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Multi-exchange neighborhoods for the
capacitated ring tree problem

Alessandro Hill

Department of Engineering Management
University of Antwerp

Prinsstraat 13, 2018 Antwerp, Belgium
alessandro.hill@uantwerpen.be

Abstract. A ring tree is a tree graph with an optional additional edge
that closes a unique cycle. Such a cycle is called a ring and the nodes
on it are called ring nodes. The capacitated ring tree problem (CRTP)
asks for a network of minimal overall edge cost that connects given cus-
tomers to a depot by ring trees. Ring trees are required to intersect in
the depot which has to be either a ring node in a ring tree or a node
of degree one if the ring tree does not contain a ring. Customers are
predefined as of type 1 or type 2. The type 2 customers have to be ring
nodes, whereas type 1 customers can be either ring nodes or nodes in
tree sub-structures. Additionally, optional Steiner nodes are given which
can be used as intermediate network nodes if advantageous. Capacity
constraints bound both the number of the ring trees as well as the num-
ber of customers allowed in each ring tree. In this paper we present first
advanced neighborhood structures for the CRTP. Some of them gener-
alize existing concepts for the TSP and the Steiner tree problem, others
are CRTP-specific. We also describe models to explore these multi-node
and multi-edge exchange neighborhoods in one or more ring trees effi-
ciently. Moreover, we embed these techniques in a heuristic multi-start
framework and show that it produces high quality results for small and
medium size literature instances.

Keywords: capacitated ring tree problem, network design, local search

1 Introduction

The design of cost efficient networks under capacity constraints is of undoubted
importance for applications in various industries. Especially in the field of trans-
portation and telecommunication significant cost savings were achieved through
the application of appropriate optimization models in the last decades. Topo-
logically, many networks are based on fundamental structures such as trees or
rings. The extensively studied minimum weight spanning trees (MSTs) assure
connectivity such that a unique path between any two nodes in the network ex-
ists, whereas the capacitated minimum spanning tree problem (CMSTP) [2] asks
for such a tree of minimal total edge costs while limiting the number of nodes of
sub-trees connected to a depot by a single edge. In practice, the integration of
optional intermediate Steiner nodes is highly relevant and is facilitated by the
well-known Steiner tree problem (STP) [7]. On the contrary, a prominent ring
based optimization problem is the travelling salesman problem (TSP), asking for



a travel cost minimizing sequence in which each customer of a given set should
be visited before returning to a depot. Such a tour is required for each vehicle
starting from the depot in the vehicle routing problem (VRP) [3]. The need for
multiple vehicles arises from the commonly limited transport capacity to deliver
or pick up goods from or to the customers. Beyond these concepts, the recent
capacitated ring tree problem (CRTP) [5] integrates the ring structure and the
tree structure into an optimization model under consideration of capacities and
the useful Steiner nodes. The implemented ring tree structure is defined to be
either a tree, a ring or a ring with additional disjoint trees attached to some
of its nodes. Moreover, certain customers are prespecified to be of type 2 and
thus required to be contained in sub-rings in ring trees. The remaining type
1 customers can be such ring nodes or nodes in sub-trees. Additional capacity
constraints bound the total number of customers on each ring tree as well as
the number of ring trees originating from the depot. Figure 1 shows a feasible
network that satisfies these requirements and minimizes the overall edge costs,
i.e. the objective function. The CRTP is NP-hard as are its special cases, the
STP and the TSP, but computationally even more challenging [5]. For most real
world applications heuristic solution approaches are indispensable due to the
size limits for efficient exact algorithms. Therefore, in this paper we generalize
known neighborhood structures for the purely tree [1] and purely ring based [6]
special cases by treating the ring tree case. Furthermore, the CRTP gives rise
to interesting structured neighborhoods on its own that we introduce and show
how to efficiently explore. We embed these techniques in a multi-start heuristic
framework and show its efficiency on a set of literature instances.
After a formal definition of the CRTP in section 2 we introduce the novel neigh-
borhoods and corresponding exploration techniques in section 3. The embedding
of these ideas in a multi-start heuristic is described in section 4 before we close
with our conclusion in section 5.

