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Abstract 

An attempt to grow a thin epitaxial composite film of YBa2Cu3O7-δ (YBCO) with spinel MnFe2O4 

(MFO) nanoparticles on a LAO substrate using the CSD approach resulted in a decomposition of the 

spinel and various doping modes of YBCO with the Fe and Mn cations. These nanostructural effects 

lead to a lowering of Tc and a slight Jc increase in field. Using a combination of advanced 

transmission electron microscopy (TEM) techniques such as atomic resolution high-angle annular 

dark field scanning transmission electron microscopy, energy dispersive X-ray spectroscopy and 

electron energy-loss spectroscopy we have been able to decipher and characterize the effects of the 

Fe and Mn doping on the film architecture. The YBaCuFeO5 anion-deficient double perovskite 

phase was detected in the form of 3D inclusions as well as epitaxially grown lamellas within the 

YBCO matrix. These nano-inclusions play a positive role as pinning centers responsible for the Jc/Jsf 

(H) dependency smoothening at high magnetic fields in the YBCO-MFO films with respect to the 

pristine YBCO films. 

 



Introduction 

High temperature superconducting materials have undergone a huge evolution over the past 

decades [1–5]. The second generation high temperature superconductors (2G HTS) or coated 

conductors (CC) are intended to be used partially along with, or instead of, the first generation HTC 

wires [6]. YBCO CC are being scaled to commercial lengths and are starting to be produced at an 

industrial scale [7]. These steps are only possible because of improved production processes and a 

better understanding of the materials architecture, micro- and nano-structure [8]. In order to enhance 

the performance of YBCO tapes in high magnetic fields, nanocomposites with different kinds of 

nanoprecipitates are produced (so-called nanostructured YBCO). The nanoprecipitates or the 

induced defects can act as pinning centers in order to enhance the pinning force and, consequently, 

the Jc values at high magnetic fields [3,9,10]. When YBCO films are produced by pulsed laser 

deposition (PLD), self-assembled nanoparticles  and nanorods can be inserted into the YBCO matrix 

by the addition of foreign elements to the PLD target [11–17], but their size, distribution and density 

are strongly related to the deposition conditions and are not easy to tailor. Similarly, nanoparticles 

and nano-islands can also be formed in case of chemical solution deposition (CSD) of YBCO. 

Besides the relatively low cost of the CSD techniques for high critical current YBa2Cu3O7 coated 

conductors [18], an advantage of CSD is the possibility to grow the pinning nanoparticles in two 

different ways: (i) from their precursor salts added directly to the YBCO precursor solution leading 

to the so-called “in-situ approach” [19–22] and (ii) by the addition of pre-formed nanoparticles to 

the YBCO precursor solution deriving in the so-called “ex-situ approach” [23–25]. Previous 

research has shown that achieving a tight control of nanoparticle nucleation and growth to avoid 

coalescence and coarsening when a single metalorganic precursor solution is used is a complex 

issue. Ex-situ nanoparticles, i.e. preformed nanoparticles which are mixed with the YBCO solution 

to form a colloidal system, provide options for an easier size control of the final nanostructure of the 

nanocomposites. However, this approach is, at the same time, more complex as it requires the 

particles to meet several criteria. First of all, they should have a well-defined size, secondly, 

agglomeration has to be avoided, and in the end the particles should be chemically stable at each 

step of the superconducting tape preparation process. The use of the ex-situ approach could open the 

door to a new nanocomposite approach which is just emerging [24]. For instance, magnetic 

nanoparticles could be introduced within the YBCO precursor solution after being synthesized ex-

situ, which would allow to control and tune the properties of the nanoparticles beforehand. Several 

attempts have been made in the past to incorporate Fe-containing magnetic nanoparticles into the 



YBCO matrix. Attempts using PLD deposition were in fact successful in producing materials 

without so-called Fe-poisoning of the YBCO, which is known to break down superconductivity by 

dropping Tc [26,27]. This effect can be decreased by adding Mn to YBCO, but the solubility of Mn 

appears to be very low [28,29]. No studies reporting a successful production of these materials by 

chemical deposition have been published so far. 

In this work, we aim to characterize the unique microstructure of nanocomposite YBCO thin 

films on a LaAlO3 (LAO) substrate, produced by spin coating from a standard YBCO-

trifuluoroacetete (TFA) precursor solution enriched with pre-formed MnFe2O4 (MFO) nanoparticles, 

followed by pyrolysis and annealing steps. The complete structural characterization of this unique 

type of YBCO film is performed by atomic resolution high-angle annular dark field scanning 

transmission electron microscopy (HAADF-STEM), energy dispersive X-ray spectroscopy (EDX) 

and electron energy-loss spectroscopy (EELS), strongly focusing on the presence of the spinel 

nanoparticles in the YBCO film, the eventual dissolution of the spinel nanoparticles and the 

presence of separate Mn/Fe dopants or phases. 

