
This item is the archived peer-reviewed author-version of:

DEVS for AUTOSAR-based system deployment modeling and simulation

Reference:
Denil Joachim, De Meulenaere Paul, Demeyer Serge, Vangheluwe Hans.- DEVS for AUTOSAR-based system deployment
modeling and simulation
Simulation - ISSN 0037-5497 - (2017), p. 1-25 
Full text (Publishers DOI): http://dx.doi.org/doi:10.1177/0037549716684552

Institutional repository IRUA

http://anet.uantwerpen.be/irua


DEVS for AUTOSAR Platform Modelling
Joachim Denil1,2 , Hans Vangheluwe2,3, Pieter Ramaekers1, Paul De Meulenaere1, Serge Demeyer2

1TERA-labs
Karel de Grote University College

2660 Antwerp, Belgium

2AnSyMo
University of Antwerp

2020 Antwerp, Belgium

3School of Computer Science
McGill University

H3A 2A7 Montréal, Canada

{Joachim.Denil@, Paul.Demeulenaere, Pieter.Ramaekers}@kdg.be, {Hans.Vangheluwe, Serge.Demeyer}@ua.ac.be

Keywords: Discrete-event simulation, AUTOSAR, embed-
ded software, performance analysis

Abstract
AUTOSAR (AUTomotive Open System ARchitecture) is
an open and standardized automotive software architecture,
jointly developed by automobile manufacturers, suppliers and
tool developers. Its design is a direct consequence of the in-
creasingly important role software plays in vehicles. As de-
sign choices during the software deployment phase may have
a large impact on the real-time properties of the system, de-
signers need a method to explore various trade-offs. In this
paper we evaluate the appropriateness of DEVS, the Discrete-
Event system Specification, for modelling and subsequent
performance evaluation of AUTOSAR-based systems. We
demonstrate and validate our work by means of a power win-
dow and ABS case study.

1. INTRODUCTION
Software plays an increasingly important role in cars.

About 30% of all innovations in current vehicles is related
to software [1]. To keep complexity under control and to
create a competitive market for automotive software compo-
nents, some leading automotive companies created the AU-
TOSAR consortium [2]. The AUTOSAR technical goals in-
clude modularity, scalability, transferability and reusability
of functional components. To achieve these goals, the AU-
TOSAR initiative has a dual focus. On the one hand it defines
an open platform (middleware) for automotive embedded
software through standardized interfaces. On the other hand
it provides a method to create automotive embedded systems.
Using AUTOSAR, software can be developed mostly inde-
pendently from the platform it will be deployed on.

During the process of deployment onto hardware a plethora
of configuration choices have to be made in the middleware.
These choices range from the mapping of software functions
onto tasks and assigning these tasks a priority, to parameters
that affect the sending and receiving of messages on the bus.
Because of the impact these choices have on real-time sys-
tem performance, a method is needed to evaluate candidate
deployment solutions.

A complicating factor is the reusability of functional com-
ponents. There is no guarantee that a component will be-
have as intended in a new hardware/middleware configura-
tion with respect to performance requirements such as tim-
ing. This non-compositionality means that during integration,
these behavioural properties must be evaluated.

In this paper we evaluate DEVS, the Discrete-Event system
Specification [3], as a suitable formalism for modelling and
subsequent performance evaluation of AUTOSAR-based sys-
tems. We base our evaluation on simulation of the behaviour
of a power window and an ABS application, two representa-
tive cases for applications to be deployed on an AUTOSAR
platform.

The rest of the paper is organized as follows. Section 2.
gives a brief survey of related work. Section 3. introduces
relevant aspects of the AUTOSAR standard. Section 4. elab-
orates on the choice of the DEVS formalism. Section 5. ex-
plains the construction of the model of the AUTOSAR mid-
dleware as well as the power window application. Section 6.
describes the experimental setup of the power window ap-
plication and the analysis of the results obtained using the
simulation model. Section 7. analyzes the reusability of the
created models and how such models may be used to predict
the timing behaviour in other configurations or cases, which
is shown using another case study: the deployment of an ABS
application and section 8. concludes.

