multiple truck trips at minimum time is presented in Berkoune
et al. (2012). However, the transportation of patients is out of scope of all these papers.

A few papers propose multi-commodity flow models to combine the distribution of
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supplies with the transportation of patients. Yi and Özdamar (2007) present such a model
with the objective of minimizing the weighted sum of unsatisfied demands and waiting
times of injured people. The patients have to be brought to hospitals and to emergency
centers that are set up temporarily to cope with the disaster. Özdamar and Demir (2012)
provide a similar model that minimizes the total vehicle travel time in order to ensure
an efficient utilization of transport capacity and a fast delivery of supplies. Najafi et al.
(2013, 2014) provide extensions of the model of Yi and Özdamar (2007) to cope with
different vehicle types and to support re-planning and robust solutions in dynamic and
stochastic planning situations. The approaches investigated in these papers are all based
on multi-commodity network flow problems where a detailed routing of vehicles is typically
out of scope. Furthermore, although different categories of patients are distinguished, all
patients have to be brought to a medical station to be treated. Considering different types
of services (first aid in the field for slightly injured people, transportation to hospitals for
heavily injured people) is not supported by these models.

From this literature review, we observe that disaster response management is a very
active field of research. However, research mainly concentrates on locating and dispatching
of ambulances and on the distribution of supplies. Ambulance routing has received only
some attention in the literature. In particular, the routing problem investigated in this
study, where some patients can be served on the field whereas others need to be brought
to hospitals, has not been treated so far.

3. The Ambulance Routing Problem

3.1. Problem Description

The aim of the ambulance routing problem is to find routes for a fleet of ambulances
in order to give aid to a set of patients. We formalize this problem using the notation
shown in Table 1. Let R denote the set of red code patients who have to be picked up
by ambulances to be brought to the hospitals in set H. Let G denote the set of green
code patients who can receive aid directly in the field. The set of all patients is denoted
by P = R ∪ G. The fleet of ambulances available to give aid to patients is denoted by
K. Each ambulance is initially located at a hospital. We denote by Kh ⊆ K the subset of
ambulances that are initially located at hospital h ∈ H. A corresponding binary parameter
fk
h indicates whether ambulance k is initially located at hospital h (fk

h = 1) or not (fk
h = 0).

Furthermore, we denote by A = {P × P} ∪ {H × P} ∪ {P × H} the set of arcs that are
of relevance for the routing problem where tij is the travel time needed by an ambulance
to traverse arc (i, j) ∈ A. A service time di is associated to each patient i ∈ P . For red
code patients, di denotes the time required to prepare the patient for transportation to a
hospital. For green code patients, di denotes the time needed to give first aid to the patient
in the field. For the ease of notation, we also define a transfer time dh for each hospital
h ∈ H, which represents the time required to drop off a red code patient at this hospital.
Finally, ch denotes the capacity of hospital h ∈ H in terms of the maximum number of red
code patients who can be brought to this location. We assume that the total capacity of
all hospitals is sufficiently large to host all red code patients, i.e.,

∑

h∈H ch ≥ |R|. We also
assume that each ambulance can carry at most one red code patient at a time and that
an ambulance has to go directly to a hospital with residual capacity after taking up a red
code patient. In contrast, having served a green code patient in the field, an ambulance
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Table 1: Notation used to model the ambulance routing problem.

Sets:
R set of red code patients
G set of green code patients
P set of all patients, P = R∪ G
H set of hospitals
Kh set of ambulances that are initially located at hospital h ∈ H
K set of all ambulances, K = ∪h∈HKh

A set of arcs in a problem, A = {P × P} ∪ {H × P} ∪ {P ×H}

Parameters:

fk
h binary parameter, 1 iff ambulance k is initially located at hospital h (i.e. k ∈ Kh)
tij travel time from i to j with (i, j) ∈ A
di service time of patient i ∈ P
dh transfer time to drop off a red code patient at hospital h ∈ H
ch capacity of hospital h ∈ H
wR priority given to red code patients
wG priority given to green code patients

Decision variables:

xkij binary, 1 iff ambulance k serves patient i directly before patient j (3-Index Model)
xij binary, 1 iff any ambulance serves patient i directly before patient j (2-Index Model)
uih binary, 1 iff red code patient i is brought to hospital h
bi visiting time of patient i ∈ P, bi ≥ 0
eR latest service completion time among all red code patients
eG latest service completion time among all green code patients

can go directly to the next patient (green code or red code) on its route. We assume that
each ambulance finishes its last route at any hospital.

In order to evaluate the quality of a solution, we define the service completion time of
a red code patient as the point in time when the patient is dropped off at the assigned
hospital. The service completion time of a green code patient is given by the completion
of the first aid. The objective of the ambulance routing problem is to minimize a weighted
linear combination of the latest service completion time eR among all red code patients
and the latest service completion time eG among all green code patients. The latest service
completion time among the patients of a group is considered here because it minimizes the
worst case waiting time. Furthermore, eR and eG are weighted by parameters wR and wG,
respectively, to express the relative importance that a decision maker probably assigns to
the patient groups. In particular, if red code patients shall be served with utmost priority,
a setting wR ≫ wG will ensure that these patients are served early in the routing. We next
provide an illustrative example. Afterwards, two mathematical models of the problem are
presented respectively in Sections 3.3 and 3.4.

3.2. Illustrative Example

We illustrate the problem on a small artificial example. This instance contains three
red code patients R = {r1, r2, r3} and seven green code patients G = {g1, g2, . . . g7}. Two
hospitals H = {h1, h2} are available to take up the red code patients, with respective
capacities ch1 = ch2 = 3. Two ambulances a1 and a2 are initially located at hospital h1,
i.e., Kh1 = {a1, a2}. A third ambulance a3 is initially located at h2, i.e., Kh2 = {a3}.
Figure 2 illustrates the locations of all patients and hospitals. We assume here that the
travel times tij of arcs (i, j) ∈ A correspond to the Euclidean distance between locations
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Figure 2: Example solution.

i and j. The service times di are set to 30 time units for red code patients i ∈ R and to
10 time units for green code patients i ∈ G. We assume that dropping off a patient at a
hospital h ∈ H can be done in no time, i.e., dh = 0.

