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Multiple rings in a 3D anisotropic Wigner crystal: Structural and dynamical properties
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The structural and dynamical properties of small three-dimensional (3D) anisotropically confined Wigner
crystals of particles interacting via a Coulombic interparticle potential are investigated. Varying the degree of
anisotropy of the confinement potential drives the system from a 3D to a one-dimensional configuration
intermediated by a sequence of first and second order structural phase transitions. We classified the ground
state configurations with respect to their symmetry resulting in three different groups of configurations: mul-
tiple ring, degenerate multiple ring, and nonsymmetric structures. The results are summarized in a phase
diagram where the different configurations are identified for systems ranging from N=4 to 25 particles. The
behavior of the ground state symmetry of large systems was investigated for the cases of N=50, 60, and 70
particles. A normal mode analysis reveals that multiple ring structures exhibit inter-ring and/or vortex/

antivortex excitation modes of oscillations.
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I. INTRODUCTION

Finite systems of classical charged particles have been of
considerable interest, since they can model a variety of sys-
tems as electrons trapped on top of liquid helium,' electrons
trapped in quantum well structures,” strongly coupled radio-
frequency dusty plasmas,® vortex clusters in an isotropic
superfluid,* laser-cooled trapped ion systems,»® complex
dusty plasmas,’ etc.

Complex plasmas have been typically generated through
experiments in parallel plate radio-frequency (rf) discharge.
Large particles, called dust particles, introduced into the
plasma chamber become electrically charged. A strong up-
ward electric field is used to compensate the downward
gravitational force acting on the dust particles. Consequently
dust particles are able to levitate and form flat layers of crys-
talline particles at low temperature and large density. These
nearly two-dimensional systems have similarities to colloidal
suspensions®? and show a rich set of interesting phenomena,
such as phase transitions,'®!! fluid motion,'? and a variety of
wave phenomena.'? By means of suitable horizontal barriers
the generation of two-dimensional finite dust clusters is
possible.!*1>

Gravitational effects were circumvented in experiments
under microgravity conditions in space'®!” or on parabolic
flights.'®!° Consequently extended three-dimensional com-
plex plasmas could be generated. However, the dust is not
evenly distributed in the complete volume, but is disturbed
by a dust-free region in the center of the discharge, the so-
called void phenomenon.'®!8

The first experimental investigation on small size spheri-
cal three-dimensional homogeneous dust plasma crystals
consisting of micrometer-sized polymer particles was carried
out recently.’” In the latter work, a thermophoretic force was
applied to compensate for gravity, which in combination
with the plasma induced electric field force establishes a ver-
tical confinement. Such systems were named “Coulomb
balls.” Theoretical investigation of structural properties and
melting behavior in three-dimensional (3D) Coulomb balls
are reported in Refs. 20-22, 24, and 25. It was found that
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inside a Coulomb ball the dust particles are arranged in
nested shells. Within each shell the particles form a hexago-
nal lattice, which is affected by defects as a consequence of
the curvature of the shell surface. The large size of the dust
particles allows direct observation by simple video micros-
copy because dynamical processes occur on typical fre-
quency scales of a few hertz, quite unlike strongly coupled
colloidal suspensions,”®> where particle motion is heavily
damped. Therefore, this system is ideally suited for studying
the static and dynamics of strongly coupled matter with
“atomic resolution.”

Recent developments of experiments in spherically con-
fined dust plasma have motivated two of our most recent
works.”*?3 Reference 24 presented a detailed numerical
simulation of the configuration of the ground state and the
lowest-energy metastable state, and of the spectrum of nor-
mal modes of classical 3D clusters with isotropic parabolic
confinement. The confined particles were considered to inter-
act through a repulsive potential such as Coulomb or
screened Coulomb interparticle potential. We found that both
small and larger systems satisfy Euler’s theorem and the total
topological charge defect is 12. The breathing and the center
of mass mode frequencies were analytically determined. The
breathing mode was found to have the highest frequency for
the case of a Coulomb interparticle interaction potential. Fur-
thermore we found a relation between the appearance of
maximum and minimum in the lowest nonzero eigenfre-
quency and in the second derivative of the binding energy as
function of N for small clusters (N<23) from which we
determine the most stable and least stable clusters. A thermo-
dynamic investigation of such a system was given in Ref. 25.
It was found that the ground state (GS) configuration of sys-
tems with N=6, 12, 13, and 38 particles have large mechani-
cal stability and were therefore identified as magic clusters.
The common characteristic of magic clusters is that they are
formed by one of the highly regular crystal structures, i.e., an
octahedron or icosahedron.

