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Abstract 

 

Corporate bonds expose the investor to credit risk, which will be reflected in the 

credit spread. Based on the EMU Broad Market indices, we study the inter-temporal 

stability of the covariance and correlation matrices of credit spread changes. Within a 

multivariate framework, the Box and Jennrich tests are most commonly used test 

statistics in the literature. However, we show that for small samples these tests are not 

well specified when the normality assumption is relaxed. A bootstrap-based statistical 

inference provides evidence that correlations between various (investment grade) 

credit spread changes remain stable over the 1998-2000 period. Covariances on the 

other hand, turn out to be time-varying over that period. 

 

JEL: Classification: G110, G150 

Keywords: credit spreads, diversification, correlations, corporate bonds 
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1. Introduction 

 

Recently, yields on government bonds have come to historical lows. Many investors 

try to pick up a higher return by investing in the corporate bond market. In order to be 

attractive to investors, risky bonds need to offer a higher yield than risk-free bonds 

with the same maturity and coupon rate, thereby compensating for the credit risk 

borne. The difference between the yield on the risky bond and the yield of the 

equivalent risk-free bond is defined as the credit spread. This spread should not just 

compensate the investor for the expected loss on the risky bond, but it should also 

incorporate a risk premium in order to recompense the investor for accepting the risk 

to suffer higher losses.  

 

Credit spread risk, especially for European bonds, is hardly documented. Annaert et al. 

(2000) and Kiesel, et al. (2001) are notable exceptions. This paper focuses on the co-

movement dynamics of credit risk. Obviously a profound knowledge of the time series 

characteristics of correlations is important for various financial applications. Portfolio 

optimisation requires precise estimates of expected returns, variances and 

correlations/covariances. Risk managers will need to model the correlation dynamics in 

order to implement Value at Risk or to build sensible stress testing scenarios. The pricing 

of credit linked copulas also presupposes a profound understanding of the multivariate 

time series dynamics of credit spreads. In order to contribute to our understanding of credit 

spread risk, this paper examines whether the co-movement structure is constant over time. 

Using appropriate statistical tests, we will show that both (unconditional) variance-

covariance matrix and the (unconditional) correlation matrix are relatively stable over the 
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time period studied. Obviously, these results are important for e.g. risk management and 

for choosing appropriate multivariate time series models. 

The remainder of this paper is structured as follows. The next section (section 2) will 

describe the data used and will provide details on the construction of our credit spread 

data set. Descriptive statistics of the credit spreads will be discussed subsequently 

(section 3). In section 4 the appropriateness of several approaches to test the inter-

temporal stability of covariance and correlation matrices is scrutinised. Given the 

multivariate nature of the issue, we followed Kaplanis (1988) in using the Box test on 

the equality of covariance matrices and the Jennrich test on the equality of covariance 

or correlation matrices. Sub-section 4.1 defines the test statistics and discusses the 

conjecture of Tang (1995, 1995b) to use the Box test (on covariances) on standardised 

data in order to implicitly test for stability of correlations, Sub-section 4.2 will 

document two problems with the proposed tests. First, we show that the suggestion of 

Tang (1995, 1995b) to perform the Box test on standardised data in order to test 

equality of correlations leads to misspecifications under the null and should hence not 

be used. Second, we provide additional insights to the well-known result that 

departures from the assumption of multivariate normally distributed data lead to 

extremely misspecified tests. Fat tailedness, which is a stylised fact of all kinds of 

financial data, causes the standard 5% type I error to boost to over 80% causing 

unwarranted rejections of the null. This size misspecification is seriously 

underestimated in the finance literature (e.g. even the monthly data used by Kaplanis 

(1988) probably are hampered with some leptokurtosis) where these kind of tests lead 

authors to conclude in favour of unconditional instability. In order to avoid this flaw, 
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we apply (in section 5) the Zhang and Boos (1992) bootstrap procedure to both the 

Box test (for covariances only) and the Jennrich test (for both covariances and 

correlations). It turns out that correlations between various (investment grade) credit 

spread changes remain stable over time. Covariances on the other hand turn out to be 

time-varying over the period under study.  The last section concludes. 

 

 

2. Data and spread construction 

 

In order to calculate credit spreads, we obtained bond index data constructed by 

Merrill Lynch. Its EMU Broad Market indices are based on secondary market prices 

of bonds issued in the Eurobond market or in EMU-zone domestic markets and 

denominated in euro – or one of the currencies that joined the EMU. Besides direct 

government bond indices, investment grade corporate bond indices were used as well. 

The latter are based on publicly traded bonds, issued by companies domiciled in the 

European Union and exclude convertible securities. For our study, we will use the 

sub-indices for 5 maturity classes and for 3 rating categories (see Table 1 for the exact 

indices used). This gives us a set of 15 indices with differing maturity and credit 

quality. 

 

All these indices are based upon the composite rating of Moody’s and Standard & 

Poor’s, if the issue is rated by both. If ratings do not coincide, an average rating is 

used which is ‘rounded’ downwards. The composition of each index is determined on 

the last business day of the previous month. During the month, each bond will stay in 
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the index, regardless whether or not the bond is downgraded or upgraded, or whether 

the maturity no longer fits the classification. Also when bonds are called during the 

month, they are not removed from the index until the end of the month. A similar rule 

holds for changes in the amount outstanding during a month: face values are kept 

constant and are adjusted at the start of a new month. All issues have a fixed coupon 

(including step-ups) and a minimum remaining term to maturity of one year. 