Figure 2 shows a potential route plan for the three ambulances. In this solution, each
ambulance performs two routes. Ambulance a1 starts its first route at hospital h1, picks up
red code patient r1 and brings this patient to hospital h1. On its second route, ambulance
a1 serves three green code patients g1, g2, and g4. Ambulance a2 first picks up red code
patient r2 and brings it to hospital h2. Afterwards, it serves patient g3 before returning to
hospital h1. Ambulance a3 starts at hospital h2 and combines the service of two green code

Figure 3: Time-space representation of the example solution.
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patients with the service of red code patient r3. After having brought r3 to hospital h2,
patient g5 is served in a second route. In order to determine the quality of this solution,
the time-space diagram in Fig. 3 shows the positions of all ambulances over the course of
time. It can be seen that the latest drop off of a red code patient at a hospital takes place
at time eR = 161. The latest completion time of serving a green code patient is eG = 269.
Note that a route can start and end at different hospitals, which enables solutions of high
quality where patients are served as quickly as possible. In our example, this is the case
for the routes of ambulance a2.

3.3. Mathematical Formulation: A 3-Index Model

Using the notation introduced in this section, we propose a mathematical formulation
of the routing problem. The model uses 3-indexed binary decision variables xk

ij, which take
value 1 if ambulance k serves patient i directly before patient j and 0 otherwise. Binary
variables uih take value 1 if red code patient i ∈ R is brought to hospital h and 0 otherwise.
The visiting time of patient i, i.e., the arrival time of the ambulance that gives aid to this
patient is represented by a continuous variable bi ≥ 0. The ambulance routing problem is
modeled by (1)–(13).

min wR · eR + wG · eG (1)

s.t.
∑

j∈P∪H

xk
hj = fk

h ∀h ∈ H; k ∈ K (2)

∑

k∈K

∑

j∈P∪H

xk
ji = 1 ∀i ∈ P (3)

∑

j∈P∪H

xk
ji =

∑

j∈P∪H

xk
ij ∀i ∈ P ; k ∈ K (4)

∑

h∈H

uih = 1 ∀i ∈ R (5)

∑

i∈R

uih ≤ ch ∀h ∈ H (6)

bi + di + tij ≤ bj +

(

1−
∑

k∈K

xk
ij

)

·M ∀i ∈ G ∪H; j ∈ P (7)

bi + di + tih + dh + thj ≤ bj +

(

2−
∑

k∈K

xk
ij − uih

)

·M ∀i ∈ R; j ∈ P ;h ∈ H (8)

eG ≥ bi + di ∀i ∈ G (9)

eR ≥ bi + di + uih · (tih + dh) ∀i ∈ R;h ∈ H (10)

bi ≥ 0 ∀i ∈ P ∪H (11)

uih ∈ {0, 1} ∀i ∈ R;h ∈ H (12)

xk
ij ∈ {0, 1} ∀(i, j) ∈ A; k ∈ K (13)

The objective function (1) aims to minimize the weighted sum of the latest service
completion time among all red code patients and the latest service completion time among
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all green code patients. Constraints (2) ensure that each ambulance originates from the
hospital where it is initially located. According to Constraints (3), each patient is visited
exactly once by one of the ambulances. Constraints (4) enforce that an ambulance visiting
a patient also has to leave that patient’s location. Consequently, ambulances finish their
routes in one of the hospitals. Constraints (5) and (6) enforce that each red code patient
is assigned to exactly one hospital and that the capacity of each hospital is respected.
Constraints (7) and (8) propagate the arrival times of ambulances at the patient locations.
According to (7), the arrival time bj of an ambulance at a patient j is determined by the
arrival time bi at the location i (a green code patient or a hospital) visited immediately
prior to patient j, the service time di at location i, and the travel time tij to go from i
to j. If, however, i represents a red code patient, the detour to bring i to its assigned
hospital needs to be included into the calculation of the arrival time at j. This is ensured
by (8). Here, if an ambulance serves a red code patient i immediately prior to patient j
(i.e.,

∑

k∈K xk
ij = 1) and if i is assigned to hospital h (i.e., uih = 1) then (8) ensures that

the arrival time bj at patient j is at least as large as bi + di + tih + dh + thj, which also
includes the time to go to hospital h and drop off patient i before proceeding to patient
j. This approach allows to include multiple intermediate returns of an ambulance to a
hospital into a solution. Constraints (9) determine the latest service completion time eG
among all first aid services provided to green code patients. Constraints (10) determine
the latest service completion time eR of all red code patients. Note that the service of a
red code patient is completed at the time when the patient is dropped off at the assigned
hospital. Constraints (11)-(13) define the domains of the decision variables.

Considering the special case of the routing problem with a single ambulance, a single
hospital, no red code patients R = ∅, and neglected service times di = 0 of green code
patients i ∈ G, the problem reduces to the traveling salesman problem which is known to
be NP-hard (Karp, 1972). Therefore, the problem studied in this paper is also NP-hard.

3.4. A 2-Index Model
Model (1)–(13) uses 3-indexed variables xk

ij for the routing of ambulances k ∈ K. How-
ever, since all ambulances are identical except for their initial locations, we can reformulate
the model by dropping index k. Hence, the size of the model can be reduced with an ex-
pected positive impact on the computation time needed by a MIP solver to find an optimal
solution to the routing problem. In order to reformulate the model, we introduce the bi-
nary variable xij ∈ {0, 1}, which takes value 1 if any ambulance serves patient i directly
before patient j. All further notation is as before.

min wR · eR + wG · eG (14)

s.t.
∑

j∈P∪H

xhj ≤ |Kh| ∀h ∈ H (15)

∑

j∈P∪H

xji =
∑

j∈P∪H

xij = 1 ∀i ∈ P (16)

∑

h∈H

uih = 1 ∀i ∈ R (17)

∑

i∈R

uih ≤ ch ∀h ∈ H (18)
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bi + di + tij ≤ bj + (1− xij) ·M ∀i ∈ G ∪H; ∀j ∈ P (19)

bi + di + tih + dh + thj ≤ bj + (2− xij − uih) ·M ∀i ∈ R; j ∈ P ;h ∈ H (20)

eG ≥ bi + di ∀i ∈ G (21)

eR ≥ bi + di + uih · (tih + dh) ∀i ∈ R;h ∈ H (22)

bi ≥ 0 ∀i ∈ P ∪H (23)

uih ∈ {0, 1} ∀i ∈ R;h ∈ H (24)

xij ∈ {0, 1} ∀(i, j) ∈ A (25)

The objective function in (14) is identical to the objective function (1) of the 3-index
model. Constraints (15) ensure that at most |Kh| ambulances start from hospital h. Con-
straints (16) conserve the flow of ambulances at patient locations. Constraints (19) and
(20) determine the arrival times at the patients based on the new routing variables xij.
Constraints (25) define these binary variables. Constraints (17)-(18) and (21)-(24) are
taken from the 3-index model.

