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Abstract 

Although research in the field of organic photovoltaics (OPV) still merely focuses on 

efficiency, efforts to increase the sustainability of the production process and the materials 

encompassing the device stack are of equally crucial importance to fulfil the promises of a 

truly renewable source of energy. In this study, a number of steps in this direction are taken. 

The photoactive polymers all contain an electron-deficient building block inspired on the 

natural indigo dye, bay-annulated indigo, combined with electron-rich thiophene and 4H-

dithieno[3,2-b:2',3'-d]pyrrole units. The synthetic protocol (starting from indigo) is optimized 

and the final materials are thoroughly analyzed. MALDI-TOF mass spectrometry provides 

detailed information on the structural composition of the polymers. Best solar cell 

efficiencies are obtained for polymer:fullerene blends spin-coated from a pristine non-

halogenated solvent (o-xylene), which is highly recommended to reduce the ecological 

footprint of OPV and is imperative for large scale production and commercialization. 

 

Key words 

Bay-annulated indigo, Conjugated polymers, Nature-inspired dye, Organic photovoltaics, 

Renewable energy, Sustainability. 

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

3 

 

Introduction 

Low bandgap conjugated (co)polymers consisting of alternating electron-rich (donor or 

‘push’) and electron-poor (acceptor or ‘pull’) moieties in the polymer backbone have 

attracted a lot of attention during the last decade because of their interesting properties for 

organic electronics, in particular field-effect transistors (OFETs)
[1,2] 

and photovoltaics 

(OPVs).
[3] 

Because of the high absorptivity and suitability for printing of these types of 

organic semiconductors, fully flexible, ultra-thin photovoltaic devices can be produced. 

Other interesting properties such as semi-transparency and a better performance in diffuse 

light render OPV especially attractive for portable electronics and textile or building 

integration.
[4-11] 

To absorb a maximum amount of solar light – from the UV throughout the 

visible up to the near-infrared (NIR) range – to be converted into electricity, the energy 

levels of the polymer absorbers must be fine-tuned on a molecular level.
[12,13] 

This implies 

variation of the molecular structure to optimize the frontier orbital energy levels (HOMO and 

LUMO) and the resulting (low) bandgap. Simultaneously, appropriate solubility and 

miscibility with the electron-acceptor material is needed to achieve a near-ideal 

nanostructured bulk heterojunction (BHJ) active layer and a blend morphology maximizing 

charge extraction.
[14]

 

A key step in improving OPV device efficiency is the quest for highly efficient donor and 

acceptor units creating photoactive push-pull type low bandgap copolymers or analogous 

small molecules. Recently, a novel acceptor chromophore based on the natural indigo dye, 

bay-annulated indigo (BAI), was reported as a promising building block for organic 

semiconducting materials.
[15-20] 

The optical, electrochemical and charge carrier 

(hole/electron) mobility characteristics of the resulting low bandgap compounds are 

attractive for both electron donor and acceptor type OPV materials.
[20] 

BAI shows several 

similarities with other lactam-based building blocks
[21-24]

 affording highly efficient OPV 

materials (e.g. isoindigo
[21]

 and diketopyrrolopyrrole or DPP; Figure 1). It is a strongly 

electron-deficient moiety because of the presence of two lactam units, resulting in a low-

lying LUMO level, thereby rendering it an attractive acceptor unit for push-pull type low 

bandgap copolymers.
[25] 

Furthermore, when proceeding from indigo to BAI, an enlarged 

planar structure is created, which improves the π- π stacking tendency of the resulting 

materials and hence facilitates intermolecular charge transport. Moreover, the BAI unit 

could also be used as an attractive precursor to design non-fullerene acceptor
[26]

 materials. 