2 The capacitated ring tree problem

In the following we give a formal definition of the CRTP using basic graph
theoretic notation. We consider a network N synonymous with an undirected
simple graph with node set V [N ] and edge set E[N ]. The graph obtained after
the removal of a node v ∈ V [N ] is denoted by N \ v.
Definition. We are given a set of nodes V = U2 ∪̇ U1 ∪̇ W ∪̇ {d} where the
nodes in Ut correspond to type t customers, nodes in W are Steiner nodes and
d represents a central depot. The cost of connecting two nodes u 6= v in V by an
edge e = {u, v} is ce > 0. A solution for the CRTP is a network N obtained from
the union of a set of rings R = {R1, ..., Rk} and a set of trees T = {T1, ..., Tl}
on V such that
• each type 2 customer is contained in exactly one ring,
• each type 1 customer is contained in exactly one ring or tree,
• each Steiner node is contained in at most one ring or tree,
• each ring contains the depot d,
• each tree contains either the depot d or a node of a ring,



and N is capacity feasible, i.e.

• the number of connected components in N \ d is at most m and
• the number of type 1 and type 2 customers in each connected component of
N \ d does not exceed q.

The CRTP asks for such a network of minimal total edge cost c(N ) =
∑
e∈E[N ] ce.

From each connected component of N \ d we obtain a ring tree Q by adding the
depot d and the edges connecting d and Q in N . Such a ring tree forms either
a tree or a ring with disjoint trees attached to it. Figure 1 illustrates a solution
network based on 2 rings and 4 trees according to our definition of the CRTP.

Fig. 1. A CRTP solution with 24 customers in 3 ring trees.

3 Neighborhood structures

In the following we elaborate several structured neighborhoods for the CRTP and
explain how to efficiently explore them. They partially generalize existing con-
cepts for the TSP, VRP, STP and CMSTP but we also introduce CRTP-specific
neighborhoods that do not have non-trivial counterparts in these specializations.
For the sake of simplified descriptions we introduce some notation which refers
to a CRTP solution network N unless explicitly stated differently. For a ring
tree Q ⊆ N we denote the set of neighbors of a node v ∈ V [Q] in Q as NQ[v].
Let PQ[u, v] be the set of paths that connect two distinct nodes u, v ∈ V [Q]. We
recall that if Q contains a ring then |PQ[u, v]| ≤ 2, otherwise Q is a tree and
thus |PQ[u, v]| = 1. Then we define TQ[u, v] as the set of path trees of Q obtained
from extending each path P ∈ PQ[u, v] by the non-ring structures in Q attached
to the nodes of P. Finally, for a node set X ⊂ V we define ∆Q[X] as the set of
edges with one end in X and the other end in V [Q] \X.
1-edge-opt In contrast to purely ring-based models, a 1-edge-opt neighborhood
can be defined for the CRTP by considering the feasible removal of an edge
e ∈ E[Q] followed by the insertion of an edge e′ 6∈ E[Q] for each ring tree
Q ⊆ N . We first observe that given a ring without type 2 customers, the edge
with the highest cost can be deleted and N is still feasible. Therefore, we assume



that each ring in N contains a type 2 customer. In the case that e is a ring edge
e′ is required to repair the destroyed ring if possible. The ring-tree-opt neigh-
borhood below will cover this case. Thus let e = {u, v} be a non-ring edge of Q
and let w.l.o.g. u be the node on each path from v to d. Then the deletion of e
creates two connected components of Q, one containing d and another one that
contains v, more precisely a tree Tv. To establish a valid solution we consider the
insertion of each re-connecting edge e′ ∈ ∆Q[V [Tv]] subject to adherence to the
capacity constraints. In particular, we may create a new (ring)tree by allowing
e′ to be incident to d.
2-edge-opt The prominent TSP-tailored edge swaps can be applied to each ring
in N . In a similar manner ties can be broken by facilitating capacity-feasible re-
combinations of two distinct ring trees Q1 and Q2 as known for the VRP. More
specifically, for two ring edges e = {u, v} ∈ E[Q1] and e′ = {w, x} ∈ E[Q2] we
consider their replacement by {u,w} and {v, x} or {u, x} and {v, w}. Figure 2
illustrates such an improvement move. If both edges are incident to d the neigh-
borhood is empty. By allowing Q1 = Q2 and avoiding sub-tours we obtain the
mentioned 2-opt for the TSP.