3.5. Model Refinements

The proposed models containM -terms that are used to compute arrival times at patient
locations. In order to support MIP solvers in coping with these formulations, in this
paragraph we describe how to determine a value that is sufficiently large to serve as M .
The general idea is to compute for each patient i the maximum time tmax

i that is needed to
reach and to serve this patient. For green code patients i ∈ G, tmax

i = maxk∈G∪H{tki}+ di
because the corresponding ambulance can be either located at another green code patient
or at some hospital right before going to patient i. For red code patients i ∈ R, tmax

i =
maxk∈G∪H{tki} + di + maxh∈H{tih + dh}, including also the longest possible time that is
needed to drop off patients i at any of the hospitals. Supposing that in the worst case all
patients are served by the same ambulance, therefore M =

∑

i∈P tmax
i represents an upper

bound on the arrival time at any patient.
The models may further be extended in different ways. One issue is to have a good dis-

tribution of ambulances across the region at the end of the service process, especially if the
methodology is used within a repetitive process. This can be achieved by enforcing that am-
bulances (i.) return to the depots where they started from, or (ii.) are equally distributed
across hospitals, or (iii.) are located close to the area where additional patients are most
likely to appear. For the 3-index model, these goals are modeled by Constraints (26) to (28).

∑

j∈P∪H

xk
jh = fk

h ∀h ∈ H; k ∈ K (26)

∑

k∈K

∑

j∈P∪H

xk
jh ≤

⌈

|K|

|H|

⌉

∀h ∈ H (27)

∑

k∈K

∑

j∈P∪H

xk
jh = ah ∀h ∈ H (28)

Constraints (26) enforce that each ambulance finally returns to its initial hospital loca-
tion whereas (27) equally distribute the ambulances among the hospitals. Constraints (28)
can be used to enforce a certain number ah of ambulances at hospital h. In order to locate
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ambulances close to locations where additional patients are most likely to appear, one can
add artificial hospitals h′ to set H. Such an artificial hospital has no capacity (ch′ = 0)
and no initial ambulances (Kh′) but it can be used for absorbing a certain number ah′ of
ambulances at the end of the service process. The corresponding constraints for the 2-index
model are given by (29) to (31). Constraints (29) guarantee that the initial number of am-
bulances is finally located at each hospital again whereas Constraints (30) balance the num-
ber of ambulances among the hospitals at the end of the service process. Constraints (31)
guarantee a certain number of ambulances, which can also be used for deploying ambu-
lances at arbitrary locations that are represented by artificial hospitals added to set H.

∑

j∈P∪H

xjh = |Kh| ∀h ∈ H (29)

∑

j∈P∪H

xjh ≤

⌈

|K|

|H|

⌉

∀h ∈ H (30)

∑

j∈P∪H

xjh = ah ∀h ∈ H (31)

Please note that in the remainder of the paper, we consider the basic models described in
Sections 3.3 and 3.4 without the extensions described by Constraints (26)-(31).

4. Solution Approach

The circumstances in which the ambulance routing problem described in this paper is
solved require a fast and robust solution approach. To be useful in disaster situations, the
ambulance routing problem must be solved within seconds in order to respond properly to
the emergency requests and to replan the routing if updated information becomes available.
In addition, the quality of the solutions is an important aspect determining the waiting
times for the patients, which should obviously be as short as possible. These reasons
warrant the development of a (meta)heuristic solution approach, which is usually faster
than an exact approach, and is expected to produce solutions of near-optimal quality.

We propose here a Large Neighborhood Search (LNS ) metaheuristic to solve the am-
bulance routing problem. The iterative nature of the LNS metaheuristic and the presence
of diversification mechanisms allow the procedure to escape from local optima such that
various parts of the solution space can be explored in a limited amount of computing time.
The operating principle of the LNS metaheuristic is based on three stages:

• Initial stage: An initial solution for the ambulance routing problem is generated by
one of two randomly selected heuristic approaches, which are described in Section 4.1.

• Intensification stage: The current solution is improved by a large scale neighborhood
search (so-called Variable Neighborhood Descent (VND) heuristic), which uses nine
different local search operators. The VND heuristic is described in Section 4.2.

• Diversification stage: To reach unexplored areas of the solution space, the current
solution is first partially destroyed by selecting randomly one of three destroy oper-
ators described in Section 4.3. Afterwards it is reconstructed by applying a repair
operator. The modified solution then becomes the input of the intensification stage.
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Two parameters I and L determine the behavior of the LNS procedure. I is the
total number of iterations performed by the algorithm. L is a limit on the number of
iterations without improvement. If L iterations have been performed without finding a
new best solution, LNS restarts the search process by generating a new initial solution.
This generation process is randomized to produce a solution that has not been investigated
earlier in the search process. The LNS method is outlined in further detail in Algorithm 1.
After the initialization phase, the method starts its first iteration (i = 0) by constructing
an initial solution, see lines 9 to 17. Here, one of the two available heuristics for the
generation of new solutions is picked randomly. Furthermore, a parameter α (described in

Algorithm 1: LNS Metaheuristic

1 Initialize metaheuristic parameters I and L;
2 Let s∗ be the best solution found so far and f(s∗) be its objective function value;
3 Let s be the current solution and f(s) be its objective function value;
4 s∗, s← ∅, f(s∗), f(s)←∞;
5 Let i be the iteration counter;
6 Let l be the counter for iterations without improvement;
7 i← 0 , l← 0;
8 while (i < I) do
9 if (i = 0 ∨ l = L) then // Initial stage