 

Figure 1. Lactam-based electron deficient building blocks.  
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Although recent achievements have pushed up the power conversion efficiencies (PCEs) of 

polymer solar cells to over 11% for single junction devices,
[27] 

there is an eminent need for 

short, simple and scalable processes to reduce the synthesis costs of the active materials.
[28-

30]
 Furthermore, at present, the photoactive layers of the top-efficiency BHJ organic solar 

cells are most often produced from solutions in high-boiling chlorinated solvents with 

significant toxicity, such as (ortho-di)chlorobenzene.
[26,31,32] 

These aromatic solvents are 

selected based on their solubilizing properties and the high boiling points lead to slow drying 

conditions, allowing for self-organization of the active components and the generation of 

favorable nanoscale blend morphologies. To reduce the ecological footprint of the OPV 

production process, especially upon upscaling, deposition from less harmful, non-

halogenated solvents is highly desirable.
[27,33-35] 

Recent studies have shown that o-xylene can 

be used as an alternative casting solvent, affording similar results as for chlorinated 

solvents.
[36-42]

 

In the present study, o-xylene was found to be a superior processing solvent for active layer 

combinations of BAI-based copolymers and PC71BM ([6,6]-phenyl-C71-butyric acid methyl 

ester). A device efficiency of 2.41% was achieved. Although the efficiency remains modest, 

this is among the highest values reported so far for OPV devices made from potentially bio-

sustainable BAI-based materials.
[15-20]

 The main importance of the reported results resides, 

however, in the reduced environmental impact of the active material development as well as 

the device processing. Moreover, MALDI-TOF mass spectrometry analysis of the final BAI-

based polymers provided useful insights on the noticeably large variety of structures present 

in presumably simple alternating low bandgap copolymers. 

Results and discussion 

Material synthesis and characterization 

Because of the increasing scarceness of crude oil, chemicals derived from non-fossil fuel 

resources are obviously gaining importance. In this respect, the natural dye indigo is highly 

attractive. Bay-annulated indigo (diindolonaphtyridine-6,13-dione) can be prepared from 

indigo in a single step. In this work, we have optimized the synthetic sequence toward 

thiophene-extended BAI derivative 2 (Scheme 1).
[15] 

In the first step, a double annulation on 

indigo was performed with thiophene-2-acetyl chloride. Because of the (very) low solubility 

of precursor 1 and the formation of tar-like side products, more optimal reaction and 

purification conditions were pursued. o-Xylene was replaced by toluene as the reaction 

solvent, which resulted in less tar-like materials being formed, tentatively attributed to the 

lower boiling point of the applied solvent. After the reaction, it was found to be crucial to 

first purify the product by Soxhlet extractions with acetone and chloroform (recovering the 

material) before final recrystallization. This approach provides a more pure product (see 
1
H 

NMR spectrum in the supporting information). No elaborate purification methods were 

required, in contrast to other literature procedures affording comparable yields.
[19,20]

 In the 

next step, dibromination was performed with N-bromosuccinimide (NBS) in DMF, which 
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reduced the solubility of the BAI core even further. Bromination was performed at 60 °C to 

completely solubilize the starting material and hence obtain complete conversion without 

too much (over)heating. 

 

Scheme 1. BAI monomer synthesis: i) thiophene-2-acetyl chloride, toluene, reflux, 72 h (27%); ii) NBS, 

DMF, 60 °C, 3 h (84%); iii) Pd(PPh3)4, toluene, DMF, reflux, 16 h (55%); iv) NBS, CHCl3, RT, 16 h (76%). 

To increase the solubility of the BAI precursor, we decided to extend the chromophore with 

an alkylated bithiophene moiety (Scheme 1). To this extent, mono-stannylation of a 

hexylated 2,2’-bithiophene unit was performed first, and then this moiety was introduced on 

BAI compound 2 via a Stille cross-coupling reaction employing Pd(PPh3)4 as the catalyst. An 

analogous Suzuki protocol was tested as well, affording similar results and avoiding the 

formation of toxic tin residues. Product 3 was considerably more soluble and therefore it 

was easily purified by column chromatography. The moderate yield (55%) might be due to 

remaining impurities in the starting product 2. In the final step, bromination with NBS in 

CHCl3 was performed and the desired monomer 4 was readily obtained. 

From this novel BAI monomer, a first polymer was prepared by combining it with 2,5-

bis(trimethylstannyl)thiophene in a Stille cross-coupling polycondensation. However, an 

insoluble material was obtained, indicating that alkylated donor building blocks are required 

to render the final low bandgap polymers soluble and processable. Because of our previous 

successes with 4H-dithieno[3,2-b:2',3'-d]pyrrole (DTP) derivatives,
[43-45]

 we turned to these 

electron-rich precursors. At first, the N-alkylated DTP unit 5a was synthesized starting from 

3,3′-dibromo-2,2′-bithiophene and 2-octyldodecan-1-amine (Scheme 2). Subsequently, 

distannylation with trimethyltin chloride was performed to obtain DTP monomer 6a.
[46] 