Fig. 2. A 2-edge-opt improvement based on the ring edges {u, v} and {w, x}.

Moreover, we consider the deletion of two non-ring edges followed by the recon-
nection of the cut-off sub-trees T1 ⊆ Q1 and T2 ⊆ Q2 to other ring trees as
depicted in Fig. 3. We hereby partially generalize the 1-edge-opt neighborhood.
Since we regard the capacity constraints such a move can have an ejecting effect
with respect to attached sub-trees when for instance reconnecting T1 to Q2.

Fig. 3. A 2-edge-opt improvement based on the non-ring edges e and e′.

Finally, taking into account the removal of an edge e in a ring R ⊆ Q1 and a
non-ring edge e′ ∈ E[Q2] yields the remainder of this neighborhood. Let T2 be



the sub-tree of Q2 induced by e′ as in the 1-edge-opt neighborhood. The corre-
sponding modification of Q1 in N corresponds to the replacement of a e by a
path tree obtained from T2, whereas Q2 is reduced by T2. Figure 4 shows such
a transformation.

Fig. 4. A 2-edge-opt improvement based on a ring edge e and a non-ring edge e′.

1-node-opt We consider moving a single customer node u from its current ring
tree Q1 to a ring tree Q2. Obviously, the capacity of Q2 needs to be sufficient
when performing such an operation. We ensure the preservation of the ring tree
structure after the extraction of u from Q1 by the incorporation of a MST on
the neighbors NQ1

[u]. Note that the degree of the depot has to be limited by m
minus the number of current ring trees beside Q1 to satisfy the ring tree capacity
m. Although the degree constrained minimum spanning tree problem (DCMSTP)
is known to be NP-hard in general this special case can be solved polynomially
using a Prim’s algorithm in a slightly modified version starting from d. If u is
of type 1 it may be inserted into Q2 either as a leaf or as an intermediate node
that splits an edge {v, w} into edges {v, u} and {u,w}. Type 2 customers may
only be inserted in this edge replacing manner into a ring instead.
2-node-opt We consider swapping two customers that are not necessarily in
distinct ring trees. This neighborhood can be constructed by intersecting two
1-node-opt spaces.
Steiner-node-opt This neighborhood is inspired by known STP improvement
moves and consists of all the feasible solutions obtained after deleting or insert-
ing a single Steiner node. Certainly, a Steiner leaf node can simply be removed,
whereas a node with degree 2 can be replaced by an edge connecting both neigh-
bors if this results in an overall cost reduction. For an arbitrary Steiner node
x ∈ V [Q], the re-connection can be accomplished by a MST on NQ[x] as for the
1-node-opt neighborhood. Conversely, we also consider the insertion of a Steiner
node x /∈ V [N ] into N . We take into account the splitting of an existing edge
{u, v} into {u, x} and {x, v}. Moreover, two incident edges {u, v} and {u,w}
with u 6= d can be replaced by the star configuration {x, u}, {x, v} and {x,w}.
Ring-tree-opt This advanced neighborhood contains the solutions obtained
by the rearrangement of the tree structure induced by two specifically situated
mandatory ring nodes. Let T ∈ TQ(u, v) be a path tree in a ring tree Q ∈ N
for {u, v} ⊆ U2 ∪ {d} such that V [T ] \ {u, v} does not contain type 2 customers
or the distributor. Then we can build a DCMSTP on the nodes of T . As in



previous neighborhoods a single degree constraint applies when d ∈ {u, v} to
avoid the installation of more additional ring trees than allowed. An improving
solution in this neighborhood connects u and v by a path tree of less cost as
illustrated in Fig. 5. This neighborhood is also valid for nodes u and v such that
V [TQ(u, v)] ∩ U2 = ∅ and therefore, in particular applicable when Q is a tree.

Fig. 5. A minimum spanning tree based improvement in a ring-tree-opt.