10 random← RandInt([0, 1]);
11 α← RandInt([2, 5]);
12 switch (random) do
13 case (random = 0)
14 s← InsertionHeuristic(α);
15 case (random = 1)
16 s← ConstructiveHeuristic(α);

17 l← 0;

18 else // Diversification of existing solution
19 random← RandInt([0, 2]);
20 switch (random) do
21 case (random = 0)
22 s← Rem2(s);
23 case (random = 1)
24 s← Remrand(s);
25 case (random = 2)
26 s← Remall(s);

27 s← Repair(s);

28 s← V ND(s); // Intensification
29 if (f(s) < f(s∗)) then // New best solution?
30 s∗ ← s;
31 l← 0;

32 else

33 l++;
34 i++;

35 Return s∗. // Return best solution
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Section 4.1) is determined and given to these procedures to guide the randomized solution
construction process. In later iterations, when a solution already exists, the search process
is diversified to escape from local optima by randomly selecting a destroy operator and by
repairing the resulting solution, see lines 19 to 27. The search is intensified by applying
the VND-local search method to the current solution in line 28. In line 29, it is checked
whether a new best solution is found, which is then stored. In this case, counter l for the
number of iterations without improvement is reset, otherwise incremented (line 33). If the
counter reaches the limit L, the LNS method generates a new initial solution, see again
line 9. After a total of I iterations, the LNS metaheuristic terminates by returning the
best solution found. The components of the LNS metaheuristic are described in detail in
the following sections.

4.1. Initial Stage

The LNS procedure embeds two different heuristics to generate initial feasible solutions
to the ambulance routing problem. The first heuristic is referred to as Insertion heuristic.
It starts by building a single route for all green code patients and then inserts the red code
patients one after the other. The second heuristic is called the Constructive heuristic. It
builds routes simultaneously for green and red code patients. Both procedures are designed
to respect the different services required by green code patients (which can be served in
the field where, afterwards, the ambulance can go directly to the next patient) and red
code patients (which have to be picked up and brought to a hospital with free capacity).
Furthermore, both methods contain random components to deliver different solutions as is
needed to exploit the restart capability of the LNS metaheuristic.

The Insertion heuristic is outlined in Algorithm 2. It initially produces a single giant
route that connects all green code patients i ∈ G, see line 2. For this purpose, we solve
a traveling salesman problem (TSP) using the well known heuristic of Lin and Kernighan
(1973). We have chosen the Lin-Kernighan heuristic as it is considered to be one of the
most effective methods for the TSP, and has found the best-known solutions to a large num-
ber of benchmark problems. The method used in our paper is the modified Lin-Kernighan

Algorithm 2: Insertion heuristic

1 Let a be a randomly selected ambulance and let h be the hospital where a is located;
2 Let r be a TSP route that starts and ends at h visiting all patients in G;
3 Assign route r to ambulance a;
4 while (not all patients have been visited) do
5 Let j be a randomly selected and so far unvisited red code patient;
6 Let C be a candidate list of α least-cost positions to insert j into current routes;
7 Randomly select an insertion position i ∈ C;
8 Split the corresponding route right after position i;
9 Append j to the first sub-route and close this route by appending the nearest hospital

with free capacity;
10 Let â be the ambulance that becomes available earliest in the current solution;

11 Let ĥ be the current location of â;

12 Let the second sub-route start at ĥ and assign this route to â;

13 Return solution s.
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Algorithm 3: Constructive heuristic

1 while (not all patients have been visited) do
2 Let a be the ambulance that becomes available earliest in the current solution;
3 Let h denote the hospital where ambulance a is currently located;
4 Define a new route r for ambulance a with starting point h;
5 Let CP be a candidate list of α unserved patients who are located closest to h;
6 Let i be a patient randomly selected from CP ;
7 Append i to route r;
8 if (i ∈ R) then // Red code patient requires closing the route
9 Let CH be a candidate list of α available hospitals that are closest to i;

10 Let h be a hospital randomly selected from CH ;
11 Close route r by appending hospital h;

12 else // Route r is potentially extendible
13 while (not all the patients have been visited) do
14 Let CP be a candidate list of α unserved patients who are located closest to i;
15 Let j be a patient randomly selected from CP ;
16 if (j ∈ R) then // Red code patient requires closing the route
17 Append j to route r;
18 Let CH be a candidate list of α available hospitals that are closest to j;
19 Let h be a hospital randomly selected from CH ;
20 Close route r by appending hospital h;
21 break; // Restart from line 1

22 else // Route r can be extended
23 Let â 6= a be the ambulance that becomes idle earliest in current solution;
24 Let Tâ denote the time at which â becomes idle;

25 Let ĥ be the hospital where ambulance â is currently located;
26 Let bi be the time at which patient i is visited by ambulance a;
27 if (bi + di + tij 6 Tâ + t

ĥj
) then // Extend route r of ambulance a

28 Append j to route r;
29 i← j;

30 else // Close route r of ambulance a

31 Let CH be a list of α hospitals that are closest to i;
32 Let h be a hospital randomly selected from CH ;
33 Close route r by appending hospital h;
34 break; // Restart from line 1

35 Return solution s.

heuristic proposed in Helsgaun (1998, 2000, 2006), which is a highly efficient implemen-
tation from a computational point of view. Once the giant route has been generated for
the green code patients, the red code patients are inserted using a variant of the insertion
heuristic proposed by Solomon (1987). Since red code patients have to be brought to hos-
pitals, including such a patient in a route actually means to split this route into two new
ones. More precisely, the insertion procedure iterates through the red code patients and
includes one patient j ∈ R into the route plan per iteration. For this purpose it determines
a candidate list C of α feasible and least-cost insertion positions to include j into one of the
current routes, see line 6. Then, the procedure randomly selects an insertion position i ∈ C
and splits the corresponding route into two sub-routes, see lines 7 and 8. The first sub-
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Table 2: Local search operators used in the VND heuristic.