2. RELATED WORK
Performance analysis is crucial for the deployment of safe

and cost-effective software-intensive systems. For component
based software engineering, the Palladio component model
[4], provides a domain-specific modelling language to eval-
uate the performance of software architecture models. The
models can be transformed into a queuing network based sim-
ulation model.

The DEVS formalism has also been used for develop-
ing embedded real-time applications, in [5], a model-driven
method to develop these real-time embedded applications is
introduced. For the evaluation of AUTOSAR-based systems
both analysis techniques and simulations methods are avail-
able. On the analysis side, techniques are available to pre-



AtomicSWC

Logic

Status_Passenger

Status_Driver

Direction

ChildProtection

Contact

Load

AtomicSWC

DC_Motor

Direction

AtomicSWC

Control_Passenger

Status

AtomicSWC

Control_Driver

Status

ChildProtection

Contact
AtomicSWC

Sensor_Load

Load

Figure 1. The software model of a power window application, showing the components and the interfaces for interaction

dict the timing behaviour after deployment. These techniques
can yield worst and best case response times of the tasks
and messages [6, 7]. On the simulation side, models can be
built at various levels of abstraction, ranging from functional
simulation with little timing information to true cycle simu-
lations using binary code. In [8], SystemC was evaluated as
a language for modelling and performance evaluation of AU-
TOSAR based software. Another approach is incorporating
the effects of scheduling in Simulink models [9]. In both ap-
proaches, application components are simulated in combina-
tion with delays due to the communication hardware and the
operating system scheduler. Our approach takes this a step
further by simulating not only the application level, scheduler
and communication bus level, but also the effects of the con-
figuration of the full AUTOSAR platform. A more complete
overview of tools that support the deployment of applications
on platforms can be found in [10].

3. THE AUTOSAR FUNCTIONAL MODEL
AND MIDDLEWARE

The functional model of AUTOSAR consists of a set of
atomic software components. These components can inter-
act with each other using ports. The service or data pro-
vided or required by a port are defined by its interface.
This can be either a data-oriented communication mechanism
(sender/receiver interface) or a service-oriented communica-
tion mechanism (client/server interface). The data-oriented
interface can support 2 types of semantics. The first is “last-is-
best”, where only the last received value is stored. The other
is a queued version where the data is stored in a queue until it
is read.

Figure 1 shows the application model of the power window
application. The application components communicate with
each other using the sender/receiver interface. The uncon-
nected ports are service-oriented client interfaces to commu-
nicate with the AUTOSAR middleware. Each software com-
ponent defines its behaviour by means of a set of runnables.
A runnable is a function that can be executed in response to
events, for example from a timer or due to the reception or

transmission of a data element. A runnable can also wait for
the arrival of certain events for example when it needs an-
other data-element to continue execution. These are called
waitpoints. Finally, the runnable may need to update state
variables, with exclusive read/write access. This is achieved
using exclusive areas.

To make software components independent from the hard-
ware, the interface to this hardware must be standardized.
This is done using the AUTOSAR basic software, shown in
Figure 2. This middleware consists of a real-time operating

µControllerµController

Application Layer

AUTOSAR Runtime Environment (RTE)

Communication 

Abstraction

Memory 

Abstraction

µController 

Abstraction

Communication 

Services

OS

Memory 

Services

System 

Services

IO Hardware 

Abstraction

IO Drivers
Communication 

Drivers
Memory Drivers

µController 

Drivers

Figure 2. Structure of the AUTOSAR basic software, the
run-time environment and the application layer

system based on the OSEK/VDX standard [11]. The operat-
ing system schedules tasks in a fixed priority way. Some tasks
can be preemptive while others are not preemptive. Since the
concept of a task is not known at the functional level, the com-
ponents must first be mapped to the processors and then the
runnables must be mapped onto tasks. The mapping to tasks
is not necessarily 1-to-1. The rules for mapping runnables to
tasks are defined in the RTE specification, available on [2].
All tasks have to be assigned a priority to be scheduled by the
operating system.