 

Table1: Average Number of Issues and Average Market Value Outstanding 

 All Ratings AAA AA A 

All Maturities 937.14 

(340.89) 

308.29 

(111.61) 

362.12 

(128.39) 

223.35 

(84.84) 

1-3 years 244.35 

(65.17) 

92.62 

(24.03) 

99.77 

(26.34) 

45.09 

(13.14) 

3-5 years 259.26 

(92.87) 

80.95 

(28.17) 

102.22 

(34.14) 

61.90 

(23.99) 

5-7 years 151.57 

(59.57) 

51.26 

(19.78) 

44.77 

(17.45) 

40.15 

(17.24) 

7-10 years 224.32 

(98.97) 

58.03 

(27.06) 

93.06 

(41.49) 

66.30 

(27.70) 

10-more years 57.64 

(24.31) 

25.44 

(12.57) 

22.30 

(8.96) 

9.91 

(2.77) 

Calculations are based upon Merrill Lynch data. Ratings are composite Moody’s and Standard and 
Poor’s ratings. Maturity buckets include the lower boundary and exclude the upper boundary. Average 
number of issues is computed from daily data over the period 31 March 1998 through 29 November 
2000 (693 observations). Market values are expressed in billions of euro and are printed in 
parentheses.  
 

Although the bond index data start on 31 December 1995, daily data are only 

available from 31 March 1998 onwards. This implies that our daily sample, which 

runs till 29 November 2000, only contains 693 observations per index. In Table 1 we 

 6



indicate the average number of issues and the average market value for each maturity 

bucket and rating class over this sample period. From this Table, it can be seen that 

both the number of issues and the total market value of issues indicate that bonds with 

maturities longer than 10 years are relatively scarce. Moreover, the average maturity 

(shown together with other characteristics in Table 2) of these bonds range between 

10.95 years (A-rated bonds) up to 12.41 years (AAA-rated bonds), implying that more 

than ten years is effectively not really that long a maturity.  

 

From Table 2 no clear pattern can be discerned as to the relation between rating class 

and average maturity within maturity baskets. However, there is a visible difference 

between the average coupon rates: as could be expected, coupon rates and yields to 

maturity are generally larger for lower rated bonds. As the ‘coupon effect’ may have 

an impact on the relation between interest rates and yield spreads, this should be taken 

into account in the empirical analysis. Also, bond indices with longer maturities 

contain larger issues on average than the shorter dated issues. This may have an 

impact on the liquidity premia contained in the bond spread. 
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Table 2: Average Characteristics for the Merrill Lynch Euro Corporate Bond Indices 

  Maturity Modified 
Duration 

Conven-
tional 

Yield to 
Maturity 

Coupon Average 
Market 

Value per 
Issue 

1-3 years AAA 2.00 1.82 4.26 5.84 259.8 

 AA 1.97 1.79 4.35 6.36 263.3 

 A 2.06 1.85 4.49 6.45 295.0 

3-5 years AAA 4.02 3.47 4.58 5.45 345.8 

 AA 3.95 3.39 4.70 5.80 337.0 

 A 4.14 3.55 4.91 5.83 368.4 

5-7 years AAA 5.89 4.81 4.84 5.79 393.7 

 AA 5.90 4.80 4.95 5.87 398.1 

 A 6.00 4.85 5.23 5.93 437.0 

7-10 years AAA 8.59 6.55 5.17 5.64 463.3 

 AA 8.70 6.65 5.32 5.52 435.9 

 A 8.85 6.67 5.59 5.74 405.4 

10+ years AAA 12.41 8.52 5.33 5.64 501.4 

 AA 11.55 8.64 5.47 5.46 416.0 

 A 10.95 8.11 5.84 5.73 278.6 

Calculations are based upon Merrill Lynch data. Ratings are composite Moody’s and Standard and 
Poor’s ratings. Maturity buckets include the lower boundary and exclude the upper boundary. 
Averages are computed from daily data over the period 31 March 1998 through 29 November 2000 
(693 observations). ‘Maturity’, ‘Modified Duration’ and ‘Conventional Yield to Maturity’ are equally-
weighted averages over all issues. ‘Coupon’ is a market value-weighted average. ‘Average Market 
Value per Issue’ is expressed in billions of euro. 
 

Although Merrill Lynch computes option-adjusted spreads, these data are only 

available since 31 March 1999, which leaves us with far too few observations to do 

any analysis. We therefore had to compute yield spreads simply as the difference 

between the yield to maturity as reported by Merrill Lynch and a comparable 

government bond yield. Because of the differences in coupon rates across rating 

categories, shown in Table 2, we chose to take the yield of a government bond with 

similar duration rather than similar maturity. 
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Table 3 Average Characteristics for the Merrill Lynch AAA-rated Euro-Sovereigns 

Bond Indices 

 Number of 
Issues 

Market 
Value 

Outstanding

Maturity Modified 
Duration 

Conventional 
Yield to 
Maturity 

Coupon

All issues 158.51 1232.9 7.20 4.97 4.59 6.47 

1-3 years 49.63 292.2 1.95 1.77 4.01 6.32 

3-5 years 40.71 293.4 3.96 3.39 4.31 6.10 

5-7 years 24.72 198.6 5.93 4.77 4.53 6.62 

7-10 years 25.36 283.8 8.45 6.52 4.77 5.56 

10-more years 18.10 164.8 22.30 11.65 5.29 6.54 

Calculations are based upon Merrill Lynch data. Maturity buckets include the lower boundary and 
exclude the upper boundary. Averages are computed from daily data over the period 31 March 1998 
through 29 November 2000 (693 observations). ‘Maturity’, ‘Modified duration’, ‘Conventional yield 
to maturity’ and ‘Coupon’ are averages over all issues. ‘Market value’ is in billions of euro. 
 