In any real experimental system the confinement potential
will have an asymmetric component. Therefore, in this paper
we study the dynamical and statical properties of anisotrop-
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ically confined Wigner crystals. Such an investigation is an
extension of our previous work?* and has relation to previous
work on anisotropic confined two-dimensional (2D)
clusters.?®?” Additionally, our study complements previous
investigations of structural phase transitions arising between
a 2D to a 3D classical artificial atom.? The latter reference
showed that the development from a ring structure into a
shell configuration passes necessarily though a layered struc-
ture which is intermediated by structural transitions of first
and second orders. We shall demonstrate that anisotropic fi-
nite 3D Wigner crystals form, in fact, a hybrid element in the
sense that they exhibit physical properties inherent of both
2D and 3D systems. Toward this objective we determine the
lowest-energy configurations and perform a normal mode
analysis where we give special attention to delocalized
modes, i.e., the normal mode oscillations with very low fre-
quencies.

The present paper is organized as follows. In Sec. II we
present our theoretical model. In Sec. III we give our results
for the statistical properties of the ground state configura-
tions, which is divided in four subsections: (A) we investi-
gate the structural phase transitions of first and second orders
which take place in a small system with N=6 particles when
the anisotropy parameter is varied, (B) a larger system with
N=18 particles is investigated and we introduce the fraction
of degenerate frequencies 7 as a quantity to characterize
highly symmetric clusters, (C) we generalize our results by
presenting a phase diagram for systems with N=4-25 par-
ticles, and (D) larger systems are investigated, i.e., systems
with N=50, 60, and 70 particles. A normal mode analysis of
multiple ring structures is discussed in Sec. IV. Finally, in
Sec. V we present our conclusions.

II. THEORETICAL MODEL

We study a 3D model system of N equally charged par-
ticles in an anisotropic confinement potential and interacting
through a repulsive potential. The potential energy of the
system is given by

N

N
1 q2

E=, —mwi(x? + yi2 + az,-z) +>

=1 2 i>j 50|1'i— r;

(M

where €, and ¢ are, respectively, the electric constant and the
particle charge, r;=(x;,y;,z;) is the coordinate of the ith par-
ticle, NV is the total number of particles, w, is the confinement
frequency of a single particle, and « is the anisotropy param-
eter of the confinement potential. We can write the potential
energy (1) in dimensionless form

N N
1
E=2 (5 +yl+az)+ 2 : (2)
i=1 i>j |ri_rj

if we express the coordinate and energy in the following
units: ry=(g>/ yey)", where y=maw,/2 and Ey=q*/ €yro. All
our numerical results will be given in dimensionless units.
Intuitively, we expect interesting behavior as a function of
a which governs the anisotropy of the confinement potential.
This can be seen as follows: for =0 we have an unbounded
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system in one direction, i.e., a wirelike configuration as dis-
cussed in Ref. 28, while for @=1 the system consists of an
isotropic 3D Wigner crystal. This implies that, as a function
of a structural transitions (e.g., configurational changes)
have to take place. We found that the ground state configu-
ration shows a surprisingly complex behavior as a function
of a.

To obtain the stable configurations we use the Monte
Carlo simulation technique supplemented with the Newton
method in order to speed up the computer program and to
increase the accuracy of the found energy value (see Ref. 30
for details). By implementing a large number of different
simulations starting from different random initial configura-
tions we are confident that we found the ground state con-
figuration as long as the number of particles N is not too
large, i.e., roughly N <60. Depending on the total number of
particles, between several hundred to several thousand ran-
dom initial configurations were generated.

The eigenfrequencies are the square root of the eigenval-
ues of the dynamical matrix

PH
Hupij= — , (3)
’ I i1 g,J

_
rd,l_raj

where {rz’i;a=x,y,z;i=1,...,N} are the positions of the

particles in a stable configuration.

