

This item is the archived peer-reviewed author-version of:

Rapid construction of substituted 3-amino-1,5-benzothiazepin-4(5H)-one dipeptide scaffolds through an Ugi-4CR-Ullmann cross-coupling sequence

Reference:

Van der Poorten O., Van den Hauw e R., Hollanders K., Maes Bert, Tourw é D., Jida M., Ballet S..- Rapid construction of substituted 3-amino-1,5-benzothiazepin-4(5H)-one dipeptide scaffolds through an Ugi-4CR-Ullmann cross-coupling sequence Organic and biomolecular chemistry / Chemical Society [Londen] - ISSN 1477-0520 - 16:8(2018), p. 1242-1246 Full text (Publisher's DOI): https://doi.org/10.1039/C7OB03094K Full text (Publisher's DOI): https://doi.org/10.1039/C7OB03094KRSC.LI/OBC To cite this reference: https://hdl.handle.net/10067/1508830151162165141

uantwerpen.be

Institutional repository IRUA

Rapid Construction of Substituted 3-Amino-1,5-Benzothiazepin-4(5*H*)-One Dipeptide Scaffolds Through an Ugi-4CR – Ullmann Cross-Coupling Sequence

O. Van der Poorten,^a R. Van Den Hauwe,^a K. Hollanders,^{a,b} B. U. W. Maes,^b D. Tourwé,^a M. Jida,^a and S. Ballet*^a

A 3-step methodology for the synthesis of 1,5-benzothiazepin-4(5*H*)-one dipeptidomimetics has been elaborated via an Ugi-4CR followed by a *S*-trityl deprotection and an intramolecular Cu(I)-catalyzed Ullmann condensation with moderate to good yields. *In silico* and NMR conformational studies showed that the lowest energy conformers stabilize γ - and β -turn structures.

Substituted benzothiazepines and benzothiazepinones have a prominent place in the realm of bioactive compounds,^{1, 2} with a therapeutic scope including anticancer agents,³ calcium channel blockers and antihypertensive agents,^{4, 5} angiotensin converting enzyme inhibitors,⁶ human leukocyte elastase inhibitors,⁷ and bradykinin receptor agonists.^{8, 9} The first 1,5-benzothiazepin-4(5*H*)-one-based therapeutics included the cardiovascular agents Diltiazem **1** and Clentiazem **2**, and Thiazesim **3** as an antidepressant (Fig. 1). Upon substitution of the Pro⁷-Phe⁸ segment in bradykinin and D-Tic⁷-Oic⁸ in HOE140 with the (*S*)-1,5-benzothiazepin-4(5*H*)-one dipeptide mimetic core (D-BT, indicated in red in **4**), full potent and selective bradykinin B₂ receptor agonists (of type **4**) were discovered and a type II' β -turn in the *C*-terminal tetrapeptide segment of the [D-BT]bradykinin analogues was observed (Fig. 1).^{8, 9} This result was in line with the report that the D-BT motif induced a type II' β -turn in both solution and solid state.¹⁰ Additionally, potent and highly selective bradykinin B₁ receptor antagonists were obtained via the introduction of the D-BT dipeptide scaffold in [des-Arg]bradykinin analogues.^{11, 12}

In order to access the D-BT scaffold, Amblard and co-workers successfully adapted the original procedure described by Slade⁶ starting from the condensation of Boc-D-Cys-OH and *o*-fluoronitrobenzene into **5**, followed by nitro reduction and intramolecular lactamization to provide **6**.¹³ Subsequent alkylation of the lactam nitrogen with methyl bromoacetate yielded 1,5-benzothiazepin-4(5*H*)-one dipeptidomimetic **7** (Scheme 1). However, when aiming for 1,5-benzothiazepinone-based dipeptidomimetics **8** including substituents at the C_{α} of the exocyclic amino acid, *N*-alkylation is problematic and synthetic protocols to introduce substituents at the C_{α} -center in **7** proved difficult.

Fig. 1 Selected examples of 1,5-benzothiazepin-4(5*H*)-one-based pharmaceuticals **1-3** and a potent bradykinin B_2 receptor agonist **4**.

Scheme 1 Synthesis of D-BT **7**^{6, 13} and problematic extension towards C_{α} -substituted analogues **8**.