Ring-tree-split-opt This neighborhood contains solutions that can be obtained
by splitting a ring treeQ ⊆ N into two separate ring trees. This presumes enough
capacity inN to install an additional ring tree. Basically, we try to repair a single
ring edge removal by the feasible insertion of two new ring-closing edges. As in
the ring-tree-opt search let T be a path tree for two distinct nodes u and v
in V [Q] ∩ (U2 ∪ {d}) with V [T ] \ {u, v} ∩ {d} ∪ U2 = ∅. Then we consider the
removal of each ring edge e ∈ E[T ] followed by the insertion of two edges {d,w}
and {d, x} for {w, x} ⊆ V [T ] as shown in Fig. 6. If u = d then Q splits into a
tree and a ring tree, whereas the splitting of a pure tree Q is contained in the
1-edge-opt neighborhood.

Fig. 6. An improving solution in the ring-tree-split neighborhood.

Ejection-chain-opt Extracting a customer node u1 from a ring tree Q1 and
inserting it into a ring tree Q2 might be cost saving but not feasible because
Q2 is capacity tight, i.e. Q2 contains q customers. However, the ejection of a
customer u2 in Q2 and its insertion into a ring tree Q3 can facilitate the move.
In this ejection-chain-opt neighborhood we consider all these double node moves
for distinct ring trees Q1, Q3 and Q3. Not that if Q3 = Q1 then it corresponds
to the 2-nodes-opt neighborhood.

4 A multi-start local search heuristic

Our heuristic is based on the iterated exploration of the introduced CRTP
neighborhoods. We apply the corresponding local ring tree searches (LQSs) in



a multi-start fashion on a set of start solutions obtained from different ini-
tial constructions. For a CRTP instance P , let Σ(P ) be the procedure that
returns a solution pool based on the strategies that we briefly summarize in
the following. On the one hand we apply cluster first, route second techniques
as in [4] to solve the VRP obtained after temporarily declaring all customers
type 2. Different cluster distance metrics (e.g. min/max/avg cluster node dis-
tance) give rise to multiple solutions that are added to the pool. Then we con-
versely focus on the design of (partial) rings or (partial) trees based on the
computation of MSTs and the construction of nearest first TSP routes. We
combine these partial networks on the different sets of customers and turn
them into a feasible solution by a correction mechanism that repeatedly ap-
plies moves similar to the ones described in our local search neighborhoods. Our
overall algorithm applies the local searches on each of the solutions in Σ(P )
in a best-fit fashion until no enhancement can be found. The order in which
the different neighborhoods are explored corresponds to the increasing poten-
tial structural impact. The resulting multi-start CRTP heuristic is given in 1.

Input CRTP P ;
foreach N ′ ∈ Σ(P ) do

z ←∞;
while c(N ′) < z do

z ← c(N ′);
LQS(N ′, Ring-tree-opt);
LQS(N ′, 1-edge-opt);
LQS(N ′, 2-edge-opt);
LQS(N ′, 1-node-opt);
LQS(N ′, 2-node-opt);
LQS(N ′, Steiner-node-opt);
LQS(N ′, Ring-tree-split-opt);
LQS(N ′, Ring-tree-join-opt);
LQS(N ′, Ejection-chain-opt);

end
if c(N ′) < c(N) then N ← N ′;

end
return N;

We implemented the algorithm in c++ tested on an Intel i7-3667U 2.00 GHz
processor unit for the 225 small to medium size instances1 used in [5]. The type
1 customers in these TSPLIB based instances with |V | ∈ {26, 51, 76, 101} are
randomly assigned according to a rate r1 ∈ {0, 0.25, 0.5, 0.75, 1}. Various combi-
nations of m and q with an average customer capacity slack (mq−|U |)/mq of 14%
make them capacity tight. The computational results are given in Appendix 1.
The run times of the heuristic procedure never exceeded 25 seconds.