II1. RESULTS
A.N=6

The influence of the anisotropy parameter « of the con-
finement potential to the GS configuration is investigated in
this subsection for a small system. In order to avoid a com-
plicate analysis but still acquire satisfactory knowledge of
mechanical processes®? induced by the anisotropy parameter
we first investigate a relatively small system, i.e., the system
with N=6 particles. It is already known for some time>? that
for =1, i.e., for an isotropic confinement potential, the GS
configuration of the system with N=6 particles forms a
magic cluster. Magic clusters present an enhanced mechani-
cal stability which is reflected in a large value of the lowest
nonzero eigenfrequency and a pronounced value of the addi-
tion energy, which is defined as AE=E(N+1)+E(N-1)
—2E(N) where E(N) is the GS configuration of the system
with N particles.?+23-30

Figure 1 shows the eigenfrequency spectrum for the sys-
tem with N=6 particles as function of the anisotropy param-
eter. For a=1, i.e., for the isotropic case, we see that the
normal modes are highly degenerate. Of the total of 18 nor-
mal modes present in the 3D system with N=6 confined
particles we found only seven different values for the eigen-
frequencies. However, with decreasing value of the aniso-
tropy parameter « the degeneracy is lifted (see Fig. 1). No-
tice that at «=0.4445 the eigenfrequencies undergo a
discontinuity. Such discontinuity is found to be a conse-
quence of a structural phase transition, i.e., a configurational
change of the GS configuration, induced by the anisotropy
parameter. We show the GS configurations for a=0.444 and
0.445, respectively, in the insets I and II of Fig. 2(a). We

035321-2



MULTIPLE RINGS IN A 3D ANISOTROPIC WIGNER...

FIG. 1. Normal mode frequencies for the system with N=6
particles as function of the anisotropy parameter.

notice that for «=0.445 the GS configuration still exhibits a
shell structure while for @=0.444 this is no longer true. In
order to know the nature of the structural transition we cal-
culate the first derivative of the energy with respect to the
anisotropy parameter [see Fig. 2(a)]. The derivative of the
energy is discontinuous at the critical point a=0.4445 which
characterizes a structural phase transition of first order. The
distribution of particles along the z direction is found to be
strongly dependent on the anisotropy parameter near this
structural transition. Figure 2(b) displays the usual spherical
coordinate 6 of each particle as function of the anisotropy
parameter. The number written near each line indicates how
many particles have the same value for the spherical coordi-
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FIG. 2. (Color online) (a) First derivative of the energy E with
respect to the anisotropy parameter «; insets I and II display, re-
spectively, the GS configuration for «=0.444 and 0.445, i.e., the GS
configuration just before and after the critical anisotropy parameter
of @=0.4445. (b) The spherical coordinate 6 of each particle as
function of the anisotropy parameter «.
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FIG. 3. (Color online) The same as Fig. 2 but for smaller values
of the anisotropy parameter, i.e., for 0.233 <a<<0.241.

nate. Clearly we see also a pronounced jump in the values of
0 for all particles at the critical anisotropy parameter.

Even for a highly asymmetric confinement potential the
system is able to undergo a first order phase transition at «
=0.2365. However, in this case the GS configuration has
almost a one-dimensional structure and the change in the
particle’s position is much smaller. Figure 3(a) displays the
first derivative of the energy with respect to the anisotropy
parameter. We can see that the first derivative of the energy is
discontinuous at the critical anisotropy parameter of «
=0.2365. The GS configuration just before the transition, i.e.,
for @=0.237 (see inset II of Fig. 3), is equivalent to the
configuration found previously when a=0.444 (see inset I of
Fig. 2). Particles in such a configuration arrange themselves
in the following way: (1) the top and bottom particles are
aligned along the z axis, (2) the other four particles form two
groups as indicated in the inset IT of Fig. 3(a) where particles
belonging to the same group have the same value of the z
coordinate, and (3) the difference in the usual azimuthal
angle of any two particles belonging to distinct groups is
always 90°. This type of configuration also appears in larger
clusters as we will see later and they have a specific eigen-
frequency distribution. This configuration has the arrange-
ment (1:2:2:1) where we account for the particles’ distribu-
tion along the z direction. For decreasing values of «, i.e., for
a<0.237 [see inset I of Fig. 3(a)], the cluster symmetry is
broken and the four particles in the most inner region of the
cluster obtain different values for their spherical coordinate
6. Such change in the distribution of particles along the z
direction is documented in Fig. 3(b), which displays the
spherical coordinate @ of each particle as function of «. The
number written near each line indicates the number of par-
ticles with the same value of the spherical coordinate 6 for a
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FIG. 4. (Color online) (a) Lowest-energy eigenfrequency for the
system with N=6 particles as function of the anisotropy parameter.
(b) Second derivative of the energy with respect to the anisotropy
parameter «; insets I, II, and III display, respectively, the GS con-
figurations for @=0.739, 0.777, and 0.900. (c) The spherical coor-
dinate 6 of each particle as function of the anisotropy parameter a.

