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Abstract. This paper presents a step forward towards the analysis of a linear
periodically time-varying (PTV) bioimpedance Z

PTV

(j!, t), which is an important
subclass of a linear time-varying (LTV) bioimpedance. Similarly to the Fourier
coe�cients of a periodic signal, a PTV impedance can be decomposed into frequency
dependent impedance phasors, Zr(j!)e

j2⇡ r
TZ

t, r 2 Z
0

, that are rotating with an angular
speed of $r = 2⇡r/T

Z

. The vector length of these impedance phasors corresponds to
the amplitude of the rth-order harmonic impedance |Zr(j!)| and the initial phase
is given by �r(!, t0) = \Zr(j!) + 2⇡rt

0

/T

Z

, with t

0

2 [0, T ] being a time instant
within the measurement time T . The impedance period T

Z

stands for the cycle length
of the bio-system under investigation; for example, the elapsed time between two
consecutive R-waves in the electrocardiogram or the breathing periodicity in case of
the heart or lungs, respectively. First, it is demonstrated that the harmonic impedance
phasor Zr(j!k)e

j2⇡ r
TZ

t, at a particular measured frequency !k, can be represented by
a rotating phasor, leading to the so-called circular motion analysis technique. Next,
the two-dimensional (2-D) representation of the harmonic impedance phasors is then
extended to a three-dimensional (3-D) coordinate system by taking into account the
frequency dependence. Finally, we introduce a new visualizing tool to summarize
the frequency response behavior of Z

PTV

(j!, t) into a single 3-D plot using the local
Frenet-Serret frame. This novel 3-D impedance representation is then compared with
the 3-D Nyquist representation of a PTV impedance. The concepts are illustrated
through real measurements conducted on a PTV RC�circuit.

Keywords: (periodically) time-varying impedance [(P)TV], best linear time-invariant

(BLTI) impedance, harmonic impedance, impedance spectroscopy (IS), multisine
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excitations.

1. Introduction

The convenience of the linearity and time invariance (LTI) assumptions when measuring

an impedance, i.e. Z
LTI

(j!), has been proven undeniable by the extensive literature on

the topic (Barsoukov & Macdonald 2005, Grimnes & Martinsen 2014). Likewise, it

is also irrefutable that many bio-systems are time-variant. Interestingly, in spite of

many bio-systems being time-variant, the process of finding the frequency response of

these systems using impedance spectroscopy (IS) has relied historically on methods and

models intended for systems with an invariant behavior over time. This observation

was already perceived by (Eisenberg 1980, p. 320) when he noted that it was not yet

possible to perform IS to study the contraction of skeletal muscle. Another example is

impedance cardiography where the time-variant impedance is measured at one single

frequency using LTI methods (Kubicek et al. 1966). A review of the literature shows

that there is no clear consensus on the optimal measurement frequency (Bernstein

& Lemmens 2005), typically chosen from 20 to 100 kHz (Sherwood et al. 1990).

Furthermore, it remains unknown how the error at the measurement frequency a↵ects

stroke volume determinations. Those two questions are just an example of why it is

so important to develop more sophisticated methods to study time-variant bio-systems

using IS.

The theory for time-variant systems (Zadeh 1950b, Zadeh 1950a) has been applied

in all kind of engineering applications. Recent examples using IS are available in the

study of metal corrosion (Van Ingelgem et al. 2008), the determination of the state-

of-charge of batteries (Pop et al. 2005), and the measurement of in vivo myocardial

impedance (Sanchez et al. 2013a, Sanchez et al. 2013b). Algorithms for modeling such

systems can be classified according to the parametrization used, i.e. parametric in

both the dynamics and time (Tóth et al. 2012, Louarroudi et al. 2013), parametric

in time and nonparametric in the dynamics (Sams & Marmarelis 1988, Louarroudi

et al. 2012, Pintelon et al. 2015), parametric in the dynamics and nonparametric in

time (Niedzwiecki & Kaczmarek 2005), nonparametric in both the dynamics and time

(Allen & Rabiner 1977), and references therein.

