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Abbreviations 

DANTE  Discontinuation of Antihypertensive Treatment in the Elderly 

FA   flip angle  

FLAIR  fluid attenuated inversion recovery  

FMRIB  Oxford Centre for Functional MRI of the Brain 

IQR  interquartile range 

LDST   Letter-Digit Substitution Test  

MMSE  Mini-Mental State Examination 

MNI152 montreal neurological institute 152 

WMH  white matter hyperintensities 

SCNs   structural covariance networks 

SD  standard deviation 

SVD  small vessel disease 

TE   echo time  

TMT  Trail Making Test  

TR  repetition time 

VAT  Visual Association Test 

15-WVLT  15-Word Verbal Learning Test 
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Abstract 

Recently, cerebral structural covariance networks (SCNs) have been shown to partially 

overlap with functional networks. However, although for some of these SCNs a strong 

association with age is reported, less is known about the association of individual SCNs with 

separate cognition domains and the potential mediation effect in this of cerebral small vessel 

disease (SVD). 

In 219 participants (aged 75-96 years) with mild cognitive deficits, eight SCNs were defined 

based on structural covariance of grey matter intensity with independent component analysis 

on 3DT1-weighted MRI. Features of SVD included: volume of white matter hyperintensities 

(WMH), lacunar infarcts and microbleeds. Associations with SCNs were examined with 

multiple linear regression analyses, adjusted for age and/or gender.  

In addition to higher age, which was associated with decreased expression of: subcortical, 

pre-motor, temporal, and occipital-precuneus networks, the presence of SVD and especially 

higher WMH volume, was associated with a decreased expression in the occipital, cerebellar, 

subcortical, and anterior cingulate network. The temporal network was associated with 

memory (P=0.005), whereas the cerebellar-occipital and occipital-precuneus networks were 

associated with psychomotor speed (P=0.002 and P<0.001). 

Our data show that a decreased expression of specific networks, including the temporal, 

occipital lobe and cerebellum, was related to decreased cognitive functioning, independently 

of age and SVD. This indicates the potential of SCNs in substantiating cognitive functioning 

in older persons. 
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Introduction 

It has recently been shown that structural networks based on covariance of grey matter in the 

brain partially overlap with functional connectivity networks (Alexander-Bloch et al, 2013; 

Seeley et al, 2009; Segall et al, 2012). Structural covariance networks (SCNs) have been 

studied using a region of interest approach (Li et al, 2013; Montembeault et al, 2012), for this 

approach inferable hypotheses are essential. An alternative method is to define SCNs by an 

exploratory data-driven multivariate approach, such as a voxel-based morphometry 

independent component analysis (ICA) approach (Douaud et al, 2014; Douaud et al, 2007; 

Xu et al, 2009), this way information of multiple brain regions can be combined and patterns 

of structural covariance in grey matter density can be detected. Brain regions containing 

similar information (grey matter volume, thickness and surface area) are clustered and can be 

defined as a specific network. SCNs  may offer implications as to how 

functional brain networks originate from their structural underpinnings (He et al, 2007) and it 

has been suggested that SCNs reflect synchronized maturational change, possibly mediated 

by subcortical-cortical connections (Mechelli et al, 2005). 

The expression of some SCNs is strongly associated with age, whereas the expression of 

other SCNs seem unaffected by age (Bergfield et al, 2010; Hafkemeijer et al, 2014; Li et al, 

2013; Montembeault et al, 2012; Segall et al, 2012). With increasing age, features of cerebral 

small vessel disease (SVD) common MRI findings are more frequently observed (Wardlaw et 

al, 2013). These SVD features have been associated with grey matter reductions (Lambert et 

al, 2015; Wen et al, 2006) and play a role in the pathogenesis of brain atrophy and therefore 

with a decrease in cognitive abilities	(Light, 1991; Raz, et al., 1998). The association between 

aging and SCNs (Bergfield et al, 2010; Hafkemeijer et al, 2014; Li et al, 2013; Montembeault 

et al, 2012; Segall et al, 2012) and the relation between the covariation of grey matter volume 

and cognitive decline in healthy aging (Oh et al, 2011; Tijms et al, 2016) and in persons with 
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different stage of dementia is well described (Hafkemeijer et al, 2016; Spreng et al, 2013; 

Yao et al, 2010). However, the mediating effects of other common features that come along 

with ageing such as an increased level of manifest vascular changes on the association 

between SCNs and cognition are unknown.   