The middleware also contains services for sending and re-



ceiving messages on a communication bus. These are com-
posed of signals that originate in the application layer. Com-
munication signals and messages have certain configurable
properties, such as the signal transfer property and the mes-
sage transmission mode, that have an impact on the tim-
ing behaviour of the application. More information about the
configuration parameters in the communication stack can be
found in the AUTOSAR communication specifications avail-
able on [2].

On the communication abstraction and driver layer, the
most common automotive buses, for example the CAN-
bus[12], are currently supported by the AUTOSAR communi-
cation stack. These also have many configuration parameters,
such as the priority of the frames containing the message, that
impact the real-time behaviour of the full system.

The run-time environment (RTE) is used as a glue between
the functional components and the AUTOSAR basic soft-
ware. It is responsible for storing the internal messages using
buffers or forwarding the external messages to the commu-
nication stack. It also activates the runnables when an event
occurs.

4. DEVS AND AUTOSAR
DEVS is a formalism for modelling discrete-event sys-

tems in a hierarchical and modular way, rooted in systems
theory[3]. DEVS support two kinds of models. The first de-
fines the behaviour of a primitive component and is called
the atomic model. The other is the coupled model and is a
composition of two or more atomic models that are explicitly
connected. The coupled model itself can be part of an other
coupled model. This allows for a hierarchical construction of
DEVS models. A more thorough introduction to the formal-
ism can be found in [3]. We use the Classic DEVS variant as
it best matches the AUTOSAR semantics.

From an abstract point of view, the DEVS formalism pro-
vides excellent features for modelling AUTOSAR based sys-
tems. Here is a list of some properties of DEVS and their
mapping to properties of automotive software and systems.

• Concurrency: Multiple processors and communication
buses run concurrent in an automotive system. DEVS
supports this by means of coupled models.

• Time: Real-time performance is a crucial property of au-
tomotive embedded software. End-to-end latencies are
part of the requirements for these applications. The time
advance function of an atomic DEVS model can be used
to model latency.

• Events: Event-triggered and time-triggered architectures
use triggers in the form of either external events or tim-
ing events to start certain pieces of functionality. DEVS
implements reaction to events using the external transi-
tion functions.

• Priorities: Some automotive buses use a priority-based

mechanism to arbitrate the bus (for example, the CAN-
bus). DEVS supports this by means of a tie-braking
function to select an event from the set of simultaneous
events.

Some concrete examples of the mapping of AUTOSAR con-
cepts to the DEVS formalism are given below.

• Runnables, the RTE and other basic software compo-
nents are executable entities. They are pieces of code
that change the state of the system during their time
of execution. These can be mapped to the time-advance
and the internal transition functions of an atomic DEVS
model.

• The runnables are mapped onto tasks that run on a given
processor. The tasks run on the AUTOSAR operating
system. When an executable entity has finished its ex-
ecution, the operating system could change state. This
also maps to the internal transition function of an atomic
DEVS.

• Messages and input/output hardware can interrupt the
execution of the tasks. This could take time and could
possibly trigger the execution of a runnable. DEVS can
implement this using the external transition function.

5. THE AUTOSAR SIMULATION MODEL
In this section we construct a simulation model of an

AUTOSAR-based power window. The simulation model is
used to investigate the timing behaviour of the application.

The software model of this power window is based on [13].
The application controls the window on the passenger side,
though both passenger and driver are allowed to open or close
the window. When an object is present while closing the win-
dow, it will automatically detect this and lower the window.
Figure 1 shows the AUTOSAR platform independent soft-
ware architecture.

The two ‘Control’ components read out sensor signals
from the buttons that control the window. The driver side
component is also responsible for applying child protection
on the power window and checking whether the ignition of
the car is on. The ‘Load Sensor’ component reads out the re-
sistive force being placed on the window. When the execu-
tion of the runnables inside these components have finished,
they make the sensor values available to the ‘Logic’ com-
ponent. The ‘Logic’ component decides how to control the
window using these sensor values and calculates the direc-
tion and speed of the window. The ‘DC Motor’ component
uses this to physically control the window. Both the ‘Control’
components, the ‘Logic’ component and the ‘Sensor Load’
component are triggered by a periodic timing event (every 1
ms). The ‘DC Motor’ component is triggered by the arrival
of the ‘Direction’ signal from the ‘Logic’ component. In this
case, all software components contain exactly one runnable.