This paper presents a step further towards the analysis of linear time-varying (LTV)

impedance Z
LTV

(j!, t) with a dominant periodic behavior, denoted as periodically time-

varying (PTV) impedance Z

PTV

(j!, t). The remainder of this paper is organized as

follows. Section 2 recalls the harmonic impedance concept associated with Z

PTV

(j!, t).

Based on impedance phasors, we present in section 2 the two- and three-dimensional

(2/3-D) circular motion analysis technique of Z

PTV

(j!, t). Section 3 extends the

analysis of Z
PTV

(j!, t) in a 3-D coordinate system using the Frenet-Serret local frame.

Afterwards in section 4, the Frennet-Serret approach is compared with the 3-D Nyquist

representation of a PTV impedance. The new concepts are illustrated on measurements

originating from a PTV RC�circuit in section 5-6. The main findings are discussed in
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section 7 and summarized under the form of conclusions in section 8.

2. Circular motion analysis of periodically time-varying impedance

An impedance is called periodically time-varying (PTV) if the impedance can be written

under the form (Sanchez et al. 2015)

Z

PTV

(j!, t) = Z

0

(j!)
| {z }

�
=ZBLTI(j!)

+
r=+Nh
X

r=�Nh
r 6=0

Zr (j!) e
jr 2⇡

TZ
t

| {z }

�
= ZTP(j!,t)

, (1)

where Zr(j!) are known as the harmonic impedance (Nh harmonics) and with T

Z

being

the periodicity of the impedance, i.e. Z

PTV

(j!, t+ T

Z

) = Z

PTV

(j!, t). The num-

ber of significant harmonics Nh depends on the strength of the temporal variation in

Z

PTV

(j!, t). To obtain in practice the correct order Nh, it is recommended to examine

each individual skirt component in the output voltage spectrum (Sanchez et al. 2013a).

2.1. 2-D impedance phasor representation

First, notice from (1) that Z
PTV

(j!, t) can be separated into two main contributions.

• The first term in the right-hand side of (1) is the zero-order harmonic contribution

Z

0

(j!). More specifically, it has been shown in (Louarroudi et al. 2014) that Z
0

(j!)

equals the best – in a mean square sense – linear time-invariant (BLTI) impedance

approximation of Z
PTV

(j!, t), which is defined as the mean impedance

Z

BLTI

(j!) , 1

T

Z

t0+TZ
Z

t0

Z

PTV

(j!, t) dt, (2)

with t

0

being an arbitrary time instant within the measurement interval. The

geometrical representation of Z
BLTI

(j!) (2) at one particular frequency ! = !k in

the complex plane is a static (time-invariant) impedance vector (see figure 1(a)).

The projections of Z
BLTI

(j!k) (2) on the x and y axes in figure 1(a) are the resistive

and reactive components of Z
BLTI

(j!k) (Barsoukov & Macdonald 2005, Grimnes &

Martinsen 2014).

• The second part in the right-hand side of (1) is called the time-periodic (TP)

part Z
TP

(j!, t), which contains all the contributions of the higher order harmonic

impedances Zr(j!). As shown in figure 1(b), when each harmonic component at

! = !k, i.e. Zr(j!k)e
j2⇡ r

TZ
t
, r 6= 0, is analyzed separately, one can see that it acts

as an impedance phasor which is rotating at an angular speed of $r = 2⇡r/T
Z

with

$i

$j
=

i

j

, |$i| > |$j| 8 {i, j}
i 6=j, |i|>|j|

2 Z
0

.
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The direction of rotation is counterclockwise for r 2 Z+ and clockwise for r 2 Z�.

The phasor’s instantaneous phase is �r(!k, t0) = \Zr(j!k) + 2⇡rt
0

/T

Z

with t

0

a

time instant within the measurement time T .

i(t)
  

   

ZBLTI

vBLTI(t)

real{ZBLTI}
imag{ZBLTI}

|ZBLTI|

∠ZBLTI

(a) Schematic of the static impedance phasor corresponding to the best linear time-
invariant (BLTI) impedance approximation Z

BLTI

(j!k) in (1).

i(t)
  

   

Zr

e 
j2πrt/TZ

vr(t)

imag{Zre 
j2πrt/TZ}

real{Zre 
j2πrt/TZ}

|Zr|

(b) Schematic of the rotating impedance phasor corresponding to the rth harmonic of
Z

TP

(j!k, t) in (1). The length of the phasor (radius) is determined by the amplitude
of the rth-order harmonic impedance |Zr(j!k) |, r 2 Z±. The black dot on top of
the circle represents the initial phase �r(!k, t0) at t

0

. The angular velocity is $r

and the direction of rotation, denoted by the black arrow, is counterclockwise for
r 2 Z+ and clockwise for r 2 Z�.