The working hypothesis of the present study is that in older persons the presence of manifest 

SVD has an independent effect on SCN expression. Since both atrophy and SVD are related 

to worse cognitive functioning, we expect that, in a population of older persons with mild 

cognitive deficits, the association between SCN expression and cognitive domains (memory 

function, executive function, and psychomotor speed) is influenced by both age and the 

presence of manifest SVD.  
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Methods 

 

Participants 

Data for this study were obtained from the MRI sub-study of the Discontinuation of 

Antihypertensive Treatment in the Elderly (DANTE) trial; a randomized trial evaluating the 

effect of discontinuation of antihypertensive therapy in older persons with mild cognitive 

deficits on neuropsychological functioning (Moonen et al, 2015). A detailed description of 

the design of the DANTE Study Leiden is described elsewhere (Foster-Dingley et al, 2015b; 

Moonen et al, 2015). 

In short, participants were included when they were aged 75 years and over, using 

antihypertensive medication, and with a Mini-Mental State Examination (MMSE) score of 

21-27. In total, 220 of the DANTE participants underwent MRI scans. One participant was 

excluded due to movement artefacts, leaving a total of 219 participants for the current study.  

The Medical Ethics committee of the Leiden University Medical Center approved the 

DANTE Study Leiden and all participants gave written informed consent.	 

 

Brain imaging 

Whole brain, 3D T1-weighted (repetition time [TR]/echo time [TE]=9.7/4.6, flip angle 

[FA]=8°, voxel size=1.17×1.17×1.40 mm) images were acquired on a 3 T MRI scanner 

(Philips Medical Systems, Best, the Netherlands). With increasing age concomitant signs of 

beginning or more overt forms of SVD are frequently observed on brain MRI (Wardlaw et al, 

2013). These signs include cerebral white matter hyperintensities (Debette et al, 2010), and 

lacunar infarcts (Vermeer et al, 2007), cerebral microbleeds (Cordonnier et al, 2007). For the 
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evaluation of SVD-related pathologies, fluid attenuated inversion recovery (FLAIR) images 

(TR/TE=11 000/125 ms, FA=90°, FOV=220×176×137 mm, matrix size=320×240, 25 

transverse slices, 5 mm thick), T2*-weighted images (TR/TE=45/31 ms, FA=13 °, field of 

view=250×175×112 mm) and T2-weighted images (TR/TE=4200/80 ms, FA= 90°) were 

acquired.  

 

Cerebral small vessel disease 

To assess the presence of SVD, the volume of white matter hyperintensities (WMH) was 

quantified, and the presence of lacunar infarcts and cerebral microbleeds were assessed. 

FMRIB Software Version 5.0.1. Library (FSL; http://www.fmrib.ox.ac.uk/fsl) (Woolrich et 

al, 2009) was used to quantify WMH volume in an automated manner. WMH are defined as 

hyperintense regions on FLAIR. First, the 3DT1-weighted images were skull stripped (Smith 

SM, 2002), and then FLAIR and 3DT1 images were linearly co-registered (Jenkinson et al, 

2002; Jenkinson et al, 2001). The brain extracted FLAIR image was affine-registered to 

MNI152 standard space. A conservative MNI152 white matter mask was used to extract the 

white matter from FLAIR image. Subsequently, we set a threshold to identify which white 

matter voxels were hyperintense, followed by manually checking and editing for quality 

control. 

Lacunar infarcts, assessed on FLAIR, T2 and 3DT1-weighted images, were defined as 

parenchymal defects (signal intensity identical to cerebrospinal fluid on all sequences) of at 

least 3 mm in diameter, surrounded by a zone of parenchyma with increased signal intensity 

on T2-weighted and FLAIR images. Cerebral microbleeds were defined as focal areas of 

signal void (on T2 images), which increased in size on T2*-weighted images (blooming 



8	
	
	

effect) (Greenberg et al, 2009). Symmetric hypointensities in the basal ganglia, likely to 

represent calcifications or non-hemorrhagic iron deposits, were disregarded. Lacunar infracts 

and cerebral microbleeds were scored by a single rater (JFD) who was blinded to clinical 

data, and who was supervised by a second rater (JG), having more than 15 years 

neuroradiological experience. 

 

Structural covariance networks 

SCNs were assessed with	FMRIB Software Version 5.0.1. Library (FSL; 

http://www.fmrib.ox.ac.uk/fsl) (Woolrich, et al., 2009) as reported previously (Hafkemeijer et 

al, 2014). The 3DT1 images were pre-processed using the pre-processing steps used for 

voxel-based morphometric analysis (Ashburner et al, 2000). In short,	non-brain tissue was 

removed from the T1-weighted images using the brain extraction tool (Smith SM et al, 2001). 