The government bond yields used were the yields of indices of AAA-rated Euro-

sovereigns, also computed by Merrill Lynch. Average characteristics for these bond 

indices can be found in Table 3. There are fewer government issues than corporate 

bond issues, but the former are much larger, as evidenced by the average “Market 

Value Outstanding” column. Obviously, average yields for government bonds are 

lower than the corporate bond yields. However, we did not compute spreads by 

simply subtracting the government bond yield from the bond yields in the 

corresponding maturity bucket. This would not properly account for potential 

differences in maturity or coupon rate between the government and the corporate 

bond index. Therefore, for each corporate bond index and each day in our sample we 

subtracted the yield of the government bond index with the same average (modified) 

duration as the corporate bond index. Of course, in most cases the average duration of 

the corporate bond index did not match the average duration of a government bond 
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index. In these cases we took an interpolated government bond yield. This yield was 

exponentially interpolated from the two adjacent government bond yields.1  

 

 

3. Descriptive statistics of the credit spreads 

 

Summary statistics of the daily series can be found in Table 4. As could have been 

expected, average spreads increase monotonically the lower the credit rating. The 

relation is clearly not linear: the difference between the BBB-rated indices and AA-

rated indices is generally much higher than between other adjacent rating classes. 

These spreads are considerably lower than the spreads reported by Duffee (1998). For 

AAA-rated bonds, our spreads vary between 24 basispoints (bp) and 43 bp, whereas 

Duffee finds at least 67 bp. The picture is similar for the other rating categories. Of 

course, our data period is much shorter than Duffee’s and does not overlap with his. 

Our average spreads do seem consistent with the findings of Pedrosa and Roll (1998) 

for US investment grade spreads covering the period 1995-1997. Unfortunately, they 

do not provide an estimate of the average spread on the US market, but the graphs 

they present, show spread levels similar to our data. 

 

                                                 
1 The corresponding author will provide further details of the credit spread construction on request.  
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Table 4 Summary Statistics of Yield Spreads 

  Average 
Spread  
(in %) 

Standard 
Deviation 

(in %) 

First Order 
Auto-

correlation

Second 
Order Auto-
correlation

Third Order 
Auto-

correlation 

Ljung-Box 
Statistic at 20 

lags 
1-3 years AAA 0.235 0.074 0.946 0.935 0.931 10707 

 AA 0.328 0.059 0.957 0.938 0.928 10752 

 A 0.457 0.099 0.855 0.814 0.792 7255 

3-5 years AAA 0.244 0.081 0.962 0.949 0.938 10723 

 AA 0.381 0.086 0.962 0.947 0.938 10835 

 A 0.567 0.134 0.978 0.967 0.957 11066 

5-7 years AAA 0.298 0.095 0.972 0.959 0.947 10844 

 AA 0.416 0.135 0.982 0.973 0.967 11911 

 A 0.688 0.216 0.987 0.979 0.971 12170 

7-10 years AAA 0.431 0.106 0.969 0.950 0.935 10167 

 AA 0.608 0.125 0.975 0.961 0.951 10771 

 A 0.881 0.203 0.987 0.979 0.971 11747 

10+ years AAA 0.408 0.111 0.973 0.961 0.950 10933 

 AA 0.539 0.129 0.961 0.951 0.932 10412 

 A 0.967 0.232 0.988 0.981 0.974 12032 

Calculations are based upon Merrill Lynch data. Yield spreads are spreads relative to government bond 
yields with similar duration. Ratings are composite Moody’s and Standard and Poor’s ratings. Maturity 
buckets include the lower boundary and exclude the upper boundary. Statistics are computed from daily 
data over the period 31 March 1998 through 29 November 2000 (693 observations). For the A-rated 1-3 
year bonds, one negative spread, possibly due to a data error, was replaced by the average of the adjacent 
spreads. 
 

As far as the relation between spread and maturity is concerned, we generally find an 

upward sloping credit curve, as was also the case for Duffee (1998). Nevertheless, in 

some cases the relation is not monotone: see e.g. ‘10 and more years’ bucket for AAA 

and AA-rated bonds. This might be due to a liquidity effect, since the longer dated 

issues are the largest. In addition, it may be the case that relatively less credit risky 

issuers issue longer dated bonds. 
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Furthermore, we note that, as in Longstaff and Schwartz (1995), the standard 

deviation of spreads is generally also increasing when credit rating deteriorates. No 

clear relation with maturity can be spotted. Finally, we also observe that the first lag 

auto-correlation coefficient of all spread series is relatively large, and often near 0.95 

or higher. We do not present stationarity tests because of the reported low power of 

unit root tests on observation periods as short as this one. In any case, if we accept on 

economic grounds that the credit spread series are stationary, it is clear from the high 

auto-correlation coefficients that they revert only slowly to their long-run average. 

 

In Table 5 summary statistics for changes in credit spreads are presented. To some 

extent these are more important in a risk management context, as it is important to 

understand how credit spreads behave through time. We present descriptive statistics 

for both daily and weekly data. The descriptives on daily data are more comparable to 

the existing literature. Our research on inter-temporal stability of co-movements will 

be applied to weekly data in order to obtain better estimates of correlations and 

covariances (see section 5).  