given . We can see in Fig. 3(b) that for «<<0.2365 there are
six distinct lines where each one is associated with one par-
ticle while for a>0.2365, i.e., after the transition point, the
number of different lines is reduced and the two most inner
curves become associated with two particles.

The anisotropy parameter also drives the system to un-
dergo second order transitions. Such second order phase
transitions happen when the critical anisotropy parameter
reaches @=0.818, 0.759, 0.682, 0.212, and 0.116. Those sec-
ond order transitions are found to involve a continuous
change in the particle’s position and in the eigenfrequencies
of the system. Figure 4(a) shows the lowest nonzero fre-
quency as function of the anisotropy parameter in the slightly
anisotropic regime, i.e., for «>0.7. We can see that at the
critical values of the anisotropy parameter of a=0.818 and
0.759 the eigenfrequency spectrum exhibits a softening of
the lowest-energy mode. For such transition the first deriva-
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tive of the energy with respect to the anisotropy parameter
remains continuous while its second derivative exhibits a
discontinuity at the two critical values @=0.818 and 0.759 as
we see in Fig. 4(b). To help us in understanding the effects of
the second order phase transition on the structure of the clus-
ter we display in the insets I, II, and III of Fig. 4(b) the GS
configurations found, respectively, for the cases of «
=0.739,0.777, and 0.9.

Before any phase transition takes place, i.e., for «
>0.818, the ground state configuration of the system re-
mains the same and corresponds to an octahedron structure,
where its main axis points to the z direction [see, for ex-
ample, inset IIT in Fig. 4(b)]. Between the two critical values
of the anisotropy parameter, i.e., for 0.759 <a<<0.818, we
can see that the main axis of the icosahedron deviates from
the z direction [see inset II of Fig. 4(b)]. Finally for «
<0.759 the icosahedron reaches another orientation and its
main axis lays on the xy plase. Such change in the orienta-
tion of the icosahedron can be better followed from the de-
pendence of the spherical coordinate 6 to the anisotropy pa-
rameter [see Fig. 4(c)].