A 

relatively long branched side chain was introduced to overcome solubility problems in the 

resulting polymer. Two other DTP-alt-BAI polymers were synthesized as well. However, for 

these polymers, the N-alkyl substituent on the DTP part was replaced by an N-acyl unit, 

which has been shown before to lower the HOMO level of the resulting polymers and hence 
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afford an increased open-circuit voltage (Voc) in the final solar cells.
[43-47] 

The required 

bis(trimethylstannyl)-DTP monomers, 1-[2,6-bis(trimethylstannyl)-4H-dithieno[3,2-b:2',3'-

d]pyrrol-4-yl]-2-hexyldecan-1-one (9b) and 1-[2,6-bis(trimethylstannyl)-4H-dithieno[3,2-

b:2',3'-d]pyrrol-4-yl]-2-butyloctan-1-one (9c) (Scheme 2), were prepared according to 

literature procedures.
[43,47] 

A copper-catalyzed reaction between 3,3′-dibromo-2,2′-

bithiophene and the respective amide-functionalized side chain was performed, followed by 

dibromination with NBS and final distannylation with hexamethylditin (Scheme 2). All final 

monomers were purified by (recycling) preparative size exclusion chromatography (prep-

SEC) to eliminate residual impurities, allowing a proper stoichiometric balance in the 

polymerization reactions. This is essential to achieve high molar masses, as generally 

required for efficient polymer solar cells.
[48-51]

 

Scheme 2. DTP monomer synthesis: i) tBuONa, Pd2(dba)3, BINAP, toluene, reflux, 16 h (86%); ii) n-

BuLi, (CH3)3SnCl, -78 °C, 5 h (58%); iii) K2CO3, CuI, DMEDA, toluene, reflux, 24 h (57%); iv) NBS, CHCl3, 

0 °C, 2 h (93%); v) (CH3)3SnSn(CH3)3, LiCl, Pd(PPh3)4, toluene, reflux, 1 h (59%). 

The different monomers were then copolymerized using a Stille polycondensation approach 

under standard conditions (2 mol% Pd2dba3, 8 mol% P(o-tol)3, toluene/DMF, reflux, 16 h; 

Scheme 3). After the reactions, the crude polymer materials were precipitated in methanol 

and further purified using Soxhlet extractions with different solvents (acetone, n-hexane and 

chloroform successively, for at least 2 hours) to remove catalyst residues and low molar 

mass species. Finally, polymers with number-averaged molar masses (Mn) of 29, 55 and 20 

kg/mol for P1, P2 and P3, respectively, were obtained (Table 1). The lower Mn observed for 

P3 can be attributed to the fact that it already precipitated during the polymerization, 

prohibiting it to react any further. The final polymer material (P3) was only soluble in high 

boiling point solvents (e.g. hot chlorobenzene). 
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Scheme 3. BAI-alt-DTP polymer synthesis by Stille cross-coupling (similar reaction conditions for all 

polymerizations: 2 mol% Pd2dba3, 8 mol% P(o-tol)3, toluene/DMF, reflux, 16 h). 

MALDI-TOF (matrix-assisted laser desorption ionization time-of-flight) mass spectrometry 

was applied to gain more information on the exact nature of the products within the 

polymer distribution. Although such analysis is rarely performed for low bandgap 

copolymers, MALDI-TOF can provide important insights on the polymer composition that 

cannot trivially be obtained by other techniques. The MALDI-TOF spectra (Figure 2, 3 and S1-

S4) are similar for the three polymers. Besides the expected alternating oligomer-like 

species, homocoupling of both the acceptor (BAI) and donor (DTP) monomers was observed 

as well, probably generating a stoichiometric imbalance during the polymerization and 

thereby hindering the formation of high molar masses. The strong impact of homocoupling 

‘defects’ on the final solar cell performance has recently been elucidated in a number of 

studies.
[45,50,52-54]

 As such, direct identification of homocoupling via MALDI-TOF is very 

relevant. Furthermore, MALDI-TOF also allows identifying the end groups of the different 

polymer chains. In this particular case, reactive bromide end groups were still observed for 

polymers P1 and P3. Moreover, methyl end-capping is also seen regularly, pointing to 

methyl transfer from the trimethylstannyl precursors as an important polymer termination 

reaction.
[55]

 The lower molar masses observed in the MALDI-TOF spectra as compared to the 

SEC data are a result of the overestimation of the molar masses derived from SEC (because 

of the polystyrene standards used and the tendency of the polymers to aggregate) and the 

use of lower molar mass fractions for the MALDI-TOF analysis (to facilitate the sample 

preparation, improve the signal to noise ratio and allow structural analysis). 
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Figure 2. MALDI-TOF mass spectrum of P1. 