For this reason, Gan and Ma reported an alternative route in which several 1,5-benzothiazepinone dipeptide mimics were generated through two Cul-catalyzed cross coupling reactions (Scheme 2).¹⁴ *N*-tolyl-L-Val-OH **9** was first obtained via a Cul-catalyzed coupling of *p*-bromotoluene with L-Val. Methyl or phenacyl (Pac) ester **10** were then *o*-iodinated to give **11**. After condensation of **11** with Fmoc-L-Cys(PMB)-Cl (PMB: *p*-methoxybenzyl) and switching the Fmoc protecting group in **12** to a Boc group, the *S*-PMB group in **13** was removed and the free thiol was subjected to an intramolecular Cul/*N*,*N*-dimethylglycine catalyzed C-S Ullmann condensation to give the Boc-protected (*R*,*S*)-1,5-benzothiazepin-4(5*H*)-one dipeptide mimetic **14**. This methodology allowed the introduction of various *N*⁵-substituents by changing the amino acid coupling partners (i.e. L-Ala, L-Val, L-Ile, L-Phe), but it had the intrinsic limitation of requiring a *p*-methyl group in **10**, in order to promote *o*-selective iodination. The overall yield of this six step procedure was 9 -17%.¹⁴

Scheme 2 Synthesis of 1,5-benzothiazepin-4(5*H*)-one dipeptidomimetics **14** via two Cul-catalyzed cross couplings.¹⁴

In this work, a novel short synthetic strategy was developed which comprised an Ugi-4CR^{15, 16} and an intramolecular Cu(I)-catalyzed C-S cyclization reaction as the two key synthetic steps (Scheme 3). Moreover, our goal was to generate a diverse set of substituted 1,5-benzothiazepin-4(5*H*)-one-based dipeptide mimetics, wherein the C_{α}-position of the exocyclic amino acid was substituted with different alkyl and aryl substituents. Starting from commercially available Boc-L-Cys(Trt)-OH **15**, different aldehydes **16**, *o*-iodoaniline **17**, and *tert*-butylisocyanide **18**, linear Ugi dipeptides of type **19** were constructed. Orthogonal *S*-trityl deprotection into **20** was followed by a Cul-catalyzed C-S Ullmann condensation, yielding the desired (*R*)-1,5-benzothiazepin-4(5*H*)-one-containing dipeptide mimetics **21**. Using various aliphatic and aromatic aldehydes **16**, seven linear Ugi-4CR dipeptides **19a-g** were obtained (Table 1). For reasons of product solubility and a reported superior reaction conversion, the Ugi-4CR reactions were run in methanol rather than in the commonly employed 2,2,2-trifluoroethanol.^{17, 18} During optimization of the Ugi-4CR reaction, increased reaction temperatures resulted in substantial formation of side products, yielding complex crude reaction mixtures.

To improve reaction conversions, imine preformation was attempted prior to addition of Boc-L-Cys(Trt)-OH **15** and *tert*-butylisocyanide **18**, but this did not prove to be effective. Nonetheless, rewarding isolated yields between 44 and 88% of Ugi-4CR diastereomers **19a-g** were obtained when mixing the four components **15-18** at once at room temperature (Table 1). Diastereomeric ratios (dr) of **19a-f** were determined to be 1:1 via RP-HPLC analysis, except for **19g** (dr 2:1), where isobutyraldehyde was used as an α -branched aliphatic aldehyde.¹⁹ Purification of the crude Ugi-4CR products **19a-g** via silica gel column chromatography proved necessary to allow clean subsequent *S*-trityl deprotection towards **20a-g**. This deprotection was carried out in a CH₂Cl₂/TFA mixture (94:6 v/v), in presence of an excess of triethylsilane as trityl cation

Scheme 3 Optimized synthetic pathway towards (*R*)-1,5-benzothiazepin-4(5*H*)-one dipeptide mimics **21** via subsequent Ugi-4CR, *S*-trityl deprotection and CuI-catalyzed C-S Ullmann condensation.