 

It can be noticed that average daily changes in spreads are very small and 

insignificantly different from zero. This could have been expected as they measure the 

trend of credit spreads over the time period investigated. When we look at the 

standard deviation of spread changes, there is not a clear relation to rating class. This 

contrasts both with Pedrosa and Roll (1998), who find lower standard deviations for 

lower rating classes, and with Duffee (1998) or Longstaff and Schwartz (1995) who 

find the opposite effect. Looking at the maturity class, we neither have a clear picture, 
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which is consistent with Duffee (1998), but not with Pedrosa and Roll (1998), who 

find decreasing volatility for longer maturities. These inconsistent results cannot be 

explained by the calculation method of the spreads. Whereas Duffee (1998) calculates 

spreads as simple first differences, Longstaff and Schwartz (1995) and Pedrosa and 

Roll (1998)) use logarithmic differences instead. Re-computing our standard 

deviations using logarithmic differences does not alter our results. 

 

Table 5: Summary Statistics of Yield Spread Changes 

Panel A: Changes of the daily spreads 

  Average 
Spread 
Change 
(in bp) 

Standard 
Deviation 

(in bp) 

Skew-
ness 

Kurtosis First 
Order 
Auto-

correlation 

Second 
Order 
Auto-

correlation 

Third 
Order 
Auto-

correlation
1-3 years AAA 0.026 0.0240 -0.92* 48.04* -0.424* -0.054 0.058 

 AA 0.016 0.0171 0.09 7.27* -0.290* -0.110* -0.058 

 A 0.014 0.0513 0.14 24.11* -0.363* -0.063 0.030 

3-5 years AAA 0.040 0.0209 0.05 6.80* -0.370* -0.023 -0.022 

 AA 0.039 0.0226 -0.02 14.08* -0.337* -0.080* -0.016 

 A 0.081 0.0228 -0.02 7.29* -0.338* -0.007 -0.037 

5-7 years AAA 0.045 0.0207 -0.01 5.77* -0.333* 0.003 -0.046 

 AA 0.057 0.2342 0.37* 12.29* -0.341* -0.055 0.002 

 A 0.104 0.0278 -0.24* 10.05* -0.228* -0.019 -0.059 

7-10 years AAA 0.047 0.0244 -0.71* 16.30* -0.216* -0.052 -0.004 

 AA 0.062 0.0254 0.17 19.62* -0.258* -0.089* 0.100* 

 A 0.117 0.0233 1.02* 17.22* -0.286* -0.037 0.021 

10+ years AAA 0.048 0.0240 -0.20* 11.70* -0.316* -0.013 0.001 

 AA 0.079 0.0325 0.06 41.00* -0.456* 0.151* -0.121* 

 A 0.105 0.0295 0.26* 9.42* -0.298* 0.026 0.016 
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Panel B Changes of (non-overlapping) weekly spreads 

  Average 
Spread 
Change 
(in bp) 

Standard 
Deviation 

(in bp) 

Skew-
ness 

Kurtosis First 
Order 
Auto-

correlation

Second 
Order 
Auto-

correlation 

Third 
Order 
Auto-

correlation
1-3 years AAA 0.13 0.0225 -0.02 4.43* -0.269* -0.100 0.114 

 AA 0.08 0.0223 -0.01 3.11 -0.323* 0.068 -0.109 

 A 0.11 0.0665 0.30 9.83* -0.387* -0.168 0.172* 

3-5 years AAA 0.19 0.0277 0.43* 4.93* -0.271* -0.105 0.021 

 AA 0.19 0.0283 0.23 4.26* -0.227* -0.020 -0.158 

 A 0.37 0.0317 0.06 5.07* -0.159 0.045 0.008 

5-7 years AAA 0.22 0.0293 0.23 4.14* -0.224* -0.008 -0.019 

 AA 0.28 0.0300 0.88* 5.23* -0.167 0.004 -0.066 

 A 0.49 0.0461 0.02 8.61* -0.308* 0.027 -0.028 

7-10 years AAA 0.23 0.0412 -0.57* 7.75* -0.210* -0.124 0.023 

 AA 0.29 0.0404 0.23 8.94* -0.172* 0.002 -0.023 

 A 0.56 0.0402 0.45* 12.29* -0.090 -0.096 -0.011 

10+ years AAA 0.24 0.0342 0.63* 4.49* -0.191* -0.092 -0.150 

 AA 0.39 0.0336 -0.22 6.21* -0.234* 0.051 -0.056 

 A 0.52 0.0479 0.17 5.55* -0.130 0.100 -0.145 

Calculations are based upon Merrill Lynch data. Yield spreads are spreads relative to government bond 
yields with similar duration. Ratings are composite Moody’s and Standard and Poor’s ratings. Maturity 
buckets include the lower boundary and exclude the upper boundary. Statistics in Panel A are 
computed from daily data over the period 1 April 1998 through 29 November 2000 (692 observations). 
Panel B provides the results of 138 weekly spreads. Weekly spreads were constructed by summing 5 
consecutive daily spreads. Asterisks denote auto-correlation, skewness or excess kurtosis coefficients 
more than two (asymptotic) standard deviations away from zero. 
 

Table 5 Panel A also shows the first three order auto-correlation coefficients of the 

spread changes. Without any exception, all first order coefficients are negative and 
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usually significantly different from zero.2 This is in contrast to Duffee (1998) who 

uses monthly data and mostly finds positive auto-correlations. The negative auto-

correlation may be a reflection of poor liquidity in the European corporate bond 

market. By frequently bouncing between the bid and the ask quote, negative auto-

correlation may be introduced. This explanation is unlikely, however, since 

aggregation of the daily spreads to weekly spreads does not mitigate this negative 

correlation (Compare with Panel B). Higher order auto-correlation does hardly seem 

present in the series. 