 
Figure 3. MALDI-TOF mass spectrum of P1 (zoom from m/z 3800 to 4550 g mol-1), with the 

assignment of homocoupling and end group identification. 

The thermal properties of the polymers were investigated by thermogravimetric analysis 

(TGA) and rapid heat-cool calorimetry (RHC) (Figure S5-S7, Table 1). TGA showed that the 

polymers are thermally stable (i.e. they do not lose any mass) up to 300 °C. RHC was chosen 

above regular differential scanning calorimetry (DSC) because of its increased sensitivity to 
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thermal transitions resulting from the fast scanning rates and the low sample amounts 

required.
[56]

 RHC analysis indicated that all polymers are fully amorphous in the second 

heating (after a preceding cooling at 20 K min
-1

), whereas some endo/exothermic behavior 

between 70 and 150 °C was seen in the first heating (Figure S6, S7). A glass transition (Tg) 

between 130 and 150 °C was observed in the second heating for all three materials. These 

high Tg‘s are beneficial for the thermal stability of the bulk heterojunction blends.
[57-60] 

The optical and electrochemical properties of the three polymers were also investigated to 

analyze the suitability of the novel materials for polymer solar cells and to establish 

structure-property relations. Figure 4 shows the UV-Vis-NIR absorption spectra in 

chlorobenzene solution and in the solid state. All polymers exhibit a broad dual band 

absorption in the 350–900 nm region. A notable extension to the NIR is observed compared 

to standard low bandgap polymers because of the highly electron-deficient nature of the BAI 

moiety. Polymer P1 shows the largest bathochromic shift, which can be attributed to the 

increased donor strength of the N-alkylated DTP component. In all cases, peak broadening is 

observed when going from solution to the solid state, pointing to π-π stacking and therefore 

strong electronic interactions in the films. The optical bandgaps, estimated from the 

absorption edges of the polymer films, are all similar and around 1.4 eV (Table 1). The 

absorption coefficients of the three polymers in chlorobenzene solution are in the range of 

43−55 L g
-1

 cm
-1

 (Table 1, Figure S8). The differences can be due to the different DTP 

monomers employed (N-alkyl vs N-acyl), molar mass and/or side chain (volume fraction) 

variations.
[61]
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Figure 4. Normalized UV-Vis-NIR absorption spectra for P1, P2 and P3 in chlorobenzene solution (top) 

and thin film (bottom). 

Table 1. Molar mass, optical, thermal and electrochemical data for copolymers P1, P2 and P3. 

 Mn
a
/ kg 

mol
-1

 

Ð λmax film
b
/ 

nm 

ε
c 
/ L g

-1
 

cm
-1 

Egfilm
d
/ 

eV 

Tg
e
/ 

°C 

Eox
f
/ 

eV 

Ered
f
/ 

eV 

Egcv
g
/ 

eV 

EHOMO
h
/ 

eV 

ELUMO
h
/ 

eV 

P1 29 4.4 723 43.0 1.46 130 0.29 −1.11 1.40 −5.2(6) −3.9 

P2 55 3.3 680 54.9 1.41 134 0.34 −1.11 1.44 −5.3(0) −3.9 

P3 20 1.7 677 52.4 1.41 149 0.34 −1.16 1.50 −5.3(1) −3.8 

a Measured by SEC at 60 °C in chlorobenzene. b Films were prepared by drop-casting a solution of the 

polymer onto a quartz disc. c Extinction coefficient of the polymers in chlorobenzene solution at λmax. 
d Optical bandgap, determined by the onset of the solid-state UV-Vis-NIR spectrum. e Glass transition 

temperature (2nd heating). f Onset potentials vs. Fc/Fc+. g Electrochemical bandgap. h Determined from 

the onset of oxidation/reduction in cyclic voltammetry. 