The hardware contains two microcontrollers. One on the



driver side and the other on the passenger side. Both hardware
units communicate through a CAN-bus with a bandwidth of
500 kbit/s.

CAN Interface

CAN Driver

µControllerµController

Application Layer

AUTOSAR RTE

COM & PduRouter
OS

µControllerµController

Application Layer

AUTOSAR RTE

CAN Interface

COM & PduRouter
OS

CAN Driver

CAN - Bus

Tx ID 1

Tx ID 2

P T

T

Task 1

Rx ID 1

Rx ID 2

Task 1 Task 2

R
u
n
P

a
s
s
e
n
g
e

rC
o
n
tro

l

R
u
n
S

e
n
s
o
rL

o
a
d

R
u
n
L
o
g
ic

R
u
n
D

C
M

o
to

r

R
u

n
D

riv
e
rC

o
n
tro

l

Figure 3. The power window application deployed on the
hardware. P is a signal that does not cause the message to be
transmitted in contrast to the T signals. Signal and message
names are removed for reasons of clarity.

Figure 3 shows the full deployment of the application on
the hardware. Major design decisions include the mapping
of the components to the different control units. On the driver
side, a single task executes the ‘DriverControl’ runnable. This
task also transmits three signals on the bus, mapped to two
different messages. The arrival of two signals in the com-
munication stack cause the transmission of a message on the
bus, while the other signal is only stored in the message with-
out causing a transmission. On the passenger ECU two tasks
are configured, one high priority task executing all the time-
triggered runnables and a lower priority task executing the
‘DCMotor’ runnable.

5.1. The coupled DEVS model
Figure 4 shows the coupled DEVS model representing

the deployment of the power window application. A short
overview of the components is given below:

• DEVS Driver model: This atomic DEVS model repre-
sents the behaviour of the AUTOSAR operating sys-
tem and the task running on the driver ECU. The time-

triggered events from the timer module interrupt the ex-
ecution of the model. During execution, the model sends
two messages to the CAN transmit buffers.

• DEVS Passenger model: This atomic DEVS model rep-
resents the behaviour of the AUTOSAR operating sys-
tem and the task running on the passenger ECU. The
time-triggered events from the timer module and the re-
ception of messages from the CAN receive buffer inter-
rupt the execution of the model.

• DEVS timing event generators: These generates the tim-
ing events to activate the time triggered runnables. An
event is generated every 1 ms.

• CAN transmit buffer: The output buffers of the CAN bus
contain the frames that have to be send over the CAN
bus. Due to priority mechanism, it is necessary to keep
these in the buffer.

• CAN receive buffer: The input buffers receive messages
from the CAN bus. It forwards all received messages to
the passenger model.

• CAN bus: The CAN-bus is responsible for the physi-
cal transmission of frames. The delay that occurs when
sending this frame depends on the size of the message
and the speed of the bus. When 2 or more frames are
available in the output buffers, the select function needs
to select the message with the highest priority.

5.2. The model of a single control unit
The simulation model of the AUTOSAR basic software is

abstracted to the component level. Execution times of these
components are based on scenarios to match the real be-
haviour of the component.

Both driver and passenger models are similar, only the con-
figuration of the runnables, tasks and BSW parameters differ.
The state of the atomic DEVS model of a control unit (driver
or passenger) can be divided into 3 major parts.

At the finest level of granularity there are the runnables. All
the runnables in the power window application read the input
values, do calculations on them and then transmit the result to
the next process. While doing these calculations, the runnable
is executed for a certain amount of time. This is reflected in
the behaviour of the runnables in our simulation model. The
time-advance for a single runnable is a configuration param-
eter of the simulation model.