Nλ Intra Route Operators Nλ Inter Route Operators

N1 Internal Patients Relocate N5 External Patients Relocate
N2 Internal Patients Swap N6 External Patients Swap
N3 Internal Patients 2-Opt N7 External Patients 2-Opt
N4 Single Hospital Change N8 Hospitals Swap

N9 Route reassignment

route contains the patients up to and including i. The second sub-route contains patient
i + 1 and the following ones. Then, red code patient j is appended to the first sub-route
and this route is closed by selecting the hospital that takes up this patient, see line 9.
For the second sub-route, a new ambulance and, thus, starting location is determined in
lines 10 to 12. The procedure ends if all patients have been added to the solution.

The Constructive heuristic is outlined in Algorithm 3. It builds a solution step-by-step
by adding one patient at a time to a route plan until all patients P are served by the
ambulances. The procedure starts by creating a new route for one of the ambulances in
lines 2 to 4. Then, using a greedy randomized selection process, a patient i is randomly
selected from a restricted candidate list CP of α unserved patients and added to the route,
see lines 5 to 7. If the selected patient i is a red code patient, the route is closed by selecting
a hospital from a candidate list CH of α closest hospitals with free capacity, see lines 8 to
11. Otherwise, if the patient i is a green code patient, the route is potentially extendible
by adding further patients, which is investigated in lines 12 to 34. For this purpose, an
unserved patient j that is nearby patient i is randomly selected in lines 14-15. If patient
j is a red code patient, j is added to the route, a hospital is selected, the route is closed,
and the procedure restarts a new iteration, see lines 16 to 21. Otherwise, if j is a green
code patient, it is checked in lines 23 to 26 whether there exists an alternative ambulance
â that can reach j at an earlier point in time than the currently considered ambulance a.
If this is not the case, j is appended to the current route r of ambulance a, see lines 27 to
29. If, however, ambulance â can reach j earlier than ambulance a, route r of ambulance
a is closed and the algorithm starts a new iteration, see lines 30 to 34. Patient j is then
added to a new route in one of the following iterations of the Constructive heuristic. The
procedure ends if all patients have been added to the solution.

4.2. Intensification Stage

During the intensification stage of the LNS metaheuristic, solutions are improved by
means of local search. For this purpose, we have adopted several of the most common local
search operators for vehicle routing problems (Bräysy and Gendreau, 2005). In total, we
use nine local search operators that are listed in Table 2 and described afterwards. The
four Intra Route Operators search for improvements within a route:

• Internal Patients Relocate: A green code patient contained in a route is relocated
to another position within this route. If the route contains a red code patient, the
green code patient is not allowed to be placed behind the red code patient, because
the latter needs to be brought to a hospital directly. Therefore, red code patients
appear only at the end of a route and, hence, relocating them using the local search
is not an option.

17



• Internal Patients Swap: The positions of two green code patients who both belong
to the same route are exchanged.

• Internal Patients 2-Opt: Two edges (i, i+1) and (j, j+1) contained in one route are
replaced by edges (i, j) and (i+1, j+1). Such a neighborhood move also reverses the
order in which the patients in between i+1 and j are served. Again, moves that
would relocate a red code patient are forbidden.

• Single Hospital Change: The hospital at which the route ends is replaced by another
hospital. If the route involves a red cod patient, the new destination hospital must
have at least one free capacity unit.

The following five Inter Route Operators address the routings of two different ambulances:

• External Patients Relocate: A patient i is removed from an ambulance route and
inserted into another route. Let j denote the patient in the new route behind which
patient i is inserted. The neighborhood move replaces edges (i−1, i), (i, i+1) and
(j, j+1) by edges (i−1, i+1), (j, i) and (i, j+1). Note that the operation is only
feasible if j is not a red code patient.

• External Patients Swap: Two patients i and j that are served in different routes are
exchanged. The neighborhood move replaces edges (i−1, i), (i, i+1), (j−1, j) and
(j, j+1) by edges (i−1, j), (j, i+1), (j−1, i) and (i, j+1).

• External Patients 2-Opt: This operator considers two patients i and j belonging to
different routes. Both routes are split right after patients i and j and the detached
sub-routes are exchanged. In other words, all patients who followed patient i on
its original route now follow patient j and vice versa. The move is performed by
replacing edges (i, i+1) and (j, j+1) by edges (i, j+1) and (j, i+1).

• Hospitals Swap: The destination hospitals at which two different routes end are
exchanged. For example, consider two routes r1 and r2 that end at hospitals h1

and h2, respectively. The hospitals are swapped such that route r1 now ends at h2

whereas route r2 now ends at h1. A swap is only feasible if it does not violate the
hospital capacities. For example, if route r1 includes a red code patient and r2 does
not, the new destination hospital h2 of route r1 must have a free capacity unit.

• Route reassignment: This operator removes a route from its ambulance and assigns
it to another ambulance.

The local search operators are combined in a Variable Neighborhood Descent (VND)
heuristic that is outlined in Algorithm 4. The VND heuristic improves the current so-
lution by exploring the nine neighborhoods one after the other. Each neighborhood is
examined by a first-improvement descent strategy, accepting only feasible moves that lead
to an improvement of the current solution. Although the order in which the neighbor-
hoods are investigated may have an impact on the quality of the obtained solutions, we
did not observe such an effect in some preliminary experiments. Therefore, VND explores
the neighborhoods in the order shown in Table 2. If, during the search process, a solution
is found that is better than the best solution known so far, the best solution is updated
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Algorithm 4: VND heuristic

1 Let s be the current solution and f(s) be its objective function value;
2 Let s∗ be the best solution found so far and f(s∗) be its objective function value;
3 λ← 1; // Start with first neighborhood
4 repeat

5 s← Nλ(s); // Find best solution within neighborhood
6 if (f(s) < f(s∗)) then // New best solution?
7 s∗ ← s;
8 λ← 1; // Restart with first neighborhood

9 else

10 λ++; // Continue with next neighborhood

11 until (λ = 9);
12 Return s∗.

and VND intensifies the search by restarting from the first neighborhood. The procedure
terminates if the current solution cannot be further improved by any of the local search
operators and, thus, a common local optimum has been reached for all the neighborhoods.