The electrochemical features of the polymers were investigated by cyclic voltammetry (CV; 

Figure S9, S10, Table 1). HOMO and LUMO energy levels were estimated from the oxidation 

and reduction onset potentials. As expected, a deeper HOMO level was observed when 

introducing the N-acyl substituent on the DTP part.
[43,47]

 From the data obtained, there 

seems to be no (substantial) LUMO-LUMO offset with PC71BM (Ered = −1.26 eV under the 

same experimental CV conditions; Figure S9), suggesting that the polymers might not act as 

efficient electron donors in combination with PC71BM. To investigate the charge-transfer 

mechanism between the polymers and PC71BM, light-induced electron paramagnetic 

resonance (LI-EPR) experiments were performed on the P2:PC71BM (1:4) blend. The X-band 

(9.4 GHz) and W-band (94 GHz) LI-EPR spectra (Figure S11) enabled the identification of the 

positive and negative radicals formed in the blend after charge transfer, based on their 

respective electronic g-tensors. By comparison of the experimental g-values with those 

obtained from our density functional theory (DFT) calculations (Table S1, Figure S12, S13) 

and literature values for the PC71BM anion,
[62]

 the EPR spectra could be unambiguously 

assigned to positive radicals on the P2 polymer (with the deepest LUMO in the series) and 

negative radicals on the fullerene molecules, thereby confirming the donor character of the 

polymers relative to PC71BM.  

OPV device fabrication and analysis 

The photovoltaic performances of the novel materials were then investigated by fabricating 

BHJ organic solar cells with a traditional device architecture consisting of 

glass/ITO/PEDOT:PSS/polymer:PC71BM/Ca/Al. The device measurements were carried out 

under illumination of AM1.5G simulated solar light (100 mW cm
-2

) and the photovoltaic 

properties are summarized in Table 2. 
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Polymer P1 showed a good solubility in all common processing solvents. On the other hand, 

due to the low solubility of P2 and P3, high-boiling aromatic solvents (e.g. chlorobenzene, o-

xylene, ...) were needed to completely dissolve these polymers and to process the active 

layers. The performance of the BHJ solar cells was first optimized by changing the polymer to 

PC71BM ratios and layer thicknesses of the blends. P1 showed an optimal polymer:fullerene 

weight ratio of 1:3, whereas for P2 and P3, 1:4 turned out to be the best ratio, with optimal 

layer thicknesses around 80−90 nm for all devices. At first, the devices made from P1 were 

further optimized. Unfortunately, however, modest efficiencies (up to a PCE of 1.24%) were 

obtained in all cases. Especially the Voc and fill factor (FF) turned out to be the limiting 

factors (Table 2, S2, Figure S15). Replacement of the alkyl substituents on the DTP units by 

acyl derivatives notably improved the Voc,
[43,47]

 in accordance with the electrochemical data. 

Careful optimization of the processing solvent for the P3:PC71BM blends afforded a best 

performing device with a PCE of 1.84% from chlorobenzene (Table S4, Figure S16). Upon 

annealing at 85 °C for 10 minutes, the efficiency further improved to 2.22% (Jsc = 6.83 mA 

cm
-2

, Voc = 0.80 V, FF = 0.41; Table 2). Despite the higher Mn of P2, similar device results 

were initially achieved. However, as this polymer is also soluble in o-xylene, this processing 

solvent could also be applied. o-Xylene is a ‘greener’ alternative for the most commonly 

used halogenated processing solvents. It has a high boiling point and is a suitable candidate 

for high-throughput OPV production.
[36-42] 

In our case, o-xylene turned out to be the best 

choice and a record PCE of 2.41% (Jsc = 6.67 mA cm
-2

, Voc = 0.82 V, FF = 0.44; Figure 5, Table 

2) was achieved after annealing at 110 °C for 10 minutes. To further improve the efficiency, 

anisaldehyde was used as a co-solvent in various volume concentrations (1 to 2% v/v).
[37] 

Unfortunately, however, the PCE did not increase any further (Table 2). The EQE spectrum 

shows a broad charge photogeneration (JEQE = 6.82 mA cm
-2

) range from 300 up to 900 nm, 

hence extending into the NIR (Figure S17). Expansion to the NIR is considered to be a main 

challenge for OPV and is important to further improve the efficiency of state-of-the-art 

devices.
[20,52] 

Despite extensive optimization efforts, modest device efficiencies were still 

obtained, which can tentatively be attributed to the low/average molar masses obtained, 

the presence of homocoupling in all three polymer compositions and the modest driving 

force for electron transfer. Nevertheless, one of the highest PCE’s for a BHJ solar cell made 

from a BAI-based polymer material was achieved.
[15-20]

 

Table 2. Photovoltaic output parameters for the BHJ organic solar cells based on copolymers P1, P2 

and P3 (in combination with PC71BM).  