B. N=18

The GS configuration for the system with six particles
forms a structure with only one shell. The eigenfrequency
spectrum and the structural phase transitions of larger clus-
ters are expected to present a more complex behavior. Now
we turn our attention to larger systems and we start our in-
vestigation by considering the system with N=18 particles
having the GS configuration (1,17) when a=1 which is dif-
ferent from the simple shell structure, i.e., it has one extra
particle in the center. The first nonzero frequency gives us an
indication of the structural phase transition undergone by the
system as « is changed. Figure 5(a) displays the first nonzero
frequency for the system with N=18 particles and anisotropy
parameter varying from a=0.15 to 1. We notice that there
are several discontinuities in the lowest nonzero frequency
and they correspond to first order structural transitions, i.e.,
at «=0.570, 0.491, 0.336, and 0.234. A second order transi-
tion occurs at «=0.459, i.e., when a mode softening occurs.
Such first and second order structural phase transitions can
drive the system to configurations of higher symmetry. The
eigenfrequency spectrum must be sensitive to the symmetry
of the cluster. Most importantly, the number of degenerate
frequencies increases for highly symmetric clusters. We de-
fined for a given value of « and particle number N the frac-
tion of degenerate frequencies # which is the ratio between
the number of degenerate frequencies and the total number
of frequencies, i.e., the 3N frequencies of any given system
of N particles. Fig. 5(b) displays 7 as function of the aniso-
tropy parameter « for the system with N=18 particles. We
notice in Figure 5(b) three regions of « with relatively large
n value. Those regions are indicated by the blue, yellow, and
green areas and correspond, respectively, to the ranges 0.57
sa<l1, 0.336<a=<0.434, and 0.159< a<0.233. The val-
ues of 7 at those regions are, respectively, equal to 7
=0.777, 0.740, and 0.518. Oppositely, the blank areas corre-
spond to the situation of highly nonsymmetric clusters with
very low values of 7.
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FIG. 5. (Color online) (a) Lowest-energy normal mode fre-
quency for the system with N=18 particles as function of the an-
isotropy parameter «. (b) The fraction of degenerate frequencies 7
in the system as function of a. The regions of multiple ring struc-
tures are indicated by blue and yellow areas and correspond, respec-
tively, to the configurations [1: 5: (1,5): 5: 1] and (1:4:4:4:4:1). The
region corresponding to a degenerate multiple ring structure of the
type [(1:(8X)2:1] is indicated by the green area.

Figure 6(d) shows the GS configuration for the system
with N=18 particles and anisotropy parameter equal to «
=0.7. Such configuration is representative for the region of «
indicated by the blue area in Fig. 5(b). We can describe this
configuration as follows [see Fig. 6(d)]: at the extremes of
the cluster there are two isolated particles located along the z
axis, one particle in the center and three rings formed by five
particles in each ring. Furthermore those rings are parallel to
each other and perpendicular to the z axis. We use the fol-
lowing notation for such an arrangement [1:5:(1,5):5:1]. The
different ring like layers are separated by ““:” while the nota-
tion for the ring configurations is as previously used for 2D
systems. Such multiple ring structure is also found for other
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FIG. 6. (Color online) (a), (b), (c), and (d) are the ground state
configurations for the system with N=18 particles and anisotropy
parameter, respectively, equal to @=0.2, 0.4, 0.5, and 0.7.
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FIG. 7. (Color online) Phase diagram: The vertical lines indicate
the values of « where the GS configuration is a multiple ring struc-
ture along the z direction. The numbers beside these lines give the
particles’ GS arrangement.

ranges of the anisotropy parameter. For example, in the yel-
low region of Fig. 5(b) the multiple ring structure has the
arrangement (1:4:4:4:4:1). Differently from the first case,
this configuration does not have a particle in the center and is
formed by two particles sitting in the extrema of the cluster,
and a sequence of four rings with four particles in each ring
[see, for example, Fig. 6(b) for a=0.4]. We observe that
those rings have a square shape and are rotated with respect
to each other by an angle of 45°. Figure 6(c) shows the GS
configuration for N=18 particles and a=0.5, i.e. a nonsym-
metric configuration which is representative for the second
blank area in Fig. 5(b). Ultimately, the GS configuration goes
to a degenerate multiple ring structure when 0.159=<a
=<(.233 (green region). A typical configuration found in this
region is shown in Fig. 6(a) for @=0.2. This arrangement is
similar to the one shown in the inset I of Fig. 2(a) but now
there is a sequence of eight sets of two particles. Such ar-
rangement can be referred by the term (1:2:2:2:2:2:2:2:2:1)
or shortly [1:(8X)2:1] where (8 X) indicates that there are
eight sets holding each two particles.

C. Phase diagram and fine structure

Such multiple and degenerate multiple rings can be
thought as configurations that are intermediate between a
two- and three-dimensional configuration. We can say that
the multiple ring configuration is a three-dimensional struc-
ture formed by smaller two-dimensional parts. Such configu-
ration is not unique to the system with N=18 particles but it
is also present in other systems. We computed the fraction of
degenerate frequencies 7 for all systems ranging from N=5
to 25 particles in order to identify the regions of the aniso-
tropy parameter where the system exhibits GS configuration
with multiple and/or degenerate multiple ring structures. The
result of this investigation is summarized in Fig. 7 in the
form of a phase diagram. For each given number of particles
N the vertical lines indicate the range of « where the system
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FIG. 8. (Color online) Fine structure for systems with N=19 and
a=0.9 (a) and N=24 and a=0.5 (b). Particles in blue and black
colors form rings with nonzero width. The other particles in the
external (inside the external) shell are in red (green) color.