Note that the quality of a solution can only be improved by modifying routes of those
ambulances that serve the green code patient and the red code patient with the latest
service completion times eG and eR. We refer to the vehicles serving these patients as
the critical green ambulance and the critical red ambulance. In order to speed up the
VND heuristic, we restrict the local search to the routes of the two critical ambulances.
Since each of these ambulances may have assigned multiple routes in a solution, all nine
neighborhoods can yield improvements even if the search is restricted to the two vehicles.

4.3. Diversification Stage

In order to escape from the local optima that are reached in the intensification stage,
a diversification mechanism is used to reach unexplored areas of the solution space. The
diversification strategy consists of a destroy step that eliminates some of the routes con-
tained in the best solution found so far. Afterwards, a repair step is performed to assign
the now unserved patients to non-destroyed routes or to build new routes for them. Then,
LNS again applies the intensification stage to improve the obtained solution and so on.
For the destroy step, three different operators have been implemented:

• Remove two routes (Rem2): This operator destroys two routes of the current solution.
The first route to be destroyed is the one that contains the green code patient with
the latest service completion time, i.e., the patient who determines eG. The second
route is the one that contains the red code patient who determines value eR. If both
these patients are served in the same route, only this single route is destroyed.

• Remove a random number of routes (Remrand): Let the critical green ambulance
(critical red ambulance) be the vehicle that serves the green (red) patient who de-
termines the objective value eG (eR). Each of these vehicles can perform more than
one route in the current solution to bring various red code patients to hospitals and
to serve a number of green code patients. Therefore two random numbers randG
and randR are uniformly generated in the ranges [1, NG] (for the critical green ambu-
lance) and [1, NR] (for the critical red ambulance) respectively, where NG represents
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the maximum number of routes contained in the critical green ambulance, while NR

is the maximum number of routes assigned to the critical red ambulance. Then the
destroy operator removes randG and randR of these routes from the green and red
critical ambulances.

• Remove all routes (Remall): All the routes of both critical ambulances are destroyed.
If the critical green ambulance coincides with the critical red ambulance, only the
routes performed by this single ambulance are removed.

Each time the diversification stage is applied, one of the aforementioned destroy operators
is randomly selected. The destroyed solution is then repaired using the greedy randomized
selection mechanism proposed for the Constructive heuristic of Section 4.1.

5. Computational Study

In this section, we describe the computational experiments that were executed to eval-
uate the performance of the proposed models and heuristics. Since the ambulance routing
problem described in this paper has not been studied before, no benchmark instances are
available in the literature. We therefore generate a large set of test instances in Section 5.1,
which are made available to other researchers upon request.

The computational experiments are divided into three parts. In the first experiment,
described in Section 5.2, we compare the two optimization models regarding their poten-
tial to produce optimal solutions for the ambulance routing problem. In Section 5.3, we
assess the performance of the LNS metaheuristic. In the third experiment, presented in
Section 5.4, we perform sensitivity tests to analyze the relationship between the structure
of a problem instance and its solution.

5.1. Test Instances and LNS Parameter Setting

In order to test both the mathematical models and the metaheuristic algorithm pre-
sented in this paper, a large set of test instances has been generated to capture various
planning situations. We have produced instances with a varied number of red code and
green code patients, hospitals, hospital capacities, and ambulances. These parameters are
varied as follows:

• Total number of patients:
low (|P| = 10), medium (|P| = 25), high (|P| = 50)

• Percentage of red patients:
low (|R|=25%·|P|), medium (|R|=50%·|P|), high (|R|=75%·|P|)

• Number of hospitals: |H| = 1, 2, 3 or 4

• Hospital capacity:
low (

∑

h∈H ch = 1× |R|), medium (
∑

h∈H ch = 1.5× |R|), high (
∑

h∈H ch = 2× |R|)

• Number of ambulances:
low (|K|= 0.05× |P|), medium (|K|= 0.25× |P|), high (|K|= 0.5× |P|)

One test instance was produced for each combination of the above parameters, which
yields a total of 324 instances. For each instance, the locations of hospitals and patients
was randomly drawn in an area of size 200 × 200, with travel times tij corresponding to
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Table 3: Variation of weights evaluated in the experiments.

Weights Relative importance of
red code patients

# of
instanceswG wR

1 1 50% 324
1 2 67% 324
1 5 83% 324
1 10 91% 324

Total 1296

the Euclidean distance. The service duration di of red code patients i ∈ R was randomly
drawn from the interval [2, 15]. The service duration di of green code patients i ∈ G was
selected in the interval [5, 35]. Dropping off a red code patient at a hospital is done in no
time, i.e., dh = 0 ∀h ∈ H. The available |K| ambulances and the hospital capacity are
shared randomly among the hospitals contained in an instance.

In order to test the impact of the priority assigned to red and green code patients, we
further associated the 324 instances to different combinations of weights wG and wR. The
four combinations shown in Table 3 were considered. Associating these parameters to each
of the test instances yielded a total of 1296 instances for the experiments.

To perform the experiments, the LNS metaheuristic was coded in Java. The meta-
heuristic requires two parameters to be set: the number of iterations I to perform and the
number of non-improving iterations L after which the heuristic generates another initial
solution. It is clear that a higher value I makes finding better solutions more likely at the
expense of a longer computation time. In preliminary experiments, we observed that the
heuristic converges quickly, and thatI=200 offers a good compromise between runtime and
solution quality. Moreover, we set L = I/10 as this delivered good results in the pretests.
Finally, since the metaheuristic involves various elements of randomness, finding better
solutions may also be achieved by repeating the solution process a number of times. For
this purpose, we repeat the heuristic 50 times when solving an instance. In the remainder
of this section, the presented LNS -solutions are the best out of these 50 runs and the
reported cpu-times are the total for all runs. All experiments have been performed on an
Intel core i7-2760QM 2.40 GHz processor with 4 GB RAM.

5.2. Evaluation of the Optimization Models

To compare the two models presented in Section 3, we solve them using the MIP-solver
CPLEX 12.4, see Ilog (2013). More precisely, we apply CPLEX to solve both models for
each of the 324 test instances with weights wG and wR both set to 1. For each instance, a
maximum computation time of one hour was defined as a stopping condition whenever the
optimal solution is not obtained. We report in Table 4 aggregated results for each model
and for the sets of 108 instances with a low (|P| = 10), a medium (|P| = 25), and a high
(|P| = 50) number of patients. The table shows the number of integer feasible solutions
(#feas) found for an instance set, the number of optimal solutions (#opt), the average lower
bound (LB), the average objective function value (obj ), and the average computation time
(cpu) required by CPLEX. Column imp provides the percentage gap between the average
objective function values of the solutions found by the 2-index model and the 3-index model.