Although this type of behaviour works for the
‘Driver Control’ component, a finer granularity should
be used to describe the way the runnable is executed. The
runnable reads out three values from the hardware in a
sequential order, sending out the value after every read in
a different signal. This can be modelled by splitting up the
execution in three parts using a state machine, where every
state ends with a write operation of a signal.

The next abstraction level in the state of a control unit intro-



 Driver model

timing event generator

CAN 

Transmit 

buffers

CAN-bus model

Passenger model

Timing event generator

CAN 

Receive 

Buffers

Figure 4. Overview of the coupled DEVS model, showing the connections between the different atomic models.

duces tasks. A task contains a set of runnables. When the task
gets activated, it chooses the first runnable in the set where the
state has been changed to activated. The task also keeps track
of the time the runnable has executed, since the task could be
preempted by an other task with a higher priority. Tasks are
also responsible for sending the signals and messages through
the communication stack. It therefore has access to the RTE
and communication stack modules. These modules can be re-
garded, like the runnables, as entities that change the state of
the model while taking a specific amount of time.

Runnable RTE COM CANIF/CAN DummyPDUR

InternalSignal

NoSignals

PendingProperty

RunnableNotFinished

AppSignal ComSignal TriggeredProperty Message CANMessage

Figure 5. State of a task

Here is an overview of the responsibilities of each individ-
ual state in the task model, shown in Figure 5:

• RTE: The run-time environment serves as a glue for the
communication between the different runnables on a sin-
gle control unit or as glue to the basic software. There-
fore it keeps track of the receive buffers of the interfaces.
When an internal signal is written, the RTE places this
value in the receive buffer. The RTE does not make any
signals available for the task. The tasks reacts to this by
changing to the ‘DummyState’. A special case occurs
when an activation event is coupled to the reception of
a signal, as is the case for the ‘DCMotor’ component.
In this case, the RTE generates an new activation event
before going to the ‘DummyState’. For external com-
munication in the ‘DriverControl’ component, the RTE
changes the application signals to communication sig-
nals and makes them available to the task. This way, the
task may decide to go to the COM state.

• COM: The COM state mimics the behaviour of the
COM module in the AUTOSAR basic software. When

the COM receives a signal, it places this in the con-
figured message buffer. The COM module checks the
signal properties and message modes. Based on this, it
decides whether to make the message available for the
PDU-router.

• PDU-R: The PDU-router is used if more than one bus
is attached to the control unit. It redirects the messages
to the correct interface and driver for transmission on
the bus. In our case study, there is only a single bus.
The PDU-router makes the message available to the
CANIF/CAN module after execution.

• CANIF/CAN: The AUTOSAR interface and driver of
the CAN bus are used to place the message into the
CAN transmit buffer. The module adds the message pri-
ority and length to the message. Occasionally, it buffers
certain messages when the hardware buffers are full.
These modules need to get executed in an atomic way,
so the task cannot get preempted during the execution of
these modules. The CANIF/CAN state has a similar be-
haviour, it adds message priority, length and the number
of the buffer before making the CAN message available
to the task.

• DummyState: The DummyState is introduced to notify
the operating system that there could be CAN messages
pending for transmission to the buffers, as is the case
in the ‘DriverComponent’ or that there is an activation
event pending when the ‘runLogic’ has finished execu-
tion. It does not take any time to execute. In the ‘Driver-
Component’, it can happen that the runnable is not fully
finished after the DummyState. In this case the task
reactivates the runnable. Yet another situation can oc-
cur on the passenger side, where multiple runnables are
mapped to a single task. Here, the task looks whether
another runnable can be executed. If no other runnables
are available, the task gets suspended by the operating
system.

At the coarsed grained level there is the AUTOSAR oper-
ating system. The operating system keeps track of the tasks in



the model. If there are no tasks running, the operating system
is in an idle state. The model can only get out of this state
by means of an external event. External transitions can occur
when the timing event is received by the control unit. The op-
erating system checks, based on the received event, whether
runnables and tasks need to be activated. Since this also takes
a certain amount of time, the operating system changes to the
systemcall state to compensate for this delay.