Polymer Solvent
a
 Ratio Additive Voc / V Jsc / mA cm

-2
 FF Best 

PCE
c
 / %

 

P1 CF 1:3 / 0.64 5.37 0.36 1.24 

(1.22) 

P2 CB 1:4 10% TCEb 

(annealed @85 °C) 

0.78 6.99 0.42 2.28 

(2.25) 

P2 o-xylene 1:4 / 

(annealed @110 °C) 

0.82 6.67 0.44 2.41 

(2.28) 

P2 o-xylene 1:4 1% anisaldehyde 

(annealed @110 °C) 

0.80 6.47 0.45 2.31 

(2.13) 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 

 

P3 CB 1:4 / 

(annealed @85 °C) 

0.80 6.83 0.41 2.22 

(2.06) 
a CF = chloroform, CB = chlorobenzene. b TCE = tetrachloroethane. c Average efficiencies over at least 

3 devices in brackets. 

  

Figure 5. J-V characteristics of the best polymer solar cells prepared from the P1−P3:PC71BM blends. 

The limited FF and Jsc values cannot simply be attributed to a too low hole mobility of the 

new donor polymers. The saturated hole mobilities for the P1 and P2 polymers as measured 

in OFETs were similar and in the appropriate range (1×10
-3

 cm²/Vs for P1 and 3×10
-3

 cm²/Vs 

for P2). Most often, a less than optimal active layer morphology is at the origin of OPV 

blends performing below expectations. The surface morphology of the best performing 

active layer blend was investigated with atomic force microscopy (AFM) in tapping mode 

(Figure S18). A rather rough morphology was observed, with large particles remaining in the 

active layer, which is in agreement with the moderate FF values observed. These large 

domains also reduce the donor-acceptor interface and hence the dissociation of excitons 

into free charges, thereby limiting the Jsc. The addition of 1% (v/v) anisaldehyde as co-solvent 

did not improve the surface morphology, providing even larger domains (Figure S18), in 

accordance with the values of the OPV parameters. 

Conclusions 

Three push-pull type copolymers employing bay-annulated indigo as the electron deficient 

and 4H-dithieno[3,2-b:2',3'-d]pyrrole as the electron rich building block were synthesized, 

with particular attention for the synthetic protocol of the nature-inspired BAI monomer. 

MALDI-TOF mass spectrometry provided detailed information on the structural composition 

of the polymers, indicating homocoupling defects as well as methyl shift termination 

reactions. Photophysical and electrochemical analysis pointed out that the polymers possess 

relatively small bandgaps (~1.4 eV) and low-lying LUMO levels. Nevertheless, EPR analysis 

showed that the polymers act as electron donors in combination with PC71BM. The polymers 

were then all tested in bulk heterojunction solar cells, affording a maximum efficiency of 

2.41%, which is among the highest efficiencies reported so far for organic photovoltaics 
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prepared from BAI-containing active materials. Photocurrent is generated throughout the 

complete visible spectrum up to the NIR range. Noteworthy, the optimal result was achieved 

using a non-halogenated processing solvent (o-xylene), which is beneficial from an ecological 

point of view. As the device performance seems to be partly limited by the non-favorable 

active layer morphology, current efforts focus on the introduction of different donor building 

blocks to increase the miscibility of the final BAI-based polymers with suitable electron 

acceptors, in particular non-fullerene materials with low-lying LUMO levels. On the other 

hand, the NIR activity of the blends can also beneficially be applied in organic 

photodetectors.
[63]

 Finally, further efforts are required toward a truly ‘green’ synthesis of 

BAI-based organic semiconductors.
[64]
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• Efforts to enhance the sustainability of organic photovoltaics are presented  

• A nature-inspired indigo derivative (BAI) was incorporated in push-pull copolymers 

• MALDI-TOF mass spectrometry was employed to gain insight on the polymer composition 

• Best device results were obtained from a non-halogenated solvent (o-xylene) 