A control check was performed after each pre-processing step to ensure appropriate brain 

extraction and tissue-type segmentation. In order to correct for the partial volume effect (i.e., 

voxels “containing” more than one tissue type), tissue-type segmentation was carried out with 

partial volume estimation (Zhang et al, 2001). The resulting grey matter partial volume 

images were affine registered to MNI152 (Jenkinson et al, 2002) and then nonlinearly 

registrated (Andersson et al, 2007). The resulting images were averaged to create a study-

specific grey-matter template, to which the native grey matter images were nonlinearly 

registered (Ashburner et al, 2000; Good et al, 2001). To correct for local expansion or 

contraction, the registered partial volume images were modulated by multiplying by the 

Jacobian of the warp field, and smoothed with an isotropic Gaussian kernel with a sigma of 3 

mm.  



9	
	
	

The modulated and smoothed individual grey matter images in MNI152 space were used as 

four-dimensional dataset on which independent component analysis was performed 

(Beckmann C.F. et al, 2005). Independent component analysis was applied using the 

multivariate exploratory linear optimised decomposition into independent components tool 

(Beckmann C.F. et al, 2005), this statistical technique decomposes a set of signals into spatial 

component maps of maximal statistical independence (Beckmann C. F. et al, 2004). When 

applied on grey matter images of different participants, this method defines spatial 

components based on the inter-correlation or structural covariance of grey matter density 

among participants (i.e., SCNs) (Hafkemeijer et al, 2014), without a priori selected regions of 

interest. 

SCN’s and functional resting state networks are generally studied using eight to ten 

components (Beckmann C.F. et al, 2005; Damoiseaux et al, 2006; Li et al, 2013; Segall et al, 

2012). Therefore, we restricted the independent component analysis output to eight 

components.  

Individual SCN expression was calculated using the four-dimensional data set of grey matter 

images in a spatial regression against the eight SCN probability maps (general linear model 

approach integrated in FSL) (Filippini et al, 2009). This procedure provides for the 219 

participants an index reflecting the degree to which each participant expresses the identified 

network pattern (i.e., SCN expression, the beta weights of the regression analysis). A higher 

score indicates a stronger the expression of the identified SCN. With the use of a mixture 

model significance was assigned to different voxels within the spatial map, a standard 

threshold level of 0.5 was used (Beckmann C. F. et al, 2004). Within each SCN the 

topographical structures and MNI coordinates of these were defined with FSL cluster and 

using the Harvard-Oxford cortical and subcortical structures atlas integrated in FSL.  
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Cognitive functioning 

Trained research staff administered a battery of six cognitive tests. In detail,	global cognitive 

functioning was assessed with the MMSE (Folstein et al, 1975). To measure memory 

function the immediate (3 trials) and delayed recall on the 15-Word Verbal Learning Test 

(15-WVLT), and the Visual Association Test (VAT) were used (Lezak et al, 2004). 

Executive function was assessed with the interference score of the abbreviated Stroop Colour 

Word Test (Houx et al, 1993), and the difference between the time to complete the Trail 

Making Test part A and B (TMT delta) (Arbuthnott et al, 2000). Psychomotor speed was 

evaluated with the Letter-Digit Substitution Test (LDST) (Van der Elst et al, 2006). For 

analysis, first the individual test scores (of the Stroop interference score and the TMT delta 

score) were inversed; consequently, higher scores indicate better performance on all tests. 

The psychomotor speed score and compound cognitive scores for memory and executive 

function were computed by converting the crude scores of each test to standardized z scores 

[(test score – mean)/SD] and calculating the mean z score across the tests in each compound.  

 

Demographic and clinical characteristics 

Demographic and clinical characteristics were obtained by research staff using a standardized 

interview. Information about medication and medical history were obtained from the general 

practitioners of the participants with the aid of structured questionnaires.  
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Statistical analyses 

Characteristics of participants are presented as mean (standard deviation; SD), median 

(interquartile range; IQR) or as number (percentage) where appropriate. WMH volume was 

log transformed to ensure normal distribution.  

All variables including age, WMH volume, lacunar infarcts, cerebral microbleeds and the 

eight SCNs were standardized. Standardization of variables allowed effect sizes to be 

comparable throughout. Using a multivariate linear regression model we assessed whether 

age and the presence of SVD including: WMH volume, the presence of lacunar infarcts, and 

cerebral microbleeds (independent variables), were associated with expression of SCNs 

(dependent variable). The analyses for the association between age and expression of SCNs 

were adjusted for gender. It has been suggested that the relationship between grey matter 

networks and age might be non-linear (Fjell et al, 2013; Sowell et al, 2003; Tijms et al, 

2016). Therefore, we assessed whether the associations found between age and SNCs were 

non-linear by separately adding quadratic and log terms of age to the model. For the analyses 

of the association between WMH volume,	the presence of lacunar infarcts and cerebral 

microbleeds and expression of SCN we adjusted for age and gender.  