After this delay, the model goes to a busy state where the
tasks are executed. The time-advance of the current state is
looked up, by querying the current running runnable or exe-
cutable entity in the running task. On the passenger side, an-
other type of external transition can occur due to the reception
of the CAN messages. In reality, the hardware will respond to
an interrupt and take the message out of the hardware buffer
and process the message using the communication stack. The
simulation model reflects this behaviour by interrupting the
current state for processing the message in the interrupt state.
After the processing it returns to the previous state.

When an internal transition occurs in the busy state, the
model notifies the running task that the current entity has fin-
ished its execution. When the task is in the ‘DummyState’ it
reads out the activation events and the messages to be trans-
mitted on the CAN-bus. It causes a transition of the operating
system, to suspend the current task and/or activate other tasks
based on the activation events, possibly even preempting or
suspending the running task. This is reflected as before in the
systemcall state.

While intuitively the executable entities, like the RTE,
runnables and other communication stack modules, are re-
sponsible for keeping track of the elapsed time and their exe-
cution time, in the model they are not. Since the code for the
RTE, COM, PDUR and CANIF is shared between the dif-
ferent tasks running on the operating system, the tasks are
responsible for storing the time-advance and elapsed time of
the entities executing within the task. This is to prevent a mis-
match in timing behaviour when a task is preempted by an-
other task.

5.3. The CAN-bus model
The CAN-bus model introduces the delays imposed by

physically transmitting a frame on the bus. Figure 6 shows
the state diagram of the simulation model. The model starts
in an IDLE state with an infinite time advance. This repre-
sents the state when no messages are being transmitted on the
bus. It changes state when one or more messages are put into
the CAN transmit buffer. The tie-braking function checks the
priority of the message and selects the one with the highest
priority.

It then changes to the BUSY state. This state reflects the
physical processes of transmitting the frame onto the com-
munication medium. It stays in this state based on the length

IDLE BUSY NOTIFY
Message

Transmitted

Message

NoMessage

Figure 6. State diagram of the CAN-bus simulation model.
Full lines represent internal transitions, dashed lines external
transitions.

of the message and the configured bandwidth of the bus. On
completion, the model writes the message to the CAN re-
ceive buffer on the passenger side. It also notifies the transmit
buffers that the bus is ready for arbitration. In case there are
pending messages, it returns to the BUSY state. Otherwise
the bus returns to the IDLE state.

6. EXPERIMENTAL SETUP AND RESULTS
6.1. Calibrating the model

Before using the simulation model, it has to be calibrated
(i.e, parameter values have to be estimated). Since we focus
on the real-time behaviour, time delays for all actions that
cause time to elapse need to be measured before the simula-
tion model can be used. Here are the measurements that need
to be completed:

• Execution time of all the runnables or states in the
runnables, without the calls to the RTE;

• Execution time of activating or suspending tasks as well
as the context switching times;

• Execution time of the transmission and receiving of mes-
sages in every part of the communication stack including
the RTE.

We obtained these values by annotating the source code
of our application. The measurements were done using an
MPC560xP microcontroller with a 64 MHz clock speed. The
microcontrollers are running an AUTOSAR basic software
from Elektrobit GmbH. The source code was compiled using
the MULTI compiler of Green Hills Software.

Table 1 shows the measured execution times of all the
runnables, runnable states, communication modules and op-
erating system primitives.