 

In any case, from the skewness and kurtosis coefficients in Table 5, it is clear that 

spread changes are not normally distributed. This is especially due to excess kurtosis. 

All kurtosis coefficients are significantly higher than three, which implies that the 

distributions have higher peaks and thicker tails than the normal distribution does. If 

the latter distribution is used for risk management purposes, this means that more 

extreme changes would effectively occur than expected. Therefore, 99% Value-at-

Risk measures based upon the normal distribution will be underestimating true risk 

and capital requirements will be insufficient. Table 5 Panel B summarises the same 

descriptive statistics for weekly data. In general the same stylised facts pop up. Excess 

kurtosis is much lower but still overwhelmingly indicating non-normality. The first 

order auto-correlation is somewhat less predominantly present but remains 

exclusively negative.  

 

                                                 
2 The asymptotic standard deviation of the auto-correlation coefficients is 6921 = 0.038 for the daily data 

and 1381 = 0.0851 for weekly data. 

 15



4. Methodological issues in assessing inter-temporal stability of co-movements 

 

Several approaches have been advanced to study the multivariate structure of stock 

returns. Principal component analysis e.g. reveals the number of (significant) risk 

factors (Makridakis and Wheelwright (1974), Philippatos and Christofi (1983) and 

Cheung and Ho (1991)). Obviously, one can perform principal component analysis 

over several sub-periods and check whether the same risk factors pop up. This, 

however, is not a test on the stability of the covariance and/or correlation structure. 

The same critique applies to applications of cluster analysis applied by e.g. Cheung 

and Ho (1991). Moreover, the choice of the distance metric and the clustering method 

inevitably brings some arbitrariness into the research design. The Normal Distribution 

test, as used by Haney and Lloyd (1978), Watson (1980), Maldonado and Sounders 

(1981) and Cheung and Ho (1991), also has its weaknesses. Using this test, the 

evaluation of the null hypothesis of equality of a correlation coefficient between two 

time periods becomes possible. As it is merely a pair-wise method, it only tests the 

stability of the individual correlation coefficients. Meric and Meric (1989) indicate 

that this test can lead to misleading results, since in the formation of ex-ante optimal 

portfolios our major concern is the stability of the entire matrix, not just the stability 

of the individual coefficients. Moreover, it is well known that independent univariate 

tests may reject the null hypothesis while the multivariate test does not. However, the 

reverse is possible as well. Hence, we follow Kryzanowski and To (1987) and 

Kaplanis (1988) in applying multivariate tests on equality of two 

covariance/correlation matrices across different time periods. Traditionally, two tests 

have been advanced for this purpose: one developed by Box (1949), another by 
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Jennrich (1970). Kaplanis (1988) notes that both tests are asymptotically equivalent, 

but for small samples, the test results may lead to different conclusions. The Jennrich 

test is designed for testing both the equality of covariance and correlation matrices. 

The Box test, however, only applies to covariance matrices. Tang (1995, 1995b) 

mistakenly - as we will show - conjectured that the Box test could also be used to test 

for the equality of correlation matrices provided that the data are first standardised.  

 

In this section we will first define the test-statistics used. Next, we will examine their 

size, which will reveal the shortcomings of the Tang (1995, 1995b) procedure and the 

extreme sensitivity to departures from multivariate normality.  

 

4.1 Test statistics 

 

4.1.1 The Box test on equality of covariance matrices 

The Box (1949) test tests for the equality of the two covariance matrices and 

consequently avoids the problems of the pair-wise test. Let C1 and C2 be the 

population covariance of the first and second period. The null hypothesis that the 

covariance matrix is inter-temporally stable is equivalent to the hypothesis that the 

matrices across the two different time periods are jointly equal to each other. We 

therefore test the hypothesis: 

H0: C1 = C2 

 

Following Morrison (1976), the Box test statistic, M, can be computed as follows: 

M = (T(0)-2) ln|V| - (T(1)-1) ln|V(1)| - (T(2)-1) ln|V(2)|, 
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where:  ln(.) denotes the natural logarithm and |.| stands for determinant; 

T(i) denotes the number of observations on the N bonds, where i = 0, 1, 2; and 

T(0) = T(1) + T(2); 

V denotes the pooled covariance matrix based on biased sub-period covariance 

matrices; 

V(i) denotes the unbiased sample covariance matrix of asset returns, where i = 

1 or 2. 

 

A Chi-squared approximation can be obtained for M by multiplying it by a scalar  

c = (1-A1), where  
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M  is approximately distributed as an F-

distribution with d1 and d2 degrees freedom. 

Case 2: A2 < A1
2 

In this case, let 
2

2
1

1
2

2
AA

dd
−
+

=  and 

2
1

2

21
d

A

db
−−

= , such that 
)(1

2

Mbd
Md
−

 is 

approximately distributed as an F-distribution with d1 and d2 degrees of freedom. 

 

4.1.2 The Adjusted Box test on equality of correlation matrices 

Tang (1995, 1995b) re-observed3 that this Box statistic on covariance matrices can 

also be used for testing the equality of correlation matrices when performed on 

standardised data, since for standard scores the two equal. Moreover since the 

correlation between two random variables equals the correlation between the 

standardised variables, Tang (1995, 1995b) thought to have found a simple way to test 

for the equality in correlation structures. 