The associations between expression of SCNs and cognitive functioning were also analysed 

using multivariate linear regression analyses. In these analyses expression of SCNs were the 

independent variables and standardized cognition scores (memory and executive function, 

and psychomotor speed) the dependent variables. We adjusted for age, gender and SVD 

(including WMH volume, the presence of lacunar infarcts, and cerebral microbleeds). As 

MMSE is a global and readily available cognitive assessment tool, we additionally assessed 

the association between expression of SCNs and MMSE.  
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In order to correct for multiple testing the statistical threshold was set at (0.05/8; based on 

eight networks) P ≤ 0.006. 
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Results 

The characteristics of the study population are shown in Table 1. Included were 219 

participants with a mean age of 80.7 years and of whom 42.9% male. Participants had mild 

cognitive deficits as reflected by the median MMSE score of 26 (IQR 25-27) points. Median 

WMH volume was 22.0 (IQR 9.0-56.1) ml. Lacunar infarcts and cerebral microbleeds were 

present in 26.9% and 24.7% of the participants, respectively.  

Figure 1 shows eight SCNs, these networks included: a cerebellar-occipital network (SCN a), 

lateral occipital network (SCN b), cerebellar network (SCN c), subcortical network (SCN d), 

a pre-motor network (SCN e), temporal network (SCN f), occipital-precuneus network (SCN 

g) and an anterior cingulate network (SCN h). Details of the topographical brain regions 

within each of the SCNs were identified with the Harvard Oxford atlas (Table 2).  

Table 3 shows that a higher age was significantly associated with a lower expression of four 

SCNs: subcortical (SCN d), the pre-motor (SCN e), temporal (SCN f), and occipital-

precuneus (SCN g) networks independent of gender (B = -0.18, P =0.006; B = -0.25, P 

<0.001; B = -0.26, P <0.001 and B = -0.34, P <0.001, respectively). To test whether 

associations were non-linear, quadratic and log age terms were added. These analyses did not 

yield any significant results.  

As shown in table 3a higher WMH volume was associated with lower structural connectivity 

of four of eight networks independent of age and gender, including the lateral occipital (SCN 

b), cerebellar (SCN c), subcortical (SCN d), and the anterior cingulate network (SCN h), (all 

P ≤ 0.002). The presence of lacunar infarcts was associated with a lower expression of the 

subcortical network (B = -0.21, P = 0.001), and cerebral microbleeds with lower expression 

of the anterior cingulate network (B = -0.20, P = 0.003).  
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When combining these data: i) age was predominantly associated with the pre-motor and 

temporal network (SCN e and f; both P < 0.001), ii) age and the presence of SVD were both 

associated with the subcortical network (SCN d; all P ≤ 0.006), whereas iii) independently of 

age, WMH volume was predominantly associated with the lateral occipital and the anterior 

cingulate network (SCN b and h; B = -0.30, P < 0.001 and B = -0.21, P= 0.002, respectively).  

Table 4 shows the association between SCNs and cognitive functioning. After adjusting for 

the presence of SVD (i.e. WMH volume and the presence of lacunar infarcts and 

microbleeds), a lower expression of three SCNs was associated with worse memory or 

psychomotor speed. The temporal network (SCN f) was associated with memory function (B 

= 0.20, P = 0.005), whereas the cerebellar-occipital network (SCN a) and occipital-precuneus 

network (SCN-g) were associated with psychomotor speed (B = 0.22, P = 0.002 and B = 0.27, 

P < 0.001, respectively). Furthermore, the additional analyses for the association between the 

eight SCNs and MMSE score, showed no significant associations.  
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Discussion 

In this population of older persons with mild cognitive deficits, a higher age and features of 

small vessel disease are associated with a decrease in expression of several structural 

covariance networks. Of the SVD features, predominantly a higher WMH volume was 

associated with a lower expression of four SCNs. A lower expression of SCNs is related to 

worse cognitive functioning in particular cognitive domains (memory function or 

psychomotor speed) independently of SVD. 

Independent component analysis identified SCNs that were similar to functionally correlated 

brain regions described previously (Beckmann C.F. et al, 2005; Damoiseaux et al, 2006; 

Smith SM et al, 2009). In populations with younger persons who were cognitively healthy, 

studies show that when dividing the participants into groups according to age, the ‘older’ age 

group had a lower expression of SCNs (Bergfield et al, 2010; Hafkemeijer et al, 2014; Li et 

al, 2013; Montembeault et al, 2012; Oh et al, 2011; Segall et al, 2012; Tijms et al, 2016). 