Figure 1. Two-dimensional geometrical interpretation of a periodically time-varying
(PTV) impedance Z

PTV

(j!k, t) by means of (a) the best linear time-invariant (BLTI)
impedance approximation Z

BLTI

(j!k), and (b) the circular motion decomposition of
Z

TP

(j!k, t). TZ

denotes the impedance period and t

0

2 [0, T ] is a relative time instant
within the measurement time T .

Adding up the individual contribution of the static (Z
BLTI

(j!k)) and the rotating

phasors (Zr(j!k), r 6= 0) finally defines the periodic orbit of Z
PTV

(j!k, t) in the complex

plane, as shown schematically in figure 2 (bottom right).

2.2. 3-D impedance phasor representation

Until now, the analysis in figure 1 and figure 2 is done at one particular measured

frequency !k. However, in case di↵erent frequencies are measured, i.e. performing

IS, the frequency dependence should be included by adding a new axis. Figure 3

shows such a conceptualized 3-D representation for one particular harmonic impedance

phasor, Zr(j!k)e
j2⇡ r

TZ
t
, r 6= 0, with k = 1, 2, ..., F and F being the number of measured

frequencies. One can see that it results in a kind of a“horn-shaped” surface made of

k = 1, 2, ..., F di↵erent rotating impedance phasors with varying radii and initial phases.
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+ =
Z0

ZTP

Z-1e 
-j2πt/TZZ-2e 

-j4πt/TZ Z1e 
j2πt/TZ Z2e 

j4πt/TZ

+ =

+ =

=

...... ... ...

k,t0

k,t1

k,tn

+

+

+

...

+

+

+

...

...

...

Z0

+

+

+

+

+

+

...

+

+

+

...

...

...

ZPTV

Z0
ZPTV

Z0

...

+

ZPTV

ZTP

ZTP

+

Figure 2. Circular motion decomposition of periodically time-varying (PTV)
impedance Z

PTV

(j!k, t). At one particular frequency !k and at each continuous
time instant tn, the geometric sum of the rotating phasors defines the time-periodic
(TP) impedance Z

TP

(j!k, t) in (2) (blue arrows, right column). The black and
dark red arrows are, respectively, the best linear time-invariant (BLTI) impedance
approximation Z

BLTI

(j!k) and Z

PTV

(j!k, t). Note that the black and gray colors in
the x and y axes show the di↵erences between coordinate systems in figure 1(a)-1(b).

real{Zre 
j2πrt/TZ}

imag{Zre 
j2πrt/TZ}

Φr(     1,t0)

|Zr(j      1)|
Φr(     2,t0)

Φr(     F,t0)

|Zr(j      2)|

|Zr(j     F)|

x
y

z

Figure 3. Schematic illustrating the three-dimensional (3-D) geometric interpretation
of the two-dimensional harmonic impedance phasors representation in figure 1 (b). The
3-D representation results in a kind of horn-shaped surface made of |Zr(j!k) | and
the initial phase �r(!k, t0) for k = 1, 2, ..., F , with F being the number of measured
frequencies. The angular speed of the phasors is $r and the direction of rotation,
denoted by the black arrow, is counterclockwise for r 2 Z+ and clockwise for r 2 Z�.
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3. 3-D PTV impedance representation in the Frenet-Serret frame

To reconstruct a 3-D visualizing tool for periodically varying bio-systems, we assume

that the BLTI impedance arc
!
Z

0

: [!
min

, !

max

] ⇢ R ! R3

!
Z

0

(!) =

0

B

@

0

real {Z
0

(j!)}
imag {Z

0

(j!)}

1

C

A

for ! 2 [!
min

, !