Methods 

The MnFe2O4 nanoparticles were prepared following the solvothermal synthesis process as 

described by E. Solano et al. [30,31]. A bright field TEM image and X-ray diffraction (XRD) 

powder pattern of the MnFe2O4 spinel nanoparticles are shown in Fig. 1. 



 

Figure 1. Ex-situ nanoparticles. a) BF TEM image showing 4-6 nm nanoparticles. No significant 

aggregates are observed. b) XRD patterns of as-synthesized MnFe2O4 powder (black curve) and 

MnFe2O4 powder subjected to the YBCO processing conditions (red curve). 

3D YBCO nanocomposite films with 6 mol% of spinel MnFe2O4 nanoparticles are prepared 

following the chemical solution deposition (CSD) route. A 2 ml of 0,125 M YBCO with 6% 

MnFe2O4 nanoparticles solution is prepared by mixing 1 ml of a 0,25 M YBCO-TFA solution with 1 

ml of 90 mM methanol colloidal solution of MnFe2O4 nanoparticles. This solution is deposited by 

spin-coating (6000 rpm, 2 min) over the pre-treated LAO substrate. The substrates are exposed to a 

thermal process in order to remove all possible remaining organic content and induce a surface 

reorganization that creates terraces, favoring the nucleation of new phases [32,33]. The processing 

conditions for the LAO substrate treatment are shown in Fig. S1. The resulting film is first subjected 

to a thermal treatment at low temperatures (pyrolysis) of 310ºC for 30 minutes to remove the 

organic content. The heating rate during the pyrolysis is kept at 3-5 K/min in the temperature range 

from 100ºC to 310ºC. Subsequently, the YBCO precursor layer is crystallized at 810 ºC in a humid 

N2 – 0.02% O2 flow for 3 hours. In the last stage the crystallized film is annealed at 210 ºC for 2 h in 

a dry oxygen atmosphere for 3.5 hours.  The processing conditions for the pyrolysis and film growth 

are shown in Fig. S2 and S3 of the Supporting information. 

 The microstructure and phase analysis of the YBCO nanocomposite films were carried out 

by X-ray diffraction using a Bruker AXS GADDS diffractometer equipped with a 2D detector. The 



critical temperature of the superconducting properties corresponding to Tc
onset

 and Jc/Jc
sf (H) 

dependencies were measured by inductive measurements with a Superconducting Quantum 

Interference Device magnetometer (SQUID).  

 For TEM measurements, cross-section lamellas were produced by Focused Ion Beam (FIB-

SEM, FEI Nova 600 Nanolab Dual Beam) as well as by Ar
+
 ion milling, using a Gatan PIPS ion 

mill. High- and low-angle annular dark field scanning transmission electron microscopy (HAADF-

STEM and LAADF STEM) imaging, STEM electron energy-loss spectroscopy (STEM-EELS) and 

STEM energy dispersive X-ray spectroscopy (STEM-EDX) experiments were performed on an FEI 

Titan “cubed” electron microscope, equipped with an aberration corrector for the probe-forming lens 

operated at 120/200/300 kV acceleration voltage. High resolution EELS experiments, using a Gatan 

Enfinium spectrometer were carried out with the electron monochromator excited to provide 250 

meV energy resolution, using a convergence semi-angle of 18 mrad and a collection semi-angle β of 

130 mrad. For EDX mapping a “Super-X” wide solid angle EDX detector was used at a voltage of 

200kV. Bright field and high resolution transmission electron microscopy (BF TEM and HR TEM) 

was carried out using the Tecnai Osiris TEM operated at 200kV equipped with a “Super-X” EDX 

detector. 

Results and discussion 

 A characterization of the nanoparticles powder is required in order to test their stability 

under the YBCO processing conditions. For that the powder nanoparticles, the solid precipitate 

obtained after the purification process is subjected to the same thermal treatment as the YBCO 

films: the pyrolysis and the growth processes (Fig. S2 and S3 of Supporting information). The XRD 

pattern of the nanoparticles powder after these thermal treatments reveals that the spinel MnFe2O4 

phase decomposes producing a mixture of Fe2O3 and Mn2O3 (Fig. 1b), a behavior which strongly 

differs from that recently described for CoFe2O4 spinel nanoparticles [34]. Further investigation was 

therefore concentrated on the microstructural effects of the chemical interaction of these oxides with 

the YBCO matrix. 

  



Nanocomposite superconductor architecture 

 The General Area Detector Diffraction System (GADDS) pattern (Fig. 2a) acquired from the 

obtained nanocomposite thin film material indicates a highly textured microstructure. Randomly 

oriented precipitates would introduce a ring in the pattern but this is not detected in this case. This is 

probably related, to the low concentration of these precipitates. No spinel MnFe2O4 peaks are 

observed in the XRD pattern (Fig. 2b).  