Similar to studies in younger healthy populations our results showed that increased age was 

associated with lower expression of the temporal networks (Bergfield et al, 2010; Li et al, 

2013) Overall, in line with findings of previous studies, we found that in our sample of older 

persons with mild cognitive deficits higher age was associated with reduced structural 

covariance network expression. 

In the present study population of older persons with a mean age of 80.7 years, the prevalence 

of SVD was relatively high compared with other populations of older persons, as discussed 

previously (Foster-Dingley et al, 2015a). Our data show that signs of SVD, predominantly 

WMH volume, were associated with reduced network expression of four SCNs independent 

of gender and age. As a reduced SCN expression reflects specific grey matter patterns (grey 

matter volume, thickness and surface area), our results enhances previous volumetric studies 
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showing that WMH load (Du et al, 2005; Kloppenborg et al, 2012; Lambert et al, 2015; Seo 

et al, 2012; Smith EE et al, 2008; Taki et al, 2011; Wen et al, 2006), the presence of lacunar 

infarcts (Appelman et al, 2010; Grau-Olivares et al, 2010), and cerebral microbleeds (Lee et 

al, 2004) are associated with a reduction in total grey matter. Moreover, it has been shown 

that WMH is associated with volumetric grey matter loss around the supramarginal gyrus and 

occipital-parietal junction (Lambert et al, 2015). This is in line with our results which showed 

that WMH volume was associated with reduced expression of the lateral occipital network 

which contained these structures. 

Our data show that, independent of SVD, a lower expression of the temporal network that 

included the	parahippocampal gyrus was associated with worse memory function. This is in 

line with MRI studies showing an association of hippocampal (Apostolova et al, 2010; 

Kramer et al, 2007; Mungas et al, 2002; Risacher et al, 2010; Van Petten et al, 2004) and 

(temporal lobe) parahippocampal atrophy (Kohler et al, 1998; Ward et al, 2014) with memory 

function. Furthermore, as psychomotor speed tests include a visual component, it is of 

interest that a lower expression of a network including the occipital lobe (cerebellar-occipital 

network and occipital-precuneus network) was associated with lower psychomotor speed 

scores. A study assessed whether SCNs were associated with processing speed (Eckert et al, 

2010). In contrast to our results, this study in healthy persons (aged 19-79 years) showed that 

slower processing speed corresponded to changes in a grey matter network	composed of 

anterior cingulate cortex and dorsolateral prefrontal cortex (Eckert et al, 2010). However, 

whereas we included older persons with mild cognitive deficits, the latter population had an 

MMSE score of ≥ 27 and with no history of neurologic or psychiatric events. Therefore, these 

contrasting results may be attributable to differences in the health and age of the study 

populations. In addition, our results showed that expression of none of the SCNs was 
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associated with the global measure of cognition. A reason for this might be that MMSE is a 

global and therefore less sensitive tool than the compound scores for memory function, 

executive function and psychomotor speed. 

The association between SVD, specifically WMH, and SCNs may be attributable to 

deafferentiation of the connections between cortical cells and their subcortical targets. 

Compared with WMH, lacunar infarcts and cerebral microbleeds are less likely to interrupt 

the cortical-subcortical connections in the subcortical white matter, as these are frequently 

located in the subcortical grey matter structures. Although strong associations were found 

between SVD and SCNs, and SVD has been associated with cognitive impairment (Light, 

1991; Raz et al, 1998), the associations between SCNs and cognitive functioning remained 

even after adjusting for SVD. This may indicate that SCNs play a role in cognitive 

functioning. The expression of SCNs could be a reflection of specific grey matter patterns, as 

a result of disrupted subcortical-cortical connections, that affect cognitive functioning.  

Some limitations of the present study need to be addressed. First, our results suggest that 

SVD and cognitive functioning are related to reduced network expression in old age; 

however, due to the cross-sectional design it is not possible to determine a temporal or causal 

relationship. Also, because we used an exploratory approach, no correction was made for 

multiple testing. Our population was a selection of older persons who had mild cognitive 

deficits but no history of serious cardiovascular disease. Due to the exclusion of persons with 

serious cardiovascular disease, brain MRIs were useful for the current study; however, the 

current findings cannot be extrapolated to the general population. Furthermore, for the 

present study whole-brain grey matter networks were based on structural covariance of grey 

matter density, using a voxel-based morphometry ICA (Beckmann C. F. et al, 2004) approach 

to identify naturally clustering, maximally independent SCNs. However, other methods can 
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be used for defining SCNs (Alexander-Bloch et al, 2013; Bassett et al, 2008; Lerch et al, 

2006). As the voxel-based morphometry ICA method was used in the current study, 

expression of SCNs relies on a group average and consequently we can only speculate on the 

value of individual diagnostic evaluation. Moreover, future research should delineate whether 

SCNs defined at participant level, which have been related to cognition (Tijms et al, 2012; 

Tijms et al, 2014; van Duinkerken et al, 2016), are spatially comparable with SCNs defined 

with the voxel-based morphometry ICA method. 