max

] ⇢ R (3)

is di↵erentiable in R3 such that the tangent
!
t

, normal
!
n and binormal

!
b

unit vectors

!
t

=
!
n⇥

!
b

,

!
n =

!
b

⇥
!
t

,

!
b

=
!
t

⇥!
n

, (4)

associated with the BLTI impedance arc in figure 4 can be computed. Note that, for

convenience, the x-component of the BLTI impedance arc (3) is chosen to be zero such

that the arc is located in the yz-plane (shown in gray in figure 4).

tn

b

0xy

z

Z0(   )

Figure 4. Three-dimensional schematic representation of the best linear time-

invariant (BLTI) impedance arc
!
Z

0

: [!
min

, !

max

] ⇢ R ! R3 (3) in the yz-plane
(in gray at x=0). The black dots indicate the minimum and maximum frequency,

!

min

and !

max

respectively. The vectors
!
t

,

!
n

,

!
b

represent the tangent, normal, and
binormal unit vectors of the Frenet-Serret frame at one particular frequency !.

Since in practice the arc (3) in figure 4 is only measured at a discrete set of

frequencies !k for k = 1, 2, ..., F , we can define the “discrete version” of (3) as the

matrix Z

0

built with the real and imaginary parts of Z
0

(j!k) for k = 1, 2, ..., F , namely

Z

0

=

2

6

4

0 · · · 0 · · · 0

real {Z
0

(j!
1

)} · · · real {Z
0

(j!k)} · · · real {Z
0

(j!F )}
imag {Z

0

(j!
1

)} · · · imag {Z
0

(j!k)} · · · imag {Z
0

(j!F )}

3

7

5

. (5)

According to the Frenet-Serret approach (Serret 1851, Frenet 1852), the tangent,

normal and binormal unit vectors in (4), can be computed (numerically) from the k
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columns of Z
0

, i.e. Z
0

[:, k] for k = 1, 2, ..., F frequencies, as follows

!
t

[k] = (0, y
[k], z[k])

T ⇡
�
�

Z

0[:, k]

 

�

��
�

Z

0[:, k]

 

�

�

2

,

!
n

[k] =
(0, z

[k],�y

[k])T
q

y

2

[k] + z

2

[k]

,

!
b

[k] =
!
t

[k] ⇥
!
n

[k],

(6)

with (•)T being the vector transpose, � [•] being the central di↵erence operator

�
�

Z

0[:, k]

 

=

8

>

>

<

>

>

:

Z

0[:, k+1]

� Z

0[:, 1] if k = 1

Z

0[:, k+1]

� Z

0[:, k�1]

if 1 < k < F

Z

0[:, k] � Z

0[:, k�1]

if k = F

, (7)

and k•k
2

denotes the vector norm

�

�

�

!
x

�

�

�

2

=
p

x

2 + y

2 + z

2

. (8)

Then, the matrix containing the rth-order harmonic impedance phasors, Zr(t) with

t 2 [t
0

, t

0

+ TZ ], can readily be found in the Frenet-Serret local frame as

Zr
[:, k](t) = |Zr (j!k)| ·

h!
n

[k] · cos (�r(!k, t)) +
!
b

[k] · sin (�r(!k, t))
i

. (9)

The last step is to represent Z
PTV

(t) in the Frenet-Serret frame by combining Z

0

in (5)

and Zr(t) in (9) as follows

Z

PTV

(t) = Z

0

+
+Nh
X

r=�Nh
r 6=0

Zr(t). (10)

Note that the curvature of the 3-D plot, described by expression (10), is determined

by the arc Z

0

(5) (solid line in figure 4). This is in accordance with the 2-D Nyquist

representation of a linear time-invariant impedance Z

LTI

(j!). On top of the arc, the

time-periodic impedance, Z
TP

(j!, t) in (1), is included in the plot as a sum of rotating

phasors Zr(t), r 6= 0, projected in the Frenet-Serret local frame
⇣n!

n

,

!
b

o

� plane
⌘

. As

explained in the next section, this 3-D visualizing tool di↵ers fundamentally from the

3-D Nyquist representation of a PTV impedance.