 

Figure 2. Nanocomposite superconductor. XRD and Jc measurements. a) 2D XRD -2pattern b) 

XRD spectrum of the nanocomposite on the LAO substrate. No signal of spinel nanoparticles is 

observed. c) Jc/Jc
sf (H) dependency of standard YBCO (black), the benchmark CSD 

nanocomposite[20,35] (blue) and the studied nanocomposite (red) at 5 K.  

 The resulting thin film nanocomposite demonstrates a Tc decrease down to values in the 

range of 65-80 K, varying from sample to sample, depending on the amount of Mn/Fe that is 

incorporated into the YBCO structure (this is later confirmed by EELS) [29]. The Jc/Jc
sf (H) 

dependency at 5K shows an increase of the critical current density normalized over the self-field 

compared to a standard YBCO film (Fig. 2c), but still lower than that of the YBCO-BYTO 

nanocomposite, which can be used as a benchmark [20,35]. The lowering of Tc and the moderate 

critical current density might be related to the interaction of YBCO with the MnFe2O4 

decomposition products. To study the exact structure, composition and morphology of the film, 

TEM, EDX and EELS spectroscopy experiments were carried out.  



 

Figure 3. Composition of the nanocomposite superconductor. a) Overview EDX maps for Y, Ba, 

Cu, Fe, Mn and La. The present nanoparticles are Ba3YMnFeO9-. The bottom part of the YBCO 

layer is Fe-doped. b) The integrated EDX signal profile across the Ba3YMnFeO9- nanoparticle in 

the center of figure a). The color-code is the same as in the EDX maps. 



 Overview EDX compositional maps of the YBCO film are displayed in Figure 3a. The 

thickness of the resulting thin film nanocomposite is ~110nm. No spinel MnFe2O4 nanoparticles are 

detected in the film. The map shows the presence of Mn-Fe-rich round-shaped inclusions, which 

also contain a high concentration of Ba and some Y, as demonstrated by the EDX signal profile in 

Fig. 3b. The EDX analysis reveals an average cation composition of these inclusions corresponding 

to Ba : Y : Fe : Mn = 3 : 1.1 : 0.7 : 1 (with standard deviations 0.1, 0.1, 0.1 and 0.05 respectively) 

measured on 6 different inclusion areas. Besides these inclusions, the Fe EDX map shows a clear 

tendency of Fe to segregate at the bottom of the YBCO layer in the proximity of the LAO interface.  

Figure 4a shows a high resolution HAADF-STEM image of a Fe-Mn rich inclusion. The 

observed rectangular pattern of the cationic columns is characteristic of the perovskite structure with 

a cubic subcell parameter of ~4.2-4.3Å. The results of the EDX analysis (see above) suggest the 

Ba3YMnFeO9- composition of this perovskite phase (ABO3), where the B-positions are jointly 

occupied by the Y, Mn and Fe cations. It should be noted that when a substantial anion deficiency is 

present ( = 1.5), the Y and transition metal cations form an ordered pattern as it is observed in the 

Ba3YFe2O7.5 structure [36]. However, a higher oxygen content might promote cation disorder, as in 

the Y-doped BaCoO3- perovskites [37]. Additionally, Mn co-doping can promote disorder as the 

tetrahedral oxygen coordination of a fraction of the B-cations in the Ba3YFe2O7.5 structure is not 

very suitable for the Mn cations. The Ba3YMnFeO9- precipitates demonstrate a growth close to 

epitaxial on the LAO interface (Figure 4b), but a random orientation in the middle of the YBCO 

matrix. The size of the Ba3YMnFeO9- precipitates varies from 10 nm up to 80 nm.. 



 

Figure 4. Morphology of the nanocomposite superconductor. High resolution HAADF-STEM Z-

contrast images, showing the YBCO matrix together with a) a randomly oriented Ba3YMnFeO9- 

nanoparticle located in the middle of the YBCO matrix, b) a Ba3YMnFeO9- nanoparticle in an 

orientation close to epitaxial, located on the LAO substrate and c) a 90° rotated YBaCuFeO5 grain 

on the LAO substrate 

 

  



Figure 4c shows a HAADF-STEM image of the LAO-YBCO interface, demonstrating the 

presence of perovskite-like domains, clearly different from the YBCO structure. The EDX spectra 

recorded from these domains confirm the presence of Y, Ba, Cu and Fe, although an exact 

quantification is impossible due to the interference with the YBCO matrix. It will be demonstrated 

by atomic resolution EDX mapping that these domains possess the A-site ordered double perovskite 

structure of the YBaCuFeO5 phase [38]. The vast majority of such double perovskite YBaCuFeO5-

like grains with a size of 20 to 100 nm are located near the LAO/YBCO interface, in accordance 

with the Fe distribution in the EDX maps in Fig.3a. The YBCO film and the double perovskite 

phase exhibit an epitaxial growth character with mainly the following epitaxial relationship: 