Conclusion 

This study shows that in older persons, in addition to age, of the SVD features 

(predominantly a higher white matter hyperintensity volume) are associated with a decreased 

expression of SCNs.  A lower temporal network expression is associated with worse memory 

function, and a decreased cerebellar-occipital and occipital-precuneus network expression 

with lower psychomotor speed independently of age and SVD	. This indicates the 

determination of SCNs may be important in substantiating cognitive functioning in older 

persons. 
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Table	1.	Characteristics	of	the	study	population	
Characteristic	 (n=219)	
Demographic	and	clinical	 	
	 Age	(years)	 80.7	(4.1)	
	 Male	 94	(42.9%)	
	 Cardiovascular	disease^	 20	(9.1%)	
	 Systolic	blood	pressure	(mmHg)	 146	(21.2)	
	 Diastolic	blood	pressure	(mmHg)	 81	(10.8)	
Cognition	 	
	 MMSE	score	(points)	 26	(25-27)	
	 Memory	 	
	 15-WVLT	immediate	recall	score	(words	remembered)	 16.6	(5.7)	
	 15	WVLT	delayed	recall	score	(words	remembered)	 4.4	(2.7)	
	 Visual	Association	Test	(pictures	remembered)	 12	(10-12)	
	 Executive	function*	 	
	 Trail	Making	Test	delta	(seconds)	 131.8	(67.3)	
	 Stroop	interference	score	(seconds)	 39.2	(33.1)	
	 Psychomotor	speed	*	 		
	 Letter-Digit	Substitution	Test	(digits	coded)	 31.2	(9.4)	
Cerebral	 	
	 White	matter	hyperintensity	volume,	ml**	 22.0	(9.0-56.1)	
	 Lacunar	infarcts	present^^	 59	(26.9%)	
	 Cerebral	microbleeds	present†	 54	(24.7%)	
	 Brain	volume	total,	ml	 1003	(92.3)	
	 Grey	matter	volume,	ml	 499	(47.9)	
	 White	matter	volume,	ml	 505	(52.0)	
Data	are	presented	as	mean	(standard	deviation),	median	(interquartile	range)	or	as	number	(percentage)	where	
appropriate.	^	Includes	myocardial	infarction	or	coronary	intervention	procedure	≥3	years	ago,	or	peripheral	arterial	
disease.	*	Higher	scores	indicate	worse	functioning.	**	missing	for	n=3	participants.	^^	missing	for	n=1	participant.	
†missing	for	n=6	participants.	MMSE=mini-mental	state	examination;	15-WVLT=	15-Word	Verbal	Learning	Test;	
TMT=Trail	Making	Test.	TMT	delta	denotes	difference	between	TMT-B	and	TMT-A.	

  



30	
	
	

	

Figure	1.	Eight	structural	covariance	networks	overlaid	on	the	three	most	informative	orthogonal	

slices	of	the	Montreal	Neurological	Institute	152	standard	space	template	image.	Networks	a-h:	a,	

cerebellar-occipital	network;	b	lateral	occipital	network;	c,	cerebellar	network;	d,	subcortical	

network;	e,	pre-motor	network;	f,	temporal	network;	g,	occipital-precuneus	network;	h,	anterior	

cingulate	gyrus	network.	A	detailed	description	and	MNI	x,	y	and	z-coordinates	of	each	cluster	per	

structural	covariance	network	is	given	in	the	appendix	Table	2.		
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Table	2.	Brain	clusters	of	the	structural	covariance	networks	
	 Brain	clustera	 MNI	coordinates	
	 	 x	 y	 z	
Network	a	 Cerebellum	

			cluster	also	contains	occipital	pole	
Frontal	pole	
Middle	temporal	gyrus	
Superior	temporal	gyrus	
(Lateral	occipital	cortex)	

20	
	
-8	
46	
-48	
18	

-86	
	
62	
-18	
-26	
-64	

-40	
	
-4	
-12	
-2	
64	

Network	b	 Lateral	occipital	cortex	
			cluster	also	contains	supramarginal	gyrus,	angular		
			gyrus,	(middle	temporal	gyrus)	
Planum	polare	
Superior	frontal	gyrus	
Insular	cortex	
(Posterior	cingulate	gyrus)	

