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A straightforward proof of
Descartes’ Circle Theorem

Paul Levrie

Abstract

In this paper we give a new, straightforward and short proof of Descartes’ Circle theorem, a
proof that Descartes might have liked.

Introduction

There are probably not many formulas in mathematics (a) where a princess was instrumental
in finding them and (b) that are described in a poem written by a Nobel prize laureate (in
Chemistry!). This is the case for what is now known as Descartes’ Circle Formula.
Let C1, C2 and C3 be circles with radius r1, r2 and r3, that are mutually tangent. Let us
assume that the radius of a fourth circle tangent to the other three, the red circle in the figure
above, is r4. Descartes’ Circle Theorem asserts the following:

Theorem. The radii r1, r2, r3, r4 of four mutually tangent circles satisfy:
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The problem of finding the radius of the fourth circle is a special case of a problem of Apollonius1

[2]: given three circles, construct the circles tangent to these three circles.
We will give a straightforward proof of Descartes’ theorem, using only elementary algebra

and Heron’s formula for the area of a triangle.

1A problem a countess tried her hand on, Countess Skorzewska [1, p. 308]. Lambert describes her in his corre-
spondence as a learned Polish lady and a great lover (“Liebhaber”) of the mathematical sciences.
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A short history of Descartes’ Circle Theorem [3]

Descartes’ Circle Theorem was first described by Descartes in 1643 in his correspondence with
Princess Elisabeth of Bohemia, one of his pupils [4]. In a letter to her, Descartes posed the
following problem:

which is Apollonius’ problem. Descartes soon realised that this might be too difficult, and re-
duced the problem to the case that the three given circles are mutually tangent. He also gave
the following solution:

Here e, f and g are the given radii, and x is the radius to be found.
Exercise for the reader: Show that this solution is equivalent with (1).

The formula was rediscovered and proved by Jakob Steiner in 1826, and again by Philip
Beecroft in 1842. In 1936 Frederick Soddy, who received the Nobel Prize in chemistry in 1921,
rediscovered the result, and wrote a poem about it [5]:

Th e K i s s P r e c i s e
For pairs of lips to kiss maybe
Involves no trigonometry.
’Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance form the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.

Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
An oscular surveyor
Might find the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends
Is thrice the sum of their squares.

F. SODDY

(After the publication of the poem another verse was added to it by Thorold Gosset [6], the
generalization of the result to n dimensions.)

More recently, Lagarias a.o. [7] proved that a relation very similar to (1) relates the centers
of the tangent circles in the complex plane.

The proof of (1) by Steiner [8] uses a result about Pappus chains and a generalization
of Viviani’s theorem to general triangles. Beecroft’s proof makes use of four other mutually
tangent circles through the points were the four circles meet. It was later simplified by Coxeter
[2]. Coxeter himself gave a new proof, based on inversion with respect to a circle [3]. Pedoe
[9] lists some other proofs, one based on a symmetry argument, another using Grassmann
calculus. None of these proofs is really straightforward. It’s not known which path Descartes
and Elisabeth followed to derive their result.
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The proof (that Descartes missed?)

The proof given here is based on Heron’s formula [10] for the area of a triangle with sides a, b
and c:

Area =
√
o(o− a)(o− b)(o− c) with o =

a+ b+ c

2
.

This formula was known to Descartes and Princess Elisabeth, and they both probably used it
in trying to solve the problem of the touching circles.

If we connect the centers of these four circles (see Figure 1), four triangles are formed, the
area of the biggest triangle being the sum of the areas of the other three. We can write this
out using Heron’s formula:√
r1r2r3(r1 + r2 + r3) =

√
r1r2r4(r1 + r2 + r4)+

√
r1r3r4(r1 + r3 + r4)+

√
r2r3r4(r2 + r3 + r4).

(2)

Figure 1: Three mutually touching circles C1, C2 and C3 and the two solutions of Apollonius’ problem

Note that there’s also a circle touching the three given circles externally. If we assume that the
radius of this circle is taken to be a negative number, then in the configuration of Figure 1 the
same equation (2) is satisfied, as can be seen in the right-hand part.

Solving the equation (2) in the traditional way by repeatedly squaring leads to enormous
calculations.2 However, by carefully simplifying in each step it is possible to get the result in
one page.

In the sequel we will use the following notations:

s = r1 + r2 + r3 + r4, p = r1r2r3r4, t =
p

s
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s
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Using these we can rewrite (2) as:

√
r1r2r3s− p =

√
r1r2r4s− p+

√
r1r3r4s− p+

√
r2r3r4s− p.

2As Descartes writes in his letter to Elisabeth dated November 29, 1643 [4]:‘But this route seems to me to lead to
so many superfluous multiplications that I would not want to undertake to solve them in three months.’
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We now divide by
√
s and rearrange:

√
r1r2r3 − t−

√
r1r2r4 − t =

√
r1r3r4 − t+

√
r2r3r4 − t.

Squaring both sides and rearranging leads to:

r1r2r3 + r1r2r4 − r1r3r4 − r2r3r4 = 2(
√
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We divide this result by p:
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Again we square both sides:
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or, after rearranging:
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Note that since α2− β = 2
r3r4

+ 2
r2r4

+ 2
r1r4

+ 2
r2r3

+ 2
r1r3

+ 2
r1r2

we can rewrite this equation as:

(2β − α2) + 4αu− 8u2 = 8

√
1

r4
− u ·

√
1

r3
− u ·

√
1

r2
− u ·

√
1

r1
− u. (3)

Squaring both sides (again), we find for the left-hand side:

(2β − α2)2 + 8(2β − α2)αu− 16(2β − α2)u2 + 16α2u2 − 64αu3 + 64u4.

The right-hand side is given by:

64
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(
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)
u+ 32(α2 − β)u2 − 64αu3 + 64u4.

The first two terms on the right-hand side cancel out, and a number of terms of left and
right-hand side are equal. Hence we get after rearranging:

(2β − α2)2 + 8(2β − α2)αu = 0 or (2β − α2) · (2β − α2 + 8αu) = 0.

The second factor cannot be zero, since in that case 2β−α2 = −8αu which results in a negative
left-hand side in (3). Hence we have that 2β = α2, or
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.

Note that given r1, r2 and r3 this is a quadratic equation for r4 with two solutions: the radii
of the two tangent circles in Figure 1, called the inner and the outer Soddy circle.
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Final remark

The problem of the ‘kissing circles’ and Descartes’ circle theorem are now as actual as some 400
years ago. To give but one example: Descartes’ formula plays an important role in the theory
of circle packings in the plane. A circle packing is an arrangement of circles that all touch each
other. A special case are the Apollonian circle packings, which are constructed by starting with
three mutually touching circles and adding the two circles tangent to the first three. Taking
one of those two and combining it with two of the original circles leads to a similar situation
in which we can find two new circles tangent to them. And we can continue in the same way.
The first steps in such a process can be seen in Figure 2.

Figure 2: The biggest circles in an integral Apollonian circle packing

The numbers in the circles denote their curvature (1/radius). It is a nice consequence of the
form of Descartes’ circle formula that if we start with four circles with integral radius, one of
them being negative, all the other curvatures will be integers too. Such a packing is called an
integral Apollonian circle packing [11].

Acknowledgment I want to thank Damaris Schindler from Utrecht University for bringing
me back to this old favourite of mine.
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