scavenger. The reaction was closely monitored via RP-HPLC analysis and proved in all cases to be completed after 15 minutes. Subsequent silica gel column chromatography allowed to isolate S-trityl deprotected Ugi-4CR products 20a-g in good yields (Table 1). In a next step, formation of the aryl-sulfur bond was first attempted on substrate **20a** by subjecting the unprotected thiol to an intramolecular metal-catalyzed S-arylation through use of the aryl iodide. Different reaction conditions were screened ranging from Cul/ethane-1,2-diol/K₂CO₃,²⁰ Cul/2,9dimethyl-1,10-phenanthroline/sodium tert-butoxide,²¹ and Pd₂dba₃-CHCl₃/dppf/Et₃N.²² Although LC-MS and ¹³C NMR analysis indicated formation of the targeted dipeptidomimetic **21a** for all tested conditions, reaction mixtures with unidentified side products were obtained. However, a clean conversion into 21a was noticed upon application of CuI/N,N-dimethylglycine/Cs₂CO₃ in dried and degassed DMF at 80 °C under argon atmosphere.¹⁴ These reaction conditions were successfully applied for all other scaffolds **21b-g** (Table 1). All S-trityl deprotected Ugi-4CR substrates 20a-g were completely consumed within a time frame of 3-4 hours. Purification via silica gel column chromatography afforded the 1,5-benzothiazepin-4(5H)-ones 21a-g as a mixture of diastereomers in moderate to good yields (Table 1). It should be noted that for all cases **21a-g**, both diastereomers were separable via column chromatography, yet moderate yields were sometimes obtained due to partial co-elution. As observed via RP-HPLC and ¹H NMR analysis, the diastereomeric ratios obtained after Cul-catalyzed intramolecular cyclization deviated from those in the precursors 20 (Table 1). To rule out epimerization by base-induced enolization, diastereomers of 20b were separately mixed with an excess of Cs₂CO₃ in DMF at 80°C. After 1 hour of reaction no epimerization was observed. In a next step, the diastereomers of **20b** were separately subjected to the C-S Ullmann coupling to detect any energetically favored formation of one diastereomer of **21b**. These experiments revealed that several unidentified side products were formed during the Cul-catalyzed cyclization into (R,R)-21b, whereas reaction of (R,S)-20b resulted in a clean conversion into (R,S)-21b (see ESI).

Table 1 Linear Ugi-4CR products **19a-g**, S-trityl deprotected Ugi-4CR products **20a-g**, and 1,5-benzothiazepin-4(5H)-one dipeptides **21a-g** with their respective isolated yields and diastereomeric ratios.

Aldehyde (R-CHO)		Ugi-4CR product 19		S-trityl deprotected 20		1,5-benzothiazepinone 21	
Structure	Entry	Yield ^a	dr ^b	Yield ^a	dr ^b	Yield ^a	dr ^b
H-CHO	а	84	/	82	/	78	/
CH₃-CHO	b	88	1:1	79	1:1	72	3:4
СНО	с	80	1:1	73	1:1	46	1:4
СНО	d	51	1:1	64	1:1	61	2:3
о-Сно	e	46	1:1	68	1:1	51	1:4
СНО	f	44	1:1	72	1:1	49	1:5
>-сно	g	52	2:1	63	1:2	31	3:7

^{*a*} Isolated yields obtained after silica gel column chromatography. ^{*b*} dr was determined by integration of the corresponding RP-HPLC peak areas according to their increasing retention times.

The effect of the second stereocenter on the overall turn-inducing properties of the 1,5-benzothiazepin-4(5*H*)one dipeptidomimetics **21a-g** was explored via structural *in silico* calculations. Molecular modeling indicated that all lowest energy conformers of (*R*,*S*)- and (*R*,*R*)-benzothiazepinones **21a-g** possessed a hydrogen bond-stabilized γ -turn conformation (Fig. 2a). However, the expected β -turn conformations were also observed within a range of 1.95 to 5.60 kcal.mol⁻¹ above the energetically lowest conformer (ESI⁺). The conformational preferences and overall turn-inducing properties of dipeptidomimetics **21a-g** can potentially be influenced by the steric bulk of the *C*-terminal *tert*-butylamide moiety. Therefore, structural calculations were repeated for **21a** and both (*R*,*S*)- and (*R*,*R*)-**21b** with less sterically hindering primary and secondary amides (i.e. -CONH₂ **22a/b**, -CONHME **23a/b**, -CONH*i*Pr **24a/b**) (Fig. 2b). Indeed, significantly lower energy differences were recorded between the lowest energy γ -turn conformers and the first β -turn structures if the *C*-terminal *tert*-butylamide group was replaced. The calculations also showed the direct influence of the exocyclic C_a-stereocenter on the overall turn properties of (*R*,*S*)- and (*R*,*R*)-diastereomers of **21a-g**. In case of the (*R*,*R*)-stereochemistry, the first reported β -turn structures were observed at significantly lower energy differences with respect to the minimum energy structure, as compared to their (*R*,*S*)-analogues, and these Δ E values were even more pronounced with less sterically hindering *C*-terminal amide substituents (Fig 2b + ESI).