[001] YBCO, YBaCuFeO5// [001]LAO 

[010], [100] YBCO, YBaCuFeO5// [100]LAO 

However, a few grains nucleated with the c-axis parallel to the substrate were also observed (see 

Figure 4c). The appearance of such grains is a common issue when the supersaturation degree is too 

high [39,40]. The epitaxial relationship is then: 

[100] YBCO, YBaCuFeO5// [001]LAO 

In that case, the (00l) planes of YBCO are strongly buckled around the interfaces in order to release 

the stress generated by the lattice mismatch among perpendicularly oriented grains. 

  



 

Figure 5. Double perovskite YBaCuFeO5 intergrowths in the nanocomposite superconductor. 

HAADF-STEM image and atomic-resolution EDX maps of the film/substrate interface (similar to 

the region shown in Fig. 4c), showing the presence of Y123 & Y124 (yellow) and the double 

perovskite phase (red) on top of the LAO substrate (cyan). Red lines mark the terminating planes of 

the indicated phases; 1–4: YO planes terminating the double perovskite phases which contain mixed 

Fe/Cu sites; 5: last AlO2 plane of LAO substrate. 

Atomic resolution EDX maps of the YBaCuFeO5-like domains reveal an ordered alternation of the 

Y and Ba layers in the A positions, whereas Cu and Fe are distributed randomly (Fig. 5). This 

double perovskite phase can be present as separate 3D domains, but can also appear as lamellas of 

different thickness in the YBCO matrix. STEM-EELS atomic resolution maps (Fig. 6a) with a 

monochromatic electron source (ΔE = 250 meV) also show that Fe partially replaces Cu in the 

YBCO structure A clear Fe L2,3 edge is present in the EELS spectrum acquired from the double 

perovskite phase (1
st
 spectrum in Fig. 6b), confirming the high Fe content there. No Mn signal, 

neither by EDX nor by EELS, is observed in the YBCO matrix or double perovskite. On top of the 

Fe measured in the double perovskite, a small Fe L2,3 signal is also present in the YBCO region (2
nd

 

spectrum in Fig. 6b). This means that some Fe is also incorporated in the YBCO structure, poisoning 

the superconducting properties and causing the observed decrease of Tc as it was reported in 



previous works [29]. The absence of a chemical shift between the Fe L3 for Fe in the double 

perovskite structure and Fe in the YBCO (inset) indicates that both should have a similar valency. 

 

Figure 6. Fe doping and double perovskite YBaCuFeO5 intergrowths in the nanocomposite 

superconductor. a) HAADF-STEM image and atomic-resolution EELS maps of the thin 

film/substrate interface. b) Averaged EELS spectra from the areas indicated in a). 1 – Double 

perovskite, 2 – Fe:YBCO. The spectra are scaled to the integral Ba M4,5 edge intensity. Inset; Fe L2,3 

edge spectra scaled from the two regions scaled to the Fe L2,3 edge intensity. The dotted line 

indicates the Fe L3 edge maximum. 



 The formation of the double perovskite YBaCuFeO5-like inclusions and partial Fe for Cu 

replacement in the YBCO matrix creates an excess of Cu in comparison to the stoichiometric 

YBa2Cu3O7 composition. This excess Cu is accommodated in the abundant planar defects related to 

the formation of double and triple chains of edge-sharing CuO4 squares, which can be considered as 

the insertion of Y124 or Y125 lamellas. Actually, lamellas of double perovskite, Y124, Y125 and 

YBCO are closely intermixed inducing a local deformation of the YBCO matrix and buckling of the 

YBCO blocks in the vicinity of the interface (Fig. 4c).  

Conclusions 

We have studied the structural and superconducting properties of YBCO nanocomposite films 

prepared by an ex-situ approach using MnFe2O4 nanoparticles. The results reveal that the MnFe2O4 

nanoparticles decompose and react with the YBCO precursors causing the presence of separate 

Mn/Fe dopants or phases. The chemical instability of the ex-situ nanoparticles during the synthesis 

leads to the formation of several types of inclusions in the superconductor film. Firstly, YBaCuFeO5 

double perovskite phase intergrowths are observed next to the LAO substrate. Secondly, Fe-doping 

of YBCO takes place leading to a decrease of Tc. Finally, Ba3YFeMnO9- nanoinclusions are 

present. Together with the short double and triple CuO-chain layer intergrowths the newly formed 

nanoinclusions can serve as the artificial pinning centers in the coated conductor film. Cultivation of 

such pinning centers is promising for Jc/Jsf enhancement at high magnetic fields, but MnFe2O4 spinel 

nanoparticles are not ideal as they decompose during the growth process of the film. 
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