has highly symmetric configurations and beside each vertical
line the related particle arrangement is written. The phase
diagram shown in Fig. 7 can be divided into two areas, that
is, the upper one (roughly a>0.5) where the multiple rings
accommodate about four, five, and six particles; and the
lower part (roughly @<<0.5) where we find the degenerate
multiple rings and multiple rings with three particles per
ring. We noticed that the degenerate multiple ring structures
for the systems with an odd number of sets with two par-
ticles, i.e., systems with N=8, 12, 16, 20, and 24 particles,
were not revealed via the computation of 7, although it ap-
peared for systems with an even number of sets of two par-
ticles, i.e., systems with N=6, 10, 14, 18, and 22 particles.
Alternatively, those configurations were obtained by comput-
ing the distribution of particles along the z direction and the
first nonzero frequency which determined the critical values
of a where the system passes through phase transitions. The
values of the anisotropy parameter where the degenerate
multiple rings occur for the system with N=8, 12, 16, 20,
and 24 are indicated in Fig. 7 by vertical dotted lines. We
notice that only for N=7 and 9 particles there are no regions
of the anisotropy parameter where high symmetric configu-
rations can be found. The increase of the number of particles
leads to the formation of multiple ring configurations where
the width of the rings along the z direction is relatively large.
Analogous fine structures in 2D systems were reported in
Ref. 34. In 3D systems we find that fine structure occurs for
systems with N=19, 23, and 24 particles and anisotropy pa-
rameter indicated by vertical red lines in Fig. 7. Examples of
such a fine structure is shown in Fig. 8(a) for N=19 and «
=0.9 and Fig. 8(b) for N=24 and «=0.5. In both cases par-
ticles in blue and black colors form rings with nonzero width
along the z direction. Other particles, i.e., in the external
(inside the external) shell, are represented by red (green)
balls. We name the arrangement of Figs. 8(a) and 8(b), re-
spectively, by (3:6":1:6':3) and (1:4":4:1:2:2:1:4:4":1)
where the accents refer to rings with nonzero width. The
formation of fine structure reduces the interparticle interac-
tion energy of the system. This phenomenon is similar to the
zigzag transition induced by the increasing of the particle
number.?

D. N=50, 60, and 70

In order to obtain insight about the particle distribution
along the z direction in large clusters we investigated sys-
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FIG. 9. (Color online) Fraction of degenerate frequencies 7 for
the GS configuration of the systems with N=50, 60, and 70 par-
ticles as function of the anisotropy parameter.

tems with N=50, 60, and 70 particles. In particular, we wish
to answer if the GS configuration of large clusters form,
symmetric clusters, i.e., multiple or degenerate multiple ring
structures. The fraction of degenerate frequencies 7 as func-
tion of a is shown in Fig. 9 for the systems with N=50
(circle), 60 (square), and 70 (triangle) particles. For the sys-
tem with N=50 particles we can find three distinct regions of
the anisotropy parameter, i.e., 0.15<a<0.16, 048<«
=<(.58, and 0.98 < o= 1.0, where the value of the fraction of
degenerate frequencies is relatively large, i.e., 7=0.66. For
other values of the anisotropy parameter the fraction of de-
generate frequencies becomes very small, i.e., 7=0.02. The
GS configurations for the system with N=50 particles and
anisotropy parameters a=0.15, 0.3, 0.5, 0.8, and 0.98 are
shown in Figs. 10(a)-10(e), respectively. Black (red) balls
represent particles in the external (inside the external) shell.
Figure 10(a) displays a multiple ring structure with particle
arrangement [1:(5%)3:(1,3):3:3:1:3:3:1:(5%)3:1]
while Fig. 10(b) does not present any symmetry pattern with
respect to rotation around the z direction. The other three GS
configurations shown in Figs. 10(c)-10(e) exhibit a multiple
ring structure for the internal shell (see red balls) with par-
ticle arrangement (1:3:3:1), (1:4:4:1), and (3:3:3), respec-
tively. However, we can notice that the external shells for
those GS configurations are not multiple rings.