4. 3-D Nyquist representation

An alternative to the new 3-D visualization method in section 3 is to represent the

real and imaginary parts of the PTV impedance Z

PTV

(j!, t) directly in a 3-D Nyquist

plot. The 3-D generalization of the 2-D Nyquist plot, which is applied to Z

PTV

(j!, t),

consists of adding the time dependence as a new axis (note that this representation is

also valid for an arbitrarily time-varying impedance). The result, shown in figure 5, is

the instantaneous impedance arc at each time instant tn, n 2 N provided that:
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(i) All the excited frequencies were measured at the same time instant, e.g. using

multisine signals as in (Searle & Kirkup 1999).

(ii) The PTV impedance measured at time instant tn, i.e. Z

PTV

(j!, tn), can be

approximated as a time-invariant one within the measurement interval Tn, i.e.

Z

[n]
LTI

(j!) ⇡ Z

PTV

(j!, t) for t 2
⇥

tn � Tn
2

, tn +
Tn
2

⇤

.

If Assumption (i) is violated, for example, because Z
PTV

(j!, t) was measured using the

stepped-sine IS approach, then each impedance point would be located in a di↵erent

temporal plane. Furthermore, if Assumption (ii) is not fulfilled, the impedance arc will

be distorted. The reader can find an example in (Sanchez et al. 2015) of a 3-D Nyquist

impedance arc measured with the stepped-sine approach which is distorted due to the

time dependence of the impedance (see figure 10 (b) therein).

t0
t1
t2

Z
PTV(j  ,t

1)
Z

PTV(j  ,t
0)

Z
PTV(j  ,t

2)

-i
m

ag
{Z

P
T

V
}

real{ZPTV}

tn

Z
PTV(j  ,t

n)

...

...

Figure 5. Three-dimensional Nyquist representation of a linear periodically time-
varying (PTV) impedance Z

PTV

(j!, t) through instantaneous impedance arcs at
discrete time instants tn, n 2 N. In the figure, the frequencies corresponding to the
same impedance arc are located in the same real and imaginary plane (limited by the
dotted lines, e.g. e.g. measured with multisine excitations). The line connecting the
dots illustrates the impedance evolution over time at one particular frequency !.

5. An illustrative example

Before delving into the measurement results, we first provide in section 5.1 an overview

of the general aspects concerning the measurement and identification setup used.

5.1. Brief description of the measurement and identification process

We conducted a single 2-electrode spectroscopy experiment on the PTV RC�circuit

shown in figure 6 using the parametric-in-time measurement strategy proposed in

(Sanchez et al. 2013a). The noisy input-output signals coming from the voltage
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10 nF

100 Ω
330 Ω

ZPTV(jω,t)

v(t)
+

LEDLDR

50 Ω

VI

Figure 6. RC�circuit phantom emulating a periodically time-varying (PTV)
impedance Z

PTV

(j!, t). The current I and voltage V denote the terminals of the
2-electrode impedance measurement. The light emitting diode (LED) and the light-
dependent resistor (LDR) were both covered to prevent impedance changes due to
fluctuations of the ambient light. A LabVIEW program was used to generate a sine-
wave voltage scheduling signal v(t) = V

DC

+ VPP
2

sin (2⇡f
Z

t) with settings: V
PP

= 0.1 V
the peak-to-peak amplitude, f

Z

= 1/T
Z

= 1 Hz the frequency of the impedance cycle
and V

DC

= 2.5 V the dc amplitude to set the LED into conduction.

controlled current source-based analogue front end (1 mA V�1) were acquired

synchronously to the reference excitation and sampled at a constant sample rate of

f

s

= 5 Ms s�1 (PXIe-5122, 100 Ms s�1, 64 MB/channel, 14 bits). The chosen reference

signal was a random phase multisine signal with equal harmonic amplitudes (Sanchez

et al. 2012) and generated with an arbitrary waveform generator (PXI-5421, 100 Ms s�1,

32 MB, 16 bits). The fundamental period of the multisine was 1 ms and the phases of the

reference signal were randomly distributed in [0, 2⇡) (Pintelon & Schoukens 2012). The

multisine excitation consisted of F = 26 frequencies quasi logarithmically distributed in

the frequency band 1 kHz ! 1 MHz, fk = {1, 3, 5, 7, 11, 15, 19, 25, 33, 41, 51, 63, 77,
95, 117, 143, 173, 173, 253, 307, 371, 447, 539, 649, 781, 939} kHz. The input-output

signals were passed through analogue lowpass filters before the signals were sampled

such that aliasing was avoided (1 MHz cuto↵ frequency). The measurement lasted for

T = 5 s, giving P = 5 impedance cycles. In all, the number of samples acquired were

N = Tf

s

= 25 Ms per channel (50 Ms in total).