 

4.1.3 The Jennrich-test on the equality of correlation and covariance matrices 

The Jennrich test can be used either to test the equality of covariance matrices or to 

test the equality of correlation matrices. If we want to evaluate the structure of 

covariance matrices, we define: 

                                                 
3 Although Tang (1995, 1995b) does not quote an older working paper of Gibbons (1981), Kryzanowski and 
To (1987) cites that Gibbons also standardised his data to apply the Box test on correlation matrices.  
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
+

= − . 

The Jennrich (1970) statistic J1 to test equality of two covariance matrices is 

computed as follows: 

)(
2
1 2

1 ZtrJ =  

where tr(.) denotes the trace-function. The J1 is asymptotically distributed as a chi-

squared with 
2

)1( −NN  degrees of freedom. 

 

Testing the equality of correlation matrices can be done by defining Z as follows: 

)( )2()1(1
)2()1(

)2()1(

CCC
TT

TTZ −







+

= − . 

The J2 statistic, testing equality of the two correlation matrices, is then: 

( )[ ] ( )[ ]ZdgWZdgZtrJ 12
2 ')(

2
1 −−=  

where dg(Z) stacks the main diagonal of Z into a column vector, and the elements wij 

of W are defined to be wij = δij + cij cij, in which 

δij denotes Kronecker’s delta such that δij = 1 if i = j and zero else; 

cij is the ij-th element of C; and 

cij is the ij-th element of C-1. 

J2 is also asymptotically distributed as a chi-square with 
2

)1( −NN  degrees of 

freedom. 
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4.2. Size of the Box, the adjusted Box and the Jennrich test 

 

Kryzanowski and To (1987) rightfully observe that the Box test assumes that the data 

are multivariate normal. They state that “if this assumption is not satisfied exactly, 

then the power of the test… is less than what would be expected theoretically.” 

Unfortunately, it is not only the power that is affected but also the size and hence the 

specification of the test as well!   

 

Before implementing the proposed tests in our empirical framework, we first take a 

close look at the size of the Box test, the adjusted Box test and the Jennrich test. 

Keeping in mind that we want to apply the tests to our weekly credit spread data, we 

have set up simulation experiments with correlation dimensions of 3 (the three rating 

categories), 5 (the five maturity buckets) and 15 (the fifteen indices) and with short 

time series of 69 observations. Clearly, we would like to know whether the 

asymptotic properties of the tests still carry over to small samples. Table 6 documents 

the size of the tests under multivariate normality.  
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Table 6: Size of the Box test, the adjusted Box test and the Jennrich test under 

multivariate normality 

  Dimension 

 Type I error 3 5 15 

Box test 1%

5%

10%

0.0107 

0.0554 

0.1106 

0.0088 

0.0456 

0.0967 

0.0118 

0.0513 

0.0978 

Adjusted Box test 1%

5%

10%

0.0011 

0.0070 

0.0173 

0.0009 

0.0060 

0.0151 

0.0008 

0.0065 

0.0180 

Jennrich test on 

Covariances 

1%

5%

10%

0.0069 

0.0444 

0.0959 

0.0074 

0.0413 

0.0912 

0.0051 

0.0362 

0.0819 

Jennrich test on 

Correlations 

1%

5%

10%

0.0118 

0.0559 

0.1069 

0.0087 

0.0523 

0.1044 

0.0083 

0.0541 

0.1191 

The size of the Box test and the Jennrich test on correlations was determined based on 10,000 simulation 
runs where the correlation matrices of dimension 3, 5 and 15 were calculated based on 69 observations 
drawn from a multivariate standard normal distribution. The size of the adjusted Box test and the 
Jennrich test on covariances was determined based on a covariance matrix equal to 2 times the identity 
matrix. Each cell entry lists respectively the 1%, 5% and 10% rejection rate (first, second and third row). 

 

 

Table 6 reveals that (even) for small samples the Box and Jennrich tests are relatively 

well specified. The adjusted Box test proposed by Tang (1995, 1995b), however, 

dramatically underestimates the size at all the standard significance levels. It does so, 

irrespective of the dimension of the correlation matrix. These findings immediately 

rule out the adjusted Box test for testing the equality of correlations. 

 

Considering the excess kurtosis of the credit spread changes as shown in Table 5 

Panel B, a fat tailed distribution would be more apt to model the stochastic behaviour 
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of credit spreads. The literature on the distribution of speculative prices has spawned 

a plethora of candidate univariate distributions including sum-stable distributions 

(Mandelbrot, 1963), Mixtures of Normals (Kon, 1984), the Student-t distribution 

(Blattberg and Gonedes, 1975) and Mixed Jump diffusion processes (Ball and Torous, 

1983). The main stylised fact all these authors want to capture is the fat-tailed 

character and the excess kurtosis of the empirical distributions of several kinds of 

speculative prices. In order to study the size under an alternative distribution, we need 

a multivariate alternative to the multivariate normal, which at least can capture the 

behaviour in the tails in an easy way. The multivariate Student-t distribution, mvt, fits 

this purpose. It can easily be generated based on a multivariate normally distributed 

random variable x, with a given mean vector and a given variance-covariance 

structure: 

v
y

xmvt  =   

where y denotes a Chi-Square distribution with v degrees of freedom (Tong, 1990). A 

nice property of the multivariate Student-t is that it – as its univariate counterpart – 

nests the multivariate normal distribution for v → ∞. At the same time v indicates the 

tail thickness. The lower v, the fatter the tails of the distribution is. In order to study 

the impact of departures of multivariate normality, we repeat our simulations (10,000 

runs, 69 observations, and correlation matrices of dimensions 3, 5 and 15), with the 

same covariance structures but we let the degrees of freedom vary from 50 to 3. The 

first case closely approximates multivariate normality, the last one possesses very fat 

tails. In order to preserve space, Table 7 only reports the results for v = 50, 30, 5 and 