The fraction of degenerate frequencies for the system with
N=60 particles and a=0.25 is relatively large, that is, 7
=0.52 (Fig. 9) and its GS configuration corresponds to a
multiple ring structure of arrangement [1:(2X)4:1:(2
X)4:1:4:(1,4):4:(1,4):4:1:(2X)4:1:(2X)4:1] which
is shown in Fig. 10(f). In contrary, the value of the frequen-
cies for the system with N=70 particles is small (=0.02)
throughout all the range of the anisotropy parameter and this
system does not present multiple ring structure.

By decreasing the anisotropy parameter « one extends the
cluster along the z direction. In fact, we can see for the
system with N=50 particles that the length scale shown in
the top right of each GS configuration in Fig. 10 decreases
from Figs. 10(a)-10(e). The increase of the particle density
forces the formation of a triangular arrangement of particles
on the external shell in order to reduce the interparticle in-
teraction energy. Such a triangular arrangement of particles
constitutes the preferable configuration, i.e., the configura-
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FIG. 10. (Color online) From (a) to (e) the GS configurations for systems with N=50 particles and anisotropy parameter «=0.15, 0.3, 0.5,
0.8, and 0.98, respectively. (f) GS configuration for the system with N=60 particles and a=0.25. Black (red) balls correspond to particles in
the external (inside the external) shell. The length unit is indicated on the top right of each figure.

tion of lowest energy, in a 2D infinity system of repulsively
interacting particles.

As a result, multiple ring structure of the whole cluster is
not formed in large systems under slight anisotropic confine-
ment. Nevertheless, particles in the internal shell are still
able to self-organize in multiple rings for the system with
N=50 particles. In contrast, this is not seen for systems with
N=60 and 70 particles. This indicates that the formation of
multiple ring structure of the internal shell is gradually lost
as the number of particles increases. In other words, for large
systems in the presence of a confinement potential, the GS
becomes a nonsymmetric configuration. This is also sup-
ported by the fact that the increase of the number particles
leads to the formation of a bcc arrangement which is the
preferable particle arrangement for a 3D infinite system. In
the limit of a large number of particles the shell structure
becomes only well defined at the border of the cluster. How-
ever, for partial multiple ring configurations, that is, multiple
ring uniquely present in the internal shell, the fraction of
degenerate frequencies is no longer a good symmetry indi-
cator. In other words, it does not always differentiate clusters
with multiple rings in the internal shell from ordinary non-
symmetric configurations, although such an indicator works
properly for multiple ring structures as we saw for the clus-
ters with N=50 and 60 particles, and anisotropy parameter
a=0.15 and 0.25, respectively.

IV. NORMAL MODES

The two-dimensional character of the dynamics in a mul-
tiple ring structure, that is, oscillations in the plane of the
rings, becomes visible via a normal mode analysis. More-
over, the low-energy modes can suggest melting
behavior.?>?” We display in Fig. 11 the eigenvectors associ-
ated with the first nine lowest eigenfrequencies of the system
with N=18 particles and anisotropy parameter a=0.4. The
rotation mode around the z axis which has frequency equal to
zero is shown in Fig. 11(a). The eigenvectors shown in Figs.
11(b) and 11(c) are degenerate and have a frequency equal to
w=0.169 85. We notice that for this mode particles’ oscilla-
tions correspond to two-dimensional dynamics. It is well
known that the rotation mode in an isotropically confined

system is threefold degenerate and has frequency equal to
zero. If the confinement potential is anisotropic some of
those degenerate modes obtain a frequency different from
zero. Such a mode is seen in Figs. 11(d) and 11(e), which
display twofold degenerate rotation modes of nonzero fre-
quency w=0.326 51. Such oscillation corresponds to a rota-
tion mode around a given axis in the xy plane.