-52	
	
	
48	
-6	
36	
6	

-68	
	
	
0	
38	
4	
-34	

24	
	
	
-12	
50	
4	
50	

Network	c	 Cerebellum	
			cluster	also	contains	occipital	fusiform	gyrus	
Planum	polare	

-45	
	
-46	

-71	
	
-2	

-27	
	
-12	

Network	d	 Hippocampus	
			cluster	also	contains	parahippocampal	gyrus,		
			amygdala,	thalamus,	accumbens,	cerebellum		
Middle	temporal	gyrus	
Postcentral	gyrus	
Insular	cortex	

28	
	
	
51	
26	
39	

-12	
	
	
-23	
-26	
-15	

-16	
	
	
-9	
64	
18	

Network	e	 Precuneus	cortex	
Juxtapositional	lobule	cortex	
			cluster	also	contains	anterior	cingulate	gyrus,	superior		
			frontal	gyrus	
(Middle	temporal	gyrus)	
Cerebellum	
(Precentral	gyrus)	
Occipital	pole	

4	
	
	
3	
54	
26	
-24	
-32	

-60	
	
	
-4	
-10	
-62	
-24	
-98	

56	
	
	
67	
-22	
-42	
66	
-8	

Network	f	 Temporal	pole	
			cluster	also	contains	parahippocampal	gyrus,	inferior		
			temporal	gyrus,	planum	polare	
Frontal	medial	cortex	
Frontal	orbital	cortex	
Amygdala	

30	
	
	
-4	
31	
-26	

0	
	
	
40	
25	
-9	

-30	
	
	
-14	
-11	
-11	

Network	g	 Intracalcarine	cortex	
			cluster	also	contains	precuneus	cortex	
Planum	temporale	and	inferior	frontal	gyrus	
Subcallosal	cortex	
Occipital	pole	
Paracingulate	gyrus	

34	
	
46	
-2	
34	
10	

-74	
	
-34	
24	
-92	
46	

-22	
	
16	
-12	
0	
5	

Network	h	 Frontal	medial	cortex	
			cluster	also	anterior	cingulate	gyrus,	frontal	pole,		
			superior	frontal	gyrus	
Middle	frontal	gyrus	
(Cerebellum)	
(Lateral	occipital	cortex)	
(Superior	temporal	gyrus)	
Supracalcarine	cortex	

-44	
	
	
38	
-20	
42	
44	
0	

40	
	
	
20	
-72	
-66	
-8	
-74	

16	
	
	
48	
-42	
48	
-18	
16	

aEach	structural	covariance	network	is	divided	in	brain	clusters	using	the	cluster	tool	integrated	in	FSL.	MNI	x-,	y-,	and	z-coordinates	of	each	cluster	are	given.	
Brain	structures	are	anatomically	identified	using	the	Harvard-Oxford	atlas	integrated	in	FSL.	Figure	1	shows	the	most	informative	sagittal,	coronal,	and	
transverse	slices.	Structures	in	parentheses	in	the	table	are	not	visible	in	Figure	1.	MNI=	Montreal	Neurological	Institute	152	standard	space	image. 
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Table	3.	Associations	between	age,	white	matter	hyperintensity	volume,	presence	of	lacunar	infarcts	and	microbleeds,	and	the	
expression	of	structural	covariance	networks	(n=219)	
	 SCN	a	

cerebellar-
occipital	

SCN	b	
lateral	occipital	

SCN	c	
Cerebellar	

SCN	d	
subcortical	

SCN	e	
pre-motor	

SCN	f	
temporal	

SCN	g	
occipital-
precuneus	

SCN	h	
anterior	cingulate	

	 B	(95%	CI)	 B	(95%	CI)	 B	(95%	CI)	 B	(95%	CI)	 B	(95%	CI)	 B	(95%	CI)	 B	(95%	CI)	 B	(95%	CI)	
	 P-value	 P-value	 P-value	 P-value	 P-value	 P-value	 P-value	 P-value	
Age^	 	 	 	 	 	 	 	
	 -.16	(-.29,	.02)	

.022	
.03	(-.10,	.17)	

.635	
-.18	(-.31,	-.05)	

.008	
-.18	(-.31,	-.05)	

.006*	
-.25	(-.38,	-.12)	

<.001*	
-.26	(-.40,	-.14)	

<.001*	
-.34	(-.47,	-.21)	

<.001*	
-.14	(-.26,	-.01)	

.037	
White	matter	hyperintensity	volume	 	 	 	 	 	 	
	 	 	 	 	 	 	
	 .02	(-.11,	.16)	