3. 
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Table 7: Size of the Box test, and the Jennrich tests under the multivariate Student-t 

distribution 

 Box test Jennrich test on  
covariances 

Jennrich test on 
correlations 

 1% 5% 10% 1% 5% 10% 1% 5% 10%

v Dimension = 3 

50 0.015 0.069 0.129 0.011 0.059 0.117 0.011 0.058 0.114

30 0.018 0.082 0.143 0.012 0.069 0.130 0.015 0.063 0.117

15 0.031 0.113 0.191 0.024 0.097 0.176 0.019 0.079 0.146

5 0.248 0.419 0.524 0.220 0.391 0.505 0.108 0.230 0.324

3 0.628 0.760 0.822 0.593 0.742 0.809 0.312 0.478 0.575

 Dimension = 5 

50 0.014 0.066 0.131 0.011 0.059 0.123 0.011 0.0603 0.120

30 0.018 0.076 0.143 0.013 0.068 0.134 0.012 0.0646 0.130

15 0.037 0.128 0.210 0.026 0.114 0.200 0.021 0.0931 0.170

5 0.390 0.585 0.687 0.349 0.564 0.676 0.205 0.3912 0.511

3 0.831 0.913 0.942 0.806 0.906 0.939 0.598 0.7610 0.830

 Dimension = 15 

50 0.021 0.087 0.160 0.010 0.064 0.133 0.011 0.062 0.132

30 0.034 0.130 0.221 0.015 0.095 0.189 0.017 0.095 0.175

15 0.118 0.290 0.416 0.071 0.235 0.373 0.059 0.207 0.339

5 0.892 0.960 0.978 0.838 0.945 0.973 0.740 0.895 0.942

3 0.999 0.999 1.000 0.997 0.999 0.999 0.991 0.998 0.999

The size of the Box test and the Jennrich test on correlations was determined based on 10,000 
simulation runs where the correlation matrices of dimension 3, 5 and 15 were calculated based on 69 
observations drawn from a multivariate Student-t distribution with 3, 5, 15, and 50 degrees of freedom. 
The size of the Jennrich test on covariances was determined based on a covariance matrix equal to 2 
times the identity matrix. For every test, the cell entries list respectively the 1%, 5% and 10% rejection 
rate (first, second and third column). 
 

Table 7 clearly shows that the size of both the Box and the Jennrich tests rapidly 

deteriorates, with diminishing degrees of freedom. Unfortunately, univariate estimates 

of the degrees of freedom for the Student-t distribution often lead to estimates in the 
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neighbourhood of 3 to 5 (e.g. Blattberg and Gonedes (1974) for stocks, Boothe and 

Glassman (1987) for foreign exchange rates).  

Table 7 also displays the fact that tests based on matrices with a larger dimension lead 

to even more misspecification than those performed on small correlation matrices. It 

is clear from these simulations that no serious conclusions can be drawn based on a 

standard application of the proposed tests under the presence of leptokurtosis and fat 

tails. It is hardly surprising that a lot of authors find rejections of the null of stability. 

Deviations from the normality assumption caused by fat tails indeed lead to extremely 

liberal tests and thus are hardly useful. 

 

If we still want to perform these tests on financial data, we need an approximation of 

the small sample distribution of the test statistic under fat tailed alternatives. In order 

to do so, Zhang and Boos (1992) develop a bootstrap procedure to assess the 

significance of the Box test. They show that a bootstrap procedure can be used to 

estimate critical values for test statistics testing the equality of covariance, when the 

assumption of multivariate normality does not hold. Consistent with the findings of 

Zhang and Boos (1992), Table 7 indicates that asymptotically Chi-square distributed 

tests are rather sensitive to non-normality. We therefore follow their recommendation 

in using the bootstrap procedure for the data analysis.4 The proposed bootstrap 

procedure starts by demeaning the two sub-sets of credit spreads. Subsequently, 500 

samples of two sub-sets (each with 69 observations) were drawn with replacement 

                                                 
4 Boos and Zhang (1992) show that the bootstrap procedure might seem to be a little bit conservative for 
larger dimensions. Unfortunately, assessing the size and power of bootstrap procedures leads to biased power 
and size estimates if done with a simple Monte Carlo simulation (Boos and Zhang, 2000). Further statistical 
research is needed to obtain ‘absolute’ certainty of the specification of the bootstrap-based statistical 
inference. 
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from the pooled demeaned data sets. In order to obtain the bootstrap results for e.g. 

the Box test, we calculate the Box statistic for each of the 500 samples/couples. Apart 

from the 500 bootstrapped Box test values, the Box statistic is also calculated for the 

original data set. The bootstrapped p-value reports the percentage of bootstrapped 

Box statistics that are higher than the Box statistic obtained from the original credit 

spread changes data. Bootstrapped p-values for the Jennrich tests on covariances and 

correlations were calculated analogously.  

 

 

5. Inter-temporal stability of credit spread co-movements 

 

A comparison of the stability results using the Box, Jennrich test and the Bootstrap 

procedure is presented in Table 8. We report the results for the weekly data (5 days) 

and each correlation or covariance matrix thus is estimated based on 69 observations. 