From the results, we see that the 3-index model consistently delivers feasible solutions
only for the small sized instances, whereas the 2-index model delivers feasible solutions for
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Table 4: Computational results achieved by the two proposed models.

3-Index Model 2-Index Model

# of # of #feas. #opt. LB obj cpu #feas. #opt. LB obj cpu imp
patients instances [-] [-] [-] [-] [sec.] [-] [-] [-] [-] [sec.] [%]

low 108 108 79 611 881 1416 108 79 617 881 1165 0.0
medium 108 107 9 279 1399 3524 108 21 359 1069 3011 23.5
high 108 82 0 256 2205 3600 108 3 270 1363 3504 38.2

∆ +27 +15 +33 -391 -287

all instances. The 2-index model also yields more optimal solutions for medium and large
instances. The obtained lower bounds are stronger but still too weak for assessing the
quality of the solutions, in particular for the larger instances. From the objective function
values, we take that the 3-index model is clearly outperformed by the 2-index model for
medium and large instances, where the 2-index model achieves average improvements of up
to 38.2%. Row ∆ in Table 4 aggregates the key performance measures. It shows that the
2-index model delivers additional 27 feasible and 15 optimal solutions. The lower bound
increases by 33 units on average and the objective function value reduces by 391 units on
average. Furthermore, the average computation time is about five minutes lower than for
the 3-index model. It becomes clear that the 2-index model is superior with respect to
all the key performance measures. However, even the computation time required by this
model clearly exceeds what is considered applicable in a disaster response process. For
this reason, the model’s results can be used for an assessment of heuristics but it appears
inappropriate to apply the model itself to solve the ambulance routing problem in practice.

5.3. Evaluation of the LNS Metaheuristic

For the second experiment, all 1296 instances are solved using the LNS metaheuristic.
The heuristic is evaluated by comparing its results to those obtained by the 2-index model.
Table 5 reports key performance measures for both approaches and each subset of 108 test
instances with differing weights wR and differing instance size. We see that the number
of optimal solutions and the cpu times observed for the 2-index model are hardly affected

Table 5: Comparison of results delivered by the 2-index model and the LNS metaheuristic.

2-Index Model LNS rel. imp.

Weight # of # of #opt obj cpu #opt obj cpu #imp worst avg best

wR patients instances [-] [-] [sec.] [-] [-] [sec.] [-] [%] [%] [%]

1 low 108 79 881 1165 79 881 2 2 -0.2 0.0 1.9
1 medium 108 21 1069 3011 19 1026 24 60 -3.1 3.0 17.1
1 high 108 3 1363 3504 3 1085 126 79 -2.0 12.6 37.1

2 low 108 80 1473 1236 80 1475 1 5 -2.5 -0.1 0.3
2 medium 108 18 1870 3112 16 1785 24 64 -4.0 3.3 21.8
2 high 108 3 2233 3505 3 1854 135 74 -2.2 10.9 32.4

5 low 108 80 3086 1164 79 3091 2 2 -3.4 -0.1 0.8
5 medium 108 19 4183 3034 17 3981 26 64 -2.1 3.4 23.7
5 high 108 0 4532 3600 0 4013 145 76 -1.3 7.4 29.3

10 low 108 84 5655 1046 83 5660 4 0 -2.3 0.0 0.0
10 medium 108 16 7834 3135 14 7543 27 68 -1.0 2.8 17.4
10 high 108 3 8348 3520 3 7493 159 70 -4.4 6.7 32.2
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by the weight wR, indicating that the urgency of red code patients has a limited effect
when solving the problem using CPLEX. The LNS metaheuristic produces a slightly lower
number of optimal solutions. Actually, LNS finds 396 out of the 406 optimal solutions
identified by CPLEX. Furthermore, the average solution quality is better for all sets of
medium sized and large sized instances, i.e. the average objective value obj of LNS is
lower for these sets compared with CPLEX. This shows that the meta-heuristic provides a
systematic advantage for these problems. Furthermore, LNS is much faster than CPLEX.
The cpu time for repeating LNS 50 times ranges from one second to about 2.5 minutes
depending on the instance size. A single solution to a large instance is produced in less
than 3 seconds. These computation times show that the LNS method is applicable in a
dynamic disaster response process, as it produces solutions quasi-instantaneously.

The improvement potential of the heuristic is further analyzed in the last four columns
of Table 5. Column #imp shows the number of instances of a set for which LNS produces
a better solution than CPLEX. We observe that the metaheuristic can hardly achieve
improvements for instances of small size whereas it achieves a substantial number of better
solutions for instances of medium and large size. In particular, for the problems with a
high number of patients, LNS delivers better solutions for up to two thirds of the instances
in a set. Columns worst, avg, and best reveal the extreme values and the average value
of the relative improvements observed over all instances of a set. Note that a negative
value in these columns indicates that the heuristic delivered a solution with an objective
value larger than the one achieved by CPLEX. The results confirm that LNS and CPLEX
produce solutions of almost identical quality for the small instances, but LNS requires just
a few seconds for the computation. For instances of medium size, LNS delivers solutions
that show a 3%-improvement on average, with a maximum improvement of 23.7% if red
code patients are considered urgent (wR = 5). For the large instances, the LNS is clearly
advantageous with average improvements ranging from 6.7% (wR = 10) to 12.6% (wR = 1)
and maximum improvements of up to 37.1%. These results confirm that the developed
heuristic is a powerful solution method in particular when it is required to solve large
instances to good quality within short response time.

Since the metaheuristic involves several elements of randomness, we also determine the
contribution of these techniques to the generation of high quality solutions. In particular,
the metaheuristic randomly decides whether to use the Insertion heuristic or the Con-
structive heuristic to generate initial solutions. Moreover, in the diversification stage, the
destroy operator used is randomly selected. Finally, the Insertion heuristic and the Con-
structive heuristic both use greedy randomized mechanisms to select patients, hospitals,
and insertion positions from restricted candidate lists of size α. The value α is a random in-
teger in the interval [2, 5], which is drawn by the LNS metaheuristic each time a new initial
solution is generated. In order to evaluate the contribution of the different randomization

Table 6: Contribution of LNS -components to finding best solutions.