6.2. Results and analysis
The results of the simulation model execution of the power

window application are shown in Figure 7. This shows how
both processors execute the defined tasks in the correct or-
der. The driver unit sends out two different messages on the
CAN-bus during the execution of ’Task 1’. These signals are
received by the passenger ECU after the delay introduced by
the CAN-bus. In parallel, the passenger ECU executes the
passenger input components and logic in its ’Task 1’. Based
on the inputs, it controls the direction of the window in the



Driver

Passenger

CAN bus ID 1 ID 0

Task 1

Task 1 2

ID 1 ID 0

Task 1

Task 1 2

0 10.1
t [ms]

Figure 7. Graphical representation of the results of the power window simulation, the runnables are not shown for reasons of
clarity

Runnables and states in runnables
DriverReadContactState 2.44 µs
DriverReadChildProtectionState 2.36 µs
DriverReadStatusState 4.16 µs
PassengerRunStatus 5.01 µs
PassengerRunLoad 81.2 µs
PassengerRunLogic 39.7 µs
PassengerRunDCMotor 2.0 µs

Transmit communication stack
RTEWrite (no event, internal) 0.7 µs
RTEWrite (event, internal) 1 µs
RTEWrite (no event, external) 1.6 µs
COMWrite (no trigger of message) 23.8 µs
COMWrite (Trigger of message ) 46.6 µs
PDURouter 1 µs
CANIF/CANWrite 40.6 µs

Receive communication stack
RxProcess CAN, CANIF, COM 1 message 32.2 µs
RxProcess COM, RTE 1 signal 2.8 µs

OS primitives
ActivateTask 6 µs
SuspendTask 5 µs

Table 1. Execution times of the AUTOSAR primitives and
runnables

second task. No buffers are overwritten before being read dur-
ing the execution of the model.

The results obtained from the simulation model helps the
AUTOSAR developer to analyse the impact on the real-time
properties of his choices. It can be used to explore the var-
ious trade-offs while deploying automotive applications to
AUTOSAR based ECUs.

The execution of the model matched the observed execu-
tion on our hardware platform. Since the source components
are triggered by a timing event, the case is also very deter-
ministic. This allows for an easy verification of the results ob-

tained by executing the simulation model. It is known a priori
when a runnable should start and what the order of execution
will be. The results presented in this paper can be reproduced
by downloading the complete simulation model from www.
iwt-kdg.be/teralabs/index.php?q=node/26.

7. A GENERIC SIMULATION MODEL
In the previous sections we constructed the DEVS simula-

tion model for the AUTOSAR basic software and the power
window running in the application layer. The atomic compo-
nents involved while building this model can be reused by
changing the parameters of these components. This includes
the number of tasks, runnables, signals, messages and all their
AUTOSAR configuration options.

To show that the simulation models are reusable, we devel-
oped an ABS application, based on [14]. The software model
of the ABS, shown in figure 8, contains 11 software compo-
nents. The model is deployed on two ECUs, the UI (User In-
terface) component is mapped to the UI ECU, while all other
components are mapped to the ABS ECU. The ABS ECU
transmits two signals, mapped to two different CAN mes-
sages, to the UI ECU. The input components and the logic
component are mapped to a single task that is triggered by a
timing event. All other runnables are mapped to separate tasks
that respond to the arrival of a data-element. The simulation
model executed the ABS model as expected. The model can
be downloaded from the same location as the power window
application.

All the atomic models developed in this paper can be
reused for the simulation of AUTOSAR based systems. The
design choices made while deploying an application on an
AUTOSAR based system, are input to these simulation mod-
els. Though, not all parameters available in the AUTOSAR
standard are included in this version of the model, like the
cyclic transmission of messages. The current model is the
basis for a more generic model to simulate all the available
configuration options when deploying AUTOSAR based sys-



AtomicSWC

VSpeed

P_VSpeed_OUT

AtomicSWC

FLSpeed

P_FLSpeed_OUT

AtomicSWC

FRSpeed

P_FRSpeed_OUT

AtomicSWC

Brake

P_Brake_OUT

AtomicSWC

BLSpeed

P_BLSpeed_OUT

AtomicSWC

BRSpeed

P_BRSpeed_OUT

AtomicSWC

FTorque

P_FTorque_In

AtomicSWC

UI

P_FTorque_In

P_BTorque_In

AtomicSWC

BTorque

P_BTorque_In

AtomicSWC

ABSLogic

P_Brake_In

P_VSpeed_In

P_FLSpeed_In

P_FRSpeed_in

P_BLSpeed_In

P_BRSpeed_In

P_FTorque_Out

P_BTorque_Out

Figure 8. Software architecture of the ABS case study.

tems.