It has often been noticed that non-synchronous trading and other microstructure 

effects can produce artificially low correlations (e.g. Best, 1999). Moreover, since our 

data are quoted prices, data errors might still occur on a daily basis. It is therefore 

advisable to study the data on a lower frequency e.g. on a weekly basis. We show the 

results of the overall data set as well as for 2 different types of sub-samples. First the 

indices are grouped according to their ratings. These subsets thereby contain five 

‘asset categories’, each originating form a different maturity bucket. Alternatively, the 

sample is regrouped based on the time to maturity. Within each of these maturity 

buckets three indices of different investment grade qualities are considered.  
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Table 8: Equality of Covariance and Correlation Matrices 

 Covariance Correlation 
 Box  Jennrich  Jennrich  
Overall 485.06  297.6  191.63  

 (0.0000)*  (0.0000)*  (0.0000)*  
 [0.0000]*  [0.0000]*  [0.0120]*  

AAA 39.07  36.23  22.09  
 (0.0011)*  (0.0016)*  (0.0147)*  
 [0.0700]  [0.0680]  [0.0860]  

AA 62.84  49.51  20.04  
 (0.0000)*  (0.0000)*  (0.0289)*  
 [0.0000]*  [0.0000]*  [0.0580]  

A 166.89  100.08  22.94  
 (0.0000)*  (0.0000)*  (0.0110)*  
 [0.0000]*  [0.0000]*  [0.1580]  

1-3 149.87  77.61  10.44  
 (0.0000)*  (0.0000)*  (0.0152)*  
 [0.0000]*  [0.0000]*  [0.0140]*  

3-5 8.13  8.06  5.66  
 (0.2288)  (0.2336)  (0.1296)  
 [0.5840]  [0.5620]  [0.3460]  

5-7 39.38  31.93  4.56  
 (0.0000)*  (0.0000)*  (0.2074)  
 [0.0380]*  [0.0440]*  [0.3560]  

7-10 70.85  52.3  24.93  
 (0.0000)*  (0.0000)*  (0.0000)*  
 [0.0060]*  [0.0040]*  [0.0020]*  

10+ 15.94  15.34  2.62  
 (0.0141)*  (0.0178)*  (0.4532)  
 [0.0980]  [0.0940]  [0.4520]  

Calculations of the Box and Jennrich statistics are based on a total sample of 138 weekly observations. 
Each sub-period (2 populations) consist of 69 observations. Weekly spread changes are constructed by 
adding 5 daily spread changes. An asterisk denotes significantly different covariance or correlation 
matrices at the 5% significance level. p-values of the standard statistics are given between parentheses, 
the bootstrapped p-values are placed between squared brackets. 

 

Table 8 reports the test results on the stability of the covariances and correlations of 

the credit spread changes based on the standard (i.e. asymptotically) and bootstrapped 

Box and Jennrich tests. We observe that the results on covariance stability are the 

same irrespective of the test used (compare the Box (column2) and Jennrich (column 

3) p-values). 
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The stability of the covariance structure computed from the 15 rating and maturity 

based indices, is firmly rejected. If we study the indices conditioned on 

rating/maturity (leaving us within the rating/maturity bucket with 5/3 sub-indices 

differing with respect to maturity/rating) this result is generally confirmed. At a 5% 

significance level, the bootstrapped p-values and their asymptotic counterparts, lead 

to the same conclusions. Only two exceptions can be spotted: the AAA bucket and the 

10+ maturity bucket. For these buckets, the bootstrap procedure does not reject the 

null of stability. 

 

Since the covariances are based on both variances and correlations, the instability 

found can be due to changing correlations. We now turn to the analysis of the 

correlation matrices to find out whether the correlations are more stable than the 

covariances. The standard and the bootstrapped Jennrich test performed on the 

correlation matrices based on the 15 indices both reject the null hypothesis at a 5% 

significance level. However, at the 1% level, the bootstrapped p-value no longer 

rejects the null. This evidence shows that correlations in general are more stable than 

covariances. Turning to the sub-samples, one can observe that the bootstrapped p-

values convincingly confirm this. For only two of the sub-samples, the bootstrapped 

tests reject the equality of correlation matrices at the 5% significance level. Finally, it 

is clear from the rating buckets in Table 8 that the asymptotic statistical inference can 

lead to false conclusions. Taking these results into account, we can induce that the 

covariances are in general less stable than correlations. 
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6. Conclusion 

 

Corporate bonds expose the investor to credit risk, which will be reflected in the 

credit spread. Based on the EMU Broad Market indices, we study the inter-temporal 

stability of the covariance and correlation matrices of credit spread changes. Before 

implementing stability tests on weekly data, we give full details on the construction of 

the credit spreads used. Descriptive statistics of the credit spreads are provided as 

well. Given the multivariate nature of the data set, we use the Box test (on the 

equality of covariance matrices) and the Jennrich test (on the equality of covariance or 

correlation matrices) to test the stability of the co-movement structure of credit 

spreads. First, we show that procedure proposed by Tang (1995a, 1995b) to test 

equality of correlations (using a Box-test based on standardised data), leads to a 

misspecified test under the null. Second, the appropriateness of the standard Box and 

Jennrich tests is checked while relaxing the assumption of multivariate normality. 

This analysis leads us to conclude that these departures also lead to extremely 

misspecified tests. We therefore are forced to apply a bootstrap procedure to obtain 

correct statistical inference. Using the standard (asymptotical) Box and Jennrich test 

statistics, neither the covariance nor the correlation matrix is stable over time. The 

bootstrap procedure, however, shows that, for the period under study, this conclusion 

is falsified. Correlations turn out to be less instable as often claimed. 
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