1 The instances can be obtained from the author.



5 Conclusions

We introduced advanced multi-edge and multi-node exchange neighborhood struc-
tures for the CRTP. They partially generalize existing concepts for prominent
tree and ring based combinatorial optimization problems. We presented suitable
models to explore these neighborhoods efficiently and a heuristic framework to
turn these techniques into an efficient heuristic. Using this diversifying multi-
start algorithm we are able to obtain optimal results in many cases for a set of
small and medium sized literature instances. The average gap to known lower
bounds is 3.8%. We suggest this first heuristic approach for the CRTP as a ref-
erence for related models and further algorithms.
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Appendix

Table 1 shows the computational results where the first 4 columns indicate the
CRTP instance, the type 1 customer rate r1 with respect to the total number
of customers, the number of nodes |V | and customers |U |. The network cost
c(N ) is then given along with the relative gaps ∆lb = [clb(N )− c(N )]/c(N ) and
∆ub = [c(N ) − cub(N )]/c(N ) to the lower bound clb(N ) and the upper bound
cub(N ) obtained by the exact method in [5]. We do not intend to compete
with the branch & cut algorithm but rather give an idea of the solution quality
obtained by the heuristic. Since we initialized the exact method with the heuristic
solution and use the local search techniques along the branch & bound ∆ub ≥ 0
holds.



Table 1. Heuristic results for CRTP instances from [5] with type 1 customer rates
r1 ∈ {0, 0.25, 0.5, 0.75, 1} compared to bounds obtained by a branch & cut algorithm.

P r1 |V | |U | ∆lb c(N ) ∆ub

1 1 26 12 0 157 0
0.75 -2,3 215 2,3
0.5 0 227 0
0.25 0 236 0
0 0 242 0

2 1 -0,6 164 0,6
0.75 0 207 0
0.5 0 240 0
0.25 0 249 0
0 0 251 0

3 1 -1,7 173 1,7
0.75 -0,8 244 0,8
0.5 0 251 0
0.25 0 279 0
0 0 279 0

4 1 18 0 207 0
0.75 0 256 0
0.5 0 274 0
0.25 0 292 0
0 -1,3 305 1,3

5 1 -1,4 220 1,4
0.75 0 285 0
0.5 -1,6 318 1,6
0.25 0 334 0
0 0 339 0

6 1 -1,7 231 1,7
0.75 0 278 0
0.5 0 336 0
0.25 0 361 0
0 0 375 0

7 1 25 -1,2 248 1,2
0.75 0 294 0
0.5 0 313 0
0.25 0 327 0
0 0 328 0

8 1 -5,6 267 5,6
0.75 -1,3 315 1,3
0.5 0 345 0
0.25 0 357 0
0 0 362 0

9 1 -3,1 262 3,1
0.75 -0,9 322 0,9
0.5 -0,8 372 0,8
0.25 -0,3 379 0,3
0 -0,3 397 0,3

10 1 51 12 0 156 0
0.75 -2 196 2
0.5 0 215 0
0.25 0 222 0
0 0 242 0

11 1 -2,5 163 2,5
0.75 0 209 0
0.5 0 230 0
0.25 0 238 0
0 0 251 0

12 1 -1,2 172 1,2
0.75 0 203 0
0.5 0 251 0
0.25 0 278 0
0 0 279 0

13 1 25 -1,2 248 1,2
0.75 -4 305 1
0.5 0 312 0
0.25 0 322 0
0 0 328 0

14 1 -5,6 267 5,6
0.75 -5,3 321 5,3
0.5 -3,1 352 0
0.25 0 357 0
0 0 362 0

15 1 -3,1 262 3,1
0.75 -2,9 339 1,2
0.5 -4,6 372 0,5
0.25 -5,4 387 0
0 -1,8 397 1,8

P r1 |V | |U | ∆lb c(N ) ∆ub

16 1 37 0 304 0
0.75 -6,6 375 0
0.5 -3,7 378 0,5
0.25 -0,3 380 0,3
0 -0,3 381 0,3

17 1 -0,3 309 0,3
0.75 -1,6 369 1,6
0.5 -3,8 399 0
0.25 -2,2 404 0
0 -1,9 418 1,9

18 1 0 314 0
0.75 -8,6 408 0
0.5 -7 431 0
0.25 -5,3 436 0
0 -3,1 452 0

19 1 50 -0,3 377 0,3
0.75 -4,7 436 2,1
0.5 -2,9 447 0,7
0.25 -0,7 454 0,7
0 -2,3 473 2,3