.726	
-.30	(-.43,	-.17)	

<.001*	
-.21	(-.34,	-.08)	

.002*	
-.36	(-.49,	-.24)	

<.001*	
	-.14	(-.27,	-.003)	

.044	
-.15	(-.28,	-.02)	

.021	
-.15	(-.27,	-.02)	

.021	
-.21	(-.33,	-.08)	

.002*	
	 	 	 	 	 	 	 	 	
Lacunar	infarcts	 	 	 	 	 	 	 	
	 -.11	(-.24,	.02)	

.100	
-.03	(-.17,	.10)	

.649	
-.13	(-.26,	.01)	

.062	
-.21	(-.34,	-.09)	

.001*	
-.13	(-.25,	.004)	

.057	
.06	(-.07,	.19)	

.397	
-.13	(-.25,	.001)	

.052	
-.06	(-.19,	.07)	

.376	
	 	 	 	 	 	 	 	 	
Cerebral	microbleeds	 	 	 	 	 	 	 	
	 -.06	(-.20,	.07)	

.356	
-.10	(-.24,	.04)	

.162	
-.14	(-.28,	-.01)	

.038	
-.16	(-.29,	-.03)	

.018	
-.13	(-.26,	.004)	

.057	
-.09	(-.22,	.04)	

.171	
-.16	(-.28,	-.03)	

.013	
-.20	(-.33,	-.07)	

.003*	
B	(95%	CI)	represents	mean	change	in	SCN	expression	per	standard	deviation	increase	in	WMH	volume,	lacunar	infarcts	or	microbleeds	
*indicates	statistical	significance	after	correction	for	multiple	testing	P≤.006	
^	analyses	were	adjusted	gender	
Unless	depicted	otherwise	all	analyses	were	adjusted	for	gender	and	age	
SCN=	Structural	covariance	network.	
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Table	4.	Associations	between	structural	covariance	networks	and	cognitive	functioning	(n=219)	
	 Memory	function	 Executive	function	 Psychomotor	speed	
		 B	(95%	CI)		 P-

value	
	 B	(95%	CI)		 P-value	 	 B	(95%	CI)		 P-value	 	

SCN	a	–	cerebellar-occipital		 	 	 	 	 	 	 	 	
	 .13	(-.004,	.26)		 .057	 	 .17	(.03,	.31)		 .016	 	 .22	(.08,	.34)		 .002*	 	
SCN	b	–	lateral	occipital	 	 	 	 	 	 	 	 	
	 -.08	(-.22,	.06)	 .258	 	 -.12(-.26,	.02)		 .097	 	 -.14	(-.28,	-.003)		 .045	 	
SCN	c	–	cerebellar	 	 	 	 	 	 	 	 	
	 -.02	(-.15,	.12)		 .786	 	 .17	(.03,	.31)		 .018	 	 -.01	(-.13,	.14)		 .942	 	
SCN	d	–	subcortical	 	 	 	 	 	 	 	 	
		 .11	(-.04,	.26)		 .155	 	 -.06	(-.22,	.09)		 .422	 	 -.004	(-.15,	.15)		 .959	 	
SCN	e	–	pre-motor	 	 	 	 	 	 	 	 	
	 .04	(-.10,	.17)		 .623	 	 .06	(-.08,	.20)		 .389	 	 .04	(-.10,	.18)		 .555	 	

SCN	f	–	temporal	 	 	 	 	 	 	 	 	
	 .20	(.06,	.34)		 .005*	 	 .12	(-.03,	.27)		 .105	 	 .0.12	(-.03,	.26)		 .107	 	
SCN	g	–	occipital-precuneus	 	 	 	 	 	 	 	 	
	 .12	(-.02,	.27)		 .093	 	 .12	(-.04,	.27)		 .134	 	 .27	(.12,	.41)		 <.001*	 	
SCN	h	–	anterior	cingulate	 	 	 	 	 	 	 	 	
	 -.002	(-.14,	.14)	 .974	 	 .01	(-.08,	.21)		 .380	 	 .08	(-.07,	.22)		 .284	 	
B	(95%	CI)	represent	mean	change	in	cognitive	z-scores	per	standard	deviation	increase	in	SCN	expression.	For	memory,	executive	function,	psychomotor	speed	
and	overall	cognitive	function	a	lower	score	indicates	worse	performance	
*indicates	statistical	significance	after	correction	for	multiple	testing	P≤.006	
All	analyses	were	adjusted	for	gender,	age,	white	matter	hyperintensity	volume,	the	presence	of	lacunar	infarcts,	and	microbleeds	
SCN=	Structural	covariance	network.	

	

	
	
	
	
	