To probe these conformational findings experimentally, both (*R*,*S*)- and (*R*,*R*)-diastereomers of **21b** were separated by chromatography and conformational preferences were further studied via ¹H NMR analysis. First, the individual stereochemistry of both (*R*,*S*)- and (*R*,*R*)-**21b** was assigned via 2D ¹H NOESY studies (ESI). For (*R*,*R*)-**21b**, an indicative NOE correlation was observed between the CH_3^β group of the '(*R*)-Ala residue' and the H-6 of the aromatic benzothiazepinone ring (a distance of 2.8 Å was found in the lowest energy conformer by MM) (ESI). This distinct NOE signal was absent for (*R*,*S*)-**21b** (MM 5.0 Å in the lowest energy conformer) (ESI). Next, ¹H NMR spectra of (*R*,*S*)- and (*R*,*R*)-**21b** were measured in CDCl₃ and DMSO-*d*₆ to evaluate the effect of switching from a non-hydrogen bond-forming solvent to a strong hydrogen bond-forming solvent on the chemical shift value of the *NH-tert*-butylamide proton. Both amide resonances of (*R*,*S*)- and (*R*,*R*)-**21b** were only weakly influenced upon the solvent switch, resulting in small differences in chemical shift values of, respectively, 0.35 and 0.41 ppm, indicating that the *N*H-amide proton is solvent-shielded.

Fig. 2 Lowest energy β -turn conformations of (*R*,*S*)- and (*R*,*R*)-**21b**, relative to their lowest energy γ -turn conformations (0.00 kcal.mol⁻¹) as a reference (a); Energy differences (kcal.mol⁻¹), relative to the lowest energy γ -turn conformation (0.00 kcal.mol⁻¹) as a reference , for the first β -turn structures of **21a-24a** and (*R*,*S*)- and (*R*,*R*)-**21b-24b** as a function of various *C*-terminal amide group substituents (b).

Unlike intermolecularly hydrogen bonded amide protons, intramolecularly hydrogen bonded ones are only slightly affected by the temperature of the system.^{23, 24} Samples of (*R*,*S*)- and (*R*,*R*)-**21b** were then heated in DMSO-*d*₆ (temperature range between 298 K and 348 K, with temperature increments of 5 K). Only coefficients between 0 and -4 ppb/K are generally accepted for solvent-shielded amide protons involved in intramolecular hydrogen bonds. Given the fact that this criterion has been set for cyclic peptides or peptides with longer sequences, in small peptides a thermal coefficient less negative than -4.6 ppb/K has been suggested as a criterion for identifying the solvent-shielded amide protons.²³ For (*R*,*S*)-and (*R*,*R*)-**21b**, the chemical shift resonances of the *N*H-*tert*-butylamide proton shifted linearly, resulting in temperature coefficients of, respectively, -3.6 and -2.2 ppb/K. Hence, the calculated amide proton temperature coefficients for (*R*,*S*)- and (*R*,*R*)-**21b** were supporting the presence of an intramolecular hydrogen bond, a common characteristic of γ - and β -turns. These experimental results were consistent with the molecular modeling of both diastereomers of mimic **21b**.

In conclusion, an efficient and rapid synthesis of substituted 1,5-benzothiazepin-4(5*H*)-one dipeptide mimics is described. These scaffolds were constructed via an Ugi-4CR followed by an intramolecular Cu(I)-catalyzed Ullmann condensation, presenting 1,5-benzothiazepin-4(5*H*)-ones with moderate to good overall yields using simple experimental procedures. Through this strategy, access is provided to dipeptidomimetics containing both diastereomers of the exocyclic α -substituted amino acid. After separation of the diastereomers, we demonstrated that both (*R*,*S*)- and (*R*,*R*)-diastereomers adopt turn conformations stabilized by an intramolecular hydrogen bond. Ongoing efforts are focused on the use of convertible isocyanides²⁵ to widen the application potential of the generated dipeptide mimetics by allowing their use in peptide synthesis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We thank both the Flanders Innovation & Entrepreneurship (VLAIO) and the Research Foundation – Flanders (FWO Vlaanderen, grant FWOAL570) for financial support.

Notes and references

1. J. B. Bariwal, K. D. Upadhyay, A. T. Manvar, J. C. Trivedi, J. S. Singh, K. S. Jain and A. K. Shah, *Eur. J. Med. Chem.*, 2008, **43**, 2279-2290.