20 1 -0,5 386 0,5
0.75 -7,7 458 0
0.5 -9,1 493 0
0.25 -6,4 502 0
0 -3,9 513 3,9

21 1 -0,5 392 0,5
0.75 -10,7 501 2
0.5 -9,1 526 0
0.25 -5,5 525 0
0 -4,4 541 2

22 1 76 18 0 214 0
0.75 0 272 0
0.5 -9,6 318 0
0.25 -6,4 318 0
0 0 332 0

23 1 -0,9 235 0,9
0.75 -3,1 312 1
0.5 0 336 0
0.25 -2,9 369 0
0 -1 390 1

24 1 0 259 0
0.75 0 325 0
0.5 -3,8 379 0
0.25 0 397 0
0 -0,7 451 0,7

25 1 37 0 320 0
0.75 -6,8 390 0
0.5 -8,1 402 0
0.25 -3 403 0
0 -1 413 1

26 1 -3 336 3
0.75 -4,8 402 0
0.5 -10,1 455 0
0.25 -9,2 460 0
0 -3 458 0

27 1 -0,9 343 0,9
0.75 -8,7 446 0
0.5 -9,9 473 0
0.25 -10,9 497 0
0 -5,6 506 0

28 1 56 -3 395 3
0.75 -7,6 462 0
0.5 -8,1 477 0
0.25 -3,1 472 0,4
0 -4,1 495 3

29 1 -3,2 402 3,2
0.75 -9,7 488 0
0.5 -10,4 520 0
0.25 -8 532 0
0 -5,7 543 1,5

30 1 -3,6 414 3,6
0.75 -11,9 533 0
0.5 -10,9 554 0
0.25 -9 558 0
0 -2,7 561 1,2

P r1 |V | |U | ∆lb c(N ) ∆ub

31 1 75 -1 478 1
0.75 -6,4 551 0
0.5 -4,9 564 0
0.25 -3,7 573 0
0 -2,1 584 2,1

32 1 -2,4 494 2,4
0.75 -7,4 573 0
0.5 -9,9 612 0
0.25 -5,6 618 0
0 -4,1 626 0

33 1 -1,4 495 1,4
0.75 -12 623 0
0.5 -7,2 623 0
0.25 -8,8 656 0
0 -6,4 674 0

34 1 101 25 -1,8 282 1,8
0.75 -4 327 4
0.5 -4,3 353 0
0.25 -1,4 363 0,6
0 0 366 0

35 1 -1,4 293 1,4
0.75 -6,2 367 0
0.5 -9,3 405 0
0.25 -8,2 416 0
0 -2,9 425 0

36 1 -33,1 299 0
0.75 -8,1 393 0
0.5 -6,5 403 0
0.25 -5,1 429 0
0 -3,8 452 0

37 1 50 -26 411 0
0.75 -7,4 492 0
0.5 -5,4 499 0
0.25 -4,3 503 0
0 -6 523 0

38 1 -25,9 420 0
0.75 -4,2 480 0
0.5 -6,4 517 0
0.25 -5,7 531 0
0 -3 537 0

39 1 -6,3 443 0
0.75 -5,1 505 0
0.5 -6,3 527 0
0.25 -7,6 564 0
0 -4,1 574 0

40 1 75 -10,2 516 0
0.75 -6,9 594 0
0.5 -6 592 0
0.25 -4,3 612 0
0 -3,7 622 0

41 1 -13,7 519 0
0.75 -6,2 595 0
0.5 -4,2 607 0
0.25 -3,1 619 0
0 -2,8 642 0

42 1 -1,3 529 1,3
0.75 -10,6 653 0
0.5 -7,3 645 0
0.25 -7,1 670 0
0 -5,8 689 0

43 1 100 0 555 0
0.75 -6,2 652 0
0.5 -5,6 660 0
0.25 -2,3 656 1,1
0 -2,9 683 2,9

44 1 -0,7 568 0,7
0.75 -5,9 663 0
0.5 -7 690 0
0.25 -4,3 691 1,2
0 -2,3 700 0

45 1 -1 576 1
0.75 -9,5 695 0
0.5 -6 717 0
0.25 -5,6 730 0
0 -4,6 743 0
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