The oscillation mode shown in Fig. 11(f) is an inter-ring
rotation mode and has frequency w=0.388 92. Notice that
the amplitude of oscillation in the two external rings is much
larger than the one in the two most internal rings. In what
concerns the direction of oscillation we can see that the two
upper rings oscillate out of phase with respect to the two
lower rings. The seventh and eight modes [see Figs. 11(g)

FIG. 11. (Color online) From (a) to (i) we display the first nine
lowest-energy eigenvector oscillation modes for the system with
N=18 particles and @=0.4. The direction and length of the vectors
indicate, respectively, the direction and amplitude of oscillation of
each particle in the cluster.
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FIG. 12. (Color online) Eigenvector associated with the fourth
frequency w=0.3786 for the system with N=14 particles and aniso-
tropy parameter a=0.5. This mode corresponds to a vortex/
antvortex motion.

and 11(h)] are degenerate and have frequency equal to w
=0.394 01. We can see that the amplitude of oscillations is
much larger for those particles close to the extreme of the
cluster. The latter fact is indicative for the appearance of
inhomogeneous melting.?’ Finally, Fig. 11(f) displays the ei-
genvector associated with the frequency w=0.61093. This
oscillation mode corresponds to an inter-ring motion around
the z axis. We notice that the two most external (internal)
rings oscillate clockwise (anticlockwise). The inter-ring rota-
tion modes shown in Figs. 11(f) and 11(i) indicate that the
low temperature dynamics in multiple ring structure must
have a strong two-dimensional behavior.

Such inter-ring oscillation modes are not only found for
N=18 and a=0.4, but we also found it for all multiple ring
configurations that we presented in Fig. 7. Nevertheless
some of the configurations exhibit normal modes that corre-
spond to a vortex/antivortex excitation around axes perpen-
dicular to the z direction, see, for example, Fig. 12 for N
=14 particles and anisotropy parameter &=0.28. In such situ-
ations, full 3D melting is expected. Interestingly, vortex/
antvortex motion appears for multiple ring structure of sys-
tems with a relatively small number of particles, i.e., N=14
particles, while that in 2D clusters vortex/antvortex motion
typically appears for large systems, i.e., roughly N>40
particles.30-3!

V. CONCLUSION

In summary we have investigated a 3D system of equally
charged particles confined anisotropically by an external

PHYSICAL REVIEW B 77, 035321 (2008)

confinement potential. We assumed that the particles interact
via a Coulombic interparticle interaction potential. Our the-
oretical model is applicable for systems such as dusty plasma
and colloids. It is expected that the found behavior is quali-
tatively the same for other isotropic interaction potentials as,
e.g., a screened Coulomb potential. We found that the aniso-
tropy parameter « can drive the system to undergo first and
second order structural phase transitions. Those transitions
are found to affect the distribution of particles along the z
direction and the eigenfrequency spectrum.

The system was found to self-organize in three different
general structures, i.e., multiple rings, degenerate multiple
rings, and nonsymmetric structures, if the number of par-
ticles is small, typically N=<?25 particles. For larger systems,
i.e., N=50, multiple ring structures were found in the exter-
nal shell only if the anisotropy parameter was smaller than
a=<0.2, or in the internal shell for more isotropic confine-
ments, roughly «=0.4. A fine structure was formed in small
clusters upon increasing the particle number. Our results on
the structure of the GS configurations as function of the an-
isotropy parameter were summarized in a phase diagram.

For a multiple ring structure the GS configuration is found
to exhibit inter-ring and vortex/antivortex modes of oscilla-
tion. The latter modes are delocalized and therefore must be
of relevance for the melting process. Furthermore, those
modes indicate that low temperature dynamics in multiple
ring structures must have a strong 2D behavior. Next to it we
found that for the multiple ring configurations the eigenfre-
quency spectrum becomes highly degenerate. Oppositely,
nonsymmetric systems are found to have a low degenerate
eigenfrequency spectrum. For the latter case the pattern of
oscillation of the eigenvectors become a much more complex
and therefore it is impossible to give general trends as func-
tion of the anisotropy parameter.

Finally, we notice that the identified multiple ring struc-
ture is relevant for the physics of small Coulomb crystals due
to the fact that they constitute a hybrid system built up by
blocks of 2D structures forming piled rings along the z di-
rection. We expect that the melting process of such a system
will follow from the interplay between the dynamics of both
a 2D and 3D isotropically confined Coulomb clusters.
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