2. R. Kaur, R. Singh and K. Singh, *Chem. Biol. Lett.*, 2016, **3**, 18-31.

3. M. M. Mc Gee, S. Gemma, S. Butini, A. Ramunno, D. M. Zisterer, C. Fattorusso, B. Catalanotti, G. Kukreja, I. Fiorini, C. Pisano, C. Cucco, E. Novellino, V. Nacci, D. C. Williams and G. Campiani, *J. Med. Chem.*, 2005, **48**, 4367-4377.

4. H. Inoue, M. Konda, T. Hashiyama, H. Otsuka, K. Takahashi, M. Gaino, T. Date, K. Aoe and M. Takeda, *J. Med. Chem.*, 1991, **34**, 675-687.

5. K. S. Atwal, S. Z. Ahmed, D. M. Floyd, S. Moreland and A. Hedberg, *Bioorg. Med. Chem. Lett.*, 1993, **3**, 2797-2800.

6. J. Slade, J. L. Stanton, D. Ben-David and G. C. Mazzenga, J. Med. Chem., 1985, 28, 1517-1521.

7. J. W. Skiles, R. Sorcek, S. Jacober, C. Miao, P. W. Mui, D. McNeil and A. S. Rosenthal, *Bioorg. Med. Chem. Lett.*, 1993, **3**, 773-778.

8. M. Amblard, I. Daffix, G. Berge, M. Calmes, P. Dodey, D. Pruneau, J. L. Paquet, J. M. Luccarini, P. Belichard and J. Martinez, *J. Med. Chem.*, 1999, **42**, 4193-4201.

9. M. Amblard, I. Daffix, P. Bedos, G. Berge, D. Pruneau, J. L. Paquet, J. M. Luccarini, P. Belichard, P. Dodey and J. Martinez, *J. Med. Chem.*, 1999, **42**, 4185-4192.

10. M. Amblard, N. Raynal, M.-C. Averlant-Petit, C. Didierjean, M. Calmès, O. Fabre, A. Aubry, M. Marraud and J. Martinez, *Tetrahedron Lett.*, 2005, **46**, 3733-3735.

11. M. Amblard, P. Bedos, C. Olivier, I. Daffix, J.-M. Luccarini, P. Dodey, D. Pruneau, J.-L. Paquet and J. Martinez, *J. Med. Chem.*, 2000, **43**, 2382-2386.

12. P. Bedos, M. Amblard, G. Subra, P. Dodey, J.-M. Luccarini, J.-L. Paquet, D. Pruneau, A. Aumelas and J. Martinez, *J. Med. Chem.*, 2000, **43**, 2387-2394.

13. M. Amblard, M. Calmès, V. Roques, S. Tabet, A. Loffet and J. Martinez, *Org. Prep. Proced. Int.*, 2002, **34**, 405-415.

14. J. Gan and D. Ma, *Org. Lett.*, 2009, **11**, 2788-2790.

15. A. Dömling, *Chem. Rev.*, 2006, **106**, 17-89.

16. G. Koopmanschap, E. Ruijter and R. V. A. Orru, *Beilstein J. Org. Chem.*, 2014, **10**, 544-598.

17. T. M. A. Barlow, M. Jida, D. Tourwe and S. Ballet, *Org. Biomol. Chem.*, 2014, **12**, 6986-6989.

18. T. M. A. Barlow, M. Jida, K. Guillemyn, D. Tourwe, V. Caveliers and S. Ballet, *Org. Biomol. Chem.*, 2016, **14**, 4669-4677.

- 19. S. Caputo, A. Basso, L. Moni, R. Riva, V. Rocca and L. Banfi, *Beilstein J. Org. Chem.*, 2016, **12**, 139-143.
- 20. F. Y. Kwong and S. L. Buchwald, *Org. Lett.*, 2002, **4**, 3517-3520.
- 21. C. G. Bates, R. K. Gujadhur and D. Venkataraman, *Org. Lett.*, 2002, **4**, 2803-2806.
- 22. X. Moreau and J.-M. Campagne, J. Organomet. Chem., 2003, 687, 322-326.
- 23. T. Cierpicki, I. Zhukov, R. A. Byrd and J. Otlewski, *J. Magn. Reson.*, 2002, **157**, 178-180.

24. K. Van Rompaey, S. Ballet, C. Tömböly, R. De Wachter, K. Vanommeslaeghe, M. Biesemans, R. Willem and D. Tourwé, *Eur. J. Org. Chem.*, 2006, **2006**, 2899-2911.

25. G. van der Heijden, J. A. W. Jong, E. Ruijter and R. V. A. Orru, *Org. Lett.*, 2016, **18**, 984-987.