Initial solution Destroy step α

Method Frequency Operator Frequency Value Frequency

Insertion heuristic 55% Rem2 34% 2 40%
Constructive heuristic 45% Remrand 23% 3 32%

Remall 43% 4 18%
5 10%
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Figure 4: Impact of the number of ambulances.

techniques, the following methodology was used. For each of the final solutions of the 1296
instances, the heuristic that was used to generate the corresponding initial solution, the
applied destroy operator, and the value of α were tallied. Table 6 illustrates the relative
frequencies observed for the different settings of these parameters while we solved the 1296
instances. It can be seen that the Insertion heuristic, the Remall destroy operator, and a
value of α = 2 most often result in the best solution. Nevertheless, the other components
are involved in the generation of a sizeable number of best solutions.

5.4. Problem Structure and Solution Quality

In the third experiment, we analyze the relationship between the structure of an instance
and the best solution found by the LNS metaheuristic. We first investigate the impact of
the number of ambulances. For this purpose, we distinguish subsets of instances with a low,
a medium, and a high number |K| of ambulances as defined in Section 5.1. The objective
weights wR and wG are both set to 1. Figure 4 shows the following performance measures
averaged over all instances belonging to a subset: objective function value obj, latest service
completion times eR and eG of red code and green code patients, and computation time cpu
required to produce one solution for a problem instance. Note that eR is larger than eG in
these results, because the service of red code patients ends at their delivery to a hospital
whereas the service of green code patients ends directly after having been treated in the
field. As expected, a larger number of ambulances results in a better service (lower objective
values). We see that the latest completion times of both red code patients and green code
patients benefit from a medium number of ambulances. However, the marginal contribution
of additional vehicles decreases such that the objective values do not decline further if a
high number of ambulances is available. These computations show that the presented
approach can be useful in determining the fleet size required in a disaster situation.

Figure 5 analyzes the impact of the number of hospitals (left figure) and the impact of
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Figure 5: Impact of the number of hospitals (left) and the hospital capacity (right).
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the total hospital capacity (right figure). Regarding the number of hospitals, we distinguish
instances with |H|=1, 2, 3, and 4 hospitals. The total hospital capacity

∑

h∈H ch is varied
from low to medium and to high in relation to the number of red code patients as described
in Section 5.1. The considered test instances comprise all the combinations of objective
weights wR and wG from Table 3. According to Figure 5 (left), a larger number of hospitals
clearly helps serving red code patients by reducing the trip duration to transport them to
a hospital of free capacity. In fact, the larger the number of hospitals is, the lower the
value eR becomes. This experiment shows that the method can also be used to determine
whether patients would benefit from setting up temporary hospitals like medical camps.
Although the average computation time grows with a larger number of hospitals, it stays
around one second even for the largest number of hospitals. The capacity of hospitals
seems to have only a minor effect on the obtained solutions, see Figure 5 (right). Although
a higher capacity means that there is a higher chance for red code patients to find free
capacity at a nearby hospital, we do not observe a significant reduction in the latest service
completion time here. The explanation is that the patients and hospitals are widely spread
over the whole area in these instances such that most red code patients find a hospital in
their surrounding even if the overall capacity is low.

Finally, we investigate the impact of having a low, a medium, or a high percentage of red
code patients, see Figure 6(left), and of considering red code patients equally important as
green code patients (wR = wG = 1) or more important (wR = 2, 5, 10), see Figure 6(right).
As expected, if the percentage of red code patients increases, the latest service completion
time among these patients increases because the ambulances have to bring more patients to
the hospitals. At the same time, the latest service completion time eG of green code patients
reduces, because fewer such patients need assistance. Interestingly, the computation time
decreases although a higher percentage of red code patients means more decisions to assign
patients to hospitals. However, an increase in the percentage of red code patients also
means a reduction in the number of green code patients, which in turn reduces the number
of decisions to group and sequence green code patients on a same ambulance route. The
relative importance of red code patients in a solution is controlled by parameter wR. In
Figure 6 (right) we see that a larger value wR indeed reduces the latest service completion
time eR of red code patients at the cost of the latest service completion time eG of green
code patients. Also the average objective function value increases with a larger value
of wR, but this can be attributed to the fact that the objective function sums up the
two weighted service completion times. This experiment confirms that the metaheuristic
effectively considers the weights wR and wG to produce ambulance routes that reflect the
different priorities of red code patients and green code patients.
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Figure 6: Impact of the number of red code patients (left) and the objective weight wR (right).
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6. Conclusions

In this paper an ambulance routing problem for disaster response is investigated, where
patients require different types of services. We have proposed two mathematical models.
Computational tests show that a 2-index formulation outperforms a 3-index formulation.
However, although problem instances will be of rather small size because the routing prob-
lem is solved at high frequency in disaster response, the exact solution of the optimization
model takes an unacceptably long time. Therefore, a Large Neighborhood Search meta-
heuristic has been proposed to solve the ambulance routing problem in very short response
time, with the aim to assist all patients as fast as possible. Experiments on a very large
set of test instances show that the heuristic delivers solutions of excellent quality. Sev-
eral further experiments demonstrate that the proposed planning approach can be used to
support decisions regarding the fleet size of ambulances and the number and capacities of
hospitals. Furthermore, the metaheuristic can be controlled to produce routes that take
into account the different priority of slightly and seriously injured patients.

Future research may aim at incorporating further aspects such as different types of am-
bulances, time windows, or constraints on the route length, e.g., before refueling is needed.
The models might be extended for example to support ambulances that are capable of
transporting more than one red code patient at a time, such that help can be provided
faster to people in need of medical assistance. Moreover, the ambulance routing problem
may be adapted to the public health care sector. In fact the two classes of patients consid-
ered in this paper may also be used to model patients requiring services at their homes (like,
for example, physiotherapy) and patients who have to be transported to certain health care
facilities to receive hospital treatment.
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