8. CONCLUSIONS
In this paper we have compared the properties of the

DEVS formalism to the required properties for modelling
AUTOSAR based systems. It is shown that DEVS is an excel-
lent formalism to model the performance behaviour of AU-
TOSAR based systems. To support this reasoning, we con-
structed the simulation model of the AUTOSAR basic soft-
ware and used it to simulate the real-time characteristics of a
power window system. The execution of the model matched
the observed execution on our hardware platform. As shown
by the ABS model, the constructed AUTOSAR basic soft-
ware model and CAN-bus model are a good starting point for
building a generic model for the performance evaluation of
AUTOSAR based systems, since the models can be reused
and reconfigured for other case studies.

The results obtained by using this simulation model will
help the AUTOSAR developer to analyse the impact of his
choices on the real-time behaviour of the system. It can be
used to explore the various trade-offs while deploying auto-
motive applications to AUTOSAR based ECUs.

REFERENCES
[1] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann.

Engineering automotive software. Proceedings Of the
IEEE, 95, February 2007.

[2] AUTOSAR. Official webpage. http://www.
autosar.org, 2010.

[3] B.P. Zeigler, H. Praehofer, and T.G. Kim. Theory of
modeling and simulation, volume 276. Academic press
New York, 2000.

[4] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance pre-
diction. Journal of Systems and Software, 82(1):3–22,
2009.

[5] G. Wainer, E. Glinsky, and P. MacSween. A Model-
Driven Technique for Development of Embedded Sys-
tems Based on the DEVS formalism. Model-Driven
Software Development, pages 363–383, 2005.

[6] A. Hamann, M. Jersak, K. Richter, and R. Ernst. A
framework for modular analysis and exploration of het-
erogeneous embedded systems. Real-Time Systems,
33(1):101–137, 2006.

[7] T. Pop, P. Eles, and Z. Peng. Holistic scheduling and
analysis of mixed time/event-triggered distributed em-
bedded systems. In Proceedings of the tenth inter-
national symposium on Hardware/software codesign,
pages 187–192. ACM, 2002.

[8] M. Krause, O. Bringmann, A. Hergenhan, G. Ta-
banoglu, and W. Rosentiel. Timing simulation of in-
terconnected AUTOSAR software-components. In De-
sign, Automation & Test in Europe Conference & Exhi-
bition, 2007. DATE’07, pages 1–6. IEEE, 2007.

[9] D. Henriksson, A. Cervin, and K.E. Årzén. True-
Time: Real-time control system simulation with MAT-
LAB/Simulink. In Proceedings of the Nordic MATLAB
Conference, Copenhagen, Denmark, 2003.

[10] Martin Torngren, Dan Henriksson, Karl-Erik Arzen,
Anton Cervin, and Zdenek Hanzalek. Tool supporting
the co-design of control systems and their real-time im-
plementation: Current status and future directions. In
Computer Aided Control System Design, 2006 IEEE In-
ternational Conference on Control Applications, 2006
IEEE International Symposium on Intelligent Control,
2006 IEEE, pages 1173 –1180, 2006.

[11] OSEK consortium. OSEK operating system, v2.2.3.
http://www.osek-vdx.org, 2005.

[12] CAN Bosch. Specification Version 2.0. Robert Bosch
GmbH, 1991.

[13] S.M. Prabhu and P.J. Mosterman. Model-Based Design
of a Power Window System: Modeling, Simulation and
Validation. In Proceedings of IMAC-XXII: A Confer-
ence on Structural Dynamics, Society for Experimental
Mechanics, Inc., Dearborn, MI. Citeseer, 2004.

[14] H. Ebrahimirad, M.J. Yazdanpanah, and R. Kazemi.
Sliding mode four wheel slip-ratio control of anti-lock
braking systems. In Industrial Technology, 2004. IEEE
ICIT ’04. 2004 IEEE International Conference on, vol-
ume 3, pages 1602 – 1606 Vol. 3, 2004.