For each measured impedance cycle, we applied the identification scheme based on

the indirect local polynomial method together with the short time Fourier transform

(STFT) technique described in (Sanchez et al. 2013b). The width of the STFT segment

window was fixed to 60 ms (the integer number of periods of the noisy input-output

signals processed were 60 in each block) and the segment overlap was set to 60%, giving

a total of 206 impedance spectra. Then, the sample mean of the BLTI impedance over

the impedance cycles was computed, giving the sample mean b

Z

BLTI

(j!k). For details

regarding the calibration process, we refer to Section 3.2 in (Sanchez et al. 2013a).
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Figure 7. Circular impedance analysis of the measured periodically time-varying
(PTV) impedance Z

PTV

(j!k, t) in figure 6, with T

Z

= 1 s being the imposed periodicity
of the impedance cycle. The black dots are the sample mean (averaged over P = 5
impedance periods) best linear time-invariant (BLTI) impedance b

Z

BLTI

(j!k). The
radii of the circles are the magnitude of the rth-order harmonic impedance |Zr(j!k)|,
r 2 Z±. The colored dots represent the initial phase �r(!k, t) at t = 0 s. The colored
arrowheads indicate the direction of rotation. The reader is referred to supplementary

figure 1 to observe the time evolution of the rotating phasors. Colors: Z
1

e

j 2⇡
TZ

t in blue,

Z�1

e

�j 2⇡
TZ

t in red, Z
2

e

j 4⇡
TZ

t in cyan and Z�2

e

�j 4⇡
TZ

t in magenta.
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6. Results

6.1. 2-D impedance phasor representation

Figure 7 depicts the circular motion analysis of the PTV RC�circuit in figure 6. The

sample mean BLTI impedance b

Z

BLTI

(j!k) (black dots) is the center of the circle with

radius the magnitude of the rth-order harmonic impedance |Zr(j!k)|. The initial phase
(colored dots) is �r(!k, t) at t = 0 s. The angular velocities for the first and second

order impedance phasors are respectively $±1

= ±2⇡ rad s�1 (figure 7(a)-7(c)) and

$±2

= ±4⇡ rad s�1 (figure 7(b)-7(d)). Finally, the direction of rotation is indicated

with the colored arrowheads on top of the circles.

If the scale of both the real and the imaginary axis is not the same, the circle

described by the impedance phasors will look like an ellipse. Note that the vertical axis,

representing the reactive part of Z
BLTI

(j!) +Zr(j!)e
j2⇡ r

TZ
t
, is not inverted. The reason

why we did not invert the y-axis was to keep the rotation convention as described

in section 2. Otherwise, the direction of rotation would had been the opposite, i.e.

counterclockwise for r 2 Z� and clockwise for r 2 Z+.

The strong resemblance between the positive and negative impedance phasors

in figure 7(a)-7(c) is caused by the sinusoidal temporal variation imposed on the

RC�circuit in figure 6. When Z

PTV

(j!k, t) follows more or less a slow sinusoidal

temporal variation, the temporal content of the low order-harmonics is distributed

almost equally over the positive and negative harmonics; whereas the di↵erences become

more noticeable at high-order harmonics in figure 7(b)-7(d).

Due to the physical limitations of the circuit (shown in figure 6), the time depen-

dence in Z

PTV

(j!, t) does not follow a perfect sine evolution. Still, comparing the radii

|Z±1

(j!k)| (⇠2.5 ⌦) and |Z±2

(j!k)| (⇠0.1 ⌦) in figure 7 reveals that, at these two par-

ticular frequencies of 1 kHz and 11 kHz, the first order harmonics mostly contribute to

the temporal evolution of Z
PTV

(j!k, t). In general, the purer the sinusoidal temporal

variation of Z
PTV

(j!k, t) is, the lower the radii of the circumferences of the higher order

harmonics (for |r| � 2) will be. The reader is referred to supplementary figure 1 to

observe the time evolution of the rotating phasors Zr(j!k)e
j2⇡ r

TZ
t
with r 2 {±1, ±2}.

In general, the radius and initial phase of the harmonic impedance phasors will depend

on the measured frequencies, as shown by the 3-D representation in the next section.

6.2. 3-D impedance phasor representation

Figure 8 shows the harmonic impedance phasors in figure 7 as a function of the measured

frequencies (without the BLTI impedance contribution). The result is a surface of

revolving phasors in the xz-plane. The angular velocities and the convention of rotation

are the same as in figure 7. The green line connects the initial phases �r(!k, t) of the

harmonic impedance phasors at t = 0 s. When the magnitude of the first order harmonic

|Z±1

(j!k)| monotonically decreases with frequency, the surface impedance resembles a
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Figure 8. Three-dimensional (3-D) representation of the harmonic impedance phasors
in figure 7. The result is a horn-shaped surface. The auxiliary axes of rotation are
represented in each subfigure by a dashed black line (along the y-axis). The direction
of rotation in the xz-plane is counterclockwise for r 2 Z+ and clockwise for r 2 Z�.
The green line connects the initial phases �r(!k, t) at t = 0 s and is represented with
an o↵set above the surface for clarity. The reader is referred to supplementary figures
2 to 5 for an interactive 3-D version.

horn-shaped surface, as shown in figure 8(a)-8(c). To grasp the details of the surface

impedance in the 3-D coordinate system, we refer to supplementary figures 2 to 5 for

an interactive version as well as further details.

6.3. 3-D PTV impedance representation in the Frenet-Serret frame

We represent in figure 9 the PTV impedance in the Frenet-Serret local frame (see

section 3). It can be seen that the sample mean BLTI impedance b

Z

BLTI

(j!k) (thick

black line) represents an expected arc in the yz-plane. It is worth mentioning that,

when using the Frenet-Serret frame, the units of the global x-axis becomes meaningless.

Indeed, the yz�plane contains the BLTI arc (see (5)) and, moreover, only the projections

on the tangent, normal, and binormal unit vectors in (6) have physical units. For clarity

we left the numerical values on the x-axis, found through (9), to have an approximate
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Figure 9. Three-dimensional (3-D) impedance representation of the periodically time-
varying (PTV) impedance Z

PTV

(j!k, t) in figure 6 using the Frenet-Serret local frame.
The plot is originated from the vector sum of the surface impedance plots in figure 8(a)
- 8(d) torsioned by the best linear time-invariant (BLTI) impedance arc b

Z

BLTI

(j!k)
(black line) (yz�plane). The flatness of the surface plot is due to the imposed sine

evolution in figure 6. The unit vectors
!
t

,

!
n

,

!
b

(in green) represent the tangent,
normal, and binormal vectors of the Frenet-Serret frame at one particular point on the
BLTI arc (black line). Although the x-axis does not have useful units, it is shown for
convenience to indicate the strength of the temporal variation (sine evolution). The
reader is referred to the supplementary figure 6 for an interactive 3-D version.

idea of the strength of the temporal variation. If, however, a scalar quantity for the

degree of time-variations is desired, it can be calculated from the harmonic impedance

using equation 7 in (Sanchez et al. 2015).

The flat surface behavior in figure 9 follows from the phasor plots shown in figure 7.

Since the length of the rotating phasors are similar in amplitude and the instantaneous

phases are di↵erent, the geometric sum of all the rotating phasors results in a periodic

straight line in the complex plane (see supplementary figure 1 e, f). Another observation

from figure 9 is the disruption of the impedance surface at high frequencies (indicated

by the white arrowhead). The origin of this behavior is due to a change in sign of

the normal unit vector
!
n. A subtle alteration in the curvature of bZ

BLTI

(j!k) happened

between the measured frequencies 371 kHz and 447 kHz. Possible error sources that can

create this disruption might be a measurement error or the calibration process.

6.4. 3-D Nyquist representation

As already mentioned in section 4, an alternative to the 3-D Frenet-Serret approach in

section 6.3 is to use a 3-D Nyquist plot that takes into account the time dependency

of the PTV impedance. Figure 10 shows this 3-D Nyquist representation of the PTV

impedance in figure 9. One can clearly observe the imposed sinusoidal variation of

the impedance from figure 6. However, the price one pays using this representation is,

in general, an increase in di�culty to immediately observe the time-invariant (mean)
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Figure 10. Three-dimensional Nyquist representation of the linear periodically time-
varying (PTV) impedance Z

PTV

(j!, t) in figure 9 (5 s, 206 impedance). The reader is
referred to the supplementary figure 7 for an interactive 3-D version.

behavior of the impedance.

7. Discussion

7.1. Vector impedance analysis and 3-D Frenet-Serret approach

From a standpoint of physical significance, both the 2-D vector impedance analysis

(VIA) technique and the 3-D Frenet-Serret approach represent the same impedance.

However, using the VIA approach, the time-periodic part of the impedance, Z
TP

(j!, t)

in (1), can only be represented separately from the best linear time-invariant impedance

Z

BLTI

(j!). In the VIA approach, the curvature of the BLTI arc is not taken into

account. With the Frenet-Serret method, one can detect changes in the curvature of

the BLTI impedance using (6)-(7). The novel representation with the Frenet-Serret

{
!
t

,

!
n

,

!
b

} frame, allows us to link, at the cost of adding a new dimension, Z
BLTI

(j!)

with Z

TP

(j!, t).
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7.2. 3-D Nyquist and Frenet-Serret representations

The 3-D Frenet-Serret visualization method (section 3) is complementary to the well-

known 3-D Nyquist representation of Z
PTV

(j!, t). Basically, they represent the same

impedance but they both do it in a di↵erent way. The 3-D Nyquist representation is

formed by the instantaneous impedance values of Z
PTV

(j!, t) at di↵erent instants of

time, while in the 3-D Frenet-Serret approach the time-periodic part is shaped by the

curvature of the BLTI impedance arc.

If, for instance, one is interested in analyzing the mean (time-invariant) dynamics of

Z

PTV

(j!, t), it can be quite burdensome using the 3-D Nyquist representation. However,

with the new 3-D Frenet-Serret approach, it can be read straightforwardly from the

curvature of the plot. This is found to be very important because it allows us to analyze

the mean dynamic behavior of Z

PTV

(j!, t) using time-invariant equivalent electrical

circuits and models without penalizing the representation of the temporal evolution.

On the other hand, it is easier to see the time evolution of Z
PTV

(j!, t) using the 3-D

Nyquist visualization than by looking at the 3-D Frenet-Serret plot where the time axis

is lost. From a practical point of view, the 3-D Nyquist plot it is easier to represent and

is valid for any kind of temporal impedance evolution. Whereas the 3-D Frenet-Serret

method presented here is applied to time-varying impedances with a dominant periodic

character such as breathing and cardiac activities.

Finally, the 3-D Frenet-Serret plot is based on a parametric-in-time impedance

measurement (all the frequencies are measured at the same time instant continuously

over time) (Sanchez et al. 2013a). Therefore, it cannot be used in stepped-sine IS

experiments where each frequency is measured at a di↵erent time instant, that not

being a limitation with the 3-D Nyquist plot.

8. Conclusions

In this paper, we have shown that, when a time-variant impedance has a dominant time-

periodic dependence, the temporal evolution can be analyzed using the circular motion

analysis technique. Once the frequency dependence is included, the revolution of the

impedance phasors forms a surface in a three-dimensional (3-D) space. This idea gave

rise to a new 3-D visualization tool based on the Frenet-Serret local frame. The method

takes properly into account the curvature of the mean behavior of the periodically

varying impedance. This 3-D Frenet-Serret approach is then compared with the 3-D

extension of the classical 2-D Nyquist representation, which is used frequently in the

literature to interpret linear time-invariant impedance. The novel visualization tool

might help to disentangle multiple simultaneous physiological processes with temporal

varying